

A Framework for the Development of Parallel
and Distributed Real-Time Embedded Systems

PhD Thesis

CISTER-TR-160407

2016/04/25

Ricardo Garibay-Martínez

PhD Thesis CISTER-TR-160407 A Framework for the Development of Parallel and ...

© CISTER Research Center
www.cister.isep.ipp.pt

1

A Framework for the Development of Parallel and Distributed Real-Time
Embedded Systems

Ricardo Garibay-Martínez

CISTER Research Center

Polytechnic Institute of Porto (ISEP-IPP)

Rua Dr. António Bernardino de Almeida, 431

4200-072 Porto

Portugal

Tel.: +351.22.8340509, Fax: +351.22.8321159

E-mail: rgmaz@isep.ipp.pt

http://www.cister.isep.ipp.pt

Abstract

Real-time embedded systems are part of our everyday life. These systems range from the traditional areas of
military and mission critical to domestic and entertainment applications. The aim of real-time systems is to
execute applications in a way that those applications met their temporal constraints. Most of the results for real-
time systems are based on the sequential real-time execution model, where intra-task parallelism is forbidden. In
the last decade real-time researchers have started to focus their attention on the case of multi-threaded parallel
real-time task models.In these models, concurrent real-time activities are allowed to become parallel and to be
processed in more than one processor at the same time.

Despite the fact that parallel computations in multi-processors can offer an increased processing capacity, the
multi-threaded parallel real-time task models have not considered the cases in which a distributed execution also
exists. Such execution pattern can be used to provide even more capabilities and processing power. Furthermore,
in some applications the use of parallel distributed computations is the only possibility in which the applications
can comply with their time constraints. An example of such type of applications are modern automotive
applications, which need to execute computational intensive applications (e.g., infotainment or driver assistance
applications). Consequently, design frameworks that allow the workload to be distributed in peak situations by
both parallel and distributed processors are required. Such scenarios require the integration of distributed
computations with parallel real-time models. In a distributed system, the transmission delay of messages cannot
be considered negligible as in the case of multi-processors systems, therefore, their impact on the schedulability
of the system has to be considered.

The fork-join Parallel/Distributed real-time model (P/D task) proposed in this thesis is designed to consider such
execution pattern. The P/D task model is derived from observing the execution of parallel and distributed
programs (e.g. OpenMP, MPI). The thesis proposes a scheduling algorithm for P/D tasks, the parallel/Distributed
Deadline Monotonic Scheduling (P/D-DMS). The thesis also proposes two heuristics for task partitioning and
priority assignment for the linear transactional model and the P/D tasks model, the Distributed using Optimal
Priority Assignment (DOPA) heuristic and the Parallel-DOPA (P-DOPA) heuristic, respectively.

A holistic analysis technique for P/D tasks is also proposed. The holistic approach allows to consider the systems
as a whole, and an improved analysis is proposed based on that holistic view of the system. The allocation of P/D
tasks is later extended by considering distributed multi-core nodes. The extension is based on the constraint
programming approach.

The analysis and proposals presented in this thesis are validated through simulations and an experimental
evaluation.

FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO
PORTO

A Framework for the Development of

Parallel and Distributed Real-Time

Embedded Systems

Ricardo Garibay Martínez

Programa Doutoral em Engenharia Electrotécnica e de Computadores

Supervisor: Prof. Dr. Luis Miguel Moreira Lino Ferreira

Co-supervisor: Prof. Dr. Luís Miguel Rosário da Silva Pinho

April 25, 2016

c© Ricardo Garibay Martínez, 2015

A Framework for the Development of Parallel
and Distributed Real-Time Embedded Systems

Ricardo Garibay Martínez

Programa Doutoral em Engenharia Electrotécnica e de
Computadores

April 25, 2016

Resumo

Os sistemas embebidos e de tempo real são parte de nossa vida cotidiana. Estes sistemas

abrangem desde as áreas tradicionais dos sistemas militares e sistemas críticos, até às

aplicações domésticas e de entretenimento. Estes sistemas têm como um dos requisitos

principais executar as suas aplicações respeitando prazos temporais, para além das carac-

terísticas funcionais.

A maioria das análises temporais para sistemas de tempo real é baseada no modelo de

execução sequencial, onde não é permitida a execução paralela de uma tarefa. Na última

década, esta restrição tem sido levantada, e os trabalhos na área começaram a prestar mais

atenção aos modelos paralelos. Nestes trabalhos as atividades paralelas e de tempo real

são permitidas e podem ser executadas nos processadores disponíveis do sistema.

Apesar do facto de que a computação paralela em sistemas multi-processador pode

oferecer uma maior capacidade de processamento, os modelos paralelos propostos para

sistemas de tempo real não têm considerado os casos em que também é possível a ex-

ecução distribuída. Este padrão de execução pode ser usado para proporcionar maior

capacidade de processamento, sem necessidade de cada nó computacional por si ser es-

calado. Além disso, em alguns sistemas a utilização conjunta de processamento paralelo

e distribuído é a única possibilidade de garantir os requisitos temporais do sistema.

Um exemplo deste tipo de aplicações são os sistemas computacionais utilizados nos

automóveis modernos, em que se dispõe de redes de sistemas computacionais embebidos,

com nós que incluem pequenos processadores até sistemas multi-processador, e que po-

dem ter que executar aplicações computacionalmente pesadas (por exemplo, aplicações

de infotainment ou de assistência ao condutor).

Tais cenários exigem a integração de computação distribuída com modelos paralelos

para sistemas de tempo real. Num sistema distribuído, o atraso na transmissão de men-

sagens não pode ser considerados como desprezável, tal como é normal fazer no caso

de sistemas multi-processador. Consequentemente, o seu impacto no desenho do sistema

tem que ser considerado.

O modelo de tempo real fork/join paralelo/distribuído, proposto nesta tese, tem em

conta assim o padrão de execução descrito. Este modelo é derivado da análise de progra-

mas paralelos e distribuídos com base em arquiteturas globalmente utilizadas como sejam

o OpenMP e o MPI.

A dissertação propõe também um algoritmo de escalonamento para tarefas parale-

las/distribuídas – o algoritmo Parallel/Distributed Deadline Monotonic Scheduling (P/D-

DMS). São também propostas duas heurísticas para o particionamento de tarefas e atribu-

ição de prioridades para o modelo de execução linear e para o modelo paralelo/distribuído

i

ii

– as heurísticas Distributed using Optimal Priority Assignment (DOPA) e Parallel-DOPA

(P-DOPA).

A partição de tarefas paralelas/distribuídas é também estendida, considerando os nós

distribuídos com múltiplos cores e numa abordagem de programação por restrições.

Finalmente, é proposta uma técnica de análise holística para tarefas paralelas/distri-

buídas. A abordagem holística permite considerar os sistemas como um todo, e permite

obter resultados menos pessimistas.

Finalmente, as propostas e análises apresentadas nesta tese são validadas por meio de

simulações e uma implementação experimental.

Abstract

Real-time embedded systems are part of our everyday life. These systems range from

the traditional areas of military and mission critical to domestic and entertainment ap-

plications. The aim of real-time systems is to execute applications in a way that those

applications met their temporal constraints.

Most of the results for real-time systems are based on the sequential real-time ex-

ecution model, where intra-task parallelism is forbidden. In the last decade real-time

researchers have started to focus their attention on the case of multi-threaded parallel

real-time task models. In these models, concurrent real-time activities are allowed to

become parallel and to be processed in more than one processor at the same time.

Despite the fact that parallel computations in multi-processors can offer an increased

processing capacity, the multi-threaded parallel real-time task models have not consid-

ered the cases in which a distributed execution also exists. Such execution pattern can be

used to provide even more capabilities and processing power. Furthermore, in some ap-

plications the use of parallel distributed computations is the only possibility in which the

applications can comply with their time constraints. An example of such type of applica-

tions is modern automotive applications, which need to execute computational intensive

applications (e.g., infotainment or driver assistance applications).

Consequently, design frameworks that allow the workload to be distributed in peak

situations by both parallel and distributed processors are required. Such scenarios require

the integration of distributed computations with parallel real-time models. In a distributed

system, the transmission delay of messages cannot be considered negligible as in the case

of multi-processors systems, therefore, their impact on the schedulability of the system

has to be considered.

The fork-join Parallel/Distributed real-time (P/D task) model proposed in this thesis

is designed to consider such execution pattern. P/D task model is derived from observing

the execution of parallel and distributed programs (e.g. OpenMP, MPI).

The thesis proposes a scheduling algorithm for P/D tasks, the Parallel/Distributed

Deadline Monotonic Scheduling (P/D-DMS). The thesis also proposes two heuristics for

task partitioning and priority assignment for the linear transactional model and the P/D

tasks model, the Distributed using Optimal Priority Assignment (DOPA) heuristic and the

Parallel-DOPA (P-DOPA) heuristic, respectively.

A holistic analysis technique for P/D tasks is also proposed. The holistic approach

allows to consider the systems as a whole, and an improved analysis is proposed based on

that holistic view of the system.

The allocation of P/D tasks is later extended by considering distributed multi-core

nodes. The extension is based on the constraint programming approach. The analysis and

iii

iv

proposals presented in this thesis are validated through simulations and an experimental

evaluation.

Acknowledgments

A doctoral research work and writing a Ph.D. thesis requires long commitment, hard work

and perseverance. This is an exciting challenge that I had enjoyed and embraced most of

the time, however, sometimes it becomes a difficult path in which without the support

of key persons, it would be simply impossible to complete. I would like to express my

appreciation to those special persons that have supported me during these years of Ph.D.

work.

First of all, I would like to express my great appreciation and gratitude to my supervi-

sors, Luis Lino Ferreira and Luís Miguel Pinho for giving me the opportunity and helping

me to complete this challenging task. For sharing their experience and for the innumer-

able constructive discussions, useful feedback and guidance. I am grateful with Luis Lino

Ferreira, he always found time to provide me with consistent, accurate and valuable feed-

back about my work. I highly appreciate his big patience and efforts in all the matters

related to this work. I am grateful with Luis Miguel Pinho, for his problem solving skills

and his capacity of finding accurate solutions whenever I felt in a dead-end path. Thank

you both for always providing me with funding, that made me feel secure and permitted

me to focus on my work.

I am extremely thankful to my colleague and friend Geoffrey Nelissen. I would like

to thank him for being a great source of support, both academically and personally. Ge-

offrey possesses great technical knowledge and always has an interesting and pragmatic

approach towards the solution to very challenging problems. It is certain that without his

help the quality of this work would not have been the same.

I would also like to thank the board of directors of CISTER, Eduardo Tovar, Luis

Miguel Pinho and Filipe Pacheco for providing me with an ideal research environment

here at CISTER. I am grateful to Ines Almeida, Sandra Almeida and Cristiana Barros

for being always available to help me with administrative processes, especially the visa-

related ones.

I wish to acknowledge the constructive technical discussions with Artem Burmyakov,

Vincent Nelis, Patrick Yomsi and Michele Albano, on different topics and at different

stages of this work.

I am grateful with all my colleagues at CISTER for sharing experiences, thoughts

and knowledge with me through all these years. Thanks to Maryam, Hossein, Andree

Pedro, Joao, Claudio, Patrick, Ramiro, Damien, Maria Angeles, Ali, Antonio, Artem,

Shashank, Kostiantyn, Jose Fonseca, Hazem, Michele, Konstantinos, Vincent, Geoffrey,

David, Nuno, Jose Marinho, Dakshina, Guru and Vikram.

I would like to thank the B.S. students with whom I had the chance to work, Tomas

v

vi

Sotomaior, Fábio Oliveira and Roberto Duarte. Thank you for your efforts and contribu-

tion to this work, as well as for reminding me that teaching is one of the things I enjoy

doing the most in life.

Apart of the professional side I would like to thank my family and friends who made

this stage of my life a memorable and enjoyable experience. I wish to thank them and ex-

press my appreciation for all the laughs and tears, I hope to keep you with me for all my

life. Many thanks to my dear friends: Vincent Nelis, Anna Zieba, Iulia Ilca, Maria An-

geles Serna, Artem Burmyakov, Joao Loureiro, Nuno Pereira, Geoffrey Nelissen, Vikram

Gupta, Shashank Gaur, Patrick Yomsi, Vanessa Merolla, Ramiro Robles, Andrea Bal-

dovin and Damien Masson. Muchas gracias a mi mamá Elia Martínez Rosas y a mi papá

Ricardo Garibay Bonales por su apoyo incondicional y por siempre confiar en mí. Los

quiero. Muchas gracias a toda mi familia por todo. I would like to thank you all for

bearing with me in what is definitely the biggest challenge of my life until now. Thank

you for everything.

This work was partially supported by FCT/MEC and ESF (European Social Fund) through

POPH (Portuguese Human Potential Operational Program), under PhD grant SFRH/BD/71562/-

2010.

Sincerely,

Ricardo Garibay Martínez

“To go too far is as bad as to fall short”

Confucius

vii

viii

Contents

1 Introduction 1

1.1 Research Motivation . 1

1.1.1 Background . 1

1.1.2 Problem statement . 4

1.2 Goal and Objectives . 6

1.3 Structure of the Dissertation . 8

2 Background and Previous Relevant Work 11

2.1 Introduction . 11

2.2 Real-Time Models and Scheduling Algorithms 12

2.2.1 Classification of Real-Time Processing Platforms 14

2.2.2 Real-Time Uni-processor Scheduling 15

2.2.3 Real-Time Multi-processor Scheduling 17

2.2.4 Real-Time Multi-threaded Parallel Task Models for Multiprocessor Systems 18

2.3 Distributed Real-Time Systems . 20

2.4 Task Partition and Priority Assignment in Real-Time Distributed Systems 23

2.5 Holistic Analysis for Real-Time Distributed Systems 25

2.6 Parallel Programming Models . 26

2.6.1 Programming Models for Shared Memory Platforms 28

2.6.2 Programming Models for Distributed Memory Platforms 30

2.7 Summary . 30

3 The Fork-Join Parallel/Distributed Real-Time Task Model (P/D Tasks) 33

3.1 Introduction . 33

3.2 OpenMP + MPI Programming Models . 33

3.2.1 OpenMP Programming Model . 33

3.2.2 MPI Programming model . 36

3.3 Supporting Parallel and Distributed Real-Time Execution with OpenMP + MPI . 37

3.3.1 Timing Model for OpenMP/MPI Programs 40

3.3.2 Timing Behaviour of OpenMP programs 41

3.3.3 Timing Behaviour of MPI communications 43

3.3.4 Timing Behaviour of OpenMP + MPI 44

3.4 Fork-Join Parallel/Distributed Real-Time (P/D) Task Model 47

3.5 Summary . 49

4 Scheduling P/D Tasks in Distributed Uni-processor Systems 51

4.1 Introduction . 51

4.1.1 Chapter Considerations . 51

ix

x CONTENTS

4.2 The Distributed Stretch Transformation Model 54

4.2.1 The Task Stretch Transformation and Segment Stretch Transformation

Models . 54

4.2.2 The Distributed Stretch Transformation (DST) Algorithm 55

4.2.3 End-to-end Delay Computation in Distributed Systems 58

4.3 The P/D-DMS Algorithm . 59

4.3.1 Demand Bound Function . 60

4.3.2 Resource Augmentation Bound . 63

4.4 Evaluation of the P/D-DMS Algorithm . 66

4.5 Summary . 68

5 Task Partitioning and Priority Assignment for Sequential Transactional Tasks and

P/D Tasks on Hard Real-Time Distributed Systems 69

5.1 Introduction . 69

5.1.1 System Model Adaptations . 70

5.2 The Distributed using Optimal Priority Assignment (DOPA) Heuristic 72

5.2.1 Optimal Priority Assignment (OPA) Algorithm 72

5.2.2 Distributed using Optimal Priority Assignment (DOPA) 75

5.2.3 Comparing the use of OPA and DM . 75

5.3 The Parallel-DOPA (P-DOPA) Heuristic . 78

5.3.1 Intermediate Deadlines for Distributed Execution Paths (DEP) 78

5.3.2 P-DOPA heuristic . 80

5.3.3 Evaluating the Parallel-DOPA Heuristic 80

5.4 Summary . 83

6 Holistic Analysis for P/D Tasks using the FTT-SE Protocol 85

6.1 Introduction . 85

6.2 The FTT-SE Protocol . 86

6.2.1 Message Scheduling on the FTT-SE Protocol 87

6.2.2 Worst-Case Response Time in FTT-SE Networks 88

6.3 A Holistic Analysis for Stretched Tasks . 91

6.3.1 Time-triggered Systems . 92

6.3.2 Event-triggered Systems . 94

6.4 Improved Response Time Analysis for Distributed Execution Paths 95

6.4.1 Overlap on the Downlink . 97

6.4.2 Non-interference on the Uplink . 99

6.5 Numerical Example . 100

6.6 Assessing of the Gain in the Pipeline Effect . 103

6.7 Summary . 104

7 Allocation of P/D Tasks in Multi-core Architectures supported by FTT-SE Protocol 105

7.1 Introduction . 105

7.1.1 Chapter Considerations . 106

7.2 Constraint Programming Formulation . 106

7.2.1 P/D Tasks . 106

7.2.2 Fully-Partitioned Distributed Multi-core Systems 107

7.2.3 FTT-SE Protocol . 109

7.2.4 Constraint Satisfiability . 113

7.3 Summary . 115

CONTENTS xi

8 Simulations and Experimental Evaluation 117

8.1 Introduction . 117

8.2 A brief Description of ns-3 . 117

8.3 Implementation of the FTT-SE Protocol and P/D Execution in ns-3 120

8.3.1 Analysis of Requirements . 121

8.3.2 Implemented Classes and Functionality 122

8.4 Simulation Results of the ns-3 Module Implementation 124

8.4.1 Evaluating the Transmission of Messages 124

8.4.2 Evaluating the Execution of P/D Tasks and Sequential Application 129

8.4.3 Evaluating the Average Response Time Reduction by Applying the Paral-

lel/Distributed Approach . 134

8.5 Comparing Experimental Results and Simulation Results 136

8.6 Summary . 139

9 Conclusions and Future Work 141

9.1 Research Context and Research Contributions 141

9.2 Future Work . 143

Author’s List of Publications 145

xii CONTENTS

List of Figures

1.1 Execution of a task following the parallel and distributed model. 5

1.2 Parallel and distributed automotive application example. 5

2.1 Jobs τ ι
i of a task τi. 12

2.2 (a) Periodic task model with implicit deadlines and (b) sporadic task model with

constrained deadlines. 13

2.3 Multi-threaded parallel real-time task. 19

2.4 Linear transactional model for distributed systems. 23

2.5 Example of (a) shared memory and (b) distributed memory platforms. 28

3.1 Execution of a OpenMP/MPI program based on the dynamic computation model. 39

3.2 Execution of a OpenMP/MPI program based on the static computation model. . . 39

3.3 Timing execution of code block bi, j,k of a parallel for in OpenMP programs. . . . 43

3.4 Code blocks DAG GCB(V,E). 45

3.5 Thread Blocks DAG GT (V ∗,E∗). 46

3.6 Fork-Join P/D Real-Time Task Model (P/D tasks). 47

3.7 Master thread. 48

3.8 Generic distributed computing platform. 49

4.1 Parallel execution length. 52

4.2 P/D tasks: (a) scheduled with global scheduling, (b) scheduled after the DST trans-

formation. 56

4.3 1000 generated task sets varying (a) the total message density δ
msg
tot , (b) the mini-

mum thread density δ min
i, j,k and maximum thread density δ max

i, j,k , and (c) the number

of P/D tasks in the set τ . 67

5.1 (a) Linear transactional task and (b) Parallel/Distributed task (P/D task). 71

5.2 Allocation of real-time tasks onto the elements of the distributed system. 72

5.3 Intermediate deadlines for sequential applications. 74

5.4 100 experiments varying (a) the total density δtot , (b) the number of processors,

and (c) the number of tasks in the system. 77

5.5 Intermediate deadlines of a DEP. 79

5.6 100 experiments varying (a) the total density δtot with a SpeedUP = 10, (b) the to-

tal density δtot with a SpeedUP= 20 (c) the number of processors with a SpeedUP=
20, and (d) the number of tasks in the system with a SpeedUP = 20. 81

6.1 FTT-SE single-master architecture. 86

6.2 FTT-SE Elementary Cycle (EC) structure. 87

xiii

xiv LIST OF FIGURES

6.3 Switching delay: (a) maximum switching delay: µ1,1,1, and (b) maximum switch-

ing delay: µ2,1,1. 89

6.4 Automotive architecture interconnected with an FTT-SE network. 96

6.5 Pipeline effect of a P/D task interconnected with an FTT-SE network. 96

6.6 Improved end-to-end WCRT considering the pipeline effect. 102

6.7 End-to-end WCRT when using the DST algorithm. 102

6.8 Variation over the number of P/D threads. 104

8.1 ns-3 modules (ns 3, 2015). 118

8.2 ns-3 standard classes. 119

8.3 ns-3 implemented modules. 122

8.4 Simulated automotive architecture for the evaluation of message transmissions. . 125

8.5 Average response times for synchronous messages: the messages characteristics

are summarised in Table 8.1 and the FTT-SE network configuration is shown in

Table 8.2. 127

8.6 Average response times for sequential synchronous message µ3 varying the EC to

1000 µs, 1500 µs and 2000 µs. 127

8.7 Average response times for sequential asynchronous messages: EC of 1000 µs,

SW of 540 µs, AS of 360 µs. 129

8.8 Simulated automotive architecture for the execution of P/D tasks and sequential

applications. 129

8.9 Average response times for applications shown in Table 8.5, τ4 is divided in 8

threads, transmitted using synchronous messages and FTT-SE characteristics: EC

of 1500 µs, SW of 700 µs, AS of 700 µs. 132

8.10 Average response times of the Distributed Execution Paths of τ4 when divided in

8 threads, for the values presented in Table 8.5, transmitted using synchronous

messages and FTT-SE characteristics: EC of 1500 µs, SW of 700 µs, AS of 700 µs. 132

8.11 Average response times for applications shown in Table 8.5, τ4 is divided in 16

threads, transmitted using synchronous messages and FTT-SE characteristics: EC

of 1500 µs, SW of 700 µs, AS of 700 µs. 132

8.12 Average response times for applications shown in Table 8.5, τ4 is divided in 8

threads, transmitted using asynchronous messages and FTT-SE characteristics: EC

of 1500 µs, SW of 700 µs, AS of 700 µs. 133

8.13 Average response times for applications shown in Table 8.5, τ4 is divided in 16

threads, transmitted using asynchronous messages and FTT-SE characteristics: EC

of 1500 µs, SW of 700 µs, AS of 700 µs. 134

8.14 Average response times for applications shown in Table 8.5, the characteristics of

the network are described in Table 8.4, only the response time of τ4 is depicted

and the load of τ4 is divided in 2, 3, 4, 8, 16 threads as shown is Table 8.6. 135

8.15 Experimental evaluation architecture. 136

8.16 Response Time of Experiments (RT-EXP) of P/D tasks τ1 and τ2, Response Time

of Simulations (RT-EXP) of P/D tasks τ1 and τ2 and WCRT of P/D tasks τ1 and τ2. 138

List of Tables

6.1 Automotive application characteristics. 101

8.1 Characteristics of the synchronous messages for the simulation in th ns-3 module

presented in Section 8.3. 126

8.2 Parameters of the FTT-SE network for the simulation of the sequential synchronous

applications in ns-3. 126

8.3 Parameters of the asynchronous messages for the simulation in ns-3. 128

8.4 Characteristics of the FTT-SE network for the simulation of P/D tasks and sequen-

tial synchronous applications in ns-3. 130

8.5 Characteristics of the applications (sequential and P/D tasks) for the simulation in

ns-3. 131

8.6 Characteristics of the applications (sequential and P/D tasks) for the simulation in

ns-3. 135

8.7 Characteristics of the P/D tasks for comparison of the experimental and simulation

evaluation. 138

xv

xvi LIST OF TABLES

List of Acronyms

API Application Program Interface

BSF Breadth Search First

CAN Controller Area Network

DM Deadline Monotonic

DBF Demand Bound Function

DEP Distributed Execution Path

D-Fork Distributed-Fork

D-Join Distributed-Join

DAG Directed Acyclic Graph

DOPA Distributed using Optimal Priority Assignment

DST Distributed Stretch Transformation

EC Elementary Cycle

ECU Electronic Control Unit

EDF Earliest Deadline First

FBB-FFD Fisher-Baruah-Baker First-Fit-Decreasing

F-J Fork-Join

FTT Flexible Time Triggered

FTT-SE Flexible Time Triggered Switched Ethernet

HOPA Heuristic Optimized Priority Assignment

LIN Local Interconnect Network

MPI Message Passing Interface

NR-T Non-Real-Time

OPA Optimal Priority Assignment

OpenMP Open Multi-Processing

P/D Parallel/Distributed

P/D-DMS Parallel/Distributed Deadline Monotonic Scheduling

P-DOPA Parallel-Distributed using Optimal Priority Assignment

RM Rate Monotonic

RMA Rate Monotonic Analysis

R-T Real-Time

RTE Real-Time Ethernet

RSE Rear Seat Entertainment

SST Segment Stretch Transformation

SWaP Size, Weight and Power

TM Trigger Message

TST Task Stretch Transformation

WCET Worst-Case Execution Time

WCML Worst-Case Message Length

xvii

xviii LIST OF ACRONYMS

WCRT Worst-Case Response Time

List of Symbols

fi Capacity of a task τi

bi, j,k Code block k in a segment σi, j

GCB(V,E) Code block DAG

µcd
i, j,k Constrained deadline message µi, j,k

θ cd
i, j,k Constrained deadline thread θi, j,k

dPath
i, j Deadline of DEP i, j

Dmaster
i Deadline of a master thread τmaster

i

di, j Deadline of a segment σi, j

di,2 j Deadline of a P/D segment σi,2 j

di,2 j+1 Deadline of a sequential segment σi,2 j+1

DBF(τi, t) Demand bound function of task τi respect to time t

δi Density of a task τi

δi, j,k Density of a thread θi, j,k

δ
msg
i, j,k Density of a message µi, j,k

DEPi,2 j,k Distributed Execution Path

ld
i, j Download link connecting the nodes πi to the switch SWx

Di End-to-end deadline of task τi

ei External event

z(t) First elements in Gsort
i, j,k(t)[l] in the interval of time [0, t]

Jµi, j,k
Jitter of a thread µi, j,k

Jθi, j,k
Jitter of a thread θi, j,k

LW Length of the specific transmission window

τmaster
i Master thread of task τi

Ci Maximum execution length of task τi

Cv
i Maximum execution length of task τi executed on a processor v times faster

δ max
i Maximum density of a task τi

δ max
i, j,k Maximum density of a thread θi, j,k

I Maximum inserted iddle time in such window

δmax Maximum load ratio of a task τi

nbmax
i, j,k Maximum number of code blocks per thread θi, j,k

Cmax
i, j,k Maximum WCET of a code block bi, j,k

Cmax
θi, j,k

Maximum WCET of a thread θi, j,k in a P/D region σi,2 j

µi, j,k Message k of a P/D segment σi,2 j of a task τi

δ min
i Minimum density of a task τi

δ min
i, j,k Minimum density of a thread θi, j,k

ηi Minimum execution length of task τi

ηv
i Minimum execution time of a task τi executed on a processor v times faster

xix

xx LIST OF SYMBOLS

Gi, j,k(t)[l] Multi-dimensional array containing the switch delays SDx when a message

crosses a switch in the network

π Node set

πi Node i

πi,s Processor s in node i

OvJ
lUSWx
πi

Non-interference during the D-Join operation

li, j Number of code blocks in a segment σi, j

m Number of nodes πl

mi Number k of threads θi, j,k in each segment σi, j

ni Number j of segments σi, j composing task τi

sni, j,k Number switches a message µi, j,k crosses from origin to destination

ni, j Number k of threads of segment σi, j composing task τi

ii,2 j Number of P/D threads θi,2 j,k, that each P/D segment σi,2 j can insert into the

master thread τmaster
i , without causing task τi to miss its deadline Di

qi,2 j Number of remaining P/D threads θi,2 j,k, that that have not been coalesced into

the master thread τmaster
i

φi, j,k Offset of a thread θi, j,k

φ Path
i, j Offset of DEP i, j

φi,2 j Offset of a P/D segment σi,2 j

φi,2 j+1 Offset of a sequential segment σi,2 j+1

φi, j,k Offset of a thread θi, j,k

φ
msg
i, j,k Offset of a message µi, j,k

OvF
πi

ld
SWx

(θi, j,k) Overlap on a download link connecting the last switch SWx in the path of a

message µi, j−1,k and a remote processor node πi executing threads θi, j,k

OvF∗
πi,l

d
SWx

(θi, j,k) Lower bound on the overlap OvF
πi

ld
SWx

(θi, j,k)

Pi Parallel execution length of a task τi

Pv
i Parallel execution length of a task τi executed on a processor v times faster

Ti Period or minimum inter-arrival time of task τi

OvF
πi

ld
SWx

(θi, j,k) Pipeline effect during the D-Fork operation

σi,2 j P/D segment 2 j of task τi

θi,2 j,k P/D thread of segment σi, j of task τi

Wri, j,k(t) Remote link delay of a message µi, j,k

rb fi, j,k(t) Request bound function of a messages µi, j,k

t∗ Response time of a message µi, j,k

S Schedulability test

ϖ Shared real-time network

Wli, j,k(t) Shared link delay of message µi, j,k

Li Slack time of task τi

σi, j Segment j of task τi

σi,2 j+1 Sequential segment 2 j+1 of task τi

θi,2 j+1,k Sequential thread of segment σi, j of task τi

hp(µi, j,k) Set of messages µi, j,l with higher priority than task µi, j,k

l p(µi, j,k) Set of messages µi, j,l with lower priority than task µi, j,k

A Set of threads that are resource constrained

ϒ Set of threads that do not have any resource constrained

hp(θi, j,k) Set of threads θi, j,l with higher priority than task θi, j,k

l p(θi, j,k) Set of threads θi, j,l with lower priority than task θi, j,k

LIST OF SYMBOLS xxi

Gsort
i, j,k(t)[l] Sorted multi-dimensional array containing the switch delays SDx when a mes-

sage crosses a switch on the network

IntT (θi, j,k) Subset of jobs that participated to the WCRT of a thread θi, j,k, including itself

a remote processor

SLDi, j,k Subset of messages that compose the shared link delay Wli, j,k(t)
RLDi, j,k Subset of messages that compose the remote link delay Wri, j,k(t)
IntM(θi, j,k) Subset of messages that participated to the WCRT of a message µi, j−1,k, and

triggered the execution of the jobs in IntT (θi, j,k)
WT (µi, j,k) Subset of messages that are scheduled in the same transmission window type

compose as µi, j,k

sb fi, j,k Supply bound function of a messages µi, j,k

SFDx Store-and-Forward of switch SWx

∆ Switching-delay-effect of a message µi, j,k

SWx Switch x of the network ϖ

SDx Switching delay when crossing a switch SWx

δsum System load of task set τ

δ v
sum System load of task set τ executed on a processor v times faster

usum System utilisation of task set τ

τ Task set

τi Task i

GT (E∗,V ∗) Threads DAG

θ Thread set

θi, j,k Thread k of segment σi, j of task τi

t Time instant t

CPrb fi, j,k
Time instants in which the rb fi, j,k is modified due to the interference of mes-

sages in hp(µi, j,k)
δtot Total density of the tasks τi in the set τ

δ
msg
tot Total density of the messages µi in the set τ

mtot Total number of cores in the distributed multi-core platform

Utot Total utilisation of the tasks τi in the set τ

lu
i, j Upload link connecting the nodes πi to the switch SWx

lu
i, j Vertex vi of the graph G = (V,E)

Cb
i, j,k WCET of a code block bi, j,k

Cmaster
i WCET of a master thread τmaster

i

Ci, j,k WCET of thread θi, j,k

Pi, j,k WCET of a P/D thread θi, j,k

Mi, j,k WCML of message µi, j,k of P/D segment σi,2 j

WCRT
msg

i, j,k WCRT of message µi, j,k

WCRTi, j,k WCRT of thread θi, j

rµi, j,k
WCRT of a message µi, j,k

r
asyn
µi, j,k

WCRT of a asynchronous message µi, j,k transmitted with the FTT-SE Protocol

r
syn
µi, j,k

WCRT of a synchronous message µi, j,k transmitted with the FTT-SE Protocol

rv
µi, j,k

WCRT of a message µi, j,k transmitted on a network v times faster

rτi
WCRT of a task τi

rσi,2 j
WCRT of a Distributed Execution Path

rθi, j,k
WCRT of a thread θi, j,k

xxii LIST OF SYMBOLS

Constrained Programming Decision Variables

di,j Artificial intermediate deadlines of a segment σi, j

NV(θi,j,k) Function denoting to which node vq a thread θi, j,k is mapped

p
a,b,c
i,j,k Higher priority relation of a thread θa,b,c on a thread θi, j,k

Πθi,j,k Identifier of the core on which the thread θi, j,k is mapped

IHP
a,b,c
i,j,k Interference caused by a thread θa,b,c on a thread θi, j,k

Isi,j,k Maximum bounded switching delay of a message µi, j,k

z(t) Number of ECs in an interval [0, t]

I
a,b,c
i,j,k Number of pre-emptions caused by a thread θa,b,c on a thread θi, j,k

pi,j,k Priority of a thread θi, j,k

Wri,j,k(t) Remote link delay of a message µi, j,k at time t

rbfi,j,k(t) Request bound function of a message µi, j,k at time t

Wli,j,k(t) Shared link delay of a message µi, j,k at time t

PNµi,j,k
Set of switches that a message µi, j,k traverses during a D-fork or D-Join

sbfi,j,k(t) Supply bound function of a message µi, j,k at time t

SDi,j,k Switching delay of a message µi, j,k

SFDi,j,k Store-and-forward delay of a message µi, j,k

ti,j,k Time associated to a message µi, j,k

rDPi,j,k
WCRT of a distributed execution path DPi, j,k

r
msg
i,j,k WCRT of a message µi, j,k

ri,j,k WCRT of a thread θi, j,k

Chapter 1

Introduction

1.1 Research Motivation

1.1.1 Background

Real-time systems are defined as “those systems in which the correctness of the system

depends not only on the logical result of the computation, but also on the time at which

the results are produced” (Stankovic, 1988). Therefore, the aim of real-time systems is

to execute applications in a way that those applications met their temporal constraints,

named deadlines.

