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Abstract 

In this paper, we address the problem of multi-robot systems in emergency response applications, where a team 
of robots/drones has to visit affected locations to provide rescue services. In the literature, the most common 
approach is to assign target locations individually to robots using centralized or distributed techniques. The 
problem is that the computation complexity increases significantly with the number of robots and target locations. 
In addition, target locations may not be assigned uniformly among the robots. In this paper, we propose, CMMTSP, 
a clustering market-based approach that first groups locations into clusters, then assigns clusters to robots using 
a market-based approach. We formulate the problem as multiple-depot MTSP and address the multi-objective 
optimization of three objectives namely, the total traveled distance, the maximum traveled distance and the 
mission time. Simulations show that CM-MTSP provides a better balance among the three objectives as compared 
to a single objective optimization, in particular an enhancement of the mission time, and reduces the execution 
time to at least 80% as compared to a greedy approach. 
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Abstract—In this paper, we address the problem of multi-robot
systems in emergency response applications, where a team of
robots/drones has to visit affected locations to provide rescue
services. In the literature, the most common approach is to
assign target locations individually to robots using centralized
or distributed techniques. The problem is that the computation
complexity increases significantly with the number of robots and
target locations. In addition, target locations may not be assigned
uniformly among the robots. In this paper, we propose, CM-
MTSP, a clustering market-based approach that first groups
locations into clusters, then assigns clusters to robots using a
market-based approach. We formulate the problem as multiple-
depot MTSP and address the multi-objective optimization of
three objectives namely, the total traveled distance, the maximum
traveled distance and the mission time. Simulations show that
CM-MTSP provides a better balance among the three objectives
as compared to a single objective optimization, in particular an
enhancement of the mission time, and reduces the execution time
to at least 80% as compared to a greedy approach.

I. INTRODUCTION

Multi-robot coordination has been a major challenge in

robotics with a vast array of applications. Emergency response

represents one attractive application of multiple robot coordi-

nation, where a team of robots coordinates to visit locations

affected by the disaster ([1], [2]). Several papers addressed

this problem [3], [4] and proposed solutions, which can be

classified from two perspectives: (1) Algorithmic approaches,

which can be either centralized or distributed (2) optimization

problem type, which can be either single objective or multi-

objective. Centralized approaches typically rely on evolution-

ary algorithms [5], [6], which have the advantage of converg-

ing to good solutions, but at the cost of intensive computation

requirements and long execution times. On the other hand,

distributed approaches, including market-based techniques [7],

[8], provide lower-quality solutions in general, but executes

much faster. The complexity of these approaches significantly

increases when the problem switches from single-objective to

multi-objective optimization, where the goal is to optimize

several metrics that can be conflicting in nature. This class

of problems usually has more than one optimal solution that

provides a balanced optimization of the different metrics, also

known as Pareto-optimal solutions ([9]). Evolutionary algo-

rithms are the typical approaches to solve this type of multi-

objective optimization problems to find the Pareto-optimal

solutions. However, the execution time is too long when the

problem scales, making it non appropriate for situations where

an efficient solution is needed in (near) real-time. This work

addresses this gap and investigates the problem of assigning

locations to robots in emergency response applications while

meeting three requirements (i.) optimizes multiple objectives,

including total traveled distance, maximum traveled distance

and mission time for a heterogeneous team of robots, (ii.)

provides an efficient solution (iii.) ensures low execution times

and reduces the complexity of the problem even when it scales.

Our solution relies on clustering the target locations and then

the robots perform bid on clusters rather than on individual

targets. The motivation behind this strategy is two-folded: first,

we reduce the problem size from a large number of targets to

a much smaller number of clusters to be assigned to robots,

which intuitively leads to reducing the execution time to find

an appropriate solution; second, grouping targets into clusters

will improve uniformity of number of targets assigned to each

robot, as individual target assignment may lead to assigning

more target locations to some robots and preventing others

[7]. Our approach uses a market-based approach, allowing

robots to bid on the clusters, and be assigned to the cluster that

optimizes the global mission objective. Finally, the proposed

approach, includes an improvement phase to optimize the

solution by switching targets between robots if necessary.

The remainder of this paper is as follows. Section II

presents an overview on related works and discusses the

contribution of this paper as compared to previous works.

