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Topics of the Talk

What do Cyber Physical Systems need?

Managed resources

How are resources managed?

Scheduling theory

How can programmers gain access to scheduling 

theory?

Programming abstractions

Which language provides the most useful set of 

abstractions?

Ada
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Cyber Physical Systems

Complex embedded (software intensive) systems

Open system boundaries
Mixed Criticality subsystems

 Feedback Control
discrete and continuous time, deadlines, iteration rates, …

High reliability requirements
 Including Safety-Critical

Mass produced systems need very cost effective 

hardware solutions
Size, weight and power consumption

High levels of functionality required
Many-core, heterogeneous platforms etc
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Scheduling

 The branch of Computer Science that deals with 

resource usage in this context is real-time 

computation

Scheduling protocols promote efficient (and at times 

optimal) resource usage

And scheduling analysis provides the means of 

verifying that, even in the worst-case, deadlines will 

be met
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Scheduling Theories

Lots of theoretical material available
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Scheduling Theories

Some of it relevant to CPS
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Scheduling Theories

Some of this supported by Ada

Ada
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Basic Requirements

 Interactions with the parallel world
 requires concurrency (tasks, threads, processes etc)

Sharing between distinct software components
synchronisation controls (semaphores,  mutexes, monitors etc)

Synchronisation with external real-time
clock abstractions, delay primitives and deadlines

Synchronisation with external events
 interrupt handling
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Basic Scheduling

Predicable and effective task ordering
static priority attributes for tasks, priority ceilings for monitors

Deadline aware task execution
deadline attributes for tasks, protocols for effective sharing

Deterministic execution order
Non-preemptive scheduling (with static priorities)
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Improved Resource Utilisation

Deferred pre-emption
Non-preemptive final section

Dual priorities

Dynamic priorities
which can be used to program a wide variety  of protocols
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More General Computational Models

 Logical Execution Time (no internal I/O)

Open Systems with admission control

Anytime or imprecise algorithms

Dynamic periods and deadlines (elastic)

N in M

Multiframe

Generalised Task (DAG model)
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Resilience

Deadline miss detection

Budget monitoring

Budget overrun detection

Budget enforcement – various forms of servers

Watchdog timers

Aborting rogue computation

Budget management per task

Budget management per group of tasks

Early task termination identification
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Multiprocessor Scheduling

Partitioned scheduling
managing the static assignment  of tasks/threads to 

processors/cores

Global scheduling
managing the run-time migration of tasks/threads to  follow the rules 

of the scheduling protocol

Semi-partitioned scheduling
managing the controlled migration of  individual tasks/threads at 

run-time

Sharing
controlling the sharing of resources between potentially  parallel 

executing tasks/threads (this is a major open problem, in that  

effective general purpose protocols are not yet available).
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Advanced Multiprocessor Facilities

 TkC, and DkC
global schemes with priority-based scheduling then non-preemptive

 Tasklets
 to model parallelism within a task/thread

Barriers
 to efficiently synchronise tasks/threads on multiprocessor platforms
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Mixed Criticality Systems

Efficient usage of computing resources

Budget management

Mode change control
 task/thread parameter modification (extend period and deadlines)

suspending tasks/threads

modifying scheduling attributes: priorities and deadlines

 resume tasks/threads
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Some Other Requirements

Control of when tasks/threads preform I/O
e.g. minimising  input and output jitter

Control of memory used by tasks/threads

Control of power used by tasks/threads

Control over the speed of variable rate processors

Control over placement on FPGA type hardware
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Required Abstractions and/or Interfaces

Many facilities can be obtained via APIs

But language abstractions are:
More flexible (periodic task with changing period)

More composible (budget control and N in M deadlines)

More understandable (deeper semantic definition)

http://www.york.ac.uk/
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Ada's Provisions

Calendar and real-time clocks

Static and dynamic creation of tasks

Delay mechanisms

Priority assignment

Protected objects
with requeue to give controlled sharing

Dynamic task priorities and dynamic priority ceilings

http://www.york.ac.uk/
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Ada’s Provisions

Priority based dispatching with priority ceiling 

protocol

EDF scheduling with the Stack Resource Protocol
and possibly in the future the Deadline Floor Protocol DFP

Round Robin and non-preemptive dispatching

Hierarchical scheduling
 for example, combined priority-based and EDF

Particularly useful for mixed criticality systems
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Ada Provisions

Primitives to allow tasks to suspend themselves 

and other tasks

 Timing events
code that executes at a specified time (can be used to control input 

and output jitter)

Group budget monitoring and control
allows standard execution time servers such as the Periodic Server, 

Sporadic Server and Deferrable Server to be programmed
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Ada’s Provisions for Resilient Code

Budget clocks that monitor task execution time, and 

can signal when specified levels of usage have 

been reached

 Task aborting, and the ability to abandon 

computation at the sub-task level (ATC -- select 

then abort))

 Timing events -- that are only execute in error 

conditions, i.e. programmed watchdog timers

Signalling when a task terminates (useful when the 

task should not!)
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To support multiprocessor execution:

 Use of memory pools to control this important 

resource

Affinities that can control where a task executes
a task can be restricted to just one CPU, a groups of CPUs or be 

allowed to execute on any CPU

Dynamic affinities to allow semi-partitioned 

schemes to be programmed
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Missing Features