Real-time embedded systems are part of our everyday life. These systems range from

the traditional areas of military and mission critical to domestic and entertainment applica-

tions. Real-time applications span a wide range of domains, such as industrial automation,

automotive applications, flight control systems, multimedia applications, telecommunica-

tions and space missions. Real-time applications are mainly classified according to the

consequences that a failure in the system can cause, as: hard real-time applications and

soft real-time applications. In a hard real-time system the missing of a single deadline

leads to catastrophic consequences, meanwhile in soft real-time systems it implies the

degradation of the service provided by the system but without jeopardizing its correct

behaviour.

Real-time applications are commonly implemented using high level programming

languages (e.g., C\C++, Java and Ada) and sometimes implemented with lower level

languages and functionalities such as assembly code, timers, and low-level drivers for

manipulating tasks and interrupts. Unfortunately, the analysis of those programs is a

complex task and in order to simplify the analysis of such programs, a higher level of

abstraction is used to verify the properties of the system. In the time-critical domain, the

timing behaviour of the software parts composing a real-time systems are modelled as

real-time tasks.

1

2 Introduction

The main aspects to consider when designing a real-time system are:

i. the characteristics related to the tasks in the system such as if they execute sequen-

tially or in parallel, their Worst-Case Execution Time (WCET), their periodicity, their

deadlines, their dependencies, etc. ; and,

ii. the processor platforms and their respective processing capabilities.

During the first decades of real-time research, it mainly focused on issues related to

sequential real-time models executed on uni-processor platforms. Scheduling real-time

tasks in uni-processor systems is considered a well-understood area. In uni-processor

systems, for a tasks to respect its time constraints, its WCRT must be less than or equal

to its deadline Di, where the WCRT of a task τi, is the maximum time that a job of a task

requires for completing execution. Nowadays, it is considered that uni-processor schedul-

ing is a mature area (some interesting results on uni-processor scheduling are summarised

in (Sha et al., 2004)).

Scheduling on multiprocessor systems has been on the interest of real-time researchers

for several years. But special attention to multiprocessors was paid with the advent of

commercial platforms from the main multiprocessor vendors in the first decade of 2000.

Multiprocessor platforms were introduced as a solution for the physical limitations of the

traditional approach of increasing the processor clock speed for obtaining more process-

ing power. These limitations are mainly related to problems with high power consumption

and heat dissipation. An interesting survey on relevant techniques for multi-core (a.k.a.

multi-processor) executing sequential real-time tasks is presented in (Davis and Burns,

2011).

Due to advent of multiprocessor architectures, parallel programs became a highly

relevant tool for exploiting the multiprocessor platform resources. Some of the more rel-

evant programming languages are the ones based on C and C++. For example OpenMP

(OpenMP-Arch-Rev-Board, 2012) and MPI (MPI-Forum, 2012), for shared memory and

distributed memory, respectively. Parallel execution models are widely used in areas such

as High Performance Computing (HPC) for several decades and utilised on several com-

putational demanding applications. Parallel processing can increase the performance of

applications by executing them on multiple processors at the same time.

Most of the results on multiprocessor scheduling are based on the sequential execu-

tion model, in which intra-task parallelism is forbidden. Whenever task parallelism is

forbidden, sub-tasks (i.e. threads) belonging to a task must execute only in one processor

at a time. On the other hand, task models in which the execution of several sub-tasks

(threads) of the same task are allowed to execute in different processors at the time are

1.1 Research Motivation 3

called multi-threaded parallel task models. In the multi-threaded parallel real-time mod-

els each task τi starts execution as a sequential thread followed by the execution of a

set of parallel threads; this sequential sections and parallel sections are called sequential

segments and parallel segments, respectively. These segments are commonly alternated

between sequential and parallel segments.

Regardless uni-processor scheduling is considered a well-understood area, the prob-

lem of scheduling sequential real-time tasks in distributed systems composed by a set of

uni-processor nodes is still an open problem. Similarly, the case of scheduling sequential

real-time tasks in distributed systems composed by a set of multi-processor nodes is also

an open problem.

Furthermore, despite the fact that parallel computations in multi-processors can offer

an increased processing capacity, the multi-threaded parallel real-time task models have

not considered the cases in which a distributed execution also exists. Such execution

pattern can be used to provide even more capabilities and processing power. Even more, in

some applications the use of parallel and distributed computations is the only possibility in

which the applications can comply with their timing constraints. An example of such type

of applications are modern automotive applications, which need to execute computational

intensive applications (e.g., infotainment or driver assistance applications).

A distributed real-time system is the one in which the system objectives involve real-

time activities which must be carried on with some specific time bounds. In a distributed

real-time system, applications are required to interact with the environment under control,

by reading sensors and consequently responding accordingly through actuators. In fact,

in a distributed real-time system, both the processing and communication phase need to

be guaranteed to occur on time.

Real-time network scheduling considers the time needed to transmit messages through

a network and guarantee that they will be transmitted within a certain time bound - this

time is referred as the end-to-end delay. According to (Tindell et al., 1995), the end-to-end

delay is defined as the time that takes to transmit a message between a task that generates

it and the task that receives it. Thus, a key objective in real-time network scheduling it to

be able to accurately bound such end-to-end delays. But, computing such a delay is not an

easy task, because it heavily depends on the underlying network technology to be used.

This is because the mechanisms to arbitrate the access for transmission between sending

tasks may vary depending on the type of transmission network.

The integration of distributed real-time applications requires that the schedulability

analysis is extended to consider the computations in the nodes and the transmission delay

in the network. A well accepted technique for verifying the time correctness of real-time

distributed applications is the holistic analysis. The main objective of the holistic analysis

4 Introduction

is to bound the end-to-end delay. The key aspect on holistic analysis is the possibility

of accurately computing the WCRTs of tasks and messages. Furthermore, by using a

holistic approach it may be possible to achieve higher system resource utilization due to

the consideration of the system as a whole (see Chapter 6).

1.1.2 Problem statement

Given the increased availability of multiprocessor platforms and their natural applicabil-

ity towards parallel execution models, real-time researchers have started to pay attention

to the case of multi-threaded parallel real-time task models. The use of parallel models

can reduce the time required for processing computational intensive applications, and it is

currently the general trend to increase processing in many areas requiring high computing

power, and real-time systems are not an exception (e.g., (Lakshmanan et al., 2010; Sai-

fullah et al., 2011; Fauberteau et al., 2011; Qamhieh et al., 2011; Saifullah et al., 2013),

etc.). In these models, concurrent real-time activities are allowed to become parallel and

the processing of a single task may occur in more than one processor at the same time.

By using parallel computations, the time required for processing computational-intensive

applications can be reduced, thereby allowing them to comply with more stringent dead-

lines. Commonly, parallel applications are based on the fork-join execution model. Such

kind of applications start by executing sequentially and then forks to be executed in paral-

lel, when the parallel execution has completed, the results are aggregated by performing

a join operation.

However, despite the fact that parallel computations can offer an increased processing

capacity, multi-threaded parallel real-time task models have not considered the cases in

which a distributed execution also exists and which can be used to provide even more

capabilities and processing power. Furthermore, in some applications the use of parallel

computations is the only possibility in which the applications can comply with their time

constraints. Figure 1.1 shows an example of a parallel distributed task τ1 which is com-

posed of 4 threads, two are executed on the local node (i.e., local execution) and the other

two ones are executed on a remote node (i.e., remote execution). In Figure 1.1, the execu-

tion of τ1 starts with the thread θ1, θ1 is split into 4 threads θ1, θ2, θ3 and θ4. Threads θ1

and θ2, execute locally and threads θ3 and θ4 are executed in a remote node. In Figure 1.1

it is also possible to see the messages for sending and receiving data. In this dissertation

it is assumed that the code is already available and being executed on distributed nodes.

This a valid assumption since there exist frameworks that allow the mobility of code/data

meanwhile providing Quality-of-Service guarantees (Goncalves et al., 2010).

1.1 Research Motivation 5

������������	
�

����������	

������
�

�
���

������
�

����
��

�
���

�
����

�
����

�
���
 �
�

�
�

�
�

�
�

�
�

�
�,�

�
�

�
�,�

���
	����
��

�
�,�

�
�,������������� ������������

Figure 1.1: Execution of a task following the parallel and distributed model.

An example in which this kind of computing model could offer large benefits are

modern cars (Lim et al., 2011). Modern cars are a good example of time-constrained dis-

tributed systems, since they are composed of tens of computing nodes interconnected by

various types of communication networks. Figure 1.2 shows an example of such a system,

which provides an ideal platform for the execution of computational intensive applications

such as infotainment or a driver assistance applications. It is also possible to observe that

Figure 1.2 shows the execution of the task τ1 and its respective threads θ1−4 shown in

the example of Figure 1.1. It is assumed that the Electronic Control Units (ECUs) have

processors (a.k.a. cores). The local execution is carried on the Head-Unit (HU) ECU

and the remote execution is being carried on the Rear Seat Entertainment (RSE) ECU.

Thus, threads θ3 and θ4 have to cross switches SW-1 and SW-2 during the Distributed-

fork (D-fork) operation and they cross SW-2 and SW-1 in the Distributed-join (D-join)

operation. Furthermore, other type of applications such as avionic applications, industrial

environments, smart city applications, etc., can take advantage of such execution patterns.

���
���
���
���
���
���
���
���
���
���
���

����

��
��
��
��
��
��
��
��
��
��

���
���
���
���
���
���
���
���

�����	
��

��
��
��
��
��
��
��

��

���
���
���
���
���
���
���
���

��
���

���
���
���
���
���
���
���
���

��
���

���
���
���
���
���
���
���

��
���

��
��
��
��
��
��
��

��
���

�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������

��	
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������

������

�
�

�
�

�
�

�
�

�
�

������

Figure 1.2: Parallel and distributed automotive application example.

6 Introduction

Consequently, frameworks are thus required that allow to manage the resources of

the system globally, enabling high demanding and time-constrained software to be dis-

tributed cooperatively by both parallel and distributed processors. Such scenarios require

the integration of distributed computations with parallel real-time models. The fork-join

Parallel/Distributed real-time (P/D task) model, is designed to consider such execution

pattern.

The integration of distributed computations within real-time applications requires that

scheduling algorithms consider the messages interchanged on the network. In a dis-

tributed system, the transmission delay of messages cannot be considered negligible as

in the case of multi-core systems, therefore, their impact on the schedulability of the sys-

tem has to be considered.

Therefore, existing real-time analysis tools must also be extended to consider both the

processing and the network overhead. The communication infrastructure to interchange

information needs to be analysed in detail, therefore real-time network scheduling plays

an important role in the design of such distributed architectures (e.g., (Davis et al., 2007;

Bauer et al., 2010; Kopetz et al., 2005; Pedreiras et al., 2005)). On the other hand, the

combined analysis of network and the processing elements has to be considered (e.g.,

(Tindell and Clark, 1994; Spuri, 1996; Palencia and Harbour, 2003)).

1.2 Goal and Objectives

Based on the motivation presented in Section 1.1, the main goal of this dissertation is to

provide a design framework that allows for the integration of parallel distributed models

in real-time embedded applications.

This goal can be divided into three objectives:

i. Provide a framework for designing parallel and distributed real-time embedded sys-

tems that considers an adequate execution model;

ii. Finding efficient and predictable methods for the allocation of parallel and distributed

applications (P/D tasks) onto the processing and communication resources of the

underlying computing platform;

iii. Provide analytical tools that verify the correctness of the proposed methods.

In relation to (i), several programming models have addressed the problem of pro-

grammability for parallel and distributed systems, in both shared memory and distributed

memory (see Section 2.6). But none of these approaches integrates distribution and par-

allelism in a transparent and efficient way.

1.2 Goal and Objectives 7

Therefore, the objective of providing an adequate execution framework can be stated

as:

Propose an execution model for parallel and distributed real-time embedded platforms

and introduce an easy to use programming framework for the development of such

systems.

In relation to (ii), real-time scheduling theory has extensively provided tools and meth-

ods for addressing the problem of scheduling task sets within the traditional real-time

task models for both uni-processor (Sha et al., 2004) and multi-core platforms (Davis and

Burns, 2011). Recently these tools and methods have been extended to consider multi-

threaded parallel task models on multi-core platforms. In parallel, research related to

real-time network scheduling has been discovering methods to efficiently schedule mes-

sages on different network architectures. However, there exist a gap for the convergence

of these two important domains.

Therefore, the scheduling objective can be stated as:

Propose a set of scheduling algorithms and heuristics for the allocation of parallel and

distributed applications (P/D tasks) onto a distributed system composed of identical

embedded nodes.

In relation to (iii), the holistic response time analysis theory has considered traditional

real-time models, but it has not explored multi-threaded parallel task models executing in

distributed platforms.

Therefore, the holistic analysis objective can be stated as:

Propose a holistic response time analysis technique that validates the allocations

produced by the scheduling algorithms and heuristics proposed in (ii).

As noted, current parallel models being addressed in real-time embedded systems do

not address distributed computations. Nevertheless, it is clear that parallelism and distri-

bution are two dimensions of existent systems, which are more and more simultaneously

found.

By correctly addressing the problems stated in Section 1.2, it will be possible to de-

velop reliable and predictable parallel and distributed real-time applications.

8 Introduction

1.3 Structure of the Dissertation

This chapter introduced the research context of this dissertation. The dissertation is fo-

cused on the development of parallel and distributed real-time embedded systems. In

this context, this dissertation presents a set of design tools that consider both the execu-

tion tasks (or threads) on distributed processors and the transmission of messages on a

real-time network.

Chapter 2 introduces the background and a brief survey of the relevant works on topics

addressed in this dissertation. Some concepts on real-time models and real-time schedul-

ing on centralised, and distributed real-time systems are presented in Section 2.2 and

Section 2.3, respectively. Section 2.4 studies works related to task partition and prior-

ity assignment in real-time distributed systems. Section 2.5 presents the related works

on holistic analysis for real-time distributed systems. Section 2.6 surveys some parallel

programming models.

Chapter 3 introduces the Fork-Join Parallel/Distributed Real-Time Task Model (P/D

task model). Section 3.2 shows a case study of the possible implementation of the P/D

task model with a combination of OpenMP and MPI programming models. A timing

model for OpenMP/MPI programs is derived by individually studying the behavior of

typical OpenMP and MPI programs (Garibay-Martínez et al., 2012). Section 3.4 presents

the P/D task model which is derived from the observations presented in Section 3.2.

Chapter 4 presents the Partitioned/Distributed-Deadline Monotonic Scheduling (P/D-

DMS) algorithm for P/D tasks (Garibay-Martínez et al., 2014b). The P/D-DMS algorithm

is shown to have a resource augmentation bound of 4, which implies that any task set that

is feasible on m unit-speed processors and a single shared bus real-time network, can be

scheduled by this algorithm on m processors and a single shared real-time network that

are 4 times faster. Section 4.2 presents the Distributed Stretch Transformation (DST)

algorithm for P/D tasks, an algorithm that tries to keep as much as possible treads to be

executed locally. The main objective of the DST is to reduce the number of messages in

the network meanwhile complying with the task deadlines. The resource augmentation

bound for the Partitioned-Distributed-DMS algorithm is explained in Section 4.3. The

simulations that confirm the analytical results are provided in Section 4.4, and finally a

summary of the chapter is given in Section 4.5.

Chapter 5 present the Distributed using Optimal Priority Assignment (DOPA) and the

Parallel-DOPA (P-DOPA) heuristics, which partitions a set of sequential and P/D tasks,

respectively, and find their priority by using the Optimal Priority Assignment Algorithm

(OPA) (Audsley, 1991). Section 5.2 describes the DOPA heuristic for the linear trans-

actional model. The P-DOPA heuristic for the P/D tasks model is described in Section

1.3 Structure of the Dissertation 9

5.3.

Chapter 6 presents a holistic timing analysis for the computation of the Worst-Case

Response Time (WCRT) for P/D tasks when transformed by the DST algorithm (Garibay-

Martínez et al., 2014a, 2015b). Both synchronous and asynchronous communication pat-

terns are considered. Section 6.2 briefly describes the Flexible Time Triggered - Switched

Ethernet (FTT-SE) protocol and a technique for computing the WCRT of messages sched-

uled with the FFT-SE protocol (Ashjaei et al., 2013). Section 6.3 presents the proposed

holistic analysis for synchronous and asynchronous systems. Section 6.4 shows how the

WCRT computation presented in Section 6.3 can be improved by considering a pipeline

effect that occurs on those systems.

Chapter 7 introduces a set of formulations for modelling the allocation of P/D tasks in

a distributed multi-core (a.k.a. multi-processor) architectures by using a constraint pro-

gramming approach (Garibay-Martínez et al., 2015). A constraint programming approach

expresses the relations between variables in the form of constraints. The constraint pro-

gramming formulation is guaranteed to find a feasible allocation, if one exists, in contrast

to other approaches based on heuristic techniques. Section 7.1.1 introduces the system

model. The system model presented in Section 7.1.1 differs from the one presented in

Chapter 3 that the processing nodes are multi-core nodes.

Chapter 8 presents some simulations and an experimental evaluation of the concepts

presented through the dissertation. Section 8.3 introduces a simulator for P/D tasks that

considers an FTT-SE network (Oliveira et al., 2015). Section 8.5 presents the Paral-

lel/Distributed Real-Time (PDRT) library. Finally, the results from the experimental eval-

uation are compared with the results obtained by simulation.

Finally, Chapter 9 presents the research contributions, conclusions and the future

work.

10 Introduction

Chapter 2

Background and Previous Relevant

Work

2.1 Introduction

This chapter presents a brief survey of the works that are relevant for this dissertation

and it reinforces the research context of the dissertation. This dissertation focuses on

designing distributed applications in which the use of parallel computations is the only

possibility in which the applications can comply with their time constraints.

This chapter starts by presenting a broad classification of real-time task models and

real-time scheduling algorithms for different computing platforms (Section 2.2). In this

dissertation those models are extended for considering parallel and distributed execution

(Chapter 3). The consideration of a distributed architecture implies the coordination of

different elements in the systems given their transmission patterns (e.g., time-triggered or

event-triggered) and the use of a real-time network (Section 2.3). In order to execute real-

time applications by respecting their deadlines, a correct allocation of tasks to processors

and messages to the real-time networks must exists. Works related to task partition and

priority assignment in real-time distributed systems are studied in Section 2.4. Works

related to holistic analysis for real-time distributed systems are studied in Section 2.5. It is

important to notice that the works related to holistic analysis and partitioning and priority

assignment had only consider the sequential real-time task models (in this dissertation it

is also considered the P/D task model). Section 2.6 surveys some parallel programming

models. The studied parallel programming models are mainly C/C++ based (commonly

used for the development of real-time embedded systems). Finally, a summary of the

chapter is given in Section 2.7.

11

12 Background and Previous Relevant Work

����

�
�

�
�

�
�

�
�

�
�

�

�
�

���

���
�

�

���
�

����
�

�

�
�

��� ���
�

���

Figure 2.1: Jobs τ ι
i of a task τi.

2.2 Real-Time Models and Scheduling Algorithms

Real-time applications are commonly implemented using C\C++, Java and Ada program-

ming languages and sometimes with lower level languages and functionalities like assem-

bly code, timers, and low-level drivers for manipulating tasks and interrupts. Unfortu-

nately, the analysis of those programs is a complex task, and in order to simplify the

analysis of such programs, higher levels of abstraction are used to verify the properties

of the system. In the time-critical domain, the timing behaviour of the software parts

composing a real-time systems are modelled as real-time tasks.

A real-time system is composed by a set τ of n tasks (τ1, . . . ,τn) (also known as ap-

plications). A task τi becomes ready to execute at a release time (denoted as rlsi) and

continues execution until completion or finishing time (denoted as fi). A task τi is mainly

characterized by:

i. its Worst-Case Execution Time (WCET) (denoted as Ci);

ii. its minimum inter-arrival time or period, for the sporadic and the periodic task mod-

els, respectively:

a. Periodic task model. Tasks arrive in a strict periodic fashion (every Ti time units).

In the periodic task model, instances (i.e., jobs) of a task τi arrive in a strictly

periodic manner (every Ti time units).

Figure 2.1 shows an example of the jobs τ ι
i of a task τi. Job τ ι

i arrives at time rlsι
i

and completes its execution at time f ι
l . A new job τ ι+1

i (task instance) arrives at

time rlsι+1
i and completes its execution at time f ι+1

l . Thus, different jobs refer

to different activation times of the same task. For brevity, in this dissertation the

super index ι is omitted since it is considered that only one job τ ι
i can be active at

every time instant. This is because in this dissertation only systems with deadlines

smaller than the periods are considered.

Figure 2.2a shows the periodic task model, the upside arrows denote the release

(rlsi) of a task τi. It is possible to see that tasks arrive every Ti time units.

2.2 Real-Time Models and Scheduling Algorithms 13

����

�
�

�
�

���
�

�
�

�
�

�
�

�
�

���
�

���
�

������������	
�		���
������

���

����

�
�

�
�

���
�

�
�

�
�

�
�

���
�

���
�

�
�

�
�

�
�

���

�
�

�
�

Figure 2.2: (a) Periodic task model with implicit deadlines and (b) sporadic task model

with constrained deadlines.

In the periodic task model, task sets are classified depending on the time in which

tasks are released as:

i. Synchronous. All tasks arrive simultaneously to the system;

ii. Asynchronous. Tasks may not arrive simultaneously to the system, and may

be separated by fixed time slots called offsets;

b. Sporadic task model. Tasks arrive to the system with a minimal inter-arrival time

(denoted as Ti) between successive arrivals. I. e., the time elapsed between arrivals

is at least Ti time units. In Figure 2.2b the elapsed time after the arrival of a task

instance of task τi is larger than its minimum inter-arrival time;

The results in this dissertation apply to both

the periodic and sporadic task model.

iii. its relative deadline (denoted as Di), there are three categories related to the con-

straints imposed by deadlines Di:

a. Implicit deadlines. All tasks have deadlines equal to their periods (i.e. Di = Ti).

This can be observed in Figure 2.2a. Downside arrows denote the deadline of such

task. It can be seen that the deadlines Di coincide with the release rlsi of a taks τi;

b. Constrained deadlines. All tasks have deadlines less than or equal to their periods

(i.e. Di ≤ Ti). It can be observed in Figure 2.2b that the deadline Di of a task is

placed before the minimum inter-arrival time;

c. Arbitrary deadlines. Task deadlines are arbitrary; less than, equal to or greater to

their periods.

14 Background and Previous Relevant Work

This dissertation focuses on implicit and constrained deadlines (i.e., Ci ≤ Ti).

The response time rτi
of a task τi is defined as the difference between its finishing

time and its release time rτi

def
= fi− rlsi. For a task set τ to be schedulable, it has to be

guaranteed that for all their tasks τi, the response time rτi
of all their jobs must be less

than or equal to its deadline Di.

Tasks are also classified according to their possible precedence constraints as:

i. Dependent task sets. A task τ j is called dependent on task τi, if a task τi has to finish

execution before a task τ j can start execution. It is said that task τ j, has a precedence

constraint and depends on τi. A precedence constraint is denoted by ≺. For example

τi ≺ τ j reads as τi precedes τ j;

ii. Independent task sets. Otherwise they are called independent.

This dissertation focuses on dependent task sets.

This dissertation focuses on dependent task sets, in a distributed system, tasks are

communicated through messages, such messages imply a dependency between tasks.

Therefore, a task that is activated by the arrival of a message is dependent on such ar-

rival. More details are presented in Section 2.3.

The utilization ui of a task τi is given by ui
def
= Ci

Ti
. The total utilisation of a task set is

given by: usum
def
= ∑

n
i=1

Ci

Ti
. The density δi of a task τi is given by δi

def
= Ci

Di
. The total density

of a task set is given by: δsum
def
= ∑

n
i=1

Ci

Di
.

2.2.1 Classification of Real-Time Processing Platforms

From the scheduling perspective, processor platforms are classified in relation to the pro-

cessing capabilities of the processors composing such platform. Those platforms are clas-

sified in three main categories according to their processing capabilities (Carpenter et al.,

2004):

i. Identical. Processors composing the platform are identical; this is, the speed rate of

the execution of all tasks in the system is the same on all processors;

ii. Uniform. Processors composing such a multiprocessor system differ only on the

speed rate they execute tasks; hence a processor with speed rate of 2, executes all

tasks in the system twice as fast as when compared to a processor with a speed rate

of 1;

2.2 Real-Time Models and Scheduling Algorithms 15

iii. Unrelated. Processors composing the multiprocessor systems are different; hence,

the speed rate of execution of tasks depends on both processors and tasks. For exam-

ple, suppose two different types of tasks a and b, and two different types of processors

x and y. It may be possible that task a executes with higher speed rate on processor

x than in processor y; conversely, task b may execute with higher speed rate in y than

in x. In fact, not all tasks on the system may be able to execute on all processors.

This dissertation mainly focuses on identical platforms. Although,

a combination of nodes with different processing capabilities is

considered in Chapter 5 and Chapter 7.

The processing capabilities and number of processors that compose a computing plat-

form, dictate the type of scheduling algorithms to be used. In the following some of those

algorithms are described.

2.2.2 Real-Time Uni-processor Scheduling

Uni-processor real-time scheduling is considered a mature research area (some interesting

results on uni-processor scheduling are summarised in (Sha et al., 2004)).

Uni-processor algorithms, in particular, and real-time scheduling in general can be

divided in three categories (Carpenter et al., 2004):

i. Fixed-task priority. Each task and its jobs have a fixed priority assigned at the begin-

ning of the execution, and is kept unchanged until the end of the execution. Examples

of this type of algorithms are: Rate Monotonic (RM) (Liu and Layland, 1973), Dead-

line Monotonic (DM) (Audsley et al., 1991), Optimal Priority Assignment (OPA)

(Audsley, 1991), etc.;

ii. Fixed-job priority. Each task may assign different priorities to its jobs, but each job

with an assigned priority keeps that priority until the end of the job execution. Some

examples of this type of algorithms are the ones based on the Earliest Deadline First

(EDF) scheduling (Ramamritham et al., 1990);

iii. Dynamic priority. Task jobs may have different priorities at any point in time which

depends on the current scheduling conditions. Some examples of this type of algo-

rithms are the ones based on the Least Laxity First (LLF) scheduling (Dertouzos and

Mok, 1989).

This dissertation focuses on fixed-priorities.

16 Background and Previous Relevant Work

Scheduling algorithms are also classified according to its pre-emption levels as:

i. Non-pre-emptive. Tasks (or task jobs) that have started execution cannot be pre-

empted, and therefore, they must execute until completion;

ii. Pre-emptive. Tasks (or task jobs) can be pre-empted by another task (tasks job) with

higher priority at any point in time;

iii. Cooperative. Tasks (or task jobs) can only be pre-empted on certain predefined

scheduling points. This means that there are a series of pre-emptive sections where

pre-emptions take place and non-pre-emptive sections where pre-emptions are for-

bidden.