Section III describes the system model. Section IV presents

the CM-MTSP algorithm and an illustrative example. Section

V presents the performance evaluation study and discusses the

results. Finally, Section VI concludes the paper.
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II. RELATED WORKS

Multiple traveling salesmen problem (MTSP) [10] is the

problem of visiting a set of cities by a set of salesmen who

all start and end at the same city such that each city must be

visited exactly once with the objective of minimizing the total

cost of visiting all cities. [10] provided a comprehensive survey

on the MTSP and its applications. Also, it provided some

formulations of the MTSP and described exact and heuristic

solution procedures proposed for solving this problem.

In [8], the authors proposed a market-based approach to solve

the multiple depot MTSP. The algorithm consists of four

steps: market auction, agent-to-agent trade, agent Switch and

agent relinquish step. The performance of the algorithm was

measured in terms of the quality of the solution, the number

of iterations required to get a solution and the execution time.

It was shown that the solution gives good result in comparison

with other sub-optimal solution. Also, in [7], the authors

proposed a market based solution called move and improve to

solve the multiple depot MTSP. The solution consists of four

steps: initial target allocation, tour construction, elimination of

conflicting targets and solution improvement. From the simula-

tion study, it was shown that the move and improve algorithm

gives good results compared with the results generated by a

centralized approach. However, the solutions proposed in [7]

and [8] seek to optimize a single objective at a time (i.e.

even the MinMax or the MinSum). As several real world

applications need to optimize multiple objectives, in our work,

we addressed the multi objective problem and we propose

a solution that optimizes several objectives simultaneously,

including the mission time, the total traveled distance and the

maximum traveled distance.

Clustering methods are recently used to deal with optimiza-

tion problems. In [11], the authors tackled the multi-robot task

allocation problem considering the objective of minimizing the

distance traveled by all the robots and balancing the workload

between the robots equally. They proposed a solution using

K-means clustering method and an auction process. First, N

tasks are decomposed into n groups in such a way the distance

inside each cluster is minimized. Then, the cost for each robot

to visit the n clusters is computed and finally, each robot is

assigned to a cluster using an auction mechanism. However,

the complexity of the algorithm is relatively high because there

is a need to bid on all possible combinations of clusters for

robots and thus the complexity of the algorithm increases with

the increase of the number of clusters. For the performance

evaluation, the authors proposed a scenario of 2 robots and 32

tasks. They used the benchmark VRP data set A-n32-K5.vrp

[12]. The total cost used to assign a cluster is equal to the

sum of the cost of visiting the tasks in the cluster and the idle

cost (i.e. sum of the difference in cost of travel between any

two robots). They performed two analysis: one with 2 clusters

and the other with 3 clusters. The results presented do not

signify the efficiency of the method as it was applied in a

small scenario.

Another auction algorithm using a clustering technique

has been presented in [13]. The authors aim to achieve two

objectives: minimizing both the maximum traveled distance of

each robot and the sum of distance traveled by all robots in

visiting their assigned locations. They assumed that the robot

are homogeneous. Initially, all robots have a list of allocated

tasks. When a robot reaches the position of a first task, it sends

a signal for all the other robots to start their auction. Upon

the completion of all auctions, the robot re-plan its path and

move to the next task. When a robot receives a message to

start an auction, it forms a new set of clusters of its assigned

tasks. Then each robot makes an auction for the new clusters

except the cluster that contains its currently initialized task.

If a robot receives an auction for a cluster, it bids for that

cluster. In the winner-determination stage, the robots with the

lowest bid wins the cluster. For the performance evaluation,

the authors only have shown the percentage of improvement

of the initial assignment as compared to the final assignment.

Most of the earlier research works have proposed solutions

to solve the MTSP problem aiming to minimize even the

total traveled distance by all agents or the maximum traveled

distance by any agent ([7], [8]). In our work, we considered

a multi-objective problem where we need to simultaneously

optimize several objectives (Section III). We seek to find

solutions that keep up the trade-off between the objectives.

We propose a Clustering Market-based approach (CM-MTSP)

to solve the multiple depot MTSP with the objective of

optimizing simultaneously three performance criteria, namely

the total traveled distance, the maximum traveled distance

and the mission time. The approach incrementally improves

the assignment and provides a solution that optimizes the

conflicting objectives.

III. SYSTEM MODEL

In this paper, we are interested to solve the multi-objective

multiple depot multiple traveling salesman problem. Consid-

ering a set of n robots located at different positions and a

set of m target locations. Each robot has to visit its assigned

target locations and then returns to its initial position. The

objective is to find an effective assignment of robots to the set

of locations such that each target is only visited by one robot.

