

A Framework for QoS-Aware Service-based
Mobile Systems

www.hurray.isep.ipp.pt

Technical Report

HURRAY-TR-101002

Version:

Date: 10-05-2010

Joel Gonçalves

Luis Lino Ferreira

Technical Report HURRAY-TR-101002 A Framework for QoS-Aware Service-based Mobile Systems

© IPP Hurray! Research Group
www.hurray.isep.ipp.pt

1

A Framework for QoS-Aware Service-based Mobile Systems
Joel Gonçalves, Luis Lino Ferreira

IPP-HURRAY!

Polytechnic Institute of Porto (ISEP-IPP)

Rua Dr. António Bernardino de Almeida, 431

4200-072 Porto

Portugal

Tel.: +351.22.8340509, Fax: +351.22.8340509

E-mail:

http://www.hurray.isep.ipp.pt

Abstract
In this paper we propose a framework for the support of mobile application with Quality of Service (QoS) requirements,
such as voice or video, capable of supporting distributed, migration-capable, QoS-enabled applications on top of the
Android Operating system.

A Framework for QoS-Aware Service-based Mobile
Systems

Joel Gonçalves, Luis Lino Ferreira

CISTER Research Center

Polytechnic Institute of Porto (ISEP/IPP)
{vjmg; llf@isep.ipp.pt}

Abstract. In this paper we propose a framework for the support of mobile
application with Quality of Service (QoS) requirements, such as voice or video,
capable of supporting distributed, migration-capable, QoS-enabled applications
on top of the Android Operating system.

Keywords: Quality of Service, mobile systems, Android OS.

1 Introduction

Mobile applications are increasingly more ubiquitous and more dynamic. Furthermore,
mobile systems are increasingly open to third-party developed applications, being
expectable that users put more and more pressure on locally available resources. But,
even considering the substantial increase in devices�’ capabilities, it is not expectable
that they will be able to simultaneously support all applications the users may want to
execute. The solution to this is to allow applications to scavenge resources available in
neighbor nodes by allowing applications to migrate some or all of its services into other
nodes (or from other nodes). Therefore, there is a growing need to develop frameworks
and applications that are able to reconfigure considering system-wide distribution of
application and resources. Applications must therefore support: i) the capability to
connect seamlessly to remote services and; ii) the capability to move some of its
services to remote nodes.

Our goal is to provide augmented functionalities (quasi-)transparently in existent
middleware and operating system. The Android operating system is used both due to its
open source nature and potential market, but also due to its innovative architecture.
Although its use to support real-time applications is still debatable [4], it nevertheless
provides a suitable architecture for QoS-aware applications in ubiquitous, embedded
systems.

Android applications (constituted by Intents, Activities and Services) and its
resources are contained in an Android Package (APK) which can be installed in a local
device. During runtime, the APKs components can be assembled to create dynamic
applications, but these functionalities are only available in the local node. In this work,
we extend this concept to a fully distributed and dynamic environment, where
applications use the Activities and Services from the APKs whether they are installed
locally or remote. Further, we allow APKs to migrate to other nodes, by user demand or
due to system�’s reconfiguration. Finally, the framework is also able to support

applications with QoS requirements, both during its run-time operation and particularly
during the migration of services.

The APKs are executed as independent processes, with distinct permissions, and,
importantly, also with different QoS parameters. Figure 1 provides an example: the
initial scenario is presented in the left part, where Device 1 is executing an application
that uses services from three distinct APKs, in Device 1 (APK A) and Device 2 (APK B
and APK C).

Fig. 1. Example scenario

The right side of Figure 1 provides a new system configuration, which includes a
new device: Device 3. Assuming that this device has more resources available than
Device 1, it enables a new application configuration with a higher QoS level if APK B
is migrated to Device 3.

Algorithms and frameworks as the ones proposed in CooperatES [3] can be used to
find the new configuration for the system services, maximizing the rewards for the
overall system. As a result of the evaluation, Device 3 now offers the services of APK
B. Mobile code mechanisms of the proposed framework support such approach,
making possible to transfer (guaranteeing the QoS requirements), the code and state of
service B from Device 1 to Device 3, install the corresponding APK file, rebind the
connections between Device 1 and the service, and continue its operation.

2 Framework Architecture Overview
In order to implement our approach we assume the existence of a QoS Manager on the
Android Operating System, the addition of application layer features to support the
core functionalities of a mobile code framework and the use of supporting libraries
which allow programmers to use the full set of capabilities offered by the framework.

The Framework Core functionalities (Figure 2) is constituted by separate modules
implemented as an Android services, which takes care of service migration to and from
another node, interacting with the QoS Manager in order to determine if the QoS
requirements of the service can be supported.