This dissertation considers the transmission of messages over the network

as non-preemptive and the in node execution of tasks as preemtive.

In uni-processor systems, the Worst-Case Response Time (WCRT) (denoted as rτi
)

of a task τi, is the maximum time that a job of a task requires for completing execution

(including possible interference and/or blocking times). For a tasks to respect its time

constraints, its response time must be less than or equal to its deadline Di. Two results for

the computation of the WCRT are of special importance for this dissertation: preemptive

uni-processor systems and non-preemptive uni-processor systems.

The results for preemptive uni-processor scheduling were introduced by (Joseph and

Pandya, 1986). They provided the following recursive equation that can be used to calcu-

late the response time of a task τi:

rn+1
τi

=Ci + ∑
τ j∈hp(τi)

⌈

rn
τi

Tj

⌉

C j, (2.1)

where rτi
is the WCRT of a task τi and hp(rτi

) is the set of all tasks τ j with higher priority

than τi that execute on the same processor.

The recursion ends when rn+1
τi

= rn
τi
= rτi

, and can be solved by successive itera-

tions starting from r0
τi
= Ci. The series is non-decreasing, and therefore converges if

∑τ j∈hp(τi)∪τi

C j

Tj
≤ 1. If the condition of convergence is not respected, task θi is not schedu-

lable.

Eq. (2.1) also applies to fixed-priority networks by considering the non-premtabilit-

y of messages which provokes a blocking time. For example, suppose a message µl of

lower priority being transmitted over a real-time network. If a message of higher priority

τh desires to transmit over the network, message µh has to wait for the lower priority

message µl to complete its execution. This is the so called blocking time.

2.2 Real-Time Models and Scheduling Algorithms 17

The calculation of the WCRT for messages µi needs to consider the non-preemptab-

ility of messages. For fixed-priority non-preemptive messages, the following recursive

equation can be used to calculate its WCRT (George et al., 1996):

rn+1
µi

=Ci + ∑
µ j∈hp(µi)

⌈

rn
µi

Tj

⌉

C j + max
µ j∈l p(µi)

{µ j}, (2.2)

where, the third term on the right hand side of Eq. (2.2), accounts for the maximum

possible blocking time of a higher priority messages µi, caused by lower priority message

µ j, contained in the set of lower priority messages l p(µ j).

2.2.3 Real-Time Multi-processor Scheduling

Scheduling on multiprocessor systems has been on the interest of real-time researchers

for several years. But special attention to multiprocessors was paid with the advent of

commercial platforms from the main multiprocessor vendors in the first decade of 2000.

Multiprocessor platforms were introduced as a solution for the physical limitations of the

traditional approach of increasing the processor clock speed for obtaining more process-

ing power. These limitations are mainly related to problems with high power consumption

and heat dissipation.

The aim of multiprocessor scheduling algorithms is to guarantee that the tasks be-

longing to an application meet their deadlines when executed in a multiprocessor plat-

form. According to (Carpenter et al., 2004), there are two main aspects to consider when

scheduling real-time tasks on multiprocessors:

i. The priority assignment problem. The priority assignment problem is related of

assigning priorities to tasks in order to give real-time guarantees;

ii. The allocation problem. The allocation problem tries to find the best allocation of

tasks to processors.

In fact, in (Carpenter et al., 2004), multiprocessor algorithms are classified according

to the level of priority changes they allow to perform over the task set, and on the way

allocations to processors are done (i.e. by allowing or restricting migration). Therefore,

the main classification of scheduling algorithms for multiprocessors is referred as priority-

based and migration-based algorithms. For the case of distributed systems, a similar

classification can be considered.

The priority-based classification is the same as the one presented in Section 2.2.2.

Related to Migration-based algorithms, they are classified in three categories:

18 Background and Previous Relevant Work

i. Non-migration. Whenever a task is allocated to a processor, all task jobs are kept on

that processor without possibility of migration to another processor;

ii. Task-level migration. Task jobs can be executed on different processors, but each job

already assigned to a processor can only be executed on that processor;

iii. Job-level migration. Task jobs can migrate and execute on different processors with-

out restrictions.

Based on the level of allowed migrations, real-time researchers commonly divide

scheduling algorithms in two groups; partitioned and global. If no migration of tasks

into other processors is allowed, the scheduling algorithms are referred as partitioned.

Otherwise they are referred as global.

This dissertation focuses on non-migration or static allocation systems.

Scheduling algorithms are also classified according to the way they process workloads

as:

i. Work-conserving. An algorithm is said to be work-conserving if it does not allow a

processor in the system to be idle (i.e. without executing a job) if there exist a task

ready to execute;

ii. Non-work-conserving. Otherwise, is referred as non-work conserving.

This dissertation focuses on work-conserving algorithms.

2.2.4 Real-Time Multi-threaded Parallel Task Models for Multipro-

cessor Systems

Most of the results on multiprocessor scheduling are based on the sequential execution

model, in which intra-task parallelism is forbidden (Davis and Burns, 2011). Whenever

task parallelism is forbidden, sub-tasks (i.e. threads) belonging to a task must execute

only in one processor at a time. On the other hand, task models in which the execution of

several sub-tasks (threads) of the same task are allowed to execute in different processors

at the time are called multi-threaded parallel task models.

Recently real-time researchers have considered task models based on multi-threaded

parallel task models. In this section, we present some of the works on multi-threaded

parallel task models. We focus our attention to the case of fixed-priority systems.

2.2 Real-Time Models and Scheduling Algorithms 19

��

��
��,�,�

��,� ��,� ��,�
�

��,�,� ��,�,�

��,�,�

�
�,�,�

�,�

Figure 2.3: Multi-threaded parallel real-time task.

Figure 2.3 illustrates a multi-threaded parallel real-time task. In the multi-threaded

parallel real-time models each task τi is composed of a set of ni segments (denoted as

σi, j). Each task starts execution as a sequential thread followed by the execution of set

of parallel threads; this sequential sections and parallel sections are called sequential

segments and parallel segments, respectively. These segments are commonly alternated

between sequential and parallel segments.

This dissertation focus on multi-threaded parallel fixed-priority

real-time tasks, in particular to fork-join task model.

Research related to multi-threaded parallel fixed-priority real-time tasks has targeted

mostly multi-core architectures. For example, in (Lakshmanan et al., 2010), the au-

thors introduced the Task Stretch Transformation (TST) model for fork-join parallel syn-

chronous tasks. The TST considers fork-join preemptive fixed-priority periodic tasks

with implicit deadlines. The fork-join structure is transformed into a sequential structure

and the set of sequential fixed-priority tasks remaining after the transformation is par-

titioned according to the Fisher-Baruah-Baker First-Fit-Decreasing (FBB-FFD) (Fisher

et al., 2006) partitioning algorithm. The authors proved that the TST has a resource aug-

mentation bound of 3.42. That implies that any task set τ that is feasible on m unit-speed

processors, can be scheduled by this algorithm on m processors that are 3.42 times faster.

The Segment Stretch Transformation (SST) model was proposed by (Fauberteau et al.,

2011). The authors also transform the fork-join structure of a task into sequential one by

creating a master thread, but with the difference (when compared to (Lakshmanan et al.,

2010)) that no thread is ever allowed to migrate between cores. They showed through

simulations that the TST and SST algorithms obtain similar results, and that none of them

20 Background and Previous Relevant Work

dominates the other. Later, (Qamhieh et al., 2011) proved that the SST has the same

resource augmentation bound than TST, i.e., 3.42.

A generalization of this problem was introduced in (Saifullah et al., 2013). Two main

extensions to previous works (Lakshmanan et al., 2010; Fauberteau et al., 2011; Qamhieh

et al., 2011) were made. First, the limitation of having the same number of threads in all

parallel segments within a task was lifted by allowing an arbitrary number of threads to

be executed on each parallel segment. And second, the authors considered the analysis

of DM and EDF scheduling. They provided a resource augmentation bound of 4 and 5,

when global EDF and partitioned DM are used to schedule tasks, respectively.

An effort towards the integration of the parallel real-time task models and distributed

systems is presented in this dissertation. Contrarily to multi-core systems (Lakshmanan

et al., 2010; Fauberteau et al., 2011; Saifullah et al., 2011), the transmission delay of

messages sent between nodes of the distributed system have to be considered and cannot

be deemed negligible.

This dissertation focuses on multi-threaded parallel models,

specifically in the fork-join model.

However, this dissertation focuses on multi-threaded parallel distributed applications

consideration of a distributed architecture implies the coordination of different elements

in the systems given their transmission patterns (e.g., time-triggered or event-triggered)

and the use of a real-time network, therefore Section 2.3 discusses those issues. In order

to execute real-time applications by respecting their deadlines, a correct allocation of task

to processors and messages to the real-time networks must exists.

2.3 Distributed Real-Time Systems

(Tanenbaum, 1995) defined a distributed system as “a collection of independent comput-

ers that appears to the users of the system as a single computer”. Distributed systems

are composed by a set of processing units cooperating to achieve a common objective.

In order to achieve their goal, distributed systems exchange information in the form of

messages which are sent through an interconnection network.

A distributed real-time system is the one in which the system objectives involve real-

time activities which must be carried on with some specific time bounds. Thus, the main

difference of distributed real-time systems and traditional distributed systems is the way

the time-constrained activities are performed.

In a distributed real-time system, applications are required to interact with the environ-

ment under control, by reading sensors and consequently responding accordingly through

2.3 Distributed Real-Time Systems 21

actuators. In fact, in a distributed real-time system, both the processing and communica-

tion phase need to be guaranteed to occur on time.

Real-time network scheduling considers the time needed to transmit messages through

a network and guarantee that they will be transmitted within a certain time bound - this

time is referred as the end-to-end delay. According to (Tindell et al., 1995), the end-to-end

delay is defined as the time that takes to transmit a message between a task that generates

it and the task that receives it. Thus, a key objective in real-time network scheduling it to

be able to accurately bound such end-to-end delays.

But, computing such a delay is not an easy task, because it heavily depends on the

underlying network technology to be used. This is because the mechanisms to arbitrate

the access for transmission between sending tasks may vary depending on the type of

transmission network.

Real-time network researchers had debated for several years about the better approach

for handling message transmissions with real-time constraints. In (Kopetz, 1997), meth-

ods for handling real-time messages are divided in three main approaches:

i. Event-triggered. Messages are generated in a sporadic fashion and the generation of

messages depends on the events generated at the sender side; therefore, it is difficult

to guarantee a correct time behaviour at the receiver side. To solve such a problem,

event-triggered systems implement acknowledgement mechanisms in order to control

the sending rate of messages. Event-triggered systems present high flexibility and

are preferred for the development of systems in which the messages rate is highly

variable;

ii. Rate-constrained. Messages are generated in a sporadic fashion; however there exist

an agreement between the sender and the receiver of generating messages without

exceeding certain message rate. This approach allows the calculation of bounded

times in which message transmissions can occur. The Rate-constrained approach is

considered as a middle term when compared to the event-triggered approach and the

time-triggered approach;

iii. Time-triggered. Messages are generated based on an a priori agreement between

sender and receiver on the exact time in which messages are transmitted. This ap-

proach presents high degree of predictability when compared to other approaches,

but it lacks flexibility when handling sporadic task.

This dissertation focuses on event-triggered and time-triggered systems.

22 Background and Previous Relevant Work

Ethernet is so far the most widely used intercommunication protocol in general pur-

pose networks. But audio and video streaming applications requiring real-time guarantees

are already laying upon Ethernet as a non-costly solution for such real-time applications.

Furthermore, it is currently in use on real-time systems applications, in some cases re-

placing other real-time architectures due to practical and monetary reasons. In (Loeser

and Haertig, 2004) the foundations of real-time scheduling for switched Ethernet are pre-

sented. Such approach presents a viable way to implement real-time communications

based on traffic shaping techniques that are commonly available over switched Ethernet.

Another widespread protocol is the CAN bus protocol, and it is probably the most

widely used protocol in more stringent event-triggered environments (e.g. automotive

applications). A response time analysis has been proposed in (Tindell and Burns, 1994)

and later revised by (Davis et al., 2007) which introduced a revisited schedulability anal-

ysis that proves incorrect previous established bounds for CAN networks, even more, that

work developed an optimal technique for the schedulability analysis of those architec-

tures.

The Avionics Full-Duplex (AFDX) protocol is within the class of rate-constrained

approaches. Such a protocol is one of the most successful standards for commercial

safety-critical application. The 802.3 Ethernet standard utilises a technique of dedicated

(reserved) bandwidth to guarantee Quality-of-Service (QoS) for the transmission of mes-

sages with real-time constraints. The AFDX protocol is a successful standard for avionic

applications, its analysis is based on network calculus. However, recently in (Bauer et al.,

2010), a method based on a combination of networks calculus and the trajectory method

has outperformed previous calculated bounds.

Perhaps the more predictable technologies are the ones based on time-triggered pro-

tocol (Kopetz, 1997), in which a predefined set of time slots are used for message trans-

mission. The most prominent implementation derived from the time-triggered protocol

is the time-triggered Ethernet (Kopetz et al., 2005) which offers as its main feature high

predictability and accurate response time bounds. However, protocols belonging to the

time-triggered approach are also characterised to be rigid when dealing with sporadic

messages.

To overcome such limitations, the authors of (Pedreiras et al., 2005) introduced the

Flexible Transmission Triggered (FTT) Ethernet protocol. The FTT approach is based

on a master-slave mechanism that coordinates the cohabitation of both types of real-time

messages; the ones based on event-triggered and the ones based on time-triggered ap-

proaches, thus providing higher flexibility to a broader type of applications.

Related to Flexible Time Triggered Switched Ethernet (FTT-SE) networks, (Pedreiras

et al., 2005; Marau et al., 2006) introduced the foundations for the FTT-SE protocol which

2.4 Task Partition and Priority Assignment in Real-Time Distributed Systems 23

��

��
��,� ��,� ��,�

�

��,� ��,�

Figure 2.4: Linear transactional model for distributed systems.

adds time determinism to common switched Ethernet switches. In (Marau et al., 2012)

the authors considered the computation of the WCRT for the single-master architecture.

Further developments of the FTT-SE paradigm have been proposed by the authors of

(Ashjaei et al., 2013) presented the multi-master architecture of the FTT-SE protocol and

presented a technique to compute the WCRT in such a network. In (Ashjaei et al., 2014),

an FTT-SE protocol is presented, in which the functionality of a master node is embedded

on a specialized switch; the Hard Real-Time Ethernet Switching architecture (HaRTES)

Ethernet switch.

2.4 Task Partition and Priority Assignment in Real-Time

Distributed Systems

The problem of allocating real-time task in distributed systems is usually divided in two

sub-problems:

i. finding the partitioning of tasks and messages onto the elements of the distributed

system (processors and networks, respectively);

ii. finding the priority assignment for that partition.

In this section we present works related to the allocation of the linear transactional

model for distributed systems (or simply sequential transactional model). Figure 2.4 show

the linear transactional model. It is possible to observe a that a task τi, j is followed by a

message µi, j, the reason is because messages µi, j are sent over the network to communi-

cate with task τi, j in a transaction τi.

In (Tindell et al., 1992) the allocation of tasks and messages is addressed as an op-

timization problem, solving it with the general purpose Simulated Annealing algorithm.

The Simulated Annealing algorithm is used for iterating in a random manner over a given

allocation, and perform an evaluation based on an “energy function” that measures the

quality of the encountered solution (allocation). Tindell used the Deadline Monotonic

(DM) scheduling algorithm (Leung and Whitehead, 1982) to assign priorities to tasks.

24 Background and Previous Relevant Work

In (García and Harbour, 1995), the authors proposed an optimization technique that

assumes a set of tasks and messages that are statically allocated to processors and net-

works (therefore, no partitioning phase is considered). Therefore, the authors focused

their attention on the problem of assigning the priorities to the allocated tasks and mes-

sages. Their method is based on imposing artificial intermediate deadlines to the tasks

and messages and assigning priorities to tasks by using DM.

(Richard et al., 2003) proposed a solution based on branch-and-bound; enumerating

the possible paths that can lead to an allocation, and cutting the path whenever a feasible

schedule cannot be reached by following such a task assignment. Again, DM is used to

assign the priorities assuming that each task is defined by its own deadline and period.

The bounding step is performed by checking the schedulability of each branch, based on

the schedulability analysis derived by (Tindell and Clark, 1994).

In (Metzner and Herde, 2006), the authors model the task partitioning problem as an

optimisation problem. However, this work assumes that each task has its own period and

deadline, and it uses DM to assign priorities.

(Zheng et al., 2007), studied the case of automotive applications. The approach is

based on finding the priorities for tasks and messages, in a way that no end-to-end dead-

line is missed. They proposed to solve the problem of priority assignment of tasks and

messages by modelling it as an optimization problem. In (Zhu et al., 2010) is presented

a similar problem as in (Zheng et al., 2007), but for a more detailed system model. The

authors presented a sensibility analysis that is able to measure how much the execution

time of tasks can be increased without missing its end-to-end deadlines. Their method is

based on a combination of mixed integer linear programming for task allocation, which is

optimized according to tasks utilization and deadlines. As a second stage of their method,

they apply a set of heuristic steps for priority assignment of tasks and messages.

(Azketa et al., 2011) addressed this problem by using the general purpose genetic

algorithms. They use a genetic algorithm with a permutational solution encoding. They

initiate their genetic algorithm by assigning priorities using the HOPA heuristic (García

and Harbour, 1995) which is based on DM priority assignment and iterate over different

solutions by applying crossover, mutation and clustering operations. To test schedulability

they use the holistic analysis presented in (Tindell and Clark, 1994) and (Palencia and

Gonzalez Harbour, 1998, 1999).

None of the previous works had addressed the allocation of multi-threaded parallel

tasks onto elements of a distributed system. This dissertation presents some methods for

the allocation of such parallel task in distributed systems (see Chapter 4, Chapter 5 and

Chapter 7).

2.5 Holistic Analysis for Real-Time Distributed Systems 25

2.5 Holistic Analysis for Real-Time Distributed Systems

The integration of distributed real-time applications requires that the schedulability anal-

ysis is extended to consider the computations in the nodes and the transmission delay in

the network. A well accepted technique for verifying the time correctness of real-time

distributed applications is the holistic analysis. The holistic analysis approach is based on

the concept of attribute inheritance, in which the messages sent by a task inherit its tem-

poral attributes (i.e., the period and the release jitter). The key aspect on holistic analysis

is the possibility of accurately computing the WCRTs of tasks and messages. By using a

holistic approach it may be possible to achieve higher system resource utilization due to

the consideration of the system as a whole (e.g. the observed pipeline effect presented in

Chapter 6).

The main objective of the holistic analysis is to bound the end-to-end delay. The end-

to-end delay between a pair of tasks is composed of the time required for producing a

message at the sender side, the time for transmitting the message through the communi-

cation network, and the time required for processing the reception of the message at the

receiver side. The previous works related to holistic analysis have mainly considered the

sequential transactional model (see Figure 2.4). Some of those works are presented in the

following.

In (Tindell and Clark, 1994) the authors presented a schedulability analysis for bound-

ing the timing behaviour of a distributed hard real-time system by including both process-

ing times and transmission delays. The research considered static priority preemptive

tasks with arbitrary deadlines to be executed in a distributed system composed of a set of

uni-processor nodes. Also, a TDMA protocol for inter-tasks communications was anal-

ysed. Their approach also considers the overheads incurred when messages are buffered

and processed at the destination processor. They calculated the worst-case transmission

delays of inter-task messages by considering synchronous patterns.

In a similar approach, (Spuri, 1996) considers a distributed system composed of a set

of uni-processor nodes in which the EDF algorithm is used for task scheduling. Tasks with

dynamic priorities and preemptive capabilities are analysed. As a network communication

protocol, the author proposed the use of the Timed Token MAC protocol which queues

outgoing packets using EDF. The author also proposed an iterative procedure for calcu-

lating the worst-case transmission delays of messages by considering both synchronous

and asynchronous communication patterns.

In (Palencia and Gonzalez Harbour, 1998), the authors studied the inclusion of static

and dynamic offsets in the schedulability analysis for preemptive fixed-priorities sequen-

tial tasks, thus reducing the pessimism of calculating the WCRT for such a real-time task

26 Background and Previous Relevant Work

model.

In (Gutierrez Garcia et al., 2000), the authors presented a schedulability analysis tech-

nique for distributed hard real-time systems in which responses of different events may

synchronize with each other. This is a general method for computing the WCRT of dif-

ferent synchronization events. This method allows the study of complex synchronization

structures, in which the fork-join structure is included. The technique is based on existing

Rate Monotonic Analysis (RMA) techniques.

The authors of (Palencia and Harbour, 2003) introduced an offset-based analysis for

dynamic priorities by considering preemptive EDF scheduling. The offset-based model

considers the transactional model. The authors based their analysis on the work presented

by (Spuri, 1996), but they consider the concept of offsets to avoid the pessimistic assump-

tion of all tasks arriving simultaneously which leads to the worst-case execution in EDF

scheduled systems.

In (Gutiérrez et al., 2014), the authors presented a holistic analysis for multi-packet

messages in AFDX networks. The authors considered the scheduling of virtual links for

the transmission of messages and their interaction (contention) in the receiving proces-

sors. Their analysis considers arbitrary message periods and release jitters.

None of the previous works addressed the problem of providing a holistic analysis

for multi-threaded parallel real-task models in distributed systems. In this dissertation

(see Chapter 6), a holistic timing analysis technique that considers parallel real-time tasks

executing in a distributed system (Garibay-Martínez et al., 2014b) is considered. The

analysis is extended to consider the FTT-SE network (Pedreiras et al., 2005; Marau et al.,

2006). A technique to reduce the pessimism of the WCRT analysis of such distributed

systems is also proposed.

2.6 Parallel Programming Models

Parallel execution model has been known (e.g., High Performance Computing (HPC)) for

several decades and used on several computational demanding applications, like weather

forecast, however common modern applications demand more computing power. A so-

lution for providing the required computing power is now offered by new commercial

multiprocessor platforms.

Parallel processing can increase the performance of applications by executing them

on multiple processors at the same time. However, in order to fully exploit the capacities

of multiprocessor architectures, it is needed to apply correct programming techniques.

Programming parallel applications is not a straight-forward task when compared with

sequential programming. Furthermore, it implies a burden on the programmer and in

2.6 Parallel Programming Models 27

some cases it implies the detailed knowledge of the targeted computing platform. On that

respect, parallel programming approaches are mainly divided in two categories (Kasim

et al., 2008):

i. Auto-parallelisation. Sequential programs are automatically parallelised by using

Instruction Level Parallelism (ILP) or parallel enabled compilers. The main advan-

tage of this type of parallelisation is the simplicity of obtaining parallel programs

from sequential ones. On the other hand, the achieved performance is poor when

compared with the parallel programming approach;

ii. Parallel programming. The parallel programming approach implies programming:

(i) the splitting mechanism of a problem into a set of tasks; and (ii) the development

of a distribution mechanism that map those tasks onto processors in an efficient man-

ner. Therefore, it requires more attention from the programmer, making it more dif-

ficult to code when compared with the auto-parallelisation approach. Consequently,

it achieves higher execution performance.

This dissertation focuses on parallel programming models.

According to (Mattson et al., 2004), a parallel programming model is an abstraction

of a general computing platform. Therefore, a programming model is not intended to

be tight or specifically designed for a particular platform. However, in practice, pro-

gramming models are closely associated with the computing architectures (e.g., shared

memory, distributed memory, type of processor, etc.) they are designed for. Furthermore,

combinations of such parallel technologies have lead towards the development of hybrid

programming models. The aim of these hybrid approaches is to take advantage of the

strong aspects of each technology, and thus, better exploit the available resources.

Parallel architectures and parallel models can be divided in two main categories:

i. Shared memory platforms. Shared memory platforms have a single memory access

space which is accessible to all the processors in the platform. This is also referred as

global memory space. Examples of these architectures are modern CPUs containing

more than one processor (core) in the same chip;

ii. Distributed memory platforms. Conversely to shared memory platforms, on dis-

tributed memory platforms the concept of a global memory space does not exists,

therefore, each processor (or set of processors) has its own private memory. Access

to other processor memories need to be communicated through the network.

28 Background and Previous Relevant Work

��������� ��������� ���������

��	
������

�������������������	���

�����

���

��������� ��������� ���������

���������	

��
��	��	�

���	�
�����

�����

���������

���������	

��
��	��	�

���	�
�����

���������������	

������

���

Figure 2.5: Example of (a) shared memory and (b) distributed memory platforms.

This dissertation focuses on distributed memory platforms.

Figure 2.5a, depicts an example of a shared memory architecture, in where all pro-

cessors have access to the main memory through an internal bus or a cross bar switch.

In contrast, in Figure 2.5b a distributed memory platforms is shown, where the access to

other processors memories must be done through an interconnection network.

2.6.1 Programming Models for Shared Memory Platforms

Threads are usually associated with the implementation of applications for shared mem-

ory platforms and operating systems. In the following it is described some of the most

relevant programming models for shared memory platforms with a special focus on those

used for implementing embedded applications:

• Portable Operating Systems Interface (POSIX) Threads or Pthreads. Pthreads

is a standard library (Standard, 2012) for the creation and manipulation of threads.

The Pthreads library implements a series of functions based on the C language (and

its variations), for the creation, coordination, memory access primitives and de-

struction of threads. Programmers of Pthreads need to put large effort on managing

access to shared variables through control access mechanisms (e.g. mutex (mutual

exclusion) mechanisms and semaphores). That complicates the programmability of

large scale applications. However, Pthreads is valuable as concurrency model and

its efficiency is high when used by experienced programmers.

• OpenMP. OpenMP is an API for the development of parallel programs based on

the threading model of Pthreads. OpenMP is a compiler enabled programming

2.6 Parallel Programming Models 29

model for C/C++ and FORTRAN (OpenMP-Arch-Rev-Board, 2012). Similarly to

Pthreds, OpenMP is conceived for the development of applications with shared

memory platforms. Its main objective is to facilitate the development of parallel

applications by applying the auto-parallelisation approach (a.k.a. incremental par-

allelisation approach). This is achieved through the use of the OpenMP library (lib-

gomp.h), which implements a combination of compiler directives (#pragmas) and

a set of runtime routines that provide the tools for managing the generated threads.

In contrast to Pthreds, the use of threads in OpenMP is highly structured because it

was conceived for the developing of large scale parallel applications. OpenMP pro-

gramming model is structured in blocks and follows the fork-join execution model.

In OpenMP a thread called the master thread is in charge of starting the execution;

afterwards this thread creates a team of threads and executes a set of instructions (a

code block) in parallel. A brief description of the OpenMP programming model is

given in Section 3.2.1.

• Cilk. Cilk is a multi-threaded programming model (similar to OpenMP). It is also

based on the C programming language and it is intended for the development of

parallel programs on shared memory platforms. It was initially developed by the

Michigan Institute of Technology (MIT) (Cilk, 2013) and after adopted by Intel

(Intel Cilk Plus) (Intel, 2013). Programmers must identify possible parallel sections

by introducing Cilk’s spawn keywords (in a similar way to #pragmas in OpenMP),

with the objective of exploiting locality and leaving the run-time being responsible

for executing computations in an efficient way.

• Intel’s Threading Building Block (TBB). TBB is based on C++ templates contain-

ing a collection of data structures and parallel algorithms that allow programmers

to avoid complications when programming with low-level multi-threaded programs

such as Pthreads. TBB’s main philosophy is to provide to programmers with a

high-level of abstraction by applying concepts of tasks and algorithm skeletons.

Therefore, programmers can use predefined algorithmic patterns, leaving the re-

sponsibility of matching the machine architecture to the TBB library. The main

advantage of TBB over other programming models for shared memory is that it

is based on algorithmic templates which provides high throughput. But unfortu-

nately, programmers need to put more effort in producing parallel programs when

compared to the auto-parallelisable approaches.

30 Background and Previous Relevant Work

2.6.2 Programming Models for Distributed Memory Platforms

Processes are usually the common execution unit when implementing programming mod-

els for distributed platforms. Two special types of processes are used for the implemen-

tation of distributed systems: the network socket and a special type of inter-process com-

munication processes (IPCs) the Remote Procedure Call (RPC).

Internet sockets are the endpoints used by the RPCs across a computer network. The

main objective of internet sockets is to provide a mechanism for the delivery of data

packets to the appropriate application processes. Internet socket APIs are based on the

Berkeley sockets standard (Vessey and Skinner, 1990). Berkeley sockets is a library with

an API for network sockets and UNIX domain sockets.

An RPC is a special type of IPC that allows a program to call a procedure to be

executed in another address space (usually in another node). The programmer does not

need to explicitly code the details for such remote call. One of the most used IPC methods

are the message passing methods. Message passing methods are widely used in parallel

computing models and supported by sending and receiving messages (e.g., complex data

structures, segments of code, etc.) to/from other processes. For example:

• MPI. The MPI specification is based on the message passing paradigm. The MPI

specification has become the de facto standard for developing parallel distributed

programs using the message passing paradigm (MPI-Forum, 2012). Among other

parallel programming approaches, it can implement the fork-join parallel program-

ming model.

MPI is not a language, but a standard library that can be used to build C/C++ and

FORTRAN programs. MPI has the advantage that it can be compiled by simple

compilers (on the contrary to OpenMP which needs a special compiler enabled to

support it), by linking the MPI library during the compilation process.

The potential of MPI programs is exploited by using the communication routines

inside the MPI library. These communication routines make the workload distri-

bution. A brief survey with the main features of the MPI programming model is

presented in Section 3.2.2.

2.7 Summary

This chapter presented a brief survey of works that are relevant for this dissertation. It

also reinforced the research context of this dissertation. Based on the topics described

in the chapter, it is possible to summarise the focus of the dissertation. The dissertation

focus on:

2.7 Summary 31

• Multi-threaded parallel models, in particular the fork-join structure. The model

presented in this dissertation (see Chapter 3) considers:

– fixed-priority sporadic task sets with implicit and constrained deadlines.

– work-conserving non-preemptive (for message transmission) and preemptive

(for in-node execution) systems.

• Distributed memory platforms that executes programs generated with an auto-para-

llelisation approach similar to the one in OpenMP. Related to the nodes composing

the distributed platform:

– It mainly considers identical nodes, with the exception of Chapter 5 and Chap-

ter 7, in which a combination of nodes with different processing capabilities

is considered.

– The time-triggered and event-triggered communication patterns are consid-

ered.

• The scheduling algorithms derived on the dissertation are based on non-migration

systems (i.e., fully-partitioned).