In addition, targets must be assigned in a uniformed way such

that the number of allocated targets for each robot is equal or

close.

The problem can be formulated as follows. Consider a set of

n robots {r1, . . . , rn} responsible to reach a set of m > n

target locations {t1, . . . , tm}. The robots are initially located

at different positions {pr1 , . . . , prn}. We define tourri as the

tour of robot i starting from and ending at its initial position pi
and going through its list of k allocated targets {ti1 , . . . , tik}.

The tour length of the robot ri is expressed as:

Length(tourri) = distance(pri , ti1)

+
∑k

j=1
distance(tij , tij+1

) + distance(tik , pri)
(1)

k is the number of target locations assigned to robot ri.

distance(tij , tij+1
) represents the Euclidean distance between

target location j and target location j + 1 for robot ri.
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ti1 and tik represent the first and the last target locations

respectively for robot ri. distance(pri , ti1) represents the

Euclidean distance between ri and ti1 , and distance(tik , pri)
represents the Euclidean distance between ri and tik .

In the context of multi objective optimization problem, several

objectives must be minimized. We are interested to optimize

the following objectives:

1) The total traveled distance: We define TTD as the sum

of all tour length performed by all the robots. The

tour length of a robot is calculated by summing up the

traveled distance of all edges included in that tour. The

TTD is given according to Equation 2.

TTD =

n∑

i=1

Length(tourri) (2)

2) The maximum traveled distance MTD: it is the maxi-

mum distance traveled by any robot after the schedule

mission is completed. The MTD is expressed as:

MTD = max(Length(tourri))
1 ≤ i ≤ n

s.t. tourri �= tourrj
1 ≤ j ≤ n, i �= j

(3)

3) The mission time of each robot Tri is the time necessary

for the tour completion of each robot.

Tri =
Length(tourri)

Sri

(4)

Length(tourri) represents the tour length of robot ri as

expressed in Equation 1 and Sri represents the speed of

robot ri.

We assume that robots have different capabilities, including

different speeds.

IV. CM-MTSP: CLUSTERING MARKED-BASED

COORDINATION

The CM-MTSP solution consists in a hybrid approach for

solving the multiple depot MTSP problem that combines a

clustering technique with a market-based approach with the

objective of minimizing the TTD, MTD and the mission

time as mentioned in Section III. We define two main roles

for the agents (i.e. the server and the robots): auctioneer and

bidders. The auctioneer agent is responsible for announcing

tasks and assigning each task to the agent with the best bid. In

our work, a central server acts as an auctioneer and the robots

as the bidders. We assume that the server initially identifies

m target locations to be visited by the robots.

A. CM-MTSP algorithm steps

The CM-MTSP algorithm includes three steps: the cluster-

ing step, the auction-based step and the improvement step as

illustrated in Algorithm 1.

Algorithm 1. The CM-MTSP Algorithm

1: Inputs: Robots ri (1 < i < n), Targets tj (1 < j < m),
Robots speed Sri (1 < i < n)

2: Clustering step
3: Auction-based step
4: Improvement step
5: Outputs: Assignment (ri,cj ) 1 < i, j < n, TTD, MTD,

mission time

1) Clustering step: The server first provides n clusters of

locations to be visited such that the number of targets in each

cluster is equal as much as possible (Algorithm 2). We used the

K-means technique which is one of the most popular methods

used to solve clustering problems [14]. K-means provides a

partition in which elements in the same cluster are as close as

possible and as far as possible from the elements in the other

clusters.

Algorithm 2. Clustering step

1: Inputs: Robots ri (1 < i < n), Targets tj (1 < j < m)
2: Build clusters using k-means clustering method
3: Outputs: Clusters ci (i < 1 < n)

2) Auction-based step: The market process begins with

an announcement phase. After forming n clusters of targets,

the server announces the clusters, one by one. Note that the

auction for the second cluster does not begin until the auction

for the first cluster is completed. Each robot computes its bid

for the announced cluster and submits this bid for the server.

