
Why the Expressive Power of Languages
such as Ada is needed for future Cyber
Physical Systems

Alan Burns

Department of Computer Science

http://www.york.ac.uk/
http://www.york.ac.uk/

2

Alan Burns

Topics of the Talk

What do Cyber Physical Systems need?

Managed resources

How are resources managed?

Scheduling theory

How can programmers gain access to scheduling

theory?

Programming abstractions

Which language provides the most useful set of

abstractions?

Ada

http://www.york.ac.uk/
http://www.york.ac.uk/

3

Alan Burns

Cyber Physical Systems

Complex embedded (software intensive) systems

Open system boundaries
Mixed Criticality subsystems

 Feedback Control
discrete and continuous time, deadlines, iteration rates, …

High reliability requirements
 Including Safety-Critical

Mass produced systems need very cost effective

hardware solutions
Size, weight and power consumption

High levels of functionality required
Many-core, heterogeneous platforms etc

http://www.york.ac.uk/
http://www.york.ac.uk/

4

Alan Burns

Scheduling

 The branch of Computer Science that deals with

resource usage in this context is real-time

computation

Scheduling protocols promote efficient (and at times

optimal) resource usage

And scheduling analysis provides the means of

verifying that, even in the worst-case, deadlines will

be met

http://www.york.ac.uk/
http://www.york.ac.uk/

5

Alan Burns

Scheduling Theories

Lots of theoretical material available

http://www.york.ac.uk/
http://www.york.ac.uk/

6

Alan Burns

Scheduling Theories

Some of it relevant to CPS

http://www.york.ac.uk/
http://www.york.ac.uk/

7

Alan Burns

Scheduling Theories

Some of this supported by Ada

Ada

http://www.york.ac.uk/
http://www.york.ac.uk/

8

Alan Burns

Basic Requirements

 Interactions with the parallel world
 requires concurrency (tasks, threads, processes etc)

Sharing between distinct software components
synchronisation controls (semaphores, mutexes, monitors etc)

Synchronisation with external real-time
clock abstractions, delay primitives and deadlines

Synchronisation with external events
 interrupt handling

http://www.york.ac.uk/
http://www.york.ac.uk/

9

Alan Burns

Basic Scheduling

Predicable and effective task ordering
static priority attributes for tasks, priority ceilings for monitors

Deadline aware task execution
deadline attributes for tasks, protocols for effective sharing

Deterministic execution order
Non-preemptive scheduling (with static priorities)

http://www.york.ac.uk/
http://www.york.ac.uk/

10

Alan Burns

Improved Resource Utilisation

Deferred pre-emption
Non-preemptive final section

Dual priorities

Dynamic priorities
which can be used to program a wide variety of protocols

http://www.york.ac.uk/
http://www.york.ac.uk/

11

Alan Burns

More General Computational Models

 Logical Execution Time (no internal I/O)

Open Systems with admission control

Anytime or imprecise algorithms

Dynamic periods and deadlines (elastic)

N in M

Multiframe

Generalised Task (DAG model)

http://www.york.ac.uk/
http://www.york.ac.uk/

12

Alan Burns

Resilience

Deadline miss detection

Budget monitoring

Budget overrun detection

Budget enforcement – various forms of servers

Watchdog timers

Aborting rogue computation

Budget management per task

Budget management per group of tasks

Early task termination identification

http://www.york.ac.uk/
http://www.york.ac.uk/

13

Alan Burns

Multiprocessor Scheduling

Partitioned scheduling
managing the static assignment of tasks/threads to

processors/cores

Global scheduling
managing the run-time migration of tasks/threads to follow the rules

of the scheduling protocol

Semi-partitioned scheduling
managing the controlled migration of individual tasks/threads at

run-time

Sharing
controlling the sharing of resources between potentially parallel

executing tasks/threads (this is a major open problem, in that

effective general purpose protocols are not yet available).

http://www.york.ac.uk/
http://www.york.ac.uk/

14

Alan Burns

Advanced Multiprocessor Facilities

 TkC, and DkC
global schemes with priority-based scheduling then non-preemptive

 Tasklets
 to model parallelism within a task/thread

Barriers
 to efficiently synchronise tasks/threads on multiprocessor platforms

http://www.york.ac.uk/
http://www.york.ac.uk/

15

Alan Burns

Mixed Criticality Systems

Efficient usage of computing resources

Budget management

Mode change control
 task/thread parameter modification (extend period and deadlines)

suspending tasks/threads

modifying scheduling attributes: priorities and deadlines

 resume tasks/threads

http://www.york.ac.uk/
http://www.york.ac.uk/

16

Alan Burns

Some Other Requirements

Control of when tasks/threads preform I/O
e.g. minimising input and output jitter