Chapter 3, introduces the Fork-Join Parallel/Distributed Real-Time Task Model (P/D

task model), the model is derived from a case study of the possible implementation of

a parallel and distributed execution pattern with a combination of OpenMP (OpenMP-

Arch-Rev-Board, 2012) and MPI (MPI-Forum, 2012) programming models.

32 Background and Previous Relevant Work

Chapter 3

The Fork-Join Parallel/Distributed

Real-Time Task Model (P/D Tasks)

3.1 Introduction

This chapter presents the Fork-Join Parallel/Distributed Real-Time Task Model (P/D task

model). Section 3.2 shows a case study of the possible implementation of a parallel and

distributed execution with a combination of OpenMP (OpenMP-Arch-Rev-Board, 2012)

and MPI (MPI-Forum, 2012) programming models. A timing model for OpenMP/MPI

programs is derived by individually studying the behavior of OpenMP (OpenMP-Arch-

Rev-Board, 2012) and MPI (MPI-Forum, 2012) programs (Garibay-Martínez et al., 2012).

Section 3.4 presents the P/D task model which is derived from the observations presented

in Section 3.2. The P/D task model is the model mostly used through the dissertation

(with the exception of Section 5.2). A summary of the chapter is given in Section 3.5.

3.2 OpenMP + MPI Programming Models

This section considers the fork-join paradigm with some extensions for supporting dis-

tributed execution and real-time requirements. Section 3.2.1 introduces de OpenMP pro-

gramming model, Section 3.2.2 presents the MPI programming model, and Section 3.3.1

presents a timing model based on the combination of OpenMP + MPI for supporting par-

allel/distributed real-time execution. Based on those observations, Section 3.4 presents

the P/D task model.

3.2.1 OpenMP Programming Model

The OpenMP Application Program Interfaces (API) has been developed for providing

portability and a user-friendly environment for programming shared memory multipro-

33

34 The Fork-Join Parallel/Distributed Real-Time Task Model (P/D Tasks)

Algorithm 3.1: parallel sections construct and single construct example.

1 #pragma omp parallel sections num_threads(2){

2 #pragma omp section{

3 #pragma omp single{

4 /* variable declaration */

5 }

6 }

7 #pragma omp section{

8 function_1();

9 }

10 }

cessor platforms (OpenMP-Arch-Rev-Board, 2012). The great success of OpenMP as a

programming model relies on the simplicity of generating parallel programs. Further-

more, it is very efficient for creating incremental parallelism from existing sequential

code.

OpenMP programs follow the fork-join paradigm. The structure of a parallel OpenMP

program contains:

i. a sequential part (e.g., some C/C++ variable initialization);

ii. some parallel constructs (e.g., parallel sections) that are inserted in the code for mak-

ing the parallel execution (fork), and finally;

iii. the set of generated threads are aggregated (e.g., with the reduction clause) to

generate the final result (join).

In OpenMP, the parallel construct defines a segment of the code to be executed in par-

allel; this segment is known as parallel region. The construct is defined by the #pragma

omp parallel directive (see Algorithm 3.1). Whenever a thread encounters a parallel

construct, this thread becomes the master thread and it creates a team of threads, which

will run the code inside that code segment.

At the end of a parallel region there is an implicit synchronization mechanism (repre-

sented by the symbol }) called barrier (line 9, Algorithm 3.1). Each thread executes its

associated code and waits at the barrier, when all threads complete their execution only the

master thread continues. There is a possibility of using a nowait clause which inhibits

the barrier and allows continuing the execution. The nowait clause is not considered in

this dissertation because the dissertation focuses on the classical fork-join model. In the

classical fork-join model, a synchronization point (the join operation) is needed.

3.2 OpenMP + MPI Programming Models 35

In order to provide the desired functionality to parallel constructs, OpenMP provides a

set of work-sharing constructs. These constructs are in charge of distributing the workload

among threads in OpenMP programs.

These work-sharing constructs can be complemented and/or modified with a set of

clauses to control the parallel execution. Of particular importance for this work is the

numthreads(n) clause, which is used to specify the number of threads to execute on a

parallel region. The most relevant work-sharing constructs follow.

The amount of parallelism achieved by a sections construct is a function of the number

of threads and the number of individual parallel section clauses associated to it. Each

section is defined by the #pragma omp section directive.

The single construct (#pragma omp single) specifies that the associated code

block is executed by only one of the threads in the team (not necessarily the master

thread). The other threads in the team, wait at an implicit barrier at the end of the single

construct (line 5, Algorithm 3.1). In a similar way the #pragma omp master directive

guarantees that only the master thread will execute a specific code block. Algorithm 3.1

shows a fragment of code related to the use of the parallel section and the single

constructs.

The for loop construct is signalled to the compiler through the #pragma omp for

directive and it is used for dividing the for cycle iteration among several threads. This

directive has different behaviours depending on the scheduler type selected, which is de-

termined by internal OpenMP variables or by the schedule(...) clause. There are

two standard types of schedule(...) clauses: static and dynamic. In the static

type, iterations are assigned to threads in a round-robin fashion. In case the dynamic

scheduler type is chosen, chunk iterations are assigned to threads on request. In a sim-

ilar manner as a work sharing pool. More details about the scheduler type are given in

Section 3.3.2.

The #pragma omp for directive might also be associated with a reduction cla-

use. Algorithm 3.2, depicts a fragment of code exemplifying the parallel for con-

struct in OpenMP. In that example, the for loop iterations are divided over three threads

(through the num_threads(3) clause), each one executing two iterations. OpenMP also

provides functionality for nested parallelism. For instance, whenever a thread encounters

another parallel construct, it creates a new team of threads, and the thread that created the

team becomes the new master thread of that team. This allows exploiting extra parallelism

in OpenMP programs. However, no nested parallelism is considered in this dissertation.

36 The Fork-Join Parallel/Distributed Real-Time Task Model (P/D Tasks)

Algorithm 3.2: parallel for example.

1 #pragma omp parallel for num_threads(3) reduction(+:sum){

2 for (i = 0; i < 6; i++){

3 loopCode();

4 }

5 }

3.2.2 MPI Programming model

The MPI specification has become a de facto standard for developing parallel distributed

programs using the message passing paradigm (MPI-Forum, 2012), which among others

can implement the fork-join programming model. Common fork-join programs imple-

mented in MPI have:

i. a serial execution of a code segment (e.g., variables declaration and initialization);

ii. the MPI environment initialization (e.g., a call to MPI_Init(...));

iii. an explicit work-sharing algorithm, for the distribution of the workload among the

processing elements (the work-sharing algorithm is implemented by the program-

mer);

iv. the transfer of data using message passing functions (e.g., calls to MPI_Send(...),

MPI_Recv(...));

v. an execution of the computations on the remote and local nodes;

vi. a reduce of the partial results from remote nodes to obtain the final one (e.g., a call to

MPI_Reduce(...));

vii. the finalization of the execution (e.g., a call to MPI_Finalize(...)).

A code fragment is presented in Algorithm 3.3.

A normal MPI program starts with a call to MPI_Init(...) routine to initialize the

MPI environment (line 2, Algorithm 3.3). This creates a communicator, which groups a

set of MPI processes in the local or in different nodes. All MPI messages must specify

a communicator for the interchange of messages between the processes belonging to the

same communicator.

MPI_Comm_rank(...), returns the “rank” (the ID) of a process within the associ-

ated communicator.

3.3 Supporting Parallel and Distributed Real-Time Execution with OpenMP + MPI 37

Algorithm 3.3: MPI two-sided send/receive example.

1 /* variable declaration */

2 MPI_Init(. . .);

3 MPI_Comm_size(. . .);

4 MPI_Comm_rank(. . .);

5 if (rank == 0) {

6 MPI_Send(. . .);

7 MPI_Recv(. . .);

8 }

9 if (rank 6= 0) {

10 MPI_Recv(. . .);

11 /* execution */

12 MPI_Send(. . .);

13 }

14 MPI_Finalize();

The potential of MPI programs is given due to the communication routines. These

communication routines are the ones that make the distribution of workload to processes.

MPI communications can be Point-to-Point or Collective. The most used MPI communi-

cation functions are MPI_Send(...) and MPI_Recv(...), where the first is a non-

blocking call used to send a block of data to be processed and the second blocks until a

message is received.

MPI also implements reduce operations, in an analogous way to OpenMP through the

MPI_Reduce(...) function.

One important difference between OpenMP and MPI is that MPI leaves all the burden

of the parallel coding to the programmer, while OpenMP supports incremental parallelism

at the cost of allowing less flexibility.

3.3 Supporting Parallel and Distributed Real-Time Exe-

cution with OpenMP + MPI

Based on the OpenMP and MPI constructs introduced in Section 3.2.1 and Section 3.2.2,

in this section a model for supporting parallel/distributed execution with real-time con-

straints is proposed.

In the framework presented in this chapter, it is assumed that the programmer only

writes code using the OpenMP API with minor changes to the OpenMP specification.

The last with the intention of reducing the complexity of writing parallel distributed

programs. The changes to the OpenMP specification include the extension of existing

OpenMP constructs for enabling them to support workload distribution (i.e., supported by

38 The Fork-Join Parallel/Distributed Real-Time Task Model (P/D Tasks)

Algorithm 3.4: distributedParallel clause example.

1 #pragma omp distributedParallel for deadline(200)

num_threads(4){

2 for (i = 0; i < 4; i++){

3 loopCode();

4 }

5 }

MPI). Therefore, the MPI code is not seen by the programmer (the MPI code is implicitly

called by the OpenMP library). The programmer only needs to specify which OpenMP

code blocks to distribute by using the #pragma omp distributedParallel pra-

gma, and specifying their deadlines (Garibay-Martínez et al., 2012, 2013a). This is il-

lustrated in Algorithm 3.4, the for loop can be distributed among 3 threads and the

computation must be completed before a deadline of 200 milliseconds. In this case, the

distributedParallel directive, signals the compiler to enable the parallelisation of

some iterations of the parallel for loop on distributed nodes. It is also the responsibility

of the compiler to generate code that can be dynamically or statically parallelised on the

destination node.

Dynamic means that the run-time decides the number of threads to split the compu-

tation on the neighbour node(s), according to the availability of resources. Static means

that it is the programmer who guides the splitting procedure.

Programs based on the dynamic computation model have an execution time line sim-

ilar to the one in Figure 3.1, which is related to the code in Algorithm 3.4. In Figure 3.1,

the horizontal lines represent threads and the vertical lines represent forks and joins. In

this case, the parallel for clause splits into three threads, two are executed on the local

node and another is executed on a cooperative node. This type of execution is called

remote execution.

Furthermore, it is assumed that it is possible to split the remote execution into two

threads. Observing the time line in Figure 3.1, it is assumed that the execution starts with

the thread θ1, θ1 is split into two threads θ1 and θ2 which execute locally one for loop

iteration each, the distributed thread θ3 executes the remaining two iterations. Thread θ3

is hosted in a neighbour node and further split into two threads, by adding thread θ4, each

one of these threads is executing one iteration of the for loop. In Figure 3.1 it is also

possible to see the messages for transmitting and receiving code or data (µ1,3 and µ3,1).

It is assumed that it is the responsibility of the master thread to marshal and send the data

required for remote execution, and for receiving processed data and unmarshalling it.

Similarly, Figure 3.2 shows an example of the execution of a OpenMP/MPI program

3.3 Supporting Parallel and Distributed Real-Time Execution with OpenMP + MPI 39

����������	

������
�

�
���

������
�

������������	
�

�
�
��
� �
�
	�
�

����
��

�
���
��
� �
���
	�
�

�
����

�
����

�
����

�
����

������������

������������

������� ����

������� ����

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�,�

�
�,�

Figure 3.1: Execution of a OpenMP/MPI program based on the dynamic computation

model.

based on the static computation model. Figure 3.2, shows a parallel distributed task in

which 4 threads are executed, two are executed on the local node and another is executed

on a remote node. The execution starts with the thread θ1, θ1 is split into 4 threads θ1,

θ2, θ3 and θ4. Threads θ1 and θ2, execute locally and threads θ3 and θ4 are executed in

a remote node. In Figure 3.2 it is also possible to see the messages for transmitting and

receiving code or data. The main difference between the dynamic model (Figure 3.1) and

the static model (Figure 3.2) is that in the static model the for and the join operations are

realised only at the local node.

This dissertation focuses on the OpenMP/MPI programs based on distribution

of parallel operations organized at the local node: static computation model.

������������	
�

����������	

������
�

�
���

������
�

����
��

�
���

�
����

�
����

�
���
 �
�

�
�

�
�

�
�

�
�

�
�,�

�
�

�
�,�

���
	����
��

�
�,�

�
�,������������� ������������

Figure 3.2: Execution of a OpenMP/MPI program based on the static computation model.

40 The Fork-Join Parallel/Distributed Real-Time Task Model (P/D Tasks)

3.3.1 Timing Model for OpenMP/MPI Programs

This section provides an overview of the envisaged programming and execution model

based on the OpenMP/MPI models. Section 3.4 presents an extended and formal version

of the execution model used through out the dissertation.

The generic operation of the local thread that controls the remote execution (the master

thread) is as follows:

i. the local thread must issue a MPI_Init(...) to initialize the MPI environment;

ii. it determines the data to be sent and sends it using MPI_Send(...);

iii. the data gets transmitted through the network;

iv. the data is received on the remote node and executed as an OpenMP program;

v. when the execution is finished, the results are sent back to the local node which

should be waiting for the results, by calling MPI_Recv(...).

It is assumed that the neighbour node already has the code to be executed. Therefore,

the costs of transmitting and installing the code are not considered. Such operation can

be executed during the system set up phase. In order to combine the functionality of

OpenMP and MPI in a single program, both models need to reach certain commitments

to guarantee the correct execution of hybrid programs. For example, on the OpenMP side,

it is required to guarantee that if a single thread is blocked by an operating systems call,

all the other threads can still be runnable. This is already supported by the most recent

OpenMP implementations (OpenMP-Arch-Rev-Board, 2012). On the MPI side, from the

release of MPI-2 standard (MPI-Forum, 2012), the concept of level of thread support has

been defined. There are four levels of support:

i. MPI_THREAD_SINGLE: only one thread exists in the application;

ii. MPI_THREAD_FUNNELED: multiple threads can exist but only the master thread can

make MPI calls;

iii. MPI_THREAD_SERIALIZED, multiple threads can exists, each thread can make MPI

calls as long as there is no other thread making a call, and;

iv. MPI_THREAD_MULTIPLE, multiple threads can exist and they can make MPI calls

at any time.

3.3 Supporting Parallel and Distributed Real-Time Execution with OpenMP + MPI 41

Using MPI_THREAD_SINGLE, would make impossible the splitting of the team of

threads among the neighbour nodes since only one thread per node is allowed. Any other

option, allows the execution of such programs according to what has been described.

MPI has some limitations for guaranteeing real-time communications (e.g., it is required

a mechanism for bandwidth reservation). However, for overcoming such limitations the

authors of (Kanevsky et al., 1998) introduced an extension for MPI Real-Time (MPI/RT),

the MPI/RT standard is based on channel reservation and fault tolerant mechanisms to

guarantee time properties.

To model an hybrid OpenMP/MPI program it is considered a set τ of n periodic tasks

denoted by {τ1, . . . ,τn}. Each task τi, i ∈ [1,n] is potentially a parallel task composed

of a set of ni segments. Each parallel segment σi,2 j, i ∈ [1,n], j ∈ [1,ni] may further be

composed of bi, j potentially parallel code blocks (e.g., the code inside a parallel for

loop, etc.) denoted by bi, j,k, i ∈ [1,n], j ∈ [1,ni], k ∈ [1,bi, j], it is assumed that each code

block has a WCET denoted as Ccb
i, j,k. For example, consider line 3 in Algorithm 3.4, the

parallel for loop has 4 iterations thus there are 4 different code blocks (assuming a

chunk size of 1) that can be executed in parallel. Each segment can be executed by a set

of ni, j threads denoted as θi, j,k, i ∈ [1,n], j ∈ [1,ni], k ∈ [1,ni, j].

3.3.2 Timing Behaviour of OpenMP programs

To correctly characterize the OpenMP timing behaviour, it is necessary to analyse the

transformation process from high level #pragma directives to standard C/C++ code,

which is finally compiled by the C/C++ compiler.

The process of converting OpenMP constructs to multi-thread code is known as low-

ering the code. The lowered code makes the calls to the OpenMP run-time environment.

OpenMP compilers make this lowering process in two phases: (i) the pre-lowering and

(ii) lowering.

The pre-lowering phase is in charge of transforming (simplifying) some OpenMP

work-sharing constructs in other equivalent ones, with the objective of facilitating later

processing.

This is the case of the sections construct and the single construct. In particular,

the sections construct is converted into an equivalent for loop and each section

construct corresponds to one iteration in the loop. After this transformation, each iteration

is scheduled according to the scheduler type in use, which can be defined as static

or dynamic. Also, the single construct is transformed to a for loop with just one

iteration. If a parallel region uses the single construct, the schedule clause is always

defined as dynamic.

42 The Fork-Join Parallel/Distributed Real-Time Task Model (P/D Tasks)

The lowering phase takes the pre-lowered code and performs the transformation to

C/C++ code. The lowering step realizes a transformation known as outlining the code.

Outlining is the process of transforming lexically existing code into a new procedure and

this new procedure is passed as an argument to the runtime libraries of OpenMP. OpenMP

does this outlining process to code inside parallel regions. After the outlining phase,

the compiler calls the OpenMP run-time which is in charge of mapping code to threads.

Therefore, the instructions that are scheduled and processed are the lowered ones.

After lowering the code, the final mapping from code blocks to threads depends on

the scheduler type that is used to assign (map) code blocks to threads.

Whenever the schedule clause is defined as static, the iterations are assigned to

threads in a round-robin fashion. In this model, the chunk_size is the number of low-

ered iterations inside a for loop. When the parameter chunk_size is not specified, the

chunk_size is approximately the same for all threads; equal to the number of iterations di-

vided by the number of threads. However, regardless the chunk_size, Eq. (3.1) computes

the number of lowered code blocks bi, j,k that are mapped into threads when the static

scheduler type is used to schedule lowered code:

nbmax
i, j,k =

⌈

bi, j

ni, j

⌉

. (3.1)

This is the maximum number of code blocks bi, j,k to be assigned to each thread θi, j,k.

Then, if it is considered the maximum WCET of a code block bi, j,k (denoted as Cmax
i, j,k), an

upper bound for the WCET of a thread θi, j,k (denoted as Cmax
θi, j,k

) can be derived as:

Cmax
θi, j,k

= nbmax
i, j,k×Cmax

i, j,k . (3.2)

In case the dynamic scheduler type is chosen, chunk iterations are assigned to threads

on request. In a similar manner as a work sharing pool. Whenever a thread finishes

processing a chunk, it requests another until no more chunks are available. Therefore, the

dynamic scheduler type can potentially offer better performance, especially when the

execution times of the respective code blocks are not uniformly distributed (i.e., irregular

parallelism). However, the upper bound in Eq. (3.2) is also an upper bound whenever

the dynamic scheduler type is used. For illustrating the reasoning of this, consider the

following example.

Example 3.1. Consider two threads θ1,1,1 and θ1,1,2 to execute three code blocks b1,1,1,

b1,1,2 and b1,1,3, with execution times of Cb
1,1,1, Cb

1,1,2 + ε and Cb
1,1,3 + 2× ε , where ε

represents a very small execution time quantity; that is, ε approaches zero. Suppose that

code blocks b1,1,1, b1,1,2 are being executed by threads θ1,1,1 and θ1,1,2, respectively. Then,

θ1,1,1 ends its execution and request the next code block b1,1,3, which is the one having

the maximum WCET Cmax
i, j,k . From Eq. (3.1) it is known that each thread has a maximum

3.3 Supporting Parallel and Distributed Real-Time Execution with OpenMP + MPI 43

������������

	���

�
�����

��������������

���������������

�
���������

����

�
�����

�����
��
��

���
� ���!��������

"��� ���

	���

�
�"����

#������������ ��,�,�

��,�,�

��,�,�

��,� ��,� ��,�

��,�,� ��,�,� ��,�,�

��,�,� ��,�,�

��,�,� ��,�,�

��,�,�

Figure 3.3: Timing execution of code block bi, j,k of a parallel for in OpenMP programs.

nbmax
i, j,k of two. Hence, it is possible to see that in this example Cmax

θi, j,k
would not be bigger

than 2×Cmax
i, j,k . Thus Eq. (3.2) also holds as an upper bound for the dynamic scheduler.

OpenMP supports other scheduler types, such as guided, runtime and other varia-

tions. But they are implementation dependent and therefore they are not considered.

After the initialization of an OpenMP program, a task τi is executed sequentially, and

is only composed by the master thread. Whenever it encounters a parallel region, the

master thread forks and creates a team of ni, j threads belonging to task τi. The number of

threads to be created, is explicitly expressed by the num_threads(ni, j) clause.

An example of a typical OpenMP program is depicted in Algorithm 3.2. In line 1,

a #pragma omp parallel for directive is encountered, which also includes a num

_threads(3) clause and a reduction clause. In this case, three threads are to share

the iterations of a for loop. Iterations in a parallel for loop are divided in chunks

that are assigned to threads. In that specific example, the number of iterations to share

is 6, and then assuming that the default scheduler typr is static, the threads θi, j,k with

k = 1,2,3 share two chunks each in a round robin manner. A possible time line for the

execution of the code presented in Algorithm 3.2, divided among three threads is depicted

in Figure 3.3. This Figure shows three different code segments: σ1,σ2,σ3, with its code

blocks. Code block b1,1,1 corresponds to serial code being executed prior to the parallel

region, then code blocks b1,2,1−6 represent the execution of the code in line 3, the function

loopcode(). Code block b1,3,1, in segment σ1,3 corresponds to the execution of the

reduction clause. Section 3.3.4 presents an algorithm to map the code block into a set of

threads.

3.3.3 Timing Behaviour of MPI communications

In contrast to the use of threads in OpenMP, MPI uses processes as execution units for im-

plementing two-sided communication. But for modelling purposes it is not distinguished

44 The Fork-Join Parallel/Distributed Real-Time Task Model (P/D Tasks)

between threads and processes, therefore the same notation is used.

Figure 3.1 shows the code depicted in Algorithm 3.3, it is possible to notice that

during the transmission of data to be used by thread θ3, there is a transmission delay that

depends on the size of the data to transfer and the network protocol. The processes θ1 and

θ3 hosted in two different nodes incur in a transmission delay for message µ1,3. A similar

process is shown in Figure 3.2.

Note that the transmission delay is an important parameter to consider when analysing

hibrid OpenMP/MPI programs and cannot be considered negligible.

3.3.4 Timing Behaviour of OpenMP + MPI

In order to consider hybrid execution, the OpenMP model is extended into a Directed

Acyclic Graph (DAG) that allows to model the behaviour of the program. Please note

that given the structure of programs based on the combination of OpenMP and MPI, the

generated DAG is always a fork-join DAG. The goal is to provide a DAG that can be

handled by a real-time schedulability test as the one presented in Chapter 6.

The execution time of a task τi can be represented by a fork-join DAG. A DAG

G(V,E) is able to capture the combination of sequential and parallel code blocks in paral-

lel/distributed programs and the possible dependencies between them. The hybrid model

is based on two different graphs the Graph of Code Blocks (denoted as GCB(V,E)) and

the Graph of Threads (denoted as GT (V ∗,E∗)), where GCB(V,E) represents the depen-

dencies between code blocks in a program and GT (V ∗,E∗) represents the mapping of

such blocks to threads.

The graph GCB(V,E) represents the structure of the program with the code blocks

that may be executed in parallel and the code blocks that may be executed sequentially.

The set of vertices in V = v0, . . . ,vk, represent the set of code blocks bi, j,k, and the set of

edges E = {v0,v1}, . . . ,{vk−1,vk}, represent the dependencies between them. If a vertex

v1 precedes v2, denoted by v1 ≺ v2, indicates that a vertex v1 must complete its execution,

before v2 can start its execution. The relation ≺ indicates a predecessor-to-successor

relation.

The dependencies in a hybrid OpenMP/MPI program can be imposed by implicit syn-

chronization points (e.g., single constructs, master constructs, etc.), explicit barriers

or memory synchronization (e.g., critical sections, flush operations, etc.); just to mention

some. Those dependencies are related to OpenMP. If there is no precedence relation be-

tween nodes v1 and v2 they are logically parallel, and therefore, they can be executed in

parallel.

3.3 Supporting Parallel and Distributed Real-Time Execution with OpenMP + MPI 45

������������	
�

�
�,�,�

�
�,�,�

�
�,�,�

�
�,�,�

�
�,�,�

�
�,�,�

Figure 3.4: Code blocks DAG GCB(V,E).

Given a graph GCB(V,E), it is needed to map this code blocks graph into the graph of

threads GT (V ∗,E∗). Where the set of vertices V ∗ = v∗0, . . . ,v
∗
k in GT (V ∗,E∗), represent

the set of code blocks bi, j,k and the set of edges E∗ = {(v∗0,v
∗
1), . . . ,(v

∗
k−1,v

∗
k)} represent

the order of execution of code blocks assigned to the threads in θi, j,k.

To obtain GT (V ∗,E∗), it is needed to traverse GCB(V,E) for obtaining a tree that

contains predecessor-to-successor relations indicating which code blocks precedes others.

Each branch in the tree corresponds to the execution of successive code blocks belonging

to a thread, that is GT (V ∗,E∗) has exactly the same number of branches than threads

executing in the program.

The traverse mechanism is the Breadth-First Search (BFS) algorithm (Cormen et al.,

2001). The BFS algorithm systematically discovers every vertex that is reachable from

a source node s. The BFS expands the frontier between discovered and non-discovered

nodes uniformly across the breadth. This means that all vertex at distance k from the

source node s are discovered before discovering another vertex from distance k+ 1. Al-

gorithm 3.5 shows the pseudo code of the BFS algorithm. For more details please refer

to (Cormen et al., 2001). This is particularly useful because all discovered vertex may

be executed in parallel since they do not have precedence constraints between them. In

the BFS algorithm, the discovered nodes that are reachable from s are maintained in a

queue before deciding to discover another level in the DAG. This queue can be assigned

to threads according to the defined schedule type (static or dynamic) and respecting

the maximum blocks per thread as specified in Eq. (3.1). Consider the following example:

Example 3.2. Assume the code blocks inside a parallel region in a DAG GCB(V,E) as

the one shown in Figure 3.4. Also assume that there are four threads to assign the code

blocks. After applying BFS algorithm to GCB according to a static schedule type, it is

possible to obtain a DAG GT (V ∗,E∗) as shown in Figure 3.5a. That DAG is obtained by

considering a computing platform similar to the one presented in Figure 3.2, where two

cores are for local execution and two cores are available for remote execution. Since 4

46 The Fork-Join Parallel/Distributed Real-Time Task Model (P/D Tasks)

Algorithm 3.5: BFS(G,s) (Cormen et al., 2001)

1 for each vertex u ∈V [G]−{s} do

2 color[u]←WHIT E;

3 d[u]← ∞;

4 p[u]← NIL;

5 colors[s]← GRAY ;

6 d[s]← 0;

7 p[s]← NIL;

8 Q← /0;

9 ENQUEUE(Q,s);
10 while Q is not empty do

11 u← DEQUEUE(Q);
12 for each v ∈ Ad j[u] do

13 if color[v] =WHIT E then

14 colors[v]← GRAY ;

15 d[v]← d[u]+1;

16 p[v]← u;

17 ENQUEUE(Q,v);

18 colors[u]← BLACK;

threads are available, two are assigned to be executed locally and two are assigned to be

executed remotely (code blocks b1,2,4 and b1,2,4 are executed remotely). In Figure 3.5b

the same example is represented but in that case only three threads are available for

execution, therefore, code blocks b1,2,1, b1,2,2 and b1,2,4 are executed locally, and b1,2,3 is

executed remotely.

With this approach, designers can transform the applications structure into a model

which can be analysed in terms of timing behaviour.

�
�,�,�

������������	
�

������������	
�

���

�
�,�,�

�
�,�,�

�
�,�,�

�
�,�,�

�
�,�,�

�
�,�,�

���

�
�,�,�

�
�,�,�

�
�,�,�

�
�,�,�

�
�,�,�

�
�,�,�

�
�,�,�

�
�,�,�

�
�,�,�

�
�,�,�

�
�,�,�

Figure 3.5: Thread Blocks DAG GT (V ∗,E∗).

3.4 Fork-Join Parallel/Distributed Real-Time (P/D) Task Model 47

�����

�

�

�

�

�

�

�

�

�

�����

�
�

� �
�

�
�,�,�

�
�,�,�

�
�,�,�

�
�,�,�

�,�

�
�,�,�

�,�

�
�,�,�

�
�,�,�

�
�,�,�

�,�

�
�,�,�	

�
�,�,�	

�
�,�,�

�

�

�

�

�

�

�

�

�

�

�,�

�

��,�

�

�,�

�

��,�

�

�,�

�

��,�

�,�

�

�,�

�

��,�

�,�

�

�,�

�

��,�

�

�,�

�

��,�

�

�,�

�

��,�

�,�

�

�,�

�

��,�

�

�,�

�

��,�

�
�,�

�

,�

	�
�,�

	
	�

�,�

��/�	�	
�	�
�	 	�
�,�

	 	�
�,�

�

	
	�

�,�

�

��

��/�	�	
�	�
�	

��

Figure 3.6: Fork-Join P/D Real-Time Task Model (P/D tasks).

3.4 Fork-Join Parallel/Distributed Real-Time (P/D) Task

Model

In this section, the fork-join Parallel/Distributed real-time (P/D) task model is introduced.

The P/D task model is derived from the observations presented in Section 3.2 and Sec-

tion 3.3. However, the P/D task model is able to model any program in which the compu-

tations are based on the fork-join paradigm, regardless the implementation technologies

used. A real-time distributed system is composed of two main elements:

i. a distributed computing platform, and;

ii. a set of real-time software applications.

This dissertation considers a distributed computing platform composed of a set of m

identical nodes π = {π1, . . . ,πm} (uni-processor nodes and multi-processor nodes) inter-

connected with a fixed-priority real-time network ϖ (e.g., FTT Ethernet (Pedreiras and

Luis, 2003)). The real-time network ϖ is composed of a set {SW1, . . . ,SWr} of r switches.

The switches SWx (x ∈ {1, . . . ,r}), and their respective links, interconnect all the dis-

tributed nodes in the network. The number of nodes m is defined by the architecture.