The cost of a robot to bid for a cluster is defined as the time

necessary for that robot to visit all locations in that cluster

following Equation 4 and return to its initial location. In the

case where a robot has a previously assigned cluster, it can

ask to exchange its cluster if it discovers that the new cluster

being auctioned has a lower cost to what was assigned to

it. In the winner-determination stage, the server evaluates the

received bids and allocates the cluster to the robot which leads

to get the lowest total cost. Suppose that the server receives

an exchange message from a robot which provides the best

bid. In this case, the server assigns the announced cluster to

that robot and add the old cluster to its non-allocated list of

clusters. This process is repeated until all clusters are allocated

to the robots (Algorithm 3).

3) Improvement step: The improvement step consists in the

permutation of clusters between robots in order to provide a

good assignment solution that simultaneously optimizes the

TTD, MTD and the mission time (Algorithm 4). This step

includes two sub-steps. The first consists in minimizing the

mission time that results from the auction-based step. The

server selects the robot that provides the maximum time and

search for the permutation that leads to decrease that time.

This step is repeated while there is an improvement in terms of

mission time. The second sub-step leads to optimize the MTD

while conserving or even minimizing the mission time. The

server selects the robot that provides the maximum traveled

distance and search for the permutation that leads to decrease
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Algorithm 3. Auction-based step

1: Inputs: Robots ri (1 < i < n), Targets tj (1 < j < m),
Robots speed Vri (1 < i < n), Clusters ci (1 < i < n)

2: For each cluster ci do

3: For each robot ri do

4: Robot ri computes cost(ri, ci)
5: If listtargets(ri) = ∅ do

6: robot ri sends a bidding msg(ci)
7: else

8: If (cost(ri, ci) < cost(ri, old cluster(cj))) do

9: robot ri sends a exchange msg(cj)
10: robot ri sends a bidding msg(ci)
11 else

12: robot ri ← cj
13: end

14: end

15: end

16: while received msg = true do

17: If exchange msg(cj) do

18: If TTDri (ci) < TTDri (cj) do

19: ri ← ci, listunassigned clusters ← cj
21: end

22: else

23: best robot ← ci
24: end

25: end

26: end

27: Outputs: Assignment (ri,cj ) (1 < i, j < n), TTD, MTD,
mission time

that distance with respect to the mission time. This step is

repeated while there is improvement into the MTD.

B. Illustrative example

Considering a system with two robots (r1 and r2) and five

targets (t1, t2, t3, t4, and t5) as shown in Figure 1. We define

the speed of robot ri as Sri . For each robot, the speed is

generated randomly in the range [0, 10]. Note that in this

example Sr1>Sr2 . The set of targets is decomposed into two

clusters: c1 (t2 and t5) and c2 (t1, t3 and t4). The bidding

cost for each cluster is calculated using Equation 4. Table I

shows the cost calculation obtained for each robot. The server

starts an auction for the cluster c1 and both r1 and r2 send

their bids. The server assigns c1 to r1 (Tr1(c1) < Tr2(c1)),
then makes an auction for c2. As Tr1(c1) < Tr1(c2), the robot

r1 keeps his cluster c1 and c2 will be assigned to the robot

r2 (Figure 1a). In the improvement step, the server tries to

improve the assignment. It is clear that the permutation of

clusters between robots r1 and r2 minimizes the time cost,

so c1 will be assigned to r2 and c2 will be assigned to r1
(Figure 1b) .

V. PERFORMANCE EVALUATION

In this section, we present the performance evaluation of

the clustering market-based approach for solving the multiple

depot MTSP. We build our simulation using MATLAB. We

adopted the test problems where the number of target locations

varies in [20, 50, 100] and the number of robot varies in [3,

6, 12]. Robots and targets positions are placed in the range

of [0, 100]. The LKH-TSP solver [15] is used to find the

least distance for the robot to travel from a fixed starting

Algorithm 4. Improvement step

1: Function improve-time-cost

2: Inputs: Robots ri (1 < i < n), Targets tj (1 < j < m),
Assignment (ri,cj ) (1 < i, j < n)

3: While improve time = true do

4: Select cmax of rmax with Tmax

3: For ri �= rmax do

4: If (cost(ri, cmax)<Tmax)&(cost(rmax, ck)<Tmax)
do

5: ri ← cmax, rmax ← ck
6: end

7: end

8: end

9: Outputs: Assignment (ri,ck) (1 < i, k < n), TTD, MTD,
mission time

10: Function improve-distance-cost

11: Inputs: Robots ri (1 < i < n), Targets tj (1 < j < m),
Assignment (ri,ck) (1 < i, k < n)

12: While improve distance = true do

13: Select cmax of rmax with MTD
14: For ri �= rmax do

15: If (cost(ri, cmax)<Tmax)&(cost(rmax, ck)<Tmax)
(distance(ri, cmax)<MTD)&
(distance(rmax, ck)<MTD)& do

16: ri ← cmax, rmax ← ck
17: end

18: end

19: end

20: Outputs: Assignment (ri,ck) (1 < i, k < n), TTD, MTD,
mission time

TABLE I: Bids on clusters c1 and c2 in terms of time.