Any Android application can use the services of the framework in order to support
installing and running an Android APK in another node. More advanced services,
which require the rebinding of connections between components, are only supported if
applications use the Mobile Library.

Fig. 2. Framework core modules

The Mobile Library offers a set of helper classes that extend the core functionalities
of Android with QoS and distributed capabilities. The library allows to transparently
extend the Activity and Service abstractions for distributed systems. Consequently,
application code is only required to send an Intent, after which the framework is
responsible for determining if it refers to a local or remote component. The library also
implements the services required for communication establishment and automatic
rebinding of service�’s connections when a service migrates. This library [5] already
implements some generic mechanisms, which can be immediately used by developers,
but also allows extensions to the base classes for new implementations.

The core services provided by the framework are: Discovery Manager, Package
Manager, State Manager and Execution Manager.

The Discovery Manager module is designed to discover neighbour devices on a
local network and advertise the host device available resources. To that purpose, every
node in the network periodically broadcasts information regarding its status and
installed services, such as the APKs installed, their associated Intents interfaces and
resource availability.

The Package Manager is used to install, uninstall and transfer the code of APKs
between Android devices. Applications can start executing when the node receives an
Intent request from a remote Execution Manager (see below). It is also responsible for
the interaction with the QoS Manager in order to request specific QoS levels for the
service being handled. It is the responsibility of the QoS Manager to accept or reject
service installations if the QoS required level cannot be guaranteed.

The State Manager handles transfer of state for statefull services. The State
Manager is responsible for transferring either the full state or specific state items
similarly to what has been proposed in [1, 2]. The flexibility on the implementation of
the state migration policies can be of paramount importance for the use of code

mobility techniques in real-time systems since it can allow the reduction on the
unavailability time of a service.

The Execution Manager allows launching services on a host device or on a remote
node. Android Intents are exchanged between devices and used locally to start up a
service, which can be a standard Android Activity or Service. Intents that address
Activities or Services in remote nodes are parsed to extract their parameters and sent to
the remote Execution Manager, which then reconstructs the intent and launches it
locally (on the remote node).

Services which are based on the framework use the new versions of Service and
Activity classes; therefore, when calling for a remote service they can connect directly
using the functionalities provided by the Mobile Library.3

3 Conclusions
In this paper we proposed a framework for the development of distributed QoS aware
applications with self-reconfiguration capabilities. The framework is particularly
targeted for the Android Operating System and its implementation extends the main
abstractions used in Android �– Activities, Services and Intents, allowing for transparent
interactions of application code in both local and distributed settings. Quality-of-
Service requirements of both applications and reconfiguration services are handled by
supporting an underlying operating system QoS Manager module.

This framework will be used to develop the real-time capabilities of the Android
operating system and particularly to develop adequate strategies for multiple parameter
quality-of-service of applications (considering both tasks and communication streams).
We also plan to investigate further on how to better manage dynamic adaptations
during reconfiguration/mobility phases. An implementation of the framework proposed
in this paper is available at [5].

Acknowledgment. This work is partially funded by the Portuguese Science and
Technology Foundation (Fundação para a Ciência e a Tecnologia - FCT) and project
RESCUE (PTDC/EIA/65862/2006).

References
1. Preuveneers, D. and Berbers, Y. (2010) �“Context-driven migration and diffusion of

pervasive services on the OSGi framework�”, International Journal of Autonomous and
Adaptive Communications Systems, Vol. 3, No. 1, 2010, pp. 33-22.

2. Malek, S., Edwards, G., Brun, Y., Tajalli, H., Garcia, J., Krka, I., Medvidovic, N., Mikic-
Rakic, M., Sukhatme, G., �”An Architecture-Driven Software Mobility Framework�”, Journal
of Systems and Software, special issue on Software Architecture and Mobility, Vol. 83,
Issue 6, Jun. 2010, pp. 972-989.

3. Nogueira, L., Pinho, L., "Time-bounded Distributed QoS-Aware Service Configuration in
Heterogeneous Cooperative Environments", Journal of Parallel and Distributed Computing,
Vol. 69, Issue 6, 2009, pp. 491-507.

4. Maia, C., Nogueira, L., Pinho, L., �“Evaluating Android OS for Embedded Real-Time
Systems�”, to be published in the 6th International Workshop on Operating Systems
Platforms for Embedded Real-Time Applications (OSPERT 2010), 2010.

5. Distributed and Mobile Framework for Real-Time Systems (DiseRTS),
http://www.hurray.isep.ipp.pt/activities/RTSoft/distFrameworkOverview.ashx/, July 2010.