A set of real-time software applications is represented as a set τ of fork-join Parallel/

Distributed real-time (P/D) tasks. A task τi (i ∈ {1, . . . ,n}) is composed of a sequence

of sequential and Parallel/Distributed (P/D) segments σi, j with j ∈ {1, . . . ,ni}. Figure 3.6

shows an example of a P/D task τi. Where, ni represents the number of segments com-

posing τi, ni is assumed to be an odd integer, as a P/D task should always start and finish

with a sequential segment. Therefore, odd segments σi,2 j+1 identify sequential segments

and even segments σi,2 j identify P/D segments. Each segment σi, j is composed of a

subset of threads θi, j,k with k ∈ {1, . . . ,ni, j}, where ni, j = 1 for sequential segments and

ni, j = mi ≤ m threads for P/D segments.

48 The Fork-Join Parallel/Distributed Real-Time Task Model (P/D Tasks)

�

�

�

�

�

�

�

�

�

������
�,�,�

�
�,�,�

�

�,�,�

�,�

�
�,�,�

�,�

�
�,�,�

�

�,�,�

�,�

�
�,�,�	

�
�,�,�

�

�

�

�

�

�

�

�

�

�

�,�

�

��,�

�

�,�

�

��,�

�,�

�

�,�

�

��,�

�,�

�

�,�

�

��,�

�

�,�

�

��,�

�,�

�

�,�

�

��,�

�
�,�

�

,�

	�
�,�

	
	�

�,�

��/�		
��

��	 	�
�,�

	 	�
�,�

�

	
	�

�,�

�

��

��/�		
��

��	

Figure 3.7: Master thread.

A P/D task starts by a master thread executing sequentially, and afterwards it forks

to be executed in parallel on a remote or local processors. When the parallel execution

has completed on each of the remote processors, the results are aggregated by performing

a join operation and the execution of the sequential thread is resumed within the master

thread. These operations are referred as Distributed-Fork (D-Fork) and Distributed-Join

(D-Join). All sequential segments within a P/D task τi must execute within the same

processor. This means that the processor that performs a D-Fork operation (invoker node)

is in charge of aggregating the result by performing a D-Join operation. Thus, the master

thread of a P/D task τi is denoted as τmaster
i and defined as:

Definition 3.1. (Master Thread). The master thread of a P/D task τi is the collection of

all threads θi, j,1 belonging to all segments σi, j that execute on the invoker node. A master

thread can be represented as:

τmaster
i = {θi,1,1,θi,2,1,θi,3,1, . . . ,θi,ni−1,1,θi,ni,1}. (3.3)

Figure 3.7 shows an example of the threads θi, j,k of a P/D task τi that belong to the

master thread τmaster
i .

Threads in a P/D segment are possibly executed on remote nodes. Consequently, for

each thread θi,2 j,k belonging to a P/D segment (P/D thread), two P/D messages µi,2 j−1,k

and µi,2 j,k are considered for communication between the invoker and remote nodes. This

is, P/D threads and messages that belong to a P/D segment and execute on a remote pro-

cessor, have a precedence relation: µi,2 j−1,k ≺ θi,2 j,k ≺ µi,2 j,k. That precedence relation

is called Distributed Execution Path (DEP), and it is denoted as DPi,2 j,k. For each P/D

segment, there exists a synchronization point at the end of the segment, indicating that

no thread that belongs to the segment after the synchronization point can start executing

before all threads of the current segment have completed execution.

Each thread θi, j,k has a Worst-Case Execution Time (WCET) of Ci, j,k, and each mes-

sage µi, j,k has a WCML Mi, j,k. P/D threads are preemptive, but messages are non-

preemptive.

3.5 Summary 49

������

������

��	
��
����������������

�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������

�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������

�
�,�,�

�
�,�,�

�
�,�,�

�
�,�,�

�
�,�,�

�
�,�,�

�
�,�,�

�
�,�,�

�
�,�,�

�
�,�,�

�
�,�,�

Figure 3.8: Generic distributed computing platform.

Communications between threads can be carried out within the same or between dif-

ferent processor nodes. If two threads θi, j,k and θi, j+1,k communicate via a message µi, j,k

and execute on the same processor, we consider that the message transmission time is

negligible, thereby assuming that Mi, j,k = 0. Figure 3.8 shows an example of a generic

distributed computing platform. On the figure, it is possible to notice a task τi with three

P/D threads θi,2,1,θi,2,2, and θi,2,3. Since θi,2,1 is kept for local execution, its respective

messages µi,1,1 and µi,2,1 are omitted.

3.5 Summary

This chapter proposed the system model to be used through this dissertation. The model

considers a case study of programs that are written with a combination of OpenMP and

MPI programming models. However, the P/D task model is able to capture the behaviour

of any program that implements the fork-join paradigm. Furthermore, the proposed tech-

nique enables the timing characterization of these type of tasks (applications), transform-

ing the code block structure of such programs into the execution graph represented by a

graph of threads. Once the graph of threads have been obtained a proper schedulability

analysis can be performed (e.g., the one presented in Section 6).

A limitation of the fork-join Parallel/Distributed real-time (P/D) task model does not

consider nested parallelism.

The following publications are related to the work presented in this chapter:

• R. Garibay-Martínez, L.L. Ferreira, and L.M. Pinho. A framework for the devel-

opment of parallel and distributed real-time embedded systems. In Software Engi-

neering and Advanced Applications (SEAA), 2012 38th EUROMICRO Conference

on, pages 39–46, Sept 2012. doi: 10.1109/SEAA.2012.60.

50 The Fork-Join Parallel/Distributed Real-Time Task Model (P/D Tasks)

• R. Garibay-Martínez, L.L. Ferreira, C. Maia, and L.M. Pinho. Towards trans-

parent parallel/distributed support for real-time embedded applications. In Indus-

trial Embedded Systems (SIES), 2013 8th IEEE International Symposium on, pages

114–117, June 2013. doi: 10.1109/SIES.2013.6601483.

Chapter 4

Scheduling P/D Tasks in Distributed

Uni-processor Systems

4.1 Introduction

Works on fixed-priority multi-threaded parallel task models for multiprocessor systems

are presented in 2.2.4. This chapter presents an effort towards the integration of the par-

allel real-time task models and distributed systems. Contrarily to multi-core systems, the

transmission delay of messages sent between nodes of the distributed system have to be

considered and cannot be deemed negligible.

In this chapter, the Partitioned/Distributed-Deadline Monotonic Scheduling (P/D--

DMS) algorithm (Garibay-Martínez et al., 2014b) for P/D tasks is presented. The P/D-

DMS algorithm is shown to have a resource augmentation bound of 4, which implies

that any task set that is feasible on m unit-speed processors and a single shared bus real-

time network, is schedulable by this algorithm on m processors and a single shared real-

time network that are 4 times faster. Section 4.2 presents the Distributed Stretch Trans-

formation model for P/D tasks. The resource augmentation bound for the Partitioned-

Distributed-DMS algorithm is explained in Section 4.3. The simulations that confirm the

analytical results are provided in Section 4.4, and finally a summary of the chapter is

given in Section 4.5.

4.1.1 Chapter Considerations

This chapter considers a distributed computing platform composed of a set of m identical

uni-processor nodes π = {π1, . . . ,πm} interconnected with a fixed-priority shared bus real-

time network ϖ . It also considers that for a task τi, every P/D thread θi,2 j,k and their

respective messages µi, j,k within a P/D segment σi,2 j, have identical WCETs denoted as

Pi,2 j,k and identical WCMLs Mi, j,k, respectively. However, the WCET and the WCML of

51

52 Scheduling P/D Tasks in Distributed Uni-processor Systems

�

�

�

�

�

�

�

�

�

������
�,�,�

�
�,�,�

�

�,�,�

�,�

�
�,�,�

�,�

�
�,�,�

�

�,�,�

�,�

�
�,�,�	

�
�,�,�

�

�

�

�

�

�

�

�

�

�

�,�

�

��,�

�

�,�

�

��,�

�,�

�

�,�

�

��,�

�,�

�

�,�

�

��,�

�

�,�

�

��,�

�,�

�

�,�

�

��,�

�
�,�

�

,�

	�
�,�

	
	�

�,�

��/�		
��

��	 	�
�,�

	 	�
�,�

�

	
	�

�,�

�

��

��/�		
��

��	

Figure 4.1: Parallel execution length.

P/D threads and their messages can vary between different P/D segments. Therefore, Pi,2 j

is the WCET of a single P/D thread within a segment σi,2 j (since all k P/D threads on the

same P/D segment have exactly the same WCET). Also, P/D threads and messages, share

the same period Ti.

For notational convenience some definitions that simplify the explanation and analysis

of the proposed algorithms are introduced.

The parallel execution length refers to the execution time that is required to execute

all P/D threads if all P/D threads are executed in parallel. Since all P/D threads have the

same WCET (denoted as Pi,2 j) only one the WCET of P/D thread Pi,2 j has to be considered

for each P/D segment σi,2 j. Figure 4.1 shows the threads that contribute to the parallel

execution length. Thus, the parallel execution length of a P/D task τi is denoted as Pi and

defined as:

Definition 4.1. (Parallel execution length). The parallel execution length Pi is the sum

of all WCET of all P/D threads within the master thread:

Pi =

ni−1

2

∑
j=1

Pi,2 j. (4.1)

The minimum execution length ηi, represents the minimum execution time a P/D

task τi needs to execute, if all P/D threads are executed in parallel. That is, the parallel

execution length plus the sum of all threads that execute in the sequential threads (i.e., the

ones executing on the invoker processor). Figure 3.7 shows the threads that contribute to

the minimum execution length. Please, note that those threads are the same as the ones

belonging to the master thread. Thus, the minimum execution length of a P/D task τi is

denoted as ηi and defined as:

Definition 4.2. (Minimum execution length). The minimum execution length is equal to

the sum of the WCET of all the threads described in the master thread (i.e., the sum of the

4.1 Introduction 53

sequential threads plus the parallel execution length):

ηi =





ni−1

2

∑
j=0

Ci,2 j+1



+Pi. (4.2)

The maximum execution length ηi represents the maximum execution time a P/D task

τi needs to execute. That is, if all sequential and P/D threads execute sequentially. Thus,

the maximum execution length of a P/D task τi is denoted as Ci and defined as:

Definition 4.3. (Maximum execution length). The maximum execution length Ci repre-

sents the maximum execution time a P/D task τi needs to execute when all P/D threads

are executed sequentially on the invoker processor. This is equal to the sum of WCET of

all threads in a task τi:

Ci =





ni−1

2

∑
j=0

Ci,2 j+1



+Pi×mi. (4.3)

Please note, that the messages µi, j,k are not considered in Eq. (4.2) or Eq. (4.3), since

all inter-process communications are internal to the invoker processor. The synchroniza-

tion cost between the sequential and P/D threads can therefore be considered negligible.

Figure 3.8 shows an example in which some messages (µi,1,1 and µi,2,1) are transmitting

within the same local processor, therefore, its cost is negligible.

The slack time of a task τi is denoted as Li and defined as:

Definition 4.4. (Slack time). The positive slack time Li is the temporal difference between

the task deadline Di and the minimum execution length ηi:

Li = Di−ηi. (4.4)

If the slack Li is a negative number, it means that ηi is larger than its deadline (Ti =Di).

Therefore, such a task is not schedulable on any number of processors with a speed of 1.

The P/D-DMS algorithm tries to coalesce as many threads as possible into the master

threads. The number of possible threads to coalesce is given by the task capacity. Thus,

the task capacity of a P/D task τi is denoted as fi and defined as:

Definition 4.5. (Task Capacity). The task capacity fi is defined as the capacity of the

master thread of a task τi to execute extra P/D threads from all P/D segments without

missing its deadline:

fi =
Li

Pi
. (4.5)

54 Scheduling P/D Tasks in Distributed Uni-processor Systems

4.2 The Distributed Stretch Transformation Model

The Distributed Stretch Transformation (DST) has been inspired by the Task Stretch

Transformation (Lakshmanan et al., 2010) (TST) model and the Segment Stretch Trans-

formation (Fauberteau et al., 2011; Qamhieh et al., 2011) (SST) model. The DST model

is designed specifically for distributed systems, in which real-time tasks and messages

need to be processed and transmitted by processors and a real-time network, respectively.

Therefore, the main difference from DST, when compared with TST and SST, is that the

two previous transformation algorithms were conceived for multi-core processors, thus

not considering the transmission delays inherent to the synchronization between threads

executing on different processors, as in the case of distributed systems.

The TST and SST transformations consider that tasks are scheduled by a partitioned

preemptive fixed-priority algorithm, executed in a multi-core processor. In this model,

it is also considered that tasks are scheduled with the preemptive fixed priority Deadline

Monotonic (DM) algorithm on each processor. However, messages to be transmitted

within the real-time network are scheduled with a non-preemptive version of the DM

algorithm. This is because the transmission of a message cannot be interrupted once

initiated.

4.2.1 The Task Stretch Transformation and Segment Stretch Trans-

formation Models

In this subsection, the TST and the SST transformation models are studied, with the in-

tention of showing the similarities and main differences with the DST model.

In the TST model (Lakshmanan et al., 2010), Lakshmanan et al. show that “F-J task

sets on multiprocessor systems can have schedulable utilization bounds slightly greater

than and arbitrarily close to uniprocessor schedulable utilization bound”, thus, it is de-

sirable to avoid fork-join structures as much as possible. The main objective of the TST

model is to convert the master thread into a fully stretched string in which the execution

length of the master thread becomes equal to its period Ti. The transformation is done by

inserting (or coalescing) threads (or part of them) into the master thread while paying at-

tention to respect their precedence constraints. Thus, a subset of parallel threads executes

with the master thread while the rest of them are partitioned among the cores using the

partitioning heuristic Fisher-Baruah-Baker First-Fit-Decreasing (FBB-FFD) (Fisher et al.,

2006). The authors showed that their scheduling algorithm has a resource augmentation

bound of 3.42.

The main disadvantage of the TST is that it forces to stretch a master thread com-

pletely. In some cases, it may not be possible to fit complete threads within the master

4.2 The Distributed Stretch Transformation Model 55

thread. This provokes a migration of the remaining part of such a thread for being ex-

ecuted in another processor. For this reason, the authors of (Fauberteau et al., 2011)

proposed the SST model, which also tries to convert the parallel threads into sequential

ones by creating a master thread, but with the difference that the coalescing operation is

performed only when parallel threads can be fully inserted within the master thread. Thus,

creating a master thread that can be fully stretched (with a WCET of the master thread

equal to its period) or partially stretched (the WCET of the master thread is smaller or

equal to its period). In a similar manner than in (Lakshmanan et al., 2010), the remaining

parallel threads are scheduled with the partitioned scheduling algorithm FBB-FFD (Fisher

et al., 2006). Later, the same authors (Qamhieh et al., 2011) proved that SST has the same

resource augmentation bound of 3.42 than TST, although, it cannot be claimed that one

of both algorithms dominates the other (Fauberteau et al., 2011).

4.2.2 The Distributed Stretch Transformation (DST) Algorithm

This work is inspired by the SST approach. Since “F-J task sets on multiprocessor sys-

tems can have schedulable utilization bounds slightly greater than and arbitrarily close to

uni-processor schedulable utilization bound”, it is opted for the formation of a stretched

master thread (denoted as τstretched
i) for each P/D task τi.

However, some specific constraints that are related to distributed systems have to be

addressed. In that case, when performing a D-Fork operation, it implies that some mes-

sages will be transmitted within the network that may affect the execution length of the

P/D tasks.

Let the DST transformation be illustrated with the following example.

Example 4.1. Consider two tasks: τ1 with a single P/D segment. τi is composed by two

sequential threads θ1,1,1 and θ1,3,1 with a WCET of 1 time unit; there P/D threads θ1,2,1−3

with a WCET of 2 time units, and their respective messages µ1,1,1−3 and µ1,2,1−3 with a

WCML of 1 time unit. The period Ti is equal to 8 time units. Similarly, τ2 is composed

by two sequential threads θ2,1,1 and θ2,3,1 with a WCET of 1 time unit; there P/D threads

θ2,2,1−3 with a WCET of 3 time units, and their respective messages µ1,1,1−3 and µ1,2,1−3

with a WCML of 1 time unit. The period Ti is equal to 10 time units. Tasks τ1 and τ2

are to be scheduled on 3 distributed processors interconnected with a real-time network.

Figure 4.2a, shows the execution of a task to be scheduled under global DM scheduling.

It is possible to see that task τ2 having the lowest priority misses its deadline at time 10.

This is due to the suffered interference provoked by threads of task τ1 that have higher

priority. Also, notice the presence of a high source of interference in the network, for

example, the P/D thread θ2,2,3 with WCET P2,2,3, is ready for execution at time 1, but

due to the network interference it is only released for execution in processor 3 at time 7,

therefore drastically increasing its response time.

56 Scheduling P/D Tasks in Distributed Uni-processor Systems

�������

�������

������	

��
���

�

�� �

� � � �

	

��

��

�����������		

���

�

�,�,�

�

�,�,�

�

�,�,�

�

�,�,�

�

�,�,�

�

�,�,�

�

�,�,�

�

�,�,�

�

�,�,�

�

�,�,�

�

�,�,�

�

�,�,�

�

�,�,�

�

�,�,�

�

�,�,�

�

�,�,�

�

�,�,�

�

�,�,�

�

�,�,�

�

�,�,�

�

�,�,�

�������

�������

������	

��
���

�

�� �

� � � �

	

��

��

���

�

�,�

�

�,�

�

�,�,�

�

�,�,�

�

�,�,�

�

�,�,�

�

�,�,�

�

�,�,�

�

�,�,�

�

�,�,�

�

�,�,�

�

�,�,�

�

�,�,�

�

�,�,�

�

�,�,�

�

�,�,�

Figure 4.2: P/D tasks: (a) scheduled with global scheduling, (b) scheduled after the DST

transformation.

4.2 The Distributed Stretch Transformation Model 57

Now consider the DST transformation explained below and illustrated in Figure 4.2b.

By calculating the maximum execution length of tasks τ1 and τ2 (see Definition 4.3), it

results that C1 = 8 and C2 = 11. Then, by looking at Figure 4.2b it is possible to observe

two cases:

i. Ci≤ Ti. This is the case of τ1 in this example; whenever such a case appears for a task

τi, the task τi is fully stretched into a master thread and handled as a sequential task

with execution time equal to Ci, a task period of Ti, and an implicit deadline equal to

Di. That is, all threads of the tasks are executed sequentially on a single processor.

ii. Ci > Ti. This is this case of τ2 in this example; for such tasks, the DST transformation

inserts (coalesces) as many P/D threads of τi into the master thread as possible. To

do so, it is needed to calculate the available slack and capacity of task τi as indicated

in Eq. (4.4) and Eq. (4.5). For τ2, it gives L2 = 10− 5 = 5 and, f2 =
5
3
. Thus, the

number of P/D threads that each P/D segment can fully insert into the master thread

without causing τi to miss its deadline is given by:

ii,2 j = ⌊ fi⌋ . (4.6)

For example, in the case of τ2, i2,2 = ⌊ f2⌋= 1. It can indeed be seen on Figure 4.2b

that τ2 executes two P/D threads per P/D segment on the invoker processor (one from

the master thread and the inserted one) rather than only one when considering the

non-stretched master thread.

In the DST only P/D threads that fit completely (since ii,2 j = ⌊ fi⌋) can be inserted into

the master thread. A master thread is assigned to be executed in its own processor and

the remaining subset of P/D threads, have to be executed on other nodes in the system.

The partitioning of the remaining P/D threads to the processors is done according to

the FBB-FFD algorithm (Fisher et al., 2006).

The number qi,2 j of the remaining P/D threads that have not been coalesced into the

master thread is given by:

qi,2 j = mi− ii,2 j. (4.7)

The capacity fi of task τi is equally distributed between all the P/D segments of a

P/D task τi. This distribution can be considered as the available scheduling length for

the execution of threads and transmission of messages in each P/D segment on a remote

processor.

58 Scheduling P/D Tasks in Distributed Uni-processor Systems

Thus, the maximum scheduling length for the subset of P/D threads and their respec-

tive messages is determined by defining a set of P/D intermediate deadlines di,2 j:

di,2 j = (fi +1)×Pi,2 j ∀1≤ j ≤
ni−1

2
. (4.8)

In the case of task τ2, d2,2 = 3× (5
3
+1) = 8. Also, each P/D segment σi,2 j has a static

offset φi,2 j defined as:

φi,2 j =

ni−1

2

∑
j=0

C1,2 j+1,1 +

ni−1

2

∑
j=1

di, j. (4.9)

Thus, at the end of the DST transformation, a P/D task τi will be composed of a single

stretched master thread τstretched
i and a set of constrained deadline P/D threads {τcd

i, j,k}

(and their respective constrained deadline messages {µcd
i, j,k}) per each P/D segment σi,2 j.

The P/D segments offsets φi,2 j and the P/D segments deadlines di,2 j, define the sched-

uling window, in which the remaining qi,2 j P/D threads (and its corresponding messages)

have to complete their execution (and transmission, respectively) in order for a task τi to

respect its deadline. That is, the following inequality must be respected:

rµi,2 j−1,k
+ rθi,2 j,k

+ rµi,2 j,k
≤ di,2 j ∀θi,2 j,k 6∈ masterthread, (4.10)

where, rµi,2 j−1,k
, rµi,2 j,k

and rθi,2 j,k
are the Worst Case Response Time (WCRT) of messages

µi,2 j−1,k and µi,2 j,k, and the thread θi,2 j,k, respectively.

4.2.3 End-to-end Delay Computation in Distributed Systems

In this section some results for the calculation of the response time for the execution and

transmission of threads and messages respectively, are summarised.

It is known from (Joseph and Pandya, 1986) that for periodic fixed priority preemptive

tasks, the following recursive equation can be used to calculate the response time of a

threads θi, j,k:

rn+1
θi, j,k

=Ci, j,k + ∑
θi, j,l∈hp(θi, j,k)

⌈

rn
θi, j,k

Ti, j,l

⌉

Ci, j,l, (4.11)

where rθi, j,k
is the Worst Case Response Time (WCRT) of a thread θi, j,k and hp(rθi, j,k

) is

the set of all threads θi, j,l with higher priority than θi, j,k that execute on the same processor

πi.

The recursion ends when rθ n+1
i, j,k

= rθ n
i, j,k

= rθi, j,k
and can be solved by successive itera-

tions starting from r1
θi, j,k

=Ci, j,k. The series is non-decreasing, and therefore converges if

4.3 The P/D-DMS Algorithm 59

∑θi, j,l∈hp(θi, j,k)∪θi, j,k

Ci, j,l

Ti, j,l
≤ 1. If the condition of convergence is not respected threads θi, j,k

are not schedulable.

For the case of messages µi, j,k, the calculation of the WCRT needs to consider the

non-preemptability of messages on the network. Thus, for periodic fixed-priority non-

preemptive messages, the following recursive equation can be used to calculate the worst-

case response time (George et al., 1996):

rn+1
µi, j,k

= Mi, j,k + ∑
µi, j,l∈hp(µi, j,k)

⌈

rn
µi, j,k

Ti, j,l

⌉

Mi, j,l + max
µi, j,l∈l p(µi, j,k)

{µi, j,l}, (4.12)

where, the third term on the right hand side of (4.12), accounts for the maximum possible

suffered interference of a higher priority message µi, j,k, caused by lower priority message

µi, j,l , contained in the set of lower priority messages l p(µi, j,k).

4.3 The P/D-DMS Algorithm

The P/D-DMS algorithm is the partitioning algorithm for partitioning the set τ of tasks τi

onto the elements of the distributed system. The P/D-DMS algorithm realizes the parti-

tioning by:

i. applying the DST to each P/D tasks τi in τ . Two possible cases can appear (see

Section 4.2):

a. Ci ≤ Ti; the task is fully stretched in a single sequential thread and added to a list

L, or

b. the task τi is converted into a master thread τmaster
i and a subset of sequential P/D

threads {τcd
i, j,k} with their respective messages {µcd

i, j,k}. The master thread τmaster
i

is allocated to its own processor and the subset of sequential P/D threads is added

to the list L, and

ii. the set of threads in L, are partitioned onto processors according to the FBB-FFD

algorithm (Fisher et al., 2006). Messages µcd
i, j,k are assigned to the single real-time

network, accordingly.

In the following subsection, the demand bound function of a P/D task τi is analysed

and the resource augmentation bound for the P/D-DMS algorithm is provided.

60 Scheduling P/D Tasks in Distributed Uni-processor Systems

4.3.1 Demand Bound Function

Definition 4.6. (Demand Bound Function (DBF)(Baruah et al., 1990)). The DBF is

defined as the largest cumulative execution requirement of all jobs that can be generated

by τi to have both their arrival times and their deadlines within a contiguous interval of

length t.

For a sequential task τi with a total execution time of Ci, period Ti, and a deadline

Di ≤ Ti, the DBF function is given by:

DBF (τi, t) = max

{

0,

(⌊

t−Di

Ti

⌋

+1

)

Ci

}

. (4.13)

Theorem 4.1. The DBF function of a stretched task τstretched
i that has been transformed

by the DST algorithm is bounded from above by:

DBF
(

τstretched
i , t

)

≤max
j















Ci

Ti−ηi−

(

rµi,2 j−1,k
+rµi,2 j,k

)

×Pi

Pi,2 j















t. (4.14)

Proof. the concept of DBF is generalised for the case of P/D tasks τi composed of a

master thread τmaster
i and a sequence of sequential P/D threads {τcd

i } and their respective

messages {µcd
i }. The two only possible cases when applying the DST algorithm to a P/D

task τi are considered (see Section 4.2):

i. Case Ci ≤ Ti. In that case, a P/D task τi is fully stretched after applying the DST

into a single sequential thread with a total execution time of Cmaster
i ≤Ci, period Ti,

and a deadline Dmaster
i = Ti, therefore, the DBF function (Definition 4.6) can be used

without any modifications:

DBF
(

τstretched
i , t

)

= DBF
(

τmaster
i , t

)

DBF
(

τstretched
i , t

)

= max

{

0,

(⌊

t−Dmaster
i

Ti

⌋

+1

)

Cmaster
i

}

DBF
(

τstretched
i , t

)

= max

{

0,

(⌊

t

Ti

⌋)

Cmaster
i

}

≤
Ci

Ti
t ≤

Ci

Ti−ηi
t

≤max
j















Ci

Ti−ηi−

(

rµi,2 j−1,k
+rµi,2 j,k

)

×Pi

Pi,2 j















t,

(4.15)

where 0≤ ηi ≤ Ti.

ii. Case Ci > Ti. In the second case, after applying the DST, a P/D task τi has been

transformed into a master thread τmaster
i , and a set {τcd

i, j,k} of constrained deadline P/D

threads associated to their respective constrained deadline messages {µcd
i, j,k}. That is:

4.3 The P/D-DMS Algorithm 61

τstretched
i = τmaster

i +{τcd
i, j,k}.

Thus, the DBF function can be computed as follows:

DBF
(

τstretched
i , t

)

= DBF
(

τmaster
i , t

)

+DBF
(

{τcd
i, j,k}, t

)

. (4.16)

Since the master thread has been stretched, it results that:

ηi +Pi ⌊ fi⌋ ≤Cmaster
i ≤ Ti

Cmaster
i ≤ Ti⇒

Cmaster
i

Ti
< 1

=⇒ DBF
(

τmaster
i , t

)

= max

{

0,

(⌊

t

Ti

⌋)

Cmaster
i

}

≤
Cmaster

i

Ti
t ≤ t.

(4.17)

The set {τcd
i, j,k} of constrained deadline P/D threads and their respective messages

{µcd
i, j,k} consist of the P/D threads and P/D messages of all P/D segments of a task

τi. Since P/D segments within a P/D tasks have an offset, only one P/D segment can

be activated at time t and the maximum number of P/D threads in each P/D region is

equal to (qi,2 j−1) where qi,2 j = mi−⌊ fi⌋.

Therefore, the previous property guarantees that the DBF of the subset of P/D threads

{τcd
i, j,k} over any interval of length t, does not exceed δ max

i (qi,2 j−1)t:

DBF
(

{τcd
i, j,k}, t

)

≤ δ max
i (qi,2 j−1)t. (4.18)

The density of a constrained deadline task is given by:

δi =
Ci

Di
.

The DST transformation fills the available slack Li with ⌊ fi⌋ P/D threads per P/D

segment (remember that only complete P/D threads are inserted within the master

thread, since ⌊ fi⌋ is an integer number). In each P/D segment within τi, all P/D

threads have the same WCET Pi,2 j, and a deadline di,2 j = Pi,2 j × (fi + 1). Due to

the fact that the P/D thread is executed on a remote processor in the system, two

messages per P/D thread (µi,2 j−1,k and µi,2 j,k) are sent through the real-time network.

Thus, in the worst-case the time for a P/D thread to execute is reduced to: Pi,2 j×
(fi +1)− rµi,2 j−1,k

− rµi,2 j,k
) (see Eq.(4.8) and Eq.(4.12)).

62 Scheduling P/D Tasks in Distributed Uni-processor Systems

Therefore, the maximum density of the P/D threads {τcd
i,,k} can be calculated as fol-

lows:

δ max
i = max

j

{

Pi,2 j

Pi,2 j× (fi +1)− rµi,2 j−1,k
− rµi,2 j,k

}

= max
j







1

(fi +1)−
rµi,2 j−1,k

+rµi,2 j,k

Pi,2 j







.

(4.19)

By substituting Eq. (4.19) in Eq. (4.18), the DBF of the P/D threads {τcd
i, j,k} can be

calculated as:

DBF
(

{τcd
i, j,k}, t

)

≤max
j







1

(fi +1)−
rµi,2 j−1,k

+rµi,2 j,k

Pi,2 j







(qi,2 j−1)t, (4.20)

and since qi,2 j = mi−⌊ fi⌋, we get:

DBF
(

{τcd
i, j,k}, t

)

≤max
j







mi−⌊ fi⌋−1

(fi +1)−
rµi,2 j−1,k

+rµi,2 j,k

Pi,2 j







t

≤max
j







mi−⌊ fi⌋−1

fi−
rµi,2 j−1,k

+rµi,2 j,k

Pi,2 j







t.