T (c1) T (c2)
Robot r1 24.7352 32.1570

Robot r2 125.9122 156.8610

point while visiting the target locations exactly once. The

LKH-TSP solver has shown its ability to produce optimal

solutions to most problems. Also, the LKH-TSP is tractable for

large-scale problems and can generate solutions within a small

execution time [16], [17]. For each scenario, we performed 30

different runs of the algorithm, and each run with different

clusters. We evaluated the TTD, the MTD and the mission

time objectives. We explored the performance of the proposed

algorithm with varying the number of robots and targets.

A. Comparison of the CM-MTSP with a single objective

algorithm

The efficiency of our solution is validated through compar-

ison with a clustering single objective market-based algorithm

(CSM-MTSP). In CSM-MTSP, the process is the same as in

the CM-MTSP, but the server uses the TTD as a unique cost

metric to assign clusters to robots. Figures 2, 3 and 4 show

the total traveled distance, the maximum traveled distance and

the mission time,respectively, for both the CM-MTSP and

CSM-MTSP algorithms. As shown in Figures 2, 3, the gap

between the CM-MTSP and CSM-MTSP in terms of TTD

and MTD is in the range of [1%, 10%] for all scenarios

in favor of the single objective. On the other hand, the gap

between CM-MTSP and CSM-MTSP in terms of mission
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(a) After auction-based step (b) After improvement step

Fig. 1: Illustrative example. 2 robots (blue squares) and 5 target locations (red circles).
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Fig. 2: The TTD of CM MTSP and CSM MTSP solutions.
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Fig. 3: The MTD of CM MTSP and CSM MTSP solutions.

time is in the range of [8%, 35%], with a more significant

gain for the multi-objective CM-MTSP. This demonstrates

that CM-MTSP provides a better tradeoff in satisfying the

different objectives as compared to CSM-MTSP. The reason of

having reduced mission time is that CM-MTSP form clusters

with the objective to group target locations close to each

other so that to reduce the maximum tour of the robot,

and also assigns clusters based on the mission time, so that
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Fig. 4: mission time of CM MTSP and CSM MTSP.

slower robots are assigned to clusters with shortest tours. In

addition, the improvement phase of the CM-MTSP further

optimizes the mission time. This feature is more interesting

for applications with real-time constraints such as emergency

response applications.

In addition, the decrease of the maximum traveled distance

with the increase of the number of robots indicates that there

is a uniformity of assignment that means that the number of

allocated targets for each robot is equal or close. Figure 5

shows an example of distribution of targets between robots.

B. Comparison of the CM-MTSP with a greedy algorithm

To prove the efficiency of the clustering approach, we com-

pare its performance against a greedy market-based algorithm

that allocates targets to robots one by one without prior clus-

tering. The concept of the greedy market-based algorithm is

similar to the CM-MTSP algorithm, but we consider individual

target allocations instead of cluster allocations.

The algorithm works as follows. The server starts an auction

for each target ti. In the bidding phase, each robot can either

bid for a new target ti, or try to exchange its worst allocated

target that leads to increase the mission time of its tour with

the announced task ti. At the end, the server assigns the target
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Fig. 5: Distribution of targets in the case of 3 and 6 robots.
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(a) Total Traveled Distance
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(b) Maximum Traveled Distance
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(c) mission time
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(d) execution time

Fig. 6: Comparison results of the CM-MTSP with a greedy algorithm.

ti to the robot with the least cost. This process is repeated until

all targets are assigned to robots.

We considered different scenarios, where the number of

targets varied in [20, 100], and the number of robots varied in

[3, 6, 12]. We performed 10 runs for each scenario to ensure

95% confidence interval. Figure 6 shows the comparative

results.

In Figure 6d, we observe that the CM-MTSP significantly

reduces the execution time as compared to the greedy algo-

rithm. For example, in the case of 12 robots and 100 targets,

the reduction exceeds 95%. This is due to the fact that we used

a clustering technique to group targets. So, instead of assigning

m targets, we only search to assign n << m clusters. This

will significantly reduce the execution time for large instances,

which demonstrates that CM-MTSP scale much better than

traditional non-clustered market-based approaches.

