
1

Programming Language
Vulnerabilities within the ISO/IEC

Standardization Community

Stephen Michell
International Convenor JTC 1/SC 22 WG 23

Programming Language Vulnerabilities
stephen.michell@maurya.on.ca

2

WG 23

The Programming Languages Working Group is
officially the

 ISO IEC

 Joint Technical Committee 1

 Subcommittee 22 (Programming Languages)

 Working Group 23 on Programming Language
 Vulnerabilities

3

Programming Language
Vulnerabilities (WG 23)

● Develop a Technical Report on programming
language independent vulnerabilities
with language-dependent annexes to map each
language to the common ones.

● Published as TR 24772:2010
● Revised 2013 with annexes for C, Ada, Ruby,

Python, Spark and PHP.
● Published IS 17960 Code Signing for Source Code

4

Vulnerabilities

● Various groups look at programming language
vulnerabilities

– MITRE/Homeland Security
● Common Vulnerabilities and Exposures (CVE)

– Enumerates every vulnerability instance
reported by type, OS, application
(thousands)

● Common Weakness Exposures (CWE)
– Groups reported vulnerabilities by type

(about 900)
– SANS/CWE Top 10

● Open Wasp Application Project
– OWASP Top 25

5

How is WG 23 Different?

● Different look at vulnerabilities
– Consider much more than attacks

● Programming mistakes
– From classic to obscure
– Consider real time issues
– Safety-related and security-related

● Weaknesses that can be attacked
– Aggregated more than CWE

● Document about 90 vulnerabilities that cover 900
CWE weaknesses

– Consider how vulnerabilities manifest in
programming languages

● Separate “part” for each programming language

6

What WG 23 has not done

● Coding Standards
– Many levels of integrity (safety and security) will

use this document
– Many programming domains will use documents,

from general usage to real time community
– Concerns of each community is different and the

ways that they address vulnerabilities will differ
– No hope that a single coding standard will meet

the needs of any (let alone all) community

7

Vulnerabilities (WG 23)

● Intend that document will be used to develop coding
standards

● Provide explicit guidance to programmer to avoid
vulnerability, e.g.

– Use static analysis tools
– Adopt specific coding conventions
– Always check for error return

● Recommend to language designers on steps to
eliminate vulnerability from their language, e.g.

– Provide move/copy/etc operations that obey
buffer size and boundaries

8

Vulnerabilities Covered

Type system

Bit representation

Floating point arithmetic

Enumeration issues

Numeric conversion issues

String termination Issues

Buffer boundary violations

Unchecked array indexing

Unchecked array copying

Pointer type changes

Pointer arithmetic

Null pointer dereference

Identifier name reuse

Unused variable

Operator precedence / order of
evaluation

Switch statements and static
analysis

Ignored status return and
unhandled exceptions

OO Issues (overloading,
inheritance, etc)

Concurrency (activation,
termination, data access)

9

Vulnerabilities (WG 23)
Application Vulnerabilities

● Design errors (can’t be traced to language weaknesses)
– Lack of adherence to least privilege
– Loading/executing untrusted code
– Unrestricted file upload
– Resource exhaustion
– Cross site scripting
– Hard coded password
– Insufficiently protected credentials
– Time and clock-based vulnerabilities (new)

10

Vulnerabilities (WG 23)

● First version of TR 24772 published in 2010
– No language specific annexes ready

● Second edition published in 2012
– Language annexes for Ada, C, Python, Ruby,

Spark, PHP
– New vulnerabilities for concurrency but no

language-specific response

11

Changes Since 2012
● Split Language-dependent parts from Language

Independent part
– TR 24772-1 Guidance – language independent

– TR 24772-2 Guidance – Ada

– TR 24772-3 Guidance – C

– TR 24772-4 Guidance – Python

– TR 24772-5 Guidance – PHP

– TR 24772-6 Guidance – Spark

– TR 24772-7 Guidance – Ruby

– TR 24772-8 Guidance – Fortran

Changes Since 2012
● Add 7 new vulnerabilities

– Object Orientation (clause 6, language-
based)

● Deep vs shallow copying
● Violations of Liskov principle (contract model)
● Redispatching
● Polymorphic Variables

– Time and Clock (clause 7 application)
● Time consumption
● Clock Issues
● Time drift and jitter

Changes Since 2012

● Guidance for each vulnerability is more “directive”
● Aggregate guidance into a “top 10” list for part

– Validate Input
– Check return values
– Do static analysis

● Why?
– Gives

● Smaller footprint for solution space
● Easier entry into the meat of the document,

the explanations.

Vulnerabilities (WG 23)
● Look at one vulnerability

– 6.5 Enumerator Issues [CCB]

– 6.5.1 Description of Vulnerability
● What is enumeration
● Issue of non-default representation, duplicate values,
● Issue of arrays indexed by enumerations

– Holes
● Issue of static coverage

– 6.5.2 References

15

Vulnerabilities (WG 23)
– 6.5.3 Mechanism of Failure

● Interplay between order of enumerators in list, how
(and where) new members added, and changes
in representation.

● Expressions that depend on any of these are
fragile

– Incorrect assumptions can lead to
unbounded behaviours

● Arithmetic operations on enumerations
– 6.5.4 Applicable Language Characteristics

● Languages that permit incomplete mappings (to
theoretical enumeration)

● Languages that provide only mapping of integer to
enumerator

● Languages that have no enumerator capability

16

Vulnerabilities (WG 23)

– 6.5.5 Avoiding Vulnerability & Mitigating Effects
● Use static analysis tools to detect problematic use

– Compiler (e.g.Ada) can be useful
● Ensure coverage of all enumeration values
● Use enumeration types selected from limited set of

values

– 6.5.6 Implications for Standardization
● Provide a mechanism to prevent arithmetic

operations on enumeration types
● Provide mechanisms to enforce static matching

between enumerator definitions and initialization
expressions

17

Vulnerabilities (WG 23)
● Ada’s rules on Enumerator Issues

– Complete coverage mandatory
– Order must be preserved, but holes in

representation permitted
– Arrays indexed by enumeration type may have

holes (implementation dependent)
– When “when others =>” option used in

enumeration choice, unintended consequences
– Guidance

● Do not use “others” choice for case statements &
aggregates

● Mistrust subranges as choices (enumeration
values added in middle)

18

Vulnerabilities (WG 23)

● C’s guidance on Enumerator Issues
– Follow guidance of main part
– Use enumerators starting at 0 and incrementing

by 1
– Avoid loops that step over enumerator with non-

default representation
– Select from limited set of choices, and use static

analysis tools

19

Vulnerabilities (WG 23)

● Python’s take on Enumerator Issues

– Python only has named integers and sets of
strings

– Variable can be rebound at any time, so no
consistent use as an enumerator

20

Contact

● Programming Languages is an exciting field,
especially in a world of “too many cores”.

● If you are interested in participating in
programming language vulnerabilites, especially
if you know Ruby, Java, C#, EcmaScript,

– Contact me,
stephen.michell@maurya.on.ca