(4.21)

4.3 The P/D-DMS Algorithm 63

By substituting inequality (4.17) and inequality (4.21) in Eq. (4.16), it is possible to

compute the DBF of τstretched
i as:

DBF
(

τstretched
i , t

)

≤ t +max
j







mi−⌊ fi⌋−1

fi−
rµi,2 j−1,k

+rµi,2 j,k

Pi,2 j







t

≤max
j











1+
mi−⌊ fi⌋−1

fi−
(rµi,2 j−1,k

+rµi,2 j,k
)

Pi,2 j











t

≤max
j











fi−
(rµi,2 j−1,k

+rµi,2 j,k
)

Pi,2 j
+mi−⌊ fi⌋−1

fi−
(rµi,2 j−1,k

+rµi,2 j,k
)

Pi,2 j











t

≤max
j











mi−
(rµi,2 j−1,k

+rµi,2 j,k
)

Pi,2 j

fi−
(rµi,2 j−1,k

+rµi,2 j,k
)

Pi,2 j











t,

(4.22)

because fi =
Ti−ηi

Pi
and mi×Pi <Ci (from Eq.(4.3)), it results that:

DBF
(

τstretched
i , t

)

≤max
j











mi×Pi−
(rµi,2 j−1,k

+rµi,2 j,k
)×Pi

Pi,2 j

Ti−ηi−
(rµi,2 j−1,k

+rµi,2 j,k
)×Pi

Pi,2 j











t

≤max
j











Ci

Ti−ηi−
(rµi,2 j−1,k

+rµi,2 j,k
)×Pi

Pi,2 j











t.

(4.23)

Then, in the two possible cases, the DBF of a task τstretched
i resulting of the application

the DST transformation is bounded by the same value (Eq. (4.15) and Eq. (4.23)).

4.3.2 Resource Augmentation Bound

This section presents the resource augmentation bound of the P/D-DMS algorithm. The

resource augmentation bound of the P/D-DMS is equal 4, this implies that any task set

that is feasible on m unit-speed processors, can be scheduled by the P/D-DMS algorithm

on m processors and a real-time network that are 4 times faster.

The results of Theorem 4.2 from (Fisher et al., 2006) are re-used.

64 Scheduling P/D Tasks in Distributed Uni-processor Systems

Theorem 4.2. (Fisher et al., 2006). Any constrained sporadic task system τ is successfully

schedulable by FBB-FFD on m unit-capacity processors if:

m≥
δsum +usum−δmax

1−δmax
, (4.24)

where,

δsum = max
t>0

{

∑
n
i=1 DBF

(

τstretched
i , t

)

t

}

. (4.25)

Using Eq. (4.24) and Eq. (4.25), it is possible to provide a resource augmentation

bound for the Distributed-DMS partition algorithm.

Theorem 4.3. If any set τ of P/D tasks τi is feasible on m unit-speed processors (and mes-

sages are feasible on a single unit-speed real-time network), then the Distributed-DMS

partition algorithm is guaranteed to successfully schedule this task set on m processors

and one real-time network that are 4 times faster.

Proof. The set τ of P/D tasks is feasible on m unit-speed processors:

usum =
n

∑
i=1

Ci

Ti
≤ m, (4.26)

and because the minimum response time of a thread is its execution time, Eq. (4.8) and

Eq. (4.9) imply that the task set τ is feasible if and only if:

rµi,2 j−1,k
+Pi,2 j + rµi,2 j,k

≤ (fi +1)×Pi,2 j

⇔ rµi,2 j−1,k
+ rµi,2 j,k

≤ fi×Pi,2 j.
(4.27)

Consider the minimum execution length ηi of any task τi. It must respect that:

∀1≤ i≤ n ηi ≤ Ti. (4.28)

Otherwise, τi would be unschedulable on a unit-speed processor. On a processor that

is v times faster, the minimum execution length ηv
i is given by:

∀1≤ i≤ n ηv
i =

ηi

v
≤

Ti

v
. (4.29)

For each task τi, it was proven in Theorem 4.1 that:

DBF
(

τstretched
i , t

)

≤max
j











Ci

Ti−ηi−
(rµi,2 j−1,k

+rµi,2 j,k
)Pi

Pi,2 j











t. (4.30)

4.3 The P/D-DMS Algorithm 65

Using the above inequality together with Eq. (4.25) we have:

δ v
sum ≤

n

∑
i=1

max
j















Cv
i

Ti−ηv
i −

(rµv
i,2 j−1,k

+rµv
i,2 j,k

)Pv
i

Pv
i,2 j















, (4.31)

using inequality (4.29):

δ v
sum ≤

n

∑
i=1

max
j















Cv
i

Ti

(

1− 1
v

)

−
(rµv

i,2 j−1,k
+rµv

i,2 j,k
)Pv

i

Pv
i,2 j















≤
1

v

n

∑
i=1

max
j











Ci

Ti

(

1− 1
v

)

− 1
v

(rµi,2 j−1,k
+rµi,2 j,k

)Pi

Pi,2 j











.

(4.32)

From inequality (4.27) and Eq. (4.5):

δ v
sum ≤

1

v

n

∑
i=1

Ci

Ti

(

1− 1
v

)

− 1
v

fiPi

≤
1

v

n

∑
i=1

Ci

Ti

(

1− 1
v

)

− Ti

v

≤
1

v−2

n

∑
i=1

Ci

Ti

⇔ δ v
sum ≤

1

v−2
usum.

(4.33)

Also on v speed processors, uv
sum = usum

v
and δ v

max =
δmax

v
. Using Eq. (4.25), the task

set τ is schedulable on m processors of speed v if:

m≥
δ v

sum +uv
sum−δ v

max

1−δ v
max

≥
usum

v−2
+ usum

v
− δmax

v

1− δmax

v

.

The right-hand side of the inequality above is an increasing function of δmax for m ≥
v(v−2)
2v−2

.

Since δi =
Ci

Di
and because the task set τ is feasible if and only if Ci ≤ Di for all tasks

τi, the greatest possible density for a feasible task set is given by δ max
i ≤ 1.

66 Scheduling P/D Tasks in Distributed Uni-processor Systems

Thus, when m≥ v(v−2)
2v−2

, the schedulability is guaranteed if:

m≥
m

v−2
+ m

v
− 1

v

1− 1
v

m

(

1−
1

v

)

≥
m

v−2
+

m

v
−

1

v

v−
2

v−2
≥ 3−

1

m
.

(4.34)

This inequality is respected with v = 4 and m ≥ 2. Hence, any feasible P/D task set

τ feasible on m ≥ 2 unit-speed processors and a unit-speed network, is guaranteed to be

schedulable by the P/D-DMS algorithm on m processors and a single real-time network

with speed v = 4.

4.4 Evaluation of the P/D-DMS Algorithm

This section presents the simulation results that validate the resource augmentation bound

of the P/D-DMS algorithm after applying the DST transformation presented in Section

4.3 and Section 4.2, respectively.

To generate feasible P/D task sets, the guidelines presented in (Emberson et al., 2010)

for generating random task sets for multiprocessor systems, using the Stafford’s Rand-

fixedsum algorithm (Stafford, 2004) had been followed. The Randfixedsum algorithm

generates a set of n values which are evenly distributed and whose components sum to a

constant value. Thus, the Randfixedsum algorithm is used for generating unbiased sets of

P/D tasks with a fixed total density δtot = ∑δi. For a given total density δtot , the Rand-

fixedsum algorithm returns n P/D tasks with density δtot . For generating the P/D threads

densities the Randfixedsum algorithm is used again taking as an input the previous gen-

erated densities δi = ∑δi, j,k, obtaining a set of values δi, j,k for each P/D thread. The

WCETs and end-to-end deadlines Di are also generated as recommended in (Emberson

et al., 2010). Once all P/D threads are generated, their respective messages are generated

and inserted within a P/D task by preserving their execution order. The total message den-

sity δ
msg
tot , represents the utilization of the network. Thus, when a total message density

is given, the Randfixedsum algorithm returns n messages with a density of δ
msg
i for each

task τi. For generating the messages densities δ
msg
i = ∑δ

msg
i, j,k the Randfixedsum algorithm

is used again taking as an input the previous generated densities δ
msg
i . It is considered that

applications have implicit end-to-end deadlines (Di = Ti) following a uniform distribution

between the values Dmin
i = 100 and Dmax

i = 10000.

4.4 Evaluation of the P/D-DMS Algorithm 67

Figure 4.3: 1000 generated task sets varying (a) the total message density δ
msg
tot , (b) the

minimum thread density δ min
i, j,k and maximum thread density δ max

i, j,k , and (c) the number of

P/D tasks in the set τ

Figure 4.3a shows the number of accepted task sets over 1000 experiments for dif-

ferent given total message densities δ
msg
tot . The simulation considers 4 P/D tasks that are

partitioned by the P/D-DMS algorithm in a computing platform of 8 processors and 1

network. Thus the total utilization Utot for these experiments is fixed to 8. Three different

total message densities are analyzed:

i. δ
msg
tot equal to the 10% of the fixed total utilization Utot ; δ

msg
tot = 0.8,

ii. δ
msg
tot equal to the 5% of Utot ; δ

msg
tot = 0.4, and

iii. δ
msg
tot equal to the 1% of the total utilization; δ

msg
tot = 0.08.

It is possible to see that when δ
msg
tot increases, more speed v is required by the proces-

sors and the network to be able to schedule 100% of the task sets. This effect is modelled

by Eq. 4.10.

In Figure 4.3b the number of accepted task sets for 1000 experiments is shown. 4 P/D

tasks have to execute in a computing platform composed of 1 network and 8 distributed

processors. The total density δtot is fixed to 8. In this case the variations in respect of

different individual thread density δ min
i, j,k and δ max

i, j,k are analysed. Three different variations

are compared:

i. δ min
i, j,k = 0.1 and δ max

i, j,k = 0.2,

ii. δ min
i, j,k = 0.05 and δ max

i, j,k = 0.1, and

iii. δ min
i, j,k = 0.01 and δ max

i, j,k = 0.05. δ
msg
tot is fixed to 5% of the δtot .

It is possible to observe that if densities of tasks are larger, the more speed is needed

to successfully schedule 100% of the task sets.

Figure 4.3c shows the number of accepted task sets over 1000 experiments, in which

the number of P/D tasks is varied with a fixed total density Utot = δtot = 8 to be scheduled

68 Scheduling P/D Tasks in Distributed Uni-processor Systems

in a computing platform of 8 processors and 1 network. The total message density δ
msg
tot

is fixed to 5% of Utot . We compared three possible variations:

i. 4 P/D tasks,

ii. 6 P/D tasks, and

iii. 8 P/D tasks.

It is possible to see that when generating fewer P/D tasks for the same density δtot ,

the more speed v is required by the processors and the network to successfully schedule

100% of the task sets. Thus, whenever P/D densities δi increase, the probability of finding

a schedulable partitioning with the P/D-DMS algorithm for P/D tasks, decreases.

Therefore, it is possible to observe through Figures 4.3(a-c) that in all cases the P/D-

DMS algorithm is able to find a schedulable partition by respecting its resource augmen-

tation bound of 4.

4.5 Summary

This chapter presented the P/D-DMS algorithm. The P/D-DMS algorithm makes use of

the DST model for scheduling parallel/distributed fixed-priority fork-join real-time tasks.

The P/D-DMS algorithm is shown to have a resource augmentation bound of 4. The DST

is designed with two main objectives. The first one is to eliminate as many messages of a

P/D task as possible by stretching a master thread, since a master thread is executed locally

on its own processor. And the second objective is to reduce the possible interference in

the network and in the processors by forcing P/D threads to execute within the master

thread.

A limitation of the algorithm presented in this chapter is the need to assume that in a

task τi, every P/D thread θi,2 j,k and their respective messages µi, j,k within a P/D segment

σi,2 j, have identical WCETs Pi,2 j,k and identical WCMLs Mi, j,k, respectively.

The following publication is related to the work presented in this chapter:

• R. Garibay-Martínez, G. Nelissen, L.L. Ferreira, and L.M. Pinho. On the schedul-

ing of fork-join parallel/distributed real-time tasks. In Industrial Embedded Systems

(SIES), 2014 9th IEEE International Symposium on, pages 31–40, June 2014b. doi:

10.1109/SIES.2014.6871184.

Chapter 5

Task Partitioning and Priority

Assignment for Sequential

Transactional Tasks and P/D Tasks on

Hard Real-Time Distributed Systems

5.1 Introduction

The problem of task allocation of sequential transactional tasks (Palencia and Gonza-

lez Harbour, 1998) and the Parallel/Distributed model (P/D tasks) (Garibay-Martínez

et al., 2014b) for distributed systems can be viewed as a two-sided problem:

i. finding the partitioning of tasks and messages onto the processing elements of the

distributed system, and;

ii. finding the priority assignment for threads and messages in that partition so that the

real-time tasks complete their execution within their deadline.

Those two sub-problems are strongly interrelated as the decision of assigning a thread

to a given node should depend on the priorities of the other threads already assigned to

that node. Conversely, the priorities of threads executing on a node might need to be

adapted if new threads are later added to that node. Therefore, a careful trade-off between

the solutions of these two sub-problems needs to be taken in order to obtain an efficient

global solution.

Works related to the problem of task partitioning and priority assignment on hard real-

time distributed systems are presented in Section 2.4. The work presented in this chapter

differs from previous related works in two main aspects:

69

70

Task Partitioning and Priority Assignment for Sequential Transactional Tasks and P/D

Tasks on Hard Real-Time Distributed Systems

i. None of the previous works had addressed the allocation of multi-threaded parallel

tasks onto elements of a distributed system (with the exception of (Garibay-Martínez

et al., 2014b), presented in Chapter 4); and

ii. In works related to sequential tasks and messages, commonly DM is used for as-

signing priorities, but in this chapter the OPA algorithm is used to assign priorities

to tasks and messages. The OPA algorithm is optimal for the case of preemptive

fixed-priority tasks with offsets (Audsley, 1991). Furthermore, the OPA is useful for

cases in which the deadline of tasks is larger than their periods (e.g. D > T) and it

is optimal in the sense that if any algorithm can find a schedulable solution OPA can

also do it.

This chapter presents the Distributed using Optimal Priority Assignment (DOPA)

heuristic (Garibay-Martínez et al., 2013b) that finds a feasible partitioning and priority as-

signment for distributed tasks based on the linear transactional model. The DOPA heuris-

tic is extended for the assignment of Parallel/Distributed tasks (P/D tasks), therefore a

second heuristic called Parallel-DOPA (P-DOPA) is presented. Both DOPA and P-DOPA

partition the tasks and messages onto elements of the distributed system, and make use of

the Optimal Priority Assignment (OPA) algorithm, known as Audsley’s algorithm (Aud-

sley, 1991), to find the priorities of tasks for that partition.

However, the OPA algorithm requires tasks to be independent, therefore, in order to

use the OPA algorithm for task sets with dependencies; it is needed to transform them into

sets of independent tasks, by imposing artificial intermediate deadlines. Two different

methods for adding intermediate deadlines are presented in this chapter; one for linear

transactional tasks and one for P/D tasks.

Section 5.2 describes the DOPA heuristic for the linear transactional model which is

evaluated through simulations in Section 5.2.3. The P-DOPA heuristic for P/D tasks is de-

scribed in Section 5.3 and its evaluation is shown in Section 5.3.3. Finally, in Section 5.4

a summary of the chapter is presented.

5.1.1 System Model Adaptations

This chapter considers two different task models:

• the linear transactional model for distributed systems (Palencia and Gonzalez Har-

bour, 1998); and

• the P/D task model (Garibay-Martínez et al., 2014b).

5.1 Introduction 71

� �

�
�,�,�

�
�,�,�

�
�,���,�

�
�,���,�	

�
�,�

�,�

�����

�
�

(a)

�

�

�

�

�

�

�

�

�

�����

� �

�
�,�,�

�
�,�,�

�
�,�,�

�

�
�,�,�

�

�
�,�,�

�
�,�,�

�

�
�,�,�	

�
�,�,�

�

�

�

�

�

�

�

�

�

�

�,�

�

��,�

�

�,�

�

��,�

�

�

�,�

�

��,�

�

�

�,�

�

��,�

�

�,�

�

��,�

�

�

�,�

�

��,� �
�,�

�

,�

�,	

�,

�,�

�,�

�

�,�

�

	

�
�

(b)

Figure 5.1: (a) Linear transactional task and (b) Parallel/Distributed task (P/D task).

In the linear transactional model, the first thread θi,1,1 of each application τi is acti-

vated by an external event ei with a minimum inter-arrival time Ti. Also, every segment

σi, j ∈ τi consists of a single thread θi, j,1 (i.e., ni, j = 1,∀ j). In that case, whenever a

thread θi, j,1 completes its execution, it sends a message µi, j,1 to the next segment σi, j+1

(consisting of a single thread θi, j+1,1) and triggers its execution (see Figure 5.1a).

With the P/D tasks model however, threads of different segments σi, j alternatively

comprise 1 and mi threads as introduced in Section 3.4 (see Figure 5.1b). Similarly to

Chapter 4, in this chapter it is assumed that all k threads (and messages) belonging to the

same parallel segment have the same WCET Ci, j,k (Mi, j,k, resp.).

The density δi of a task τi is given by δi =
∑

ni
j=1(Ci, j,1+Mi, j,1)

Di
and the total density of the

system is defined as δtot = ∑τi∈τ δi.

In this chapter, the set of nodes π are interconnected with a fixed-priority real-time

shared network ϖ .

It is also considered that some threads of a task can be restrained to execute on a

specific processor due to design constraints, such as safety reasons or the need to access

specific resources (e.g. sensors, actuators, specific instruction sets, etc.) offered by that

processor only. Therefore, there exists a set A ⊆ {∪ ∀ τi ∈ τ θi, j,k} of threads that are

resource constrained and are statically assigned to their respective processor. Also, there

exists a set ϒ = {∪ ∀ τi ∈ τ θi, j,k}\A of threads that do not have any resource constraints

and can be allocated onto any processor.

Figure 5.2, shows an example of the allocation of two real-time tasks. In Figure 5.2a

one sequential transaction and one P/D task that have to be allocated onto the elements

of the distributed system shown in Figure 5.2b. The distributed system is composed of

3 processors and 1 real-time network. Threads θ1,1,1 and θ2,1,1 are resource constrained

(pre-assigned to processors 1 and 2, respectively), and thus belong to the set A . Also,

there exists a list ϒ of unallocated threads, which can be allocated to any processor.

72

Task Partitioning and Priority Assignment for Sequential Transactional Tasks and P/D

Tasks on Hard Real-Time Distributed Systems

������� �������

������	

��
������

�������

�
�,�,�

�
�,�,�

�
�,�,�

�
�,�,�

�
�,�,�

�
�,�,�

�
�,�,�

�
�,�,�

�
�,�,�

������� �������

������	

��
������

�������

���������		
������������
���

������

�
�,�,�

�
�,�,�

�
�,�,�

�
�,�,�

�
�,�,�

�
	,�,�

�
	,�,�

�
	,�,�

�
	,�,�

�
	,�,�

�
	,�,�

�
	,�,�

�
	,�,�

�
�,�,�

�
�,�,�

�
�,�,�

�
�,�,�

�
�,�,�

�
�,�,�

��� ������

Figure 5.2: Allocation of real-time tasks onto the elements of the distributed system.

An example of the allocation of the threads and messages is shown in Figure 5.2c. By

looking at Figure 5.2c, one can notice that threads θ3,1,1, θ3,2,1, and θ3,3,1 are allocated to

the same processor, and therefore messages µ3,1,1 and µ3,2,1 can be omitted.

5.2 The Distributed using Optimal Priority Assignment

(DOPA) Heuristic

The DOPA heuristic simultaneously addresses the two sub-problems of:

i. finding the partitioning of threads and messages onto the elements of the distributed

system, and;

ii. finding the priority assignment for that partition.

In this section, the case of linear transactions (upper task in Figure 5.1a) is considered.

The assignment of P/D tasks (lower task in Figure 5.1a) onto elements of the distributed

system is treated in Section 5.3.

5.2.1 Optimal Priority Assignment (OPA) Algorithm

Regarding the problem of priority assignment, there are some techniques to assign pri-

orities to a set of preemptive independent threads. DM (Leung and Whitehead, 1982) is

the most commonly used in distributed systems. DM is optimal for assigning priorities if

there is an instant in the schedule at which all threads release a job simultaneously. How-

ever, in distributed systems threads and messages have dependencies on other threads

and/or messages of the same task. Because a thread θi, j+1,1 never starts its execution

before the completion of a thread θi, j,1, then θi, j,1 and θi, j+1,1 will never release a job

simultaneously, thereby violating the optimality condition of DM. One should therefore

conclude that DM is not optimal for distributed systems. On the other hand, Davis and

5.2 The Distributed using Optimal Priority Assignment (DOPA) Heuristic 73

Burns (Davis and Burns, 2009) proved that the Audsley’s OPA algorithm is optimal re-

garding the assignment of tasks priorities as long as there exists a schedulability test S

respecting the following three conditions:

• (C1) the schedulability of a thread θi, j,1 according to the test S may be dependent

on the set of higher priority threads (denoted as hp(θi, j,1)), but not on the relative

priority order of those threads;

• (C2) the schedulability of a thread θi, j,1 according to the test S may be dependent

on the set of lower priority threads, but not on the relative priority order of those

threads, and;

• (C3) for two threads with adjacent priority, if their priorities are swapped then the

threads that has been assigned the higher priority cannot become unschedulable

according to the test S if it was schedulable at the lower priority.

The OPA algorithm is based on three simple steps (see Algorithm 5.1):

i. check the schedulability according to the test S of all non-priority-assigned threads,

by assuming that they have the lowest priority;

ii. arbitrarily choose one thread that respects its deadline;

iii. remove the chosen thread from the list of non-priority-assigned thread and start again.

To verify the schedulability of the thread set (line 3), the schedulability analysis pre-

sented in (Tindell and Clark, 1994) is used. Note however that other tests could also be

used (e.g., (Palencia and Gonzalez Harbour, 1998, 1999)).

Algorithm 5.1: OPA(θi,j,1,πk)

1 for each priority level k, the lowest first do

2 for each unassigned task θi, j,1 do

3 if θi, j,1 is schedulable at priority k according to S with all unassigned tasks

assumed to have higher priorities then

4 assign θi, j,1← priority k;

5 break; //continue outer loop

6 return unschedulable;

7 return schedulable;

74

Task Partitioning and Priority Assignment for Sequential Transactional Tasks and P/D

Tasks on Hard Real-Time Distributed Systems

�

�
�,���,�

���

�
�,�,�

�
�,�,�

�
�,�,�

�
�,�	�,�

�
�,�,�

�ffset	of	�
�,�	�,�

�ffset	of	�
�,�,�

release of �
�,�,�

release of �
�,�	�,�

�
�,�	�,�

�
�,���,�

Figure 5.3: Intermediate deadlines for sequential applications.

The worst-case response time rθi, j,1
of an independent thread θi, j,1 scheduled with a

preemptive fixed priority scheduling algorithm can be calculated as in Eq. 2.1 ((Joseph

and Pandya, 1986)), and for the case of θi, j,1 is given by Eq. 5.1 :

rn+1
θi, j,1

=Ci, j,1 + ∑
θa,b,1∈hp(θi, j,1)

⌈

rn
θi, j,1

Ta

⌉

Ca,b,1 (5.1)

where hp(θi, j,1) is the set of threads with a higher priority than θi, j,1 that can interfere

with its execution. Due to the presence of the term rθi, j,1
on both sides of equation 5.1, this

equation can be solved in an iterative manner, rn+1
θi, j,1

=Ci, j,1 +∑θa,b,1∈hp(θi, j,1)

⌈

rn
i, j,1

Ta

⌉

Ca,b,1

with r1
θi, j,1

=Ci, j,1. The iteration stops when rn
θi, j,1

= rn+1
θi, j,1

.

In a distributed system, the Worst-Case Response Time (WCRT) of a thread θi, j,1

(denoted as rθi, j,1
) can then be computed as in (Tindell and Clark, 1994). That is:

rθi, j,1
= rθi, j,1

+
j−1

∑
l=1

(rθi,l,1
+ rµi,l,1

) (5.2)

where rµi,l,k
is the response time of a message µi,l,k, obtained with a network dependent

analysis such as (Davis et al., 2013). A task τi (and hence its constituting threads and mes-

sages) is deemed schedulable if rθi,ni,1
≤ Di. Unfortunately, this schedulability test makes

the schedulability of a thread θi, j,1 dependent on the response time of a previous mes-

sage µi, j−1,1, and hence the priority ordering of all the other threads θi, j,1 and messages

µi, j,1 in τi. Conditions C1 and C2 are thus broken, making OPA unusable. Therefore the

threads and messages with dependencies are transformed into an equivalent set of threads

and messages without dependencies by imposing an intermediate deadline di, j,1 (d
msg
i, j,1,

resp.) to each thread θi, j,1 (each message µi, j,1, resp.) (see Figure 5.3). The intermediate

deadline di, j,1 of θi, j,1 then becomes an offset on the release of the message µi, j,1, and the

deadline d
msg
i, j,1 of µi, j,1, becomes an offset on the release of θi, j+1,1. Therefore:

5.2 The Distributed using Optimal Priority Assignment (DOPA) Heuristic 75

{

rθi, j,1
= d

msg
i, j−1,1 + rθi, j,1

rµi, j,1
= di, j−1,1 + rµi, j,1

,
(5.3)

implying that the WCRT of each task and message becomes independent on the relative

priority order of higher and lower priority threads. Now, a thread θi, j,1 (a message µi, j,1,

resp.) is deemed schedulable, if rθi, j,1
≤ di, j,1 (rµi, j,1

≤ d
msg
i, j,1, resp.), implying that the three

Audsley’s OPA algorithm validity conditions (C1, C2 and C3) are respected.

The threads and messages intermediate deadlines are computed as a function of the

task end-to-end deadline and the threads and messages WCETs (Ci, j,1 and Mi, j,1, respec-

tively). For threads and messages, the intermediate deadlines are given by:

di, j,1 = d
msg
i, j−1,1 +

Ci, j,1

∑
ni

l=1(Ci,l,1 +Mi,l,1)
Di (5.4)

d
msg
i, j,1 = di, j,1 +

Mi, j,1

∑
ni

l=1(Ci,l,1 +Mi,l,1)
Di (5.5)

Note that from those definitions, it results that di,ni,1 = Di. Hence, if all threads (and

messages) respect their intermediate deadlines di, j,1 (d
msg
i, j,1, resp.), i.e., rθi, j,1

≤ di, j,1, the

end-to-end deadline Di of task τi is also respected.

5.2.2 Distributed using Optimal Priority Assignment (DOPA)

The problem of partitioning a set of threads onto the processors of a distributed platform

and assigning priorities to threads and messages composing such a set, is solved by the

DOPA algorithm presented in Algorithm 5.2. The algorithm is based on the following

idea. If two successive threads θi, j,1 and θi, j+1,1 of the same task τi are assigned to the

same processor πk, the message µi, j,1 sent between θi, j,1 and θi, j+1,1 can be omitted,

thereby reducing the load on the network and increasing the acceptable response time

for the other threads and messages in τi. Therefore, DOPA(τ) optimises the number of

successive threads of the same task being assigned on the same processor.

5.2.3 Comparing the use of OPA and DM

In this section some simulation results validating the DOPA heuristic are presented. For

all experiments the Algorithm 5.2 is used for the partition of threads and messages onto

the elements of the distributed system, also two different priority assignment algorithms

are used, namely DM and OPA.

One of the main objectives of this chapter is to demonstrate that by using the OPA

algorithm, for the case of threads with dependencies, it is possible to increase in average

the number of schedulable tasks and messages in a distributed system when compared

76

Task Partitioning and Priority Assignment for Sequential Transactional Tasks and P/D

Tasks on Hard Real-Time Distributed Systems

Algorithm 5.2: DOPA(τ)

1 for all τi ordered by non-increasing δi do

2 for all θi, j,1 ∈ τi∩ϒ do

3 assign θi, j,1 to πk | θi, j−1,1 ∈ πk assuming C
msg
i, j−1,1 = 0;

4 recompute intermediate deadlines;

5 call OPA(θi, j,1,πk);
6 if OPA(θi, j,k,πk) succeeds to assign θi, j,1 then

7 break;

8 else if θi, j+1,1 ∈A then

9 assign θi, j,1 to πl | θi, j+1,1 ∈ πl assuming Mi, j,1 = 0;

10 recompute intermediate deadlines;

11 call OPA(θi, j,1,πl);
12 if OPA(θi, j,1,πl) succeeds to assign θi, j,1 then

13 continue;

14 for all πk in Worst-Fit order do

15 assign θi, j,1→ πk;

16 call OPA(θi, j,1,πk);
17 if OPA(θi, j,1,πk) succeeds to assign θi, j,1 then

18 assign message µi, j−1,1 to the network;

19 verify schedulability of µi, j−1,1

20 if message µi, j−1,1 is schedulable then

21 declare schedulable;

22 break; //continue outer loop

23 else

24 return unschedulable;

25 else

26 return unschedulable;

to the utilization of the DM priority assignment, frequently used in other works (e.g.,

(Tindell et al., 1992; García and Harbour, 1995; Richard et al., 2003)).

The use of the OPA versus de OPA through is evaluated through simulations. For gen-

erating the tasks τi and their respective threads θi, j,1 and messages µi, j,1 the guidelines

presented in (Emberson et al., 2010) are followed. For generating random task sets for

multiprocessor systems, using the Stafford’s Randfixedsum algorithm (Stafford, 2004).

The Randfixedsum algorithm generates a set of n values which are evenly distributed and

whose components sum to a constant value. Thus, the Randfixedsum algorithm for gener-

ating unbiased sets of tasks with a fixed total density δtot is used. For a given total density

δtot , the algorithm returns n different densities δi with values ranging between a mini-

mum density δ min
i = 0.1 and a maximum density δ max

i = 0.9. For generating the threads

5.2 The Distributed using Optimal Priority Assignment (DOPA) Heuristic 77

Figure 5.4: 100 experiments varying (a) the total density δtot , (b) the number of proces-

sors, and (c) the number of tasks in the system.

and messages densities the Randfixedsum algorithm is used again, taking as an input the

previous generated densities δi = ∑(δi, j,1 + δ
msg
i, j,1), obtaining a set of values δi, j,1 =

di, j,1

Di

for tasks and δ
msg
i, j,1 =

d
msg
i, j,1

Di
for messages with values ranging between a minimum density

bound for tasks and messages δ min
i, j,1 = 0.01 and a maximum density of umax

i, j,1 = 0.9. The

WCETs of tasks Ci, j.1, messages Mi, j,1 and end-to-end deadlines Di are generated as rec-

ommended in (Emberson et al., 2010); it is considered that tasks have implicit end-to-end

deadlines (i.e., Di = Ti) following a uniform distribution. For each experiment 100 task

sets are generated.

Figure 5.4a shows the number of accepted task sets over 100 experiments for different

total densities δtot . 50 tasks that execute threads and transmit messages in a computing

platform of 10 processors and 1 network are simulated. It is possible to see that OPA in

average performs better in terms of the number of accepted task sets. For example, the

OPA algorithm accepts 52% of task sets with a total system density of 9. In contrast, the

DM algorithm reaches 16% with the same system density.