In addition, we observe that the MTD of the CM-MTSP

algorithm was decreased in comparison with the greedy al-

gorithm (Figure 6b). For example, in the case of 12 robots

and 100 targets, the MTD is reduced by around 30%. This

means that the number of targets assigned to each robot is not

the same for both the algorithms. For the greedy algorithm,

not all robots are assigned to targets and so, in this case the

MTD will increase. Figure 7 shows an illustrative example,

between the greedy solution and the CM-MTSP algorithm

using a scenario with 6 robots and 20 targets. The increase

of the TTD of the CM-MTSP in comparison with the greedy

algorithm as shown in Figure 6a is attributed to the fact that the
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(a) CM-MTSP algorithm (b) Greedy algorithm

Fig. 7: Simulation example of the CM-MTSP and the greedy algorithm

targets in the same cluster can be far from each other or even

when the number of robots is high with respect to the number

of targets. For example, it is clear from figure 6a that the gap

between the CM-MTSP algorithm and the greedy algorithm,

in the scenario with 6 robots and 20 targets, is reduced in

comparison with the scenario with 12 robots and 20 targets.

The result of mission time (Figure 6c) the greedy algorithm

conforms the results obtained for the MTD. In the case where

a small number of robots is assigned to targets, the TTD

increases and the mission time decreases in contrast to the

CM-MTSP algorithm.

VI. CONCLUSION

In this paper, we considered the task assignment problem in

multi-robot systems. We addressed the multiple depot MTSP

where a set of robots is charged to monitor a specified area

by visiting a set of target locations. Our objective is to

simultaneously optimize several performance criteria. Also,

we aim to uniformly distribute targets between robots such

that the number of allocated targets for each robot is equal or

close. Toward these objectives, we presented a solution based

on the use of a clustering method with an auction process. We

compared our algorithm against a single objective and a greedy

algorithms. We concluded that the our approach provides a

good trade-off between the objectives, as compared to a single

objective algorithm with an improvement of the mission time

and reduces the execution time as compared to the greedy

algorithm.
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[7] O. Cheikhrouhou, A. Koubâa, and H. Bennaceur, “Move and improve:
A distributed multi-robot coordination approach for multiple depots
multiple travelling salesmen problem,” in Autonomous Robot Systems

and Competitions (ICARSC), 2014 IEEE International Conference on.
IEEE, 2014, pp. 28–35.

[8] E. Kivelevitch, K. Cohen, and M. Kumar, “A market-based solution
to the multiple traveling salesmen problem,” Journal of Intelligent &

Robotic Systems, vol. 72, no. 1, pp. 21–40, 2013.
[9] K. Miettinen, Nonlinear Multiobjective Optimization. Springer US,

1999.
[10] T. Bektas, “The multiple traveling salesman problem: an overview of

formulations and solution procedures,” Omega, vol. 34, no. 3, pp. 209–
219, 2006.

[11] M. Elango, S. Nachiappan, and M. K. Tiwari, “Balancing task allocation
in multi-robot systems using k-means clustering and auction based
mechanisms,” Expert Systems with Applications, vol. 38, no. 6, pp.
6486–6491, 2011.

[12] “TSPLIB95,” www.iwr.uni-heidelberg.de/groups/comopt/software/
TSPLIB95/.

[13] B. G. J. Heap and M. Pagnucco, “Repeated sequential auctions with
dynamic task clusters.” in AAAI, 2012.

[14] Z. S. Chan, L. Collins, and N. Kasabov, “An efficient greedy k-means
algorithm for global gene trajectory clustering,” Expert Systems with

Applications, vol. 30, no. 1, pp. 137–141, 2006.
[15] K. Helsgaun, “Lkh,” http://www.akira.ruc.dk/~keld/research/LKH/,

2012.
[16] K. Alexis, G. Darivianakis, M. Burri, and R. Siegwart, “Aerial robotic

contact-based inspection: planning and control,” Autonomous Robots,
pp. 1–25, 2015.

[17] W. Yong, “Hybrid max–min ant system with four vertices and three lines
inequality for traveling salesman problem,” Soft Computing, vol. 19,
no. 3, pp. 585–596, 2015.

192143143


