
Combining Time-Triggered Plans with
Priority-Scheduled Task Sets

Jorge Real, Sergio Sáez, Alfons Crespo

Universitat Politècnica de València, Spain

21st International Conference on Reliable Software Technologies - Ada-Europe 2016 - Pisa, Italy, June 13-17, 2016

2

Outline

n  Introduction
n  System Model
n  API for Time-Triggered Plans
n  API Extensions to Support Additional Task Patterns
n  Comments About the Implementation
n  Experimental Results
n  Conclusions

Introduction

n  Two major approaches to real-time scheduling:
n  Time-triggered (TT) – TT plans, cyclic executives
n  Priority-based (PB) – Fixed or dynamic priorities

3

A TT plan with three tasks

Three priority-scheduled tasks

Introduction

4

Time-Triggered scheduling Priority-Based scheduling

ª  All events need be explicitly taken
care of in advance – Building a
schedule is complex

ü  Functional and timing aspects are
decoupled in the system design

ü  Deterministic behaviour – Tasks
start execution at predetermined
points in time

ª  Tasks have well defined release
periods – but their start can be
delayed due to interference

Major issue in control systems

Introduction

n  Release Jitter
n  Actual release time - Theoretical start time
n  Degrades performance of digital controllers
n  Hinders precise distributed synchronisation

n  Our goal
n  Grant short release delay for jitter-sensitive tasks

5

Introduction

n  The jitter issue has been tackled from different
perspectives
n  Control Engineering:

n  Consider the effects of jitter in control equations

n  Priority-based scheduling:
n  Reduce deadlines – may work for a limited number of tasks
n  Control/scheduling co-design – use feedback from execution-

time measurements to modify periods
n  Sub-task decomposition, giving higher priority to the most jitter-

sensitive parts (initial and final)

n  Our approach
n  Combine a TT plan (including jitter-sensitive tasks) with

a PB schedule (jitter-tolerant tasks)

6

System model

n  Combined execution of:
n  A TT plan at the highest priority
n  A PB task set uses the rest of priority levels (RM, EDF,

priority-specific dispatching…)

n  TT Plan: ordered sequence of slots, each having:
n  A slot duration
n  An indication for what to do in each slot

n  Regular slots: a Work_Id referring to application code
n  Special slots: an indication for the TT scheduler

7

Work Id Duration Empty slot Mode change slot

System model

n  TT scheduler
n  Triggered by plan events à slot start

n  Based on the type of slot
n  Regular slot: Release the execution of the Work_Id for

that slot (application code)
n  Empty slot: Time is available for PB tasks
n  Mode change slot: Empty slot + ability to change mode

(plan)
n  The new plan starts at the end of the mode change slot

8

System model: Overrun control

n  TT tasks not allowed to execute beyond their slot
duration
n  At least, not at TT priority level

n  Possible corrective actions
n  Abort the offending task – perhaps too drastic
n  Mode change to degraded mode – á la mixed criticality
n  Continue execution at demoted priority

9

System model: Overrun control

n  Observation: under this policy, data shared between works
must be protected
n  The plan design should take blocking times into account

10

API for TT Plans

-- Context clauses omitted
package Time_Triggered_Scheduling is

 type Any_Work_Id is new Integer;
 subtype Special_Work_Id is Any_Work_Id range Any_Work_Id'First .. 0;
 subtype Regular_Work_Id is Any_Work_Id range 1 .. Any_Work_Id'Last;
 Empty_Slot : constant Special_Work_Id;
 Mode_Change_Slot : constant Special_Work_Id;

 type Time_Slot is record
 Slot_Duration : Time_Span;
 Work_Id : Any_Work_Id;
 end record;

 type Time_Triggered_Plan is array (Natural range <>) of Time_Slot;
 type Time_Triggered_Plan_Access is access all Time_Triggered_Plan;
 ...