Figure 5.4b shows the number of accepted task sets for 100 experiments simulating 50

tasks that execute threads and transmit messages in a computing platform composed of 1

network and a varying number of processors. The density is fixed to δtot = 8. It is possible

to see that OPA in average performs better, for example, when the number of processors

is equal to 9, the OPA algorithm accepts 70% of task sets, whilst the DM algorithm only

accepts 30% of task sets.

Figure 5.4c shows the number of accepted tasks sets over 100 experiments, in which

the number of tasks with a fixed total density Utot = 8 is varied to be scheduled in a

computing platform of 10 processors interconnected by a real-time network. In the range

between 10 and 50 tasks, OPA always accepts more task sets than DM. For example, for

the case of 40 tasks, the OPA algorithm accepts 69% of task sets, in contrast the number

of accepted tasks sets obtained by the DM algorithm is 34%. Note that the number of

accepted task sets increases with the number of generated tasks. This behaviour can be

explained by the fact that the average density of threads and messages decreases, thereby

78

Task Partitioning and Priority Assignment for Sequential Transactional Tasks and P/D

Tasks on Hard Real-Time Distributed Systems

meaning that more threads can be accommodated on each processor in average.

The effects presented in Figures 5.4(a-c) can be explained because when DM is used

for assigning priorities, it fails more often than OPA due to its non-optimality. Therefore,

such non-schedulable tasks need to be partitioned onto other processor in the distributed

system, thus increasing the number of messages in the network, which leads to an increas-

ing number of unschedulable systems.

5.3 The Parallel-DOPA (P-DOPA) Heuristic

The DOPA heuristic presented in Section 5.2 considers the partition and priority assign-

ment of linear transactions. The Parallel-DOPA (P-DOPA) heuristic is an extension of

DOPA heuristic that considers the allocation of threads and messages for the P/D task

model (Garibay-Martínez et al., 2014b) introduced in Section 3.4. The straightforward

extension of the algorithm presented in Section 5.2 would involve to impose intermediate

deadlines to each thread and each message of every task τi by using the same proportional

assignment heuristic. That is, each thread θi, j,k ∈ σi, j and each message µi, j,k ∈ σi, j would

be assigned an intermediate deadline di, j,k and d
msg
i, j,k, respectively. This approach is called

Proportional heuristic hereafter. The deadlines are given by:

di, j,k = d
msg
i, j−1,k +

Ci, j,k

∑
ni

l=1(Ci,l,1 +Mi,l,1)
Di (5.6)

d
msg
i, j,k = di, j,k +

Mi, j,k

∑
ni

l=1(Ci,l,1 +Mi,l,1)
Di (5.7)

A release offset φi, j,k = d
msg
i, j−1,k and φ

msg
i, j,k = di, j,k, is given to threads and messages,

respectively.

5.3.1 Intermediate Deadlines for Distributed Execution Paths (DEP)

Since the master thread resulting of the DST is assigned to its own reserved processor,

no other task can interfere with its execution (see Section 4.2). Therefore, the master

thread will always respect its end-to-end deadline Di, and no intermediates deadlines

must be computed for the threads constituting it. Because no more parallel threads can

be added to the master thread without causing a deadline miss, the messages associated

to the parallel threads that are not part of the master thread could not be omitted, thus a

partitioning algorithm has to be used. All messages related to the P/D task that must be

transited through the network are known a priori by the partitioning algorithm.

When scheduling a P/D task τi, an offset φ DPath
i, j and a deadline dDPath

i, j define the

scheduling window in which threads and messages of each Distributed Execution Path

5.3 The Parallel-DOPA (P-DOPA) Heuristic 79

�

�,����,�

�,�

�
�,��,�

�,�

�
�,��,�

�,�

�ffset	of	

�

�,����,�

�,�

�ffset	of	

�

�,��,�

�,�

�

�,����,�

	
�

�

�,��,�

	
�

�

�,��,�

Figure 5.5: Intermediate deadlines of a DEP.

(DEP) have to start and complete their execution. However, inside a DEP, the activation

of the threads and messages depends on the response times of the previous messages

and threads in the DEP. Similarly to the case of linear transactions addressed in Section

5.2, OPA is not directly usable and therefore the threads and messages within a DEP

are transformed into an equivalent set of threads and messages without dependencies by

imposing an intermediate deadline di, j,k (d
msg
i, j,k, resp.) to each thread θi, j,k (each message

µi, j,k, resp.) (see Figure 5.5). The intermediate deadline d
msg
i, j−1,k of µi, j−1,k then becomes

an offset on the release of the thread θi, j,k, and the deadline di, j,k of θi, j,k, becomes an

offset on the release of µi, j,k. Therefore, in a similar way as in Section 5.2, it results that:











rµi, j−1,k
= φ DPath

i, j−1 + rµi, j−1,k

rθi, j,k
= d

msg
i, j−1,k + rθi, j,k

rµi, j,k
= di, j,k + rµi, j,k

(5.8)

implying that the WCRT of each thread and message becomes independent on the relative

priority order of higher and lower priority tasks. Therefore, a thread θi, j,k (a message

µi, j,k, resp.) is deemed schedulable if rθi, j,k
≤ di, j,k (rµi, j,k

≤ d
msg
i, j,k, resp.), and the three

OPA validity conditions C1, C2 and C3 are respected.

The intermediate deadlines for threads and messages within a DEP are computed as a

function of the DEP window length dDPath
i, j , and the threads and messages WCETs:

d
msg
i, j−1,k = φ DPath

i, j +
Mi, j−1,k

Mi, j−1,k +Ci, j,k +Mi, j,k

dDPath
i, j (5.9)

di, j,k = d
msg
i, j−1,k +

Ci, j,k

Mi, j−1,k +Ci, j,k +Mi, j,k

dDPath
i, j (5.10)

d
msg
i, j,k = di, j,k +

Mi, j,k

Mi, j−1,k +Ci, j,k +Mi, j,k

dDPath
i, j (5.11)

80

Task Partitioning and Priority Assignment for Sequential Transactional Tasks and P/D

Tasks on Hard Real-Time Distributed Systems

5.3.2 P-DOPA heuristic

The problem of partitioning the set of remaining threads and messages after applying the

DST to the elements of the distributed platform and assigning priorities to those threads

and messages, is solved by the P-DOPA heuristic presented in Algorithm 5.3.

Algorithm 5.3: P−DOPA(τ)

1 call DST(τ,π)
2 for all non-assigned θi, j,k in a DEP do

3 for all πk in Worst-Fit order do

4 assign θi, j,k→ πk

5 call OPA(θi, j,k,πk)
6 if OPA(θi, j,k,πk) succeeds to assign θi, j,k then

7 assign message µi, j,k to the network

8 verify schedulability of µi, j−1,k

9 if message µi, j,k is not schedulable then

10 return unschedulable

11 else

12 return unschedulable

By looking at Algorithm 5.3, it can be noticed that the complexity of the partitioning

algorithm has been reduced in comparison to Algorithm 5.2, when P/D tasks are con-

sidered and the DST transformation is performed first. Thanks to the DST, the number

of messages that must be transmitted over the network is minimal and cannot be further

reduced. Thus, there is no reason to try to perform a specific assignments to reduce the

workload on the network as it is the case in Algorithm 5.2. Algorithm 5.3 simply assigns

the threads of the DEPs using a Worst-Fit heuristic. Their priority being determined using

OPA, the interest of which was already shown through the simulation results provided in

Section 5.2.3.

5.3.3 Evaluating the Parallel-DOPA Heuristic

This section presents some experiments for evaluating the P-DOPA heuristic. Because

the advantage of using OPA instead of DM for the assignment of priorities to tasks with

precedence constraints has already been shown in Section 5.2.3, this section focuses on

the evaluation of the use of the DST transformation versus the use of the Proportional

heuristic for assigning intermediate deadlines to threads θi, j,k and messages µi, j,k in a task

τi. The objective of this comparison is to show that the DST is superior when assigning

5.3 The Parallel-DOPA (P-DOPA) Heuristic 81

Figure 5.6: 100 experiments varying (a) the total density δtot with a SpeedUP= 10, (b) the

total density δtot with a SpeedUP = 20 (c) the number of processors with a SpeedUP =
20, and (d) the number of tasks in the system with a SpeedUP = 20.

intermediate deadlines to sequential and parallel segments of a P/D task, when compared

to the Proportional heuristic, thus allowing P-DOPA to schedule more task sets.

Similarly to Section 5.2.3, in this section the Randfixedsum algorithm (Stafford, 2004)

is used for the generation of P/D tasks τi and their respective threads θi, j,k and messages

µi, j,k. The Randfixedsum generates unbiased sets of tasks with a fixed total density δtot .

For a given total density δtot , the algorithm returns n different densities δi with values

ranging between a minimum density δ min
i = 0.5 and a maximum density δ max

i = 2. For

generating the threads and messages densities the Randfixedsum algorithm is used again

taking as an input the previous generated densities δi = ∑(δi, j,k + δ
msg
i, j,k), obtaining a set

of values δi, j,k for threads (and δ
msg
i, j,k for messages) ranging between a minimum density

δ min
θi, j,k

= 0.05 and a maximum density of δ max
θi, j,k

= 0.3 (a minimum density δ min
µi, j,k

= 0.0025

and a maximum density of δ max
µi, j,k

= 0.075 for messages, resp.). It is considered that tasks

have implicit end-to-end deadlines (Di = Ti) following a uniform distribution. P/D tasks

are hardly constrained when compared to sequential tasks, since their density δi can be

larger than 1 and each parallel segment is composed of multiple threads transmitting mes-

sages simultaneously. Due to this, a large amount of messages is generated (2 messages

µi, j,k and µi, j+1,k per each thread θi, j+1,k), thus, in order to be able to schedule such mes-

sages, the network speed needs to be increased by a factor SpeedU p. For each experiment

100 task sets are generated.

82

Task Partitioning and Priority Assignment for Sequential Transactional Tasks and P/D

Tasks on Hard Real-Time Distributed Systems

Figure 5.6a shows the number of accepted tasks sets over 100 experiments for different

total densities δtot . 4 P/D tasks that execute threads and transmit messages in a computing

platform of 8 processors and 1 real-time network are simulated. It is possible to see

that DST + P-DOPA in average performs better than Proportional + P-DOPA in terms of

number of accepted task sets. For example, the DST + P-DOPA algorithm accepts 96% of

task sets with a total system density of δtot = 5. In contrast, the Proportional + P-DOPA

algorithm reaches 16% with the same system density. Those results are obtained when

SpeedU p = 10. The main reason to use the SpeedU p factor is due to the fact that the

observed majority of failed assignments in the case of Proportional + P-DOPA algorithm

were due to the lack of capacity in the network.

For the experiments depicted in Figures 5.6(b-d) it was decided to use a SpeedU p= 20

for the network. The reason behind that is to be more fair with the Proportional heuristic.

Similarly to Figure 5.6a, Figure 5.6b shows the number of accepted task sets for 100

experiments simulating 4 P/D tasks that execute tasks and transmit messages in a comput-

ing platform composed of 1 real-time network. It is possible to see that DST + P-DOPA

on average perform better than Proportional + P-DOPA. The DST + P-DOPA algorithm

accepts 97% of task sets with a total system density of δtot = 5. In contrast, the Propor-

tional + P-DOPA algorithm reaches 23% with the same system density. It is possible to

see that when SpeedU p = 20 there are less scheduling failures in the network, allowing

both heuristics to increase their number of accepted task sets.

Figure 5.6c shows a variation over the number of processors. The density is fixed to

δtot = 5 to be scheduled in a computing platform of 8 processors and 1 network. It is

possible to see that DST + P-DOPA in average performs better than Proportional + P-

DOPA. The maximum difference found for these experiments happens when the number

of processors is equal to 7, the DST + P-DOPA algorithm accepts 90% of task sets, whilst

the Proportional + P-DOPA algorithm only accepts 5% of task sets.

Figure 5.6d shows the variation over the number of tasks with a fixed total density

Utot = 5 to be scheduled in a computing platform of 8 processors and 1 network. In

the range between 3 and 8 tasks, DST + P-DOPA always accepts more task sets than

Proportional + P-DOPA. If δtot stays constant and the number of tasks increases, it can be

the case that Ci < Ti, therefore the DST is able to transform the P/D tasks into a sequential

task by omitting all messages, and increasing the chances of successfully accepting the

task set.

The effects presented in Figures 5.4(a-d), can be explained because, when the DST is

used for assigning intermediate deadlines, the length of the scheduling window for threads

and messages within a parallel segment, is the maximum possible for the case of a P/D

5.4 Summary 83

task. Therefore, it will always be better or equal to the Proportional heuristic, previously

used for sequential tasks.

5.4 Summary

This chapter presented the DOPA heuristic for the simultaneous partitioning and prior-

ity assignment of threads and messages onto the constituting elements of the distributed

system by using the OPA algorithm known as Audsley’s algorithm (Audsley, 1991).

A method that imposes intermediate deadlines to threads and messages has been pro-

posed with the objective of permitting the use of OPA for task sets with dependencies

(distributed tasks). It is demonstrated through simulations that OPA increases, in average,

the number of schedulable tasks and messages in a distributed system, when compared to

the DM algorithm, when using the same partition algorithm.

The results of the DOPA huristic are extended for P/D tasks and showed that the DST

transformation helps to reduce the complexity of the assignment and to relax the con-

straints on the intermediate deadlines that must be respected by the threads and messages

constituting the P/D tasks. It is demonstrated through simulations, that the use of DST for

the intermediate deadline assignment for threads and messages considerably increases the

number of schedulable tasks in a distributed system while compared to the Proportional

heuristic used for the linear transactional model.

The following publications have been derived from the research related this chapter:

• R. Garibay-Martínez, G. Nelissen, L. L. Ferreira, and L. M. Pinho. Task parti-

tioning and priority assignment for hard real-time distributed systems. In Marisol

García-Valls and Tommaso Cucinotta, editors, Second International Workshop on

Real-time and distributed computing in emerging applications. Universidad Carlos

III de Madrid, 2013b.

• R. Garibay-Martínez, G. Nelissen, L.L. Ferreira, and L.M. Pinho. Task partition-

ing and priority assignment for hard real-time distributed systems, J. Compt. Syst.

Sci. (2015), http://dx.doi.org/10.1016/j.jcss.2015.05.005.

http://dx.doi.org/10.1016/j.jcss.2015.05.005

84

Task Partitioning and Priority Assignment for Sequential Transactional Tasks and P/D

Tasks on Hard Real-Time Distributed Systems

Chapter 6

Holistic Analysis for P/D Tasks using

the FTT-SE Protocol

6.1 Introduction

In current automotive applications, tens of Electronic Control Units (ECUs) are intercon-

nected by different network technologies (see Section 2.3). But such network technolo-

gies only provide low bandwidth. Emerging automotive applications, such as infotain-

ment and video-based driver assistance systems, require significantly bigger processing

capacity and a network that conciliate high bandwidth with real-time guarantees, hetero-

geneous traffic types and dynamic scheduling. Several Real-Time Ethernet (RTE) pro-

tocols (e.g. TTEthernet, AV-Bridges) are currently being investigated for vehicular data

networks, but they have some limitations (e.g. AV-Bridges do not support scheduled traf-

fic; TTEthernet is inflexible regarding the time-triggered traffic, because the support to

real-time event-triggered traffic is limited, since only provides a basic bandwidth reser-

vation mechanism). For this reasons, this work uses Flexible Time Triggered - Switched

Ethernet (FTT-SE) which is a research protocol that satisfies the requirements of emerg-

ing automotive applications (e.g., high bandwidth with real-time guarantees, handling of

heterogeneous real-time traffic and dynamic scheduling). Furthermore, those systems will

require higher computing power, therefore, the use of more powerful computing models

such as the P/D tasks model seem a promising alternative.

When scheduling P/D tasks, the interaction between the threads executing on different

nodes and their respective messages must be considered. A well accepted technique for

the verification of the temporal correctness of a distributed real-time system is the holis-

tic analysis. The holistic analysis studies the behaviour of each of the elements of the

distributed system as a whole.

This chapter presents a holistic timing analysis for the computation of the Worst-

Case Response Time (WCRT) for P/D tasks when transformed by the DST algorithm (see

85

86 Holistic Analysis for P/D Tasks using the FTT-SE Protocol

��������	
�

�� �� �� �� ��

��

��

��� ���

���

Figure 6.1: FTT-SE single-master architecture.

Section 4.2). This chapter also presents an extension for the analysis by considering an

FTT-SE transmission network as the one presented in Figure 6.1. Both synchronous and

asynchronous communication patterns in the FTT-SE protocol are considered. Finally, a

technique for reducing the pessimism when computing the WCRT of P/D tasks by consid-

ering a pipeline effect observed in such systems is introduced. Note that this improvement

is not limited to the use of the DST algorithm and can be used in any distributed system,

using a FTT-SE network interconnecting computing nodes scheduled with a fixed-priority

algorithm.

Section 6.2 briefly describes a technique for computing the WCRT of messages sched-

uled with the FFT-SE protocol (Ashjaei et al., 2013). The proposed holistic analysis

presented in Section 6.3. Section 6.4 shows how to improve the WCRT computation

presented in Section 6.3. A numerical example is shown in Section 6.5, and finally, a

summary is presented in Section 6.7.

6.2 The FTT-SE Protocol

The FFT-SE protocol makes use of the master/slave paradigm (Marau et al., 2006, 2012;

Ashjaei et al., 2013, 2014), where a dedicated node (the master node) schedules messages

on the network. The communications within a FTT-SE network are done based on fixed

duration time slots called Elementary Cycles (ECs). Figure 6.2, shows the structure of an

EC.

The FTT-SE protocol is able to manage the transmission of real-time traffic and non-

real-time traffic. An EC is divided on three main windows: the signalling window, the

real-time window, and the non-real-time window. The real-time window is further di-

vided into two sub-windows: the synchronous window and the asynchronous window.

These windows are reserved for transmission of periodic (synchronous) and sporadic

6.2 The FTT-SE Protocol 87

�����

����	�

������	���

����	�

��
�����

����	�

������	�	��

����	�

�������	�	��

����	�

�	�����
������

����	�

������

��	�����

�����
����

����	�

�	�������
����

����	�

���������	
	����
�
�

Figure 6.2: FTT-SE Elementary Cycle (EC) structure.

(asynchronous) traffic, respectively. At the end of the EC there exists a non-real-time

window reserved for best-effort Ethernet traffic.

The duration of the EC and its corresponding windows is tuneable (Marau, 2009),

and defines the system resolution, thus, it defines the message periods and deadlines.

Deadlines and periods are expressed as integer multiples of the EC duration.

6.2.1 Message Scheduling on the FTT-SE Protocol

Synchronous messages are scheduled autonomously by the master, without any peti-

tion/feedback from the slave nodes. Thus, at the right time, imposed by a global clock

(owned by master node), the nodes send the periodic traffic. Thus, the master node is

responsible for triggering the transmission of periodic messages.

Asynchronous messages are also scheduled by the master node, but asynchronous

messages are activated in response to events that happen in the environment, thus, slave

nodes must report its activation to the Master via a signalling mechanism (Marau, 2009).

This signalling informs to the master the desire for transmission from the slave nodes. A

similar notification and processing scheme is employed for the non-real-time traffic. The

difference is that real-time traffic is subject to an admission control procedure when regis-

tered in the system. Therefore, if the real-time traffic is accepted, its timing requirements

are guaranteed. Non-real-time traffic is not subject to registration and therefore it has no

guarantees.

The construction of the EC schedule is done by keeping updated tables for syn-

chronous and asynchronous messages. The scheduler applies a scheduling policy (e.g.,

Deadline Monotonic) over these tables, generating the ready queues for transmission dur-

ing that EC. The scheduler picks messages from the ready queue and verifies if they fit

on that scheduling window, considering all delays for that EC in each of the transmission

links. That process is repeated until no other message fits on the scheduling window for

that EC (i.e., considering all messages from higher to lower priority). If they fit, they are

removed from the ready queue and transmitted in the next EC. The remaining messages

88 Holistic Analysis for P/D Tasks using the FTT-SE Protocol

are kept in the ready queue and wait for being scheduled in the following ECs. The current

EC schedule is sent to the nodes via the Triggered Message (TM).

For building the EC, it is important to consider:

i. the characteristics of the transmission links; switched Ethernet has full-duplex trans-

mission links, namely the uplink lu
i, j that connects the nodes to the switch, and the

downlink ld
i, j connecting the ports exiting the switch to the nodes;

ii. the multiple switching delays; when transmitting messages with FTT-SE, a switch-

ing delay for a message µi, j,k (denoted as SDi, j,k) must be considered when crossing

a switch SWx. In this chapter it is considered that the switching delay has two compo-

nents, the switch relaying latency (denoted as ∆), and the Store-and-Forward Delay

of a message µi, j,k (denoted as SFDi, j,k), i.e., SDi, j,k = SFDi, j,k +∆. ∆ is related to

the hardware specifications of the switch. SFDi, j,k is related to the store-and-forward

function of the switch when conveying messages, thus it depends on the message size

and link speed, consider the following switching delay with an example.

Example 6.1. Consider the system architecture shown in Figure 6.1. Assume two

synchronous messages, µ1,1,1 and µ2,1,1 that are transmitted from π1 to π4 and from

π2 to π4, respectively. Message µ1,1,1 has higher priority than message µ2,1,1. These

messages share the link ld
SW2,π4

. In Figure 6.3a and Figure 6.3b, it is possible to

observe two different scenarios. In Figure 6.3a the amount of allocated bandwidth

for the downlink ld
SW2,π4

is represented as a bin. Since message µ1,1,1 has the highest

priority, it is assigned first to the bin as well as its switching delay. Message µ2,1,1 is

second to be assigned into the bin and since the switching delay of µ2,1,1 is larger than

the one of µ1,1,1, the switching delay of µ2,1,1 is considered. Conversely, Figure 6.3b

shows the case in which the switching delay of µ2,1,1 is smaller than the one of µ1,1,1,

therefore, only the switching delay of µ1,1,1 is considered.

Thus, when scheduling messages that share a downlink, all the WCML are consid-

ered, but only the maximum switching delay of all messages has to be considered for

that link, for that specific EC. This process is repeated in each EC, and;

iii. the length of the specific transmission window for each type of traffic (e.g., syn-

chronous or asynchronous window), the length of such a window is the reserved

bandwidth for transmission in that EC.

6.2.2 Worst-Case Response Time in FTT-SE Networks

There exist different studies related to the FTT protocol over Ethernet (e.g., (Marau et al.,

2006, 2012; Ashjaei et al., 2013, 2014)). In this section an analysis based on network

6.2 The FTT-SE Protocol 89

�
�,�,�

����

�
�,�,�

���������

	
��

�
�,�,�

�����
�,�,�

	����
�
�,�,�

����

�
�,�,�

���������

	
��

�
�,�,�

����

�
�,�,�

���������

	
��

�
�,�,�

����

�
�,�,�

���������

	
��

�
�,�,�

���������

	
��

�
�,�,�

����

�
�,�,�

���������

	
��

�
�,�,�

����

��� ���

Figure 6.3: Switching delay: (a) maximum switching delay: µ1,1,1, and (b) maximum

switching delay: µ2,1,1.

calculus presented in (Ashjaei et al., 2013) for the computation of the WCRT of messages

within the FTT-SE protocol is reviewed. For notational convenience, the original notation

is replaced, with the notation introduced in Section 3.4.

The request bound function rb fi, j,k(t) represents the maximum transmission require-

ments generated by a message µi, j,k and all its higher priority messages during an interval

[0, t]. The rb fi, j,k(t) is computed as:

rb fi, j,k(t) = Mi, j,k + sni, j,k×SDi, j,k +Wli, j,k(t)+Wri, j,k(t), (6.1)

where, sni, j,k is the number of switches that a message µi, j,k traverses from the origin

node to its destination node, Wli, j,k(t) is the “Shared Link Delay”, and Wri, j,k(t) is the

“Remote Link Delay”. The Shared Link Delay and the Remote Link delay are briefly

explained below. For further details, please refer to (Ashjaei et al., 2013).

Shared Link Delay. The transmission of a message µi, j,k, may be delayed by all the

higher priority messages that share a link with µi, j,k. However, such interference occurs

only once, so messages that caused such interference on a previous link are excluded from

the analysis for the next links. Also, when building the schedule for each EC, the sched-

uler has to consider the maximum switching delay SDi, j,k, only once. Therefore, Wli, j,k(t)

is computed by separating the interference of messages from the switching-delay-effect

(denoted as Isi, j,k(t)) for each EC. The shared link delay is computed in Eq. (6.2):

Wli, j,k(t) = ∑
∀µa,b,c∈SLDi, j,k

⌈

t

Ta

⌉

Ma,b,c + Isi, j,k(t), (6.2)

where SLDi, j,k = {µa,b,c ∈ τ | µa,b,c 6= µi, j,k∧SWi∩SWj 6= 0∧µi, j,k ∈ hp(µi, j,k)∧µi, j,k ∈

WT (µi, j,k)}, where, SWi and SWj represent the set of switches crossed by messages µi, j,k

and µa,b,c, respectively; hp(µi, j,k) is the set of messages with priority higher than µa,b,c

and WT (µi, j,k) is the set of messages that are scheduled in the same window as µa,b,c (i.e.,

the synchronous or the asynchronous window).

90 Holistic Analysis for P/D Tasks using the FTT-SE Protocol

For computing the switching-delay-effect Isi, j,k(t), it is needed to compute an upper

bound on the number of switching delays ({SDi, j,k}) for each message that contribute to

Eq. (6.2), per EC. Depending on time t, a number of switching delays SDi, j,k are inserted

into an array Gi, j,k(t)[l] = {SD1,2,1, . . . ,SDn,ni−1,k}, when a message crosses a switch in

the network. In order to consider the maximum switching delays only, a sorted (in non-

increasing order) array Gsort
i, j,k(t)[l] containing the switching delays in Gi, j,k(t)[l] is consid-

ered. The number of ECs in an interval [0, t] is given by: z(t) =
⌈

t
EC

⌉

, thus, in order to

consider the worst-case scenario for the computation of the WCRT, the first z(t) elements

from Gsort
i, j,k(t)[l] are selected. Then, the switching-delay-effect is computed as:

Isi, j,k =
z(t)

∑
l=1

Gsort
i, j,k(t)[l]. (6.3)

Remote Link Delay. A message µi, j,k can be blocked by other higher priority messages

even if they do not share a transmission link. Let the source of interference be illustrated

with a brief example.

Example 6.2. Consider three messages µi, j,1, µi, j,2 and µi, j,3. Message µi, j,1 having the

highest priority and µi, j,3 having the lowest priority. It may be the case that messages

µi, j,1 and µi, j,3 do not share a link, but µi, j,2 does share a link with both µi, j,1 and µi, j,3. If

µi, j,1 delays the transmission of µi, j,2 in their shared link, it is possible that µi, j,2 “pushes”

µi, j,3 to be transmitted in the next EC due to the prior interference on µi, j,2 caused by

µi, j,1.

Thus, a higher priority message can delay a lower priority message even though they

do not share a transmission link. Therefore, to compute the worst-case remote link delay,

it is needed to consider all messages that share links with the messages that contributed

to the shared link delay (Eq. (6.2)), excluding all messages that are already considered in

Eq. (6.2). Hence:

Wri, j,k(t) = ∑
∀µp,q,r∈RLDi, j,k

⌈

t

Tp

⌉

Mp,q,r, (6.4)

where RLDi, j,k = {µp,q,r ∈ τ | µp,q,r 6= µa,b,c 6= µi, j,k ∧ SWk ∩ SWj 6= 0∧ SWk ∩ SWi =

0∧SWj∩SWi 6= 0 ∧µp,q,r ∈ hp(µa,b,c)∧µp,q,r ∈WT (µa,b,c)}.

The demand bound function is then compared with the supply bound function

sb fi, j,k(t), which represents the minimum effective communication capacity that the net-

work supplies during the time interval [0, t]. In each EC, the bandwidth provided for

transmitting each type of message is equal to
(LW−I)

EC
, where LW is the length of the spe-

cific transmission window and I is the maximum inserted idle time of such a window.

The inserted idle time results from the fact that the maximum window duration cannot

be exceeded. In the worst case, the idle time equals the maximum message size (Marau

6.3 A Holistic Analysis for Stretched Tasks 91

et al., 2012), thus, the supply bound function of the network is given by:

sb fi, j,k(t) = (
LW − I

EC
)× t. (6.5)

Then, the response time of a message µi, j,k is computed by determining the time

instant t∗ such that:

t∗ = min(t > 0) : sb fi, j,k(t)≥ rb fi, j,k(t). (6.6)

For determining the time instant t∗ it is necessary to verify Eq. (6.6) at all instants in

which sb fi, j,k(t) is modified due to the interference of other messages. Such time instants

are given by:

CPrb fi, j,k = [∪cpµi, j,q
,∀µi, j,q ∈ hp(µi, j,k)]∪Tµi, j,k

, (6.7)

where, cpµi, j,q
= {Tµi, j,q

,2Tµi, j,q
, . . . ,nµi, j,q

Tµi, j,q
},nµi, j,q

=

⌊

Tµi, j,k

Tµi, j,q

⌋

. Since it is not possible

to determine the specific time of transmission of messages inside an EC, the computation

of the WCRT for a message µi, j,k is in terms of a number of ECs, thus the WCRT (denoted

as rµi, j,k
) of a message µi, j,k, in a synchronous system is given by:

r
syn
µi, j,k

=

⌈

t∗

EC

⌉

. (6.8)

The previous analysis considers the transmission of synchronous messages. This over-

head can be simply added to Eq. 6.8 as:

r
asyn
µi, j,k

=

⌈

t∗

EC

⌉

+2. (6.9)

When messages are scheduled within a single switch, messages may suffer from both

shared link delay (Eq. (6.2)) and remote link delay (Eq. (6.4)), but only a single switching

delay is considered. However, the rb fi, j,k(t) of messages for single switch is computed as

in Eq. (6.1) except that sni, j,k = 1.

6.3 A Holistic Analysis for Stretched Tasks

In distributed systems, the impact of messages used for communication/synchronization

purposes cannot be deemed negligible as in the case of multiprocessor systems. The

main goal of the holistic analysis approach is to calculate the end-to-end response time

associated to a chain of tasks and messages. Two types of communication patterns are

identified: time-triggered and event-triggered. This depends on the type of messages used

92 Holistic Analysis for P/D Tasks using the FTT-SE Protocol

for transmission within the FTT-SE network, which can be synchronous or asynchronous

messages. In the following, the holistic analysis for P/D tasks that have been stretched

using the DST transformation (see Section 4.2) is presented. Both time-triggered and

event-triggered systems are considered.