Control of memory used by tasks/threads

Control of power used by tasks/threads

Control over the speed of variable rate processors

Control over placement on FPGA type hardware

http://www.york.ac.uk/
http://www.york.ac.uk/

17

Alan Burns

Required Abstractions and/or Interfaces

Many facilities can be obtained via APIs

But language abstractions are:
More flexible (periodic task with changing period)

More composible (budget control and N in M deadlines)

More understandable (deeper semantic definition)

http://www.york.ac.uk/
http://www.york.ac.uk/

18

Alan Burns

Ada's Provisions

Calendar and real-time clocks

Static and dynamic creation of tasks

Delay mechanisms

Priority assignment

Protected objects
with requeue to give controlled sharing

Dynamic task priorities and dynamic priority ceilings

http://www.york.ac.uk/
http://www.york.ac.uk/

19

Alan Burns

Ada’s Provisions

Priority based dispatching with priority ceiling

protocol

EDF scheduling with the Stack Resource Protocol
and possibly in the future the Deadline Floor Protocol DFP

Round Robin and non-preemptive dispatching

Hierarchical scheduling
 for example, combined priority-based and EDF

Particularly useful for mixed criticality systems

http://www.york.ac.uk/
http://www.york.ac.uk/

20

Alan Burns

Ada Provisions

Primitives to allow tasks to suspend themselves

and other tasks

 Timing events
code that executes at a specified time (can be used to control input

and output jitter)

Group budget monitoring and control
allows standard execution time servers such as the Periodic Server,

Sporadic Server and Deferrable Server to be programmed

http://www.york.ac.uk/
http://www.york.ac.uk/

21

Alan Burns

Ada’s Provisions for Resilient Code

Budget clocks that monitor task execution time, and

can signal when specified levels of usage have

been reached

 Task aborting, and the ability to abandon

computation at the sub-task level (ATC -- select

then abort))

 Timing events -- that are only execute in error

conditions, i.e. programmed watchdog timers

Signalling when a task terminates (useful when the

task should not!)

http://www.york.ac.uk/
http://www.york.ac.uk/

22

Alan Burns

To support multiprocessor execution:

 Use of memory pools to control this important

resource

Affinities that can control where a task executes
a task can be restricted to just one CPU, a groups of CPUs or be

allowed to execute on any CPU

Dynamic affinities to allow semi-partitioned

schemes to be programmed

http://www.york.ac.uk/
http://www.york.ac.uk/

23

Alan Burns

Missing Features

Support for parallel execution within a task
a plan for including the notion of tasklet into the language is

currently under consideration

Support for energy aware programming
API to whatever is supported by the underlying hardware/run-time is

the only current approach available

 I would like to execute a loop within a bound determined by energy

available

Support for an effective synchronisation scheme for

multiprocessor execution
many schemes have been proposed in the literature but there is not

yet consensus on which Ada can build

http://www.york.ac.uk/
http://www.york.ac.uk/

24

Alan Burns

Use Cases (1)

 9 core platform

 2 criticality levels (HI and LO)

Many tasks of either HI or LO criticality

Static assignment of tasks to cores

All LO-crit tasks on a core have a policed (shared)

budget
EDF scheduling

All HI-crit tasks have an individual budget
Fixed Priority scheduling

 If any HI-crit task exceeds its budget then a defined

set of LO-crit tasks migrate

http://www.york.ac.uk/
http://www.york.ac.uk/

25

Alan Burns

HI

LO

Fixed Pri

EDF

http://www.york.ac.uk/
http://www.york.ac.uk/

26

Alan Burns

HI

LO

LO

LO

http://www.york.ac.uk/
http://www.york.ac.uk/

27

Alan Burns

Analysis

Analysis for this scenario exists
H. Xu and A. Burns, Semi-partitioned Model for Dual-core Mixed

Criticality System, 23rd RTNS, pp257-266, 2015

 If no more than 3 core experience overload then all

deadlines continue to be met

 If more than 3 core experience overload then all HI-

crit tasks continue to meet their deadlines

http://www.york.ac.uk/
http://www.york.ac.uk/

28

Alan Burns

To program in Ada

Assign tasks to each core
One dispatching domain (per 9 core template)