Support for parallel execution within a task
a plan for including the notion of tasklet into the language is 

currently under consideration

Support for energy aware programming
API to whatever is supported by the underlying hardware/run-time is 

the only current approach available

 I would like to execute a loop within a bound determined by energy 

available

Support for an effective synchronisation scheme for 

multiprocessor execution
many schemes have been proposed in the literature but there is not 

yet consensus on which Ada can build

http://www.york.ac.uk/
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Use Cases (1)

 9 core platform

 2 criticality levels (HI and LO)

Many tasks of either HI or LO criticality

Static assignment of tasks to cores

All LO-crit tasks on a core have a policed (shared) 

budget
EDF scheduling

All HI-crit tasks have an individual budget
Fixed Priority scheduling

 If any HI-crit task exceeds its budget then a defined 

set of LO-crit tasks migrate

http://www.york.ac.uk/
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HI

LO

Fixed Pri

EDF
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HI

LO

LO

LO
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Analysis

Analysis for this scenario exists
H. Xu and A. Burns, Semi-partitioned Model for Dual-core Mixed 

Criticality System, 23rd RTNS, pp257-266, 2015

 If no more than 3 core experience overload then all 

deadlines continue to be met

 If more than 3 core experience overload then all HI-

crit tasks continue to meet their deadlines
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To program in Ada

Assign tasks to each core
One dispatching domain (per 9 core template)

Set_CPU in System.Multiprocessors.Dispatching_ 

Domains

Hierarchical scheduling
Priority_Specific_Dispatching

Assign HI-crit tasks priorities in top range (Set_Priority)

Assign LO-crit tasks to EDF range (EDF_Across_Priorities)

Assign ceiling priorities to all Protected Objects

http://www.york.ac.uk/
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To program in Ada

Allocate all LO-crit tasks in a core a single budget
Add_Task in Ada.Execution_Time.Group_Budgets

Assign budget (from analysis) – Replenish

Assign a budget clock to each HI-crit task
Timer

Allocate appropriate periods or event triggers for 

each task
delay until, POs, Attach_Handler

http://www.york.ac.uk/
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At run-time for LO-crit tasks

 If group budget exhausted before replenishment
Set_Handler (from group budgets) to

Suspend all LO-crit tasks (Hold in Ada.Asynchronous_Task_ 

Control)

Replenish group budget periodically
Using Timing event (Set_Handler)

To Replenish, and

Release any suspended tasks (Continue)

http://www.york.ac.uk/
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At run-time for HI-crit tasks

 If any HI-crit task goes above budget
Set_Handler used to fix the protected procedure that:

For each moving LO-crit task

• Remove from group budget (Remove_Task)

• Migrate to new core (Set_CPU)

• Add to group budget on new core (Add_Task)

• Release if suspended (Is_Held and Continue)

When LO-crit task next released return to original core

http://www.york.ac.uk/
http://www.york.ac.uk/


32

Alan Burns  

Ada Facilities

 The following libraries have been used
Asynchronous_Task_Control

Task_Identification

Dispatching.EDF

Real_Time

Execution_Time

Execution_Time.Timers

Execution_Time.Group_Budgets

Real_Time.Timing_Events

System.Multiprocessors.Dispatching_Domains

http://www.york.ac.uk/
http://www.york.ac.uk/


33

Alan Burns  

Use Case (2)

 Two phases of execution (HI and LO again)

 First is safety-critical and deterministic

Second is critically but open-ended
 Involves image processing and data presentation

 First phase runs on only 3 cores
To get more predictable memory access times

Second phase on all 9 cores

No second phase work can start until all first phase 

work is completed

http://www.york.ac.uk/
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...

Timing Event
Barrier

Next Release

http://www.york.ac.uk/
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To Program in Ada

Each core has statically allocated a single LO-crit

task and a HI-crit task

Some (3) HI-crit tasks contain application code
After completing their work they call the barrier

 The others just contain a call to the barrier

On release from the barrier they rendezvous with 

the LO-crit task to release it

http://www.york.ac.uk/
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To Program in Ada

 LO-crit tasks
Wait for rendezvous from HI-crit task

When released

• Iterate through an improvement cycle

• Abandon when signalled to do so (Timing Event)

• Use a PO to store safe data (max overrun is delta)

HI-crit tasks
Delay until timing event time + delta to be released

• i.e. timing event is at time period - delta

When released from barrier rendezvous with LO-crit task

http://www.york.ac.uk/
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Ada facilities

 Timing Events

POs (for abort deferred behaviour)
 select then abort

Rendezvous
Timed entry call, so HI-crit task not blocked

Barrier protocol

Allocation of tasks to cores
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Conclusions

 I have tried to highlight the significant body of 

scheduling theory that can be used to build cost-

effective and reliable cyber-physical systems

 To use this theory the system developer / 

programmer must be able to access the protocols 

and approaches that scheduling theory has defined

Ada provides an effective means of providing this 

access
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But

Ada run-times must be available that do faithfully 

implement language semantics and all defined 

features in the Real-Time Annex

 There are abstractions that are not as yet available 

in Ada (or other real-time programming languages)

And there are still open issues in terms of the 

required scheduling theory for CPS
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