In FTT-SE networks, messages are transmitted in periodic time windows called ECs.

Thus, if a thread completes its execution just after the beginning of an EC, it has to wait for

the beginning of the next EC in order to initiate the transmission of a message. This delay

is called node queuing delay. In the worst case it has a length of 1 EC. The node queuing

delay has to be considered whenever a transmission is initiated by the P/D task (i.e., during

each D-fork and D-join operation). This means that Eq. (6.8) must be incremented by 1

EC for synchronous messages, and incremented by 2 ECs for the case of asynchronous

messages (1 ECs due to the signalling overhead inherent to asynchronous messages in

FTT-SE (Ashjaei et al., 2013), and 1 due to the node queuing delay).

6.3.1 Time-triggered Systems

For the case in which the activation of a P/D message or of a P/D thread is based on spe-

cific time instants (i.e., P/D tasks are strictly periodic), it is possible to use a time-triggered

communication pattern in which synchronous messages are used. For time-triggered sys-

tems, an offset indicates the earliest moment at which a thread θi, j,k (or message µi, j,k) of

a segment σi, j can start its execution (or transmission, respectively). This offset is equal to

the worst-case response time rµi, j−1,k
(resp., rθi, j,k

) of the message (resp., thread) preceding

θi, j,k (resp., µi, j,k) in the fork-join task, thereby ensuring that the threads and messages

never experience any release jitter.

Two cases must be considered when computing the response time of a parallel task

stretched with the DST transformation (see Section 4.3):

Fully stretched tasks: if a task has been fully stretched, no message is sent over the

network (Case 1 in Section 4.3). Therefore, its WCRT only depends on the interference

caused by other higher priority threads executing on the same processor. This can be

computed by using the response time analysis for fixed-priority tasks (Audsley et al.,

1993):

rτi
=Ci + ∑

∀θp,q,r∈hp(τi)

⌈

rτi+Jθp,q,r

Tp

⌉

Cp,q,r, (6.10)

where hp(τi) is the set of threads with higher priority than τi and executed on the same

processor than τi, the term Jθp,q,r
being the maximum jitter on the arrival of θp,q,r, Tp is

the period of the task τp to which thread θp,q,r belongs, and Cp,q,r is the WCET of thread

θp,q,r. Note that, as already explained, this jitter is always equal to 0 in time-triggered

6.3 A Holistic Analysis for Stretched Tasks 93

systems. Equation 6.10 can be solved with a fixed point iteration over rτi
, where rτi

is

initialised at Ci for the first iteration.

Non-fully stretched tasks: for non-fully stretched tasks, one must consider the se-

quential and parallel segments independently (Case 2 in Section 4.3). Remember that

for each sequential and P/D segment, there exists a synchronization point at the end of

the segment, indicating that no thread that belongs to the segment after the synchronisa-

tion point can start executing before all threads of the current segment have completed

their execution and the associated messages completed their transmission. Therefore, the

WCRT of a task τi is computed based on the sum of the WCRTs of each segment σi, j

(denoted as rσi, j
):

rτi
=

ni

∑
j=1

(rσi, j
), (6.11)

where rσi, j
can be computed as described below for sequential and parallel segments,

respectively:

i. Sequential segments. Sequential segments are executed on their own processors.

Therefore, they do not suffer any interference from other threads. Hence:

rσi,2 j+1
=Ci,2 j+1,1. (6.12)

ii. Parallel segments. For a parallel segment σi,2 j, the WCRT is given by the maximum

of the following two values:

a. The sum of the worst-case execution times of the set of threads coalesced in

τstretched
i (denoted by CT hri,2 j), which are executed sequentially on their own pro-

cessor. That is,

rCT hri,2 j
= ∑

θi,2 j,k∈{σi,2 j∩τstretched
i }

Ci,2 j,k. (6.13)

b. The maximum WCRT (denoted as WRmax
DPi,2 j

) of each distributed execution paths

DPi,2 j,k within the parallel segment. The WCRT of a distributed execution path

DPi,2 j,k, is upper-bounded by the sum of the WCRT of its constituting messages

µi,2 j−1,k and µi,2 j,k, and its thread θi, j,k, i.e.,

rDPi,2 j,k
= rµi,2 j−1,k

+ rθi, j,k
+ rµi,2 j,k

, (6.14)

94 Holistic Analysis for P/D Tasks using the FTT-SE Protocol

under the FTT-SE protocol, rµi,2 j−1,k
and rµi,2 j,k

can be computed using Eq. (6.8)

increased by 1 EC (due to the node queuing delay), and Eq. (6.15) can be used for

computing the WCRT of the thread θi, j,k executed on its remote node:

rθi, j,k
=Ci, j,k + ∑

θp,q,r∈hp(θi, j,k)

⌈

rθi, j,k
+ Jθp,q,r

Tp

⌉

Cp,q,r. (6.15)

Therefore, the maximum WCRT experienced by a distributed execution path in σi,2 j

is:

WRmax
DPi,2 j

= max
DPi,2, j,k∈σi,2 j

{rDPi,2 j,k
}. (6.16)

Thus, the WCRT of a parallel segment σi,2 j, is the maximum between the sum of the

execution times of all coalesced threads CT hri,2 j (Eq. (6.13)) and the longest distributed

execution path WRmax
DPi,2 j

(Eq. (6.16)). That is,

rσi,2 j
= max{rCT hri,2 j

,WRmax
DPi,2 j
}. (6.17)

6.3.2 Event-triggered Systems

In some situations the use of time-triggered systems is not adequate when the process is

even-based. In those cases using the FTT-SE network in time-triggered mode can waste

considerable amount of bandwidth. Therefore, in some cases the usage of asynchronous

features of the FTT-SE may result on smaller response time and on better utilisation of

the network bandwidth.

For the case in which the activation of a P/D message or P/D thread is based on the

response time of previous processing events, it implies an event-triggered communication

pattern which uses asynchronous messages. The fact that, in an event-triggered system,

threads and messages are sent on completion of the previous message (or thread) in the

fork-join sequence, implies that each thread and message may experience a release jitter

Jµi, j,k
and Jθi, j,k

respectively, equal to the difference between the best-case and the worst-

case response time of the preceding message (or thread, respectively). As shown by

Eq. 6.10 and 6.15, these jitters have an impact on the worst-case response time of the

threads. The same is true for messages. Hence, Eq. (6.8) is adapted to consider their

release jitter. Note that Eq. 6.10–6.17 remain unchanged.

Only the computation of rµi,2 j−1,k
and rµi,2 j,k

are altered by the release jitters. In fact,

using the same reasoning than in (Audsley et al., 1993), it is possible to see that a message

µp,q,r with a release jitter Jµp,q,r and interfering with µi, j,k may release at most ⌈
t+Jµp,q,r

Tp
⌉

6.4 Improved Response Time Analysis for Distributed Execution Paths 95

message instances in a time window of length t. Therefore, Eq. 6.2 and 6.4 must be

modified as follows:

Wli, j,k(t) = ∑
∀µp,q,r∈SLDi, j,k

⌈

t + Jµp,q,r

Tp

⌉

Mp,q,r + Isi, j,k(t), (6.18)

Wri, j,k(t) = ∑
∀µp,q,r∈RLDi, j,k

⌈

t + Jµp,q,r

Tp

⌉

Mp,q,r, (6.19)

thus, by assuming the best-case response time equal to zero for all preceding events, Jθi, j,k

(Jµi, j,k
, resp.) is equal to the largest sum of the WCRT of each predecessor, computed by

Eq. 6.10–6.19, i.e:

Jθi, j,k
= max
∀µp,q,r∈predec(θi, j,k)

{Jµp,q,r
+WCRT (µp,q,r)}, (6.20)

Jµp,q,r = max
∀θi, j,k∈predec(µp,q,r)

{Jθi, j,k
+WCRT (θi, j,k)}, (6.21)

where, predec(θi, j,k) (predec(µi, j,k)) is the set of all threads (messages, resp.) which are

direct predecessors of thread µi, j,k (message θi, j,k, resp.) in the P/D task τi.

6.4 Improved Response Time Analysis for Distributed -

Execution Paths

This section presents an improved WCRT analysis for the execution of the distributed

execution paths. The improvement is based on a pipeline effect that occurs when simulta-

neously transmitting P/D messages on an FTT-SE network and executing their respective

P/D threads on remote nodes. Consider the following example:

Example 6.3. Consider a tasks τ1 = ((1,0.25,1,0.25,1),9,10) stretched with the DST

transformation and mapped onto processors by an arbitrary partitioning algorithm (see

Figure 6.5). Also, consider the system architecture depicted in Fig. 6.4. If a message µi, j,k

is transmitted from the ECU Head-Unit (H-U) to CTRL-2, it has to cross two links in the

network; from H-U to SW1, and from SW1 to CTRL-2. This is shown in Fig. 6.5. Assume

that two threads θ1,2,8 and θ1,2,9 of task τ1 are assigned to processor CTRL-2, thus, τ1

sends two messages µ1,1,8 and µ1,1,9 from H-U to CTRL-2. After their remote execution is

completed, both threads perform a D-Join operation sending the corresponding messages

to their invoker node. One can notice that the transmission of message µ1,1,9 during the

D-fork operation is occurring in parallel with the execution of thread θ1,2,8. Also, one

can note that the transmissions of messages µ1,2,8 and µ1,2,9 during the D-join operation

do not interfere with each other on the uplink lu
π2,SW1

.

This example illustrates the fact that contrarily to what is assumed in Eq. (6.14), the

WCRT of a distributed execution path is not simply the sum of the WCRT of µi, j−1,k,

96 Holistic Analysis for P/D Tasks using the FTT-SE Protocol

��
��
��
��
��
��
��
��
��
��
��

����

���
���
���
���
���
���
���
���
���
���
���

����

���
���
���
���
���
���
���
���
���

���	�
��

���
���
���
���
���
���
���
���
���

���

���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���

������

���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���

������

������ ������

���
���
���
���
��� ��

���
���
���
���
���

���
��

Figure 6.4: Automotive architecture interconnected with an FTT-SE network.

���

H−U� ��

�

��

�

� ����−�

����−�

����−� � ��

�

��

�

�	���

�����������
�����������
�����������
�����������

����������
����������
����������
����������

�����������	
��
�

��

���
�����

���

���
���
�
��
��

�

�

�
�

�

�

�
�

	

��
��
��
��

�
�,�,�

�
�,�,�

�
�,�,�

�
�,�,�

�
�,�,�

�
�,�,�

�
�,�,�

�
�,�,�

�
�,�,�

�
�,�,�

�
�,�,�

�
�,�,�

�
�,�,�

�
�,�,	

�
�,�,

�
�,�,�

��
��
��
��
��

�����������������
�����������������
�����������������
�����������������
�����������������

�������������������������
�������������������������
�������������������������
�������������������������
�������������������������

�
�,�,�

�
�,�,�

�
�,�,�

�

�

Figure 6.5: Pipeline effect of a P/D task interconnected with an FTT-SE network.

6.4 Improved Response Time Analysis for Distributed Execution Paths 97

θi, j,k and µi, j,k. Under the reasonable assumption that the WCML of P/D messages is

smaller than or equal to the WCET of their corresponding P/D threads (i.e., Mi, j−1,k ≤

Ci, j,k and Mi, j,k ≤ Ci, j,k) and assuming that the priority ordering of the P/D threads is

identical to the priority ordering of the associated P/D messages (i.e., if θp,q,r ∈ hp(θi, j,k),

then µp,q−1,r ∈ hp(µi, j−1,k)), an overlap (denoted as OvF
πi

ld
SWx

(θi, j,k)) exist on the downlink

ld
SWx,πi

connecting the last switch SWx in the transmission path of a message µi, j−1,k to the

remote processor node πi on which θi, j,k executes. Similarly, a non-interference (denoted

as OvJ
ld
SWx

πi
(µi, j,k)) occurs during the D-join operation when multiple messages belonging

to the same task τi. Therefore, the pessimism on the computation of the WCRT of a

distributed execution path rDPi, j,k
can be reduced.

6.4.1 Overlap on the Downlink

Consider the two following situations:

i. assume that a low priority thread θ l is executing on a remote processor node πi. If

the execution of a thread of higher priority θ h is triggered on πi, θ l is preempted by

θ h. However, because messages are non-preemptible, the message µ l that triggered

the execution of θ l must have reached πi before the message µh could start being

transmitted, thereby implying that the transmission of µh occurred in parallel with

the execution of θ l;

ii. assume a thread of high priority θ h executing on a remote node processor πi. If

the execution of a lower priority thread θ l is triggered on πi, θ l is delayed until θ h

completes its execution. Similarly to the previous case, because only one message

can be transmitted at a time, it implies that the transmission of µ l occurred in parallel

with the execution of θ h.

Let IntT (θi, j,k) be the set of jobs that contribute to the WCRT of a thread θi, j,k (in-

cluding the job θi, j,k itself) on a remote processor node πℓ. And let IntM(θi, j,k) be the set

of messages that contributed to the WCRT of µi, j−1,k and triggered the execution of jobs

in IntT (θi, j,k). Extrapolating the two situations discussed above, it is possible to conclude

that:

Property 6.1. Only one message in IntM(θi, j,k) was not transmitted in parallel with

the execution of the jobs in IntT (θi, j,k). This message is the message of the first job

in IntT (θi, j,k) that started executing on πℓ.

In the worst-case, the message that did not overlap with the response time of θi, j,k

is the message with the largest WCML in IntM(θi, j,k). Let Mmax
i, j,k be the WCML of that

98 Holistic Analysis for P/D Tasks using the FTT-SE Protocol

message. Then, the overlap OvF
πi

ld
SWx

(θi, j,k) is lower bounded by:

OvF∗πi,lSWx
(θi, j,k) = ∑

µp,q,r∈IntM(θi, j,k)

µp,q,r−Mmax
i, j,k . (6.22)

Therefore, denoting RT (µi, j−1,k +θi, j,k) the response time of a P/D message µi, j−1,k,

and its corresponding thread θi, j,k during a D-Fork operation, the following theorem is

proved.

Theorem 6.1. The response time RT (µi, j−1,k +θi, j,k) is upper bounded by:

RT (µi, j−1,k +θi, j,k)≤ rµi, j−1,k
+ rθi, j,k

−OvF∗πi,lSWx
(θi, j,k),

where rµi, j−1,k
and rθi, j,k

are computed with Eq. 6.8 increased by 1 or 3 ECs (see Sec-

tion 6.3) and Eq. 6.15, respectively.

Proof. The proof is done by contradiction. Assume that there exists a scenario such that:

RT (µi, j−1,k +θi, j,k)> rµi, j−1,k
+ rθi, j,k

−OvF∗πi,lSWx
(θi, j,k). (6.23)

It is known that there is an overlap OvF
πi

ld
SWx

(θi, j,k) between the transmission of the

messages and the execution of the threads participating to the response time of µi, j−1,k

and θi, j,k. Therefore, at least:

RT (µi, j−1,k +θi, j,k)≤ rµi, j−1,k
+ rθi, j,k

−OvF
πi

ld
SWx

(θi, j,k).

This implies that Eq. (6.23) is true iff OvF
πi

ld
SWx

(θi, j,k)<OvF∗πi,lSWx
(θi, j,k). The only pos-

sible reason for such a situation to happen, is that at least one transmission of a message

µh
i, j−1,k ∈ IntM(θi, j,k) accounted in OvF∗πi,lSWx

(θi, j,k) does not contribute to OvF
πi

ld
SWx

(θi, j,k).

Assume that there is only one such instance1. Then,

OvF
πi

ld
SWx

(θi, j,k) = OvF∗πi,lSWx
(θi, j,k)−Mh

i, j−1,k. (6.24)

Two cases must be considered:

i. the thread θ h
i, j,k triggered by µh

i, j−1,k does not interfere with the execution of θi, j,k.

This implies that RT (θi, j,k)≤ rθi, j,k
−Ch

i, j,k, and because by assumption Ch
i, j,k

1If multiple message instances in IntM(θi, j,k) do not contribute to OvF
πi

ld
SWx

(θi, j,k), then the reasoning

developed in the following of this proof can be applied iteratively by considering one more instance at each

iteration.

6.4 Improved Response Time Analysis for Distributed Execution Paths 99

≥Mh
i, j−1,k:

RT (θi, j,k +µi, j−1,k)

≤rθi, j,k
−Ch

i, j,k + rµi, j−1,k
−OvF

πi

ld
SWx

(θi, j,k)

≤rθi, j,k
−Mh

i, j,k + rµi, j−1,k
−OvF

πi

ld
SWx

(θi, j,k)

≤rθi, j,k
+ rµi, j−1,k

−OvF∗πi,lSWx
(θi, j,k),

thereby contradicting Eq. (6.23).

ii. the thread θ h
i, j,k triggered by µh

i, j−1,k interferes with the execution of θi, j,k. Because by

Property 6.1, only one message in IntM(θi, j,k) does not contribute to OvF
πi

ld
SWx

(θi, j,k),

thus:

OvF
πi

ld
SWx

(θi, j,k) = ∑
µp,q,r∈IntM(θi, j,k)

µp,q,r−Mh
i, j,k.

And using Eq. (6.22)

OvF
πi

ld
SWx

(θi, j,k) = OvF∗πi,lSWx
(θi, j,k)+Mmax

i, j−1,k−Mh
i, j,k

≥ OvF∗πi,lSWx
(θi, j,k),

which contradicts Eq. (6.24) and therefore Eq. (6.23).

Consequently, Eq. (6.23) can never be true.

6.4.2 Non-interference on the Uplink

As illustrated on Fig. 6.5, if all the P/D threads θi, j,k of a same parallel segment σi, j share

the same priority, then they do not preempt each other when executing on the same remote

node πℓ. Consequently, the messages µi, j,k sent by those threads from πℓ to their invoker

processor, start their transmissions at least Ci, j,k time units apart. Because by assumption

the WCML Mi, j,k is smaller than or equal to the WCET Ci, j,k of the threads triggering their

execution, a non-interference effect OvJ
ld
SWx

πi
(µi, j,k) between the messages of the same P/D

segment sent from the same remote node occurs during the D-join operation. This effect

is given by:

OvJ
ld
SWx

πi
(µi, j,k) = ∑

∀µi, j,p∈πi
p 6=k

Mi, j,p, (6.25)

where µi, j,p ∈ πi means that the message µi, j,p has πi as service node. This gives the

following theorem:

100 Holistic Analysis for P/D Tasks using the FTT-SE Protocol

Theorem 6.2. The response time RT (µi, j,k) of a P/D message µi, j,k during a D-Join

operation is upper bounded by:

RT (µi, j,k)≤ rµi, j,k
−OvJ

ld
SWx

πi
(µi, j,k).

Proof. Assume that only two messages2 of the same segment σi, j are sent from the remote

processor πℓ. Let us denote them by µi, j,1 and µi, j,2 and assume that µi, j,1 is the first to be

triggered. Therefore, µi, j,2 does not participate to the response time of µi, j,1, yet Eq. (7)

assumes that µi, j,2 interferes with µi, j,1. Therefore:

RT (µi, j,1)≤ rµi, j,1
−Mi, j,1 = rµi, j,1

−OvJ
ld
SWx

πi
(µi, j,1).

Two cases must be considered for µi, j,2:

i. µi, j,1 and µi, j,2 are triggered in the same EC. Because µi, j,2 was triggered at least

Mi, j,1 time units after µi, j,1, the node queuing delay cannot be longer than |EC| −
Mi, j,1. Since rµi, j,2

always considers a node queuing delay of 1×|EC| (see Section VI-

A), there is:

RT (µi, j,2)≤ rµi, j,2
−Mi, j,2 = rµi, j,2

−OvJ
ld
SWx

πi
(µi, j,2).

ii. µi, j,1 and µi, j,2 are triggered in different ECs. If µi, j,1 already completed its transmis-

sion, then it does not interfere with µi, j,2 and the theorem obviously holds. Otherwise,

if µi, j,1 is still waiting to be transmitted when µi, j,2 is triggered, then it means that

µi, j,1 was delayed by higher priority messages for a time at least equal to the length

LW of its transmission window. Those higher priority messages cannot interfere with

µi, j,2 anymore and because LW ≥Mi, j,1, the theorem holds for µi, j,2.

In conclusion, combining the results of Theorem 6.1 and 6.2, it is possible to improve

the WCRT of a distributed execution path (Eq. (6.14)) as follows:

WR(DPi,2 j,k) = rµi,2 j−1,k
+ rθi,2 j,k

+ rµi,2 j,k
−OvF∗πi,lSWx

(θi, j,k)−OvJ
ld
SWx

πi
(µi, j,k).

6.5 Numerical Example

This section shows how to apply the results presented in previous sections, showing (i)

how the technique introduced in Section 6.4 reduces the pessimism of computing the

WCRT of P/D tasks, and (ii) the usefulness of the DST algorithm (see Section 4.3).

2If more than two messages of the same segment should be sent from the same remote processor, the

proof still holds by applying the argumentation iteratively, adding one more message at each iteration.

6.5 Numerical Example 101

Table 6.1: Automotive application characteristics.

App Type Period WCET(F/J) WCET(Rem) WCML Invok. Node Rem. Node(a) Rem. Node(b)

τ1 Control 2000 µs - 30 µs 10 µs Head-Unit CRTL-1 CRTL-1

τ2 Control 2000 µs - 30 µs 10 µs Head-Unit CTRL-2 CTRL-2

τ3 Control 2000 µs - 30 µs 10 µs Head-Unit CTRL-3 CTRL-3

τ4 Video 4000 µs - - - - - -

- Vid-Msg 4000 µs - - 30 µs RSE - -

- Vid-Thrs 4000 µs 200 µs 200 µs - RSE CTRL- 1-4 CTRL- 1-2

τ5 Audio 84000 µs - 400 µs 30 µs RSE CTRL-3 CTRL-3

Our examples are based on the research presented in (Lim et al., 2011), however the

base scenario and values have been modified with the intention of stressing the system

by increasing the load. It is considered a 100Mb/s Ethernet network and a double-star

topology as the one presented in Fig. 6.4. That configuration simulates the location of the

switches in a car (at the front and at the rear of the car). It is considered that messages

are transmitted using the FTT-SE protocol. The Head-unit ECU operates a set of ECUs

(CRTL-1, CRTL-2, CRTL-3, and CRTL-4). A Rear Seat Entertainment (RSE) system

which manages audio and video applications is also part of the system. It is assumed

that the video application can be processed in parallel. Each EC has a length of 500 µs,

and the reserved bandwidth for the transmission of synchronous messages in each EC is

equal to 80%, ∆ = 1 µs, and the SFDi, j,k = max(WCML). All the traffic is sent using the

reserved bandwidth for synchronous messages within the FTT-SE protocol.

Consider that control applications τ1, τ2, and τ3 are sequential and have an origin

in the Head-Unit and destination in CRTL-1, CRTL-2, and CRTL-3, respectively. All

control messages have the same WCML of 10 µs, they execute on their respective remote

processor with a WCET of 30 µs, and they have a periodicity of 2000 µs. Infotainment

applications τ4 and τ5 are video and audio applications, respectively. The origin of τ4 and

τ5 is the RSE system. It is considered that τ4 is a P/D tasks with a periodicity of 4000 µs,

which is divided in 24 threads (with a remote WCET of 200 µs each) and 48 messages

(with a WCML of 30 µs each). It is considered a D-fork and D-join execution time of

200 µs. 6 P/D threads are assigned to each ECU (from CTRL-1 to CTRL-4). The audio

application τ5 has only one remote thread assigned to CRTL-3 with a WCML of 30 µs, a

WCET of 400 µs, and a periodicity of 8400 µs. It is assumed implicit deadlines (Di = Ti)

for all applications. A summary of the applications characteristics is shown in Table 6.1.

Figure 6.6, shows the WCRT of the applications when calculated with Eq. (6.17). The

dark grey stack represents the gain of considering the pipeline effect (see Section 6.4),

this gain can be subtracted from the WCRT given by Eq. (6.17), to compute an improved

WCRT for a distributed execution path. For this example, the pipeline effect that can

be subtracted from Eq. (6.17) is of 6% and 7% for applications τ4 and τ5, respectively.

102 Holistic Analysis for P/D Tasks using the FTT-SE Protocol

0

1000

2000

3000

4000

W
C

R
T

 (
m

ic
ro

s
e
c
o
n
d
s
)

App τ
1
−τ

3
 App τ

4
 App τ

5

Gain

WCRT − Gain

Figure 6.6: Improved end-to-end WCRT considering the pipeline effect.

Note that in this example, the pipeline effect for application τ4, represents the difference

between meeting or missing its deadline (equal to 4000 µs).

Now, it is showed the usefulness of the DST algorithm. It is possible to see that execut-

ing τ4 sequentially (in a single node) would lead to a deadline miss (200 µs×24 threads

> T4). However, by using the spare capacity of RSE ECU (invoker node) it is possi-

ble to stretch τ4 with the DST and keep as many threads as possible for local execution,

thus, avoiding transmitting over the network. Thus, after applying the DST algorithm,

18 threads out of 24 threads are kept for execution on the RSE ECU. Therefore, 6 P/D

threads are allocated to CTRL-2, satisfying the execution requirements of τ4.

Similarly to Figure 6.6, the dark gray stack in Figure 6.7 represents the gain of consid-

ering the pipeline effect. Figure 6.7 shows the WCRT after applying the DST algorithm

to the same applications as in Figure 6.6. For this example, the pipeline effect for τ4 is

of 13%. Note, that when compared to Figure 6.6 the end-to-end WCRT is shorter. This

effect is related to the lower load of messages in the network after applying the DST

transformation.

0

500

1000

1500

2000

W
C

R
T

 (
m

ic
ro

s
e

c
o

n
d

s
)

App τ
1
−τ

3
 App τ

4
 App τ

5

Gain

WCRT−Gain

Figure 6.7: End-to-end WCRT when using the DST algorithm.

6.6 Assessing of the Gain in the Pipeline Effect 103

6.6 Assessing of the Gain in the Pipeline Effect

The pipeline effect for τ4 in Figure 6.6 and in Figure 6.7 is the same (310 µs), because

Eq. (6.22) and Eq. (6.25) depend on the subset of messages that are transmitted in parallel

with the execution of threads in the remote processors. By observing the gain of τ4 on

those Figures, it is possible to notice that the percentage of the gain varies with respect to

the WCRT of those applications. When not considering the DST the gain is equal to 6%,

but when using the DST the gain increases to 13%, since there are fewer messages being

transmitted to the same nodes.

In order to see the variation of the gain, let us consider the same system characteristics

(systems architecture and applications) as in Section 6.5. Also, consider a load distribu-

tion as the one presented in Figure 6.6. In the experiment presented in Table I, application

τ4 is divided in 24 P/D threads (with a remote WCET of 200 µs each) and 48 messages

(with a WCML of 30 µs each). We vary the number of P/D threads as:

1. 12 P/D threads (with a remote WCET of 400 µs each) and 24 messages (with a

WCML of 60 µs each), 3 threads are executed in each CTRL node;

2. 24 threads (as before); and

3. 48 P/D threads (with a remote WCET of 100 µs each) and 96 messages (with a

WCML of 15 µs each), 12 threads are assigned for execution to each CRTL node.

We consider a D-fork and D-join execution time of 200 µs.

Figure 6.8 shows the WCRT of application τ4 varying the number of P/D threads and

therefore its WCET (WCML for messages). The dark grey stacks represent the gain of

considering the pipeline effect and the light gray stacks represent the gain subtracted from

the WCRT given by Eq. (6.17). It is possible to see for the three cases:

1. 12 P/D threads, the gain is of 250 µs which represents 6% of the WCRT - 4230 µs;

2. 24 P/D threads, the gain is 250 µs which represents 7% of the WCRT (4230 µs);

and

3. 48 P/D threads, the gain is of 340 µs which represents 8% of the WCRT (4230 µs).

Thus, it is possible to conclude that the gain of the pipeline effect depends on the

WCML of the messages and the amount of messages that contribute to Eq. (6.22) and

Eq. (6.25), and that the proportion of such a gain with respect to the WCRT applications in

the system (P/D tasks) depends on all the elements that contribute to its WCRT Eq. (6.1)-

(6.21).

104 Holistic Analysis for P/D Tasks using the FTT-SE Protocol

0

1000

2000

3000

4000

W
C

R
T

 (
m

ic
ro

s
e

c
o

n
d

s
)

θ = 12 θ = 24 θ = 48

Gain

WCRT − Gain

Figure 6.8: Variation over the number of P/D threads.

6.7 Summary

In this chapter it was presented a holistic timing analysis for the computation of the Worst-

Case Response Time (WCRT) of P/D tasks when transformed by the DST algorithm. Both

synchronous and asynchronous communication patterns were considered. The analysis to

consider an FTT-SE transmission network has been extended, and an analysis technique

for reducing the pessimism when computing the WCRT by considering a pipeline in the

transmission over the network and the execution on the processors has been proposed.

Note that the two presented techniques can be used jointly, but they can also be used

independently.

The following publications are related to the work presented in this chapter:

• R. Garibay-Martínez, G. Nelissen, L.L. Ferreira, P. Pedreiras, and L.M. Pinho.

Towards holistic analysis for fork-join parallel/distributed real-time tasks. In Work

in Progress Session (ECRTS), 2014 26th Euromicro Conference on Real-Time Sys-

tems, pages 21–24, July 2014a.

• R. Garibay-Martínez, G. Nelissen, L.L. Ferreira, P. Pedreiras, and L.M. Pinho.

Holistic analysis for fork-join distributed tasks supported by the ftt-se protocol. In

Factory Communication Systems (WFCS), 2015 11th World Conference on, May

2015.

• R. Garibay-Martínez, G. Nelissen, L.L. Ferreira, P. Pedreiras, and L.M. Pinho.

An Improved Holistic Analysis for Fork-Join Parallel Distributed Real-Time Tasks

using the FTT-SE Protocol. Selected as candidate paper for a Special Section of

IEEE Transactions of Industrial Informatics (revision process: second revision).

Chapter 7

Allocation of P/D Tasks in Multi-core

Architectures supported by FTT-SE

Protocol

7.1 Introduction

Works related to the problem of task partitioning and priority assignment on hard real-

time distributed systems are presented in Section 2.4. This chapter considers the problem

of allocating P/D tasks onto distributed multi-core nodes connected through a FTT-SE

network. This is an extension for distributed multi-core systems of the work presented in

(Garibay-Martínez et al., 2014b, 2013b, 2015a) (see Chapter 4 and Chapter 5).

The chapter discusses the system requirements and presents a set of formulations

based on a constraint programming approach. A constraint