Set_CPU in System.Multiprocessors.Dispatching_

Domains

Hierarchical scheduling
Priority_Specific_Dispatching

Assign HI-crit tasks priorities in top range (Set_Priority)

Assign LO-crit tasks to EDF range (EDF_Across_Priorities)

Assign ceiling priorities to all Protected Objects

http://www.york.ac.uk/
http://www.york.ac.uk/

29

Alan Burns

To program in Ada

Allocate all LO-crit tasks in a core a single budget
Add_Task in Ada.Execution_Time.Group_Budgets

Assign budget (from analysis) – Replenish

Assign a budget clock to each HI-crit task
Timer

Allocate appropriate periods or event triggers for

each task
delay until, POs, Attach_Handler

http://www.york.ac.uk/
http://www.york.ac.uk/

30

Alan Burns

At run-time for LO-crit tasks

 If group budget exhausted before replenishment
Set_Handler (from group budgets) to

Suspend all LO-crit tasks (Hold in Ada.Asynchronous_Task_

Control)

Replenish group budget periodically
Using Timing event (Set_Handler)

To Replenish, and

Release any suspended tasks (Continue)

http://www.york.ac.uk/
http://www.york.ac.uk/

31

Alan Burns

At run-time for HI-crit tasks

 If any HI-crit task goes above budget
Set_Handler used to fix the protected procedure that:

For each moving LO-crit task

• Remove from group budget (Remove_Task)

• Migrate to new core (Set_CPU)

• Add to group budget on new core (Add_Task)

• Release if suspended (Is_Held and Continue)

When LO-crit task next released return to original core

http://www.york.ac.uk/
http://www.york.ac.uk/

32

Alan Burns

Ada Facilities

 The following libraries have been used
Asynchronous_Task_Control

Task_Identification

Dispatching.EDF

Real_Time

Execution_Time

Execution_Time.Timers

Execution_Time.Group_Budgets

Real_Time.Timing_Events

System.Multiprocessors.Dispatching_Domains

http://www.york.ac.uk/
http://www.york.ac.uk/

33

Alan Burns

Use Case (2)

 Two phases of execution (HI and LO again)

 First is safety-critical and deterministic

Second is critically but open-ended
 Involves image processing and data presentation

 First phase runs on only 3 cores
To get more predictable memory access times

Second phase on all 9 cores

No second phase work can start until all first phase

work is completed

http://www.york.ac.uk/
http://www.york.ac.uk/

34

Alan Burns

...

Timing Event
Barrier

Next Release

http://www.york.ac.uk/
http://www.york.ac.uk/

35

Alan Burns

To Program in Ada

Each core has statically allocated a single LO-crit

task and a HI-crit task

Some (3) HI-crit tasks contain application code
After completing their work they call the barrier

 The others just contain a call to the barrier

On release from the barrier they rendezvous with

the LO-crit task to release it

http://www.york.ac.uk/
http://www.york.ac.uk/

36

Alan Burns

To Program in Ada

 LO-crit tasks
Wait for rendezvous from HI-crit task

When released

• Iterate through an improvement cycle

• Abandon when signalled to do so (Timing Event)

• Use a PO to store safe data (max overrun is delta)

HI-crit tasks
Delay until timing event time + delta to be released

• i.e. timing event is at time period - delta

When released from barrier rendezvous with LO-crit task

http://www.york.ac.uk/
http://www.york.ac.uk/

37

Alan Burns

Ada facilities

 Timing Events

POs (for abort deferred behaviour)
 select then abort

Rendezvous
Timed entry call, so HI-crit task not blocked

Barrier protocol

Allocation of tasks to cores

http://www.york.ac.uk/
http://www.york.ac.uk/

38

Alan Burns

Conclusions

 I have tried to highlight the significant body of

scheduling theory that can be used to build cost-

effective and reliable cyber-physical systems

 To use this theory the system developer /

programmer must be able to access the protocols

and approaches that scheduling theory has defined

Ada provides an effective means of providing this

access

http://www.york.ac.uk/
http://www.york.ac.uk/

39

Alan Burns

But

Ada run-times must be available that do faithfully

implement language semantics and all defined

features in the Real-Time Annex

 There are abstractions that are not as yet available

in Ada (or other real-time programming languages)

And there are still open issues in terms of the

required scheduling theory for CPS

http://www.york.ac.uk/
http://www.york.ac.uk/