11

API for TT Plans

…
protected type Time_Triggered_Scheduler (Nr_Of_Work_Ids: Regular_Work_Id)
 with Priority => System.Interrupt_Priority'Last is

 -- Setting a new time-triggered plan
 procedure Set_Plan (TTP : in Time_Triggered_Plan_Access; At_Time : in Time);
 procedure Set_Plan (TTP : in Time_Triggered_Plan_Access; In_Time : in Time_Span);

 -- Time-triggered tasks wait here for their next release
 entry Wait_For_Activation (Work_Id : Regular_Work_Id);
 ...

 private
 Empty_Slot : constant Special_Work_Id := 0;
 Mode_Change_Slot : constant Special_Work_Id := −1;
 …
 end Time_Triggered_Scheduler;
end Time_Triggered_Scheduling;

12

API for TT Plans

 TTS: Time_Triggered_Scheduler (3); -- A scheduler for 3 different TT tasks

 task type Simple_Worker (Work_Id: Regular_Work_Id; Prio: System.Priority)
 with Priority => Prio; -- Demoted priority in case of overrun

 task body Simple_Worker is
 begin
 loop
 TTS.Wait_For_Activation (Work_Id); -- Block here until my slot arrives
 Do_My_Work (...); -- Specific work actions
 end loop;
 end Simple_Worker;

13

With relatively simple API extensions, the TT
scheduler can support more complex task patterns

n  A simple TT task pattern

API Extensions and Task Patterns

n  API extensions (functions)
n  Get_Last_Release (Work_Id)

n  Time of last release of Work_Id

n  Get_Last_Slot_Duration (Work_Id)
n  Duration of last slot of Work_Id

n  Get_Next_Slot_Separation (Work_Id)
n  Time between start of last and next slot of Work_Id

n  This info added to Slot_Type at plan's design time

n  API extensions (procedure)
n  Leave_TT_Level (Work_Id, Demoted_Priority)

n  Continue execution of Work_Id at Demoted_Priority level

14

API Extensions and Task Patterns

n  Worker_With_Cancellation
n  The TT task cancels itself before causing an overrun

n  Tasks that cannot contribute any value after end of slot

n  Implementation
n  Task actions enclosed in ATC triggered by a delay until

Last_Release + Last_Slot_Duration of Work_Id

n  Worker_With_Initial_Final
n  Tasks have two clearly separated parts executed in two

consecutive slots of the Work_Id
n  For TT tasks imposing deterministic I/O delays

n  Implementation
n  Concatenation of two simple workers

15

 task body Worker_With_Initial_Optional_Final is
 -- Common data to all parts goes here
 begin
 loop
 TTS.Wait_For_Activation(Work_Id);
 Initial_Work; -- Do initial part
 TTS.Leave_TT_Level (Work_Id, Optional_Part_Prio); -- Prepare to start optional part
 select
 delay until TTS.Get_Last_Release (Work_Id) + TTS.Get_Next_Slot_Separation (Work_Id);
 then abort
 Optional_Work; -- Do optional part
 end select;
 TTS.Wait_For_Activation(Work_Id);
 Final_Work; -- Do final part
 end loop;
 end Worker_With_Initial_Optional_Final;

API Extensions and Task Patterns

n  Worker_With_Initial_Optional_Final
n  Executes an optional part between I & F

n  Optional part refines result of initial up to the point when result
must be output in the final part

16

API Extensions and Task Patterns

17

Comments About the Implementation

n  All TT scheduler's operations are O(1)
n  All TT actions triggered by a timing event
n  TT scheduler runs at Interrupt_Priority'Last
n  All TT tasks run at Interrupt_Priority'Last - 1
n  PB tasks execute below that priority
n  TT tasks are implemented by actual Ada tasks

n  Cannot be simple procedures
n  A priority scheduler is already needed anyway

18

Experimental Results

19

Release jitter cummulative frequency histogram

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

W1

WI2

WF2

WI3

WF3

T4

T5

Time (ms)

MaRTE OS / Bare board – 6-year old Celeron @ 1.8 MHz

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

W1

WI2

WF2

WI3

WF3

T4

T5

Experimental Results

20

Release jitter cummulative frequency histogram

Time (ms)

MaRTE OS / Bare board – 12-year old Pentium III @ 800 MHz

Conclusions & Further Work

n  Conclusions
n  Encouraging results
n  Reuse of legacy TT plans
n  Simpler TT plan design (has only jitter-sensitive tasks)
n  Open to new TT task patterns (IMF, IMOF,…)

n  Further Work
n  Schedulability analysis (End-To-End-Flow)
n  Use in Multiprocessors

n  One plan per processor; limited & controlled migration

n  Adaptation to Ravenscar
n  We're using entry families, requeue, dynamic priorities, local TE's
n  Would need to re-engineer and restrict supported patterns

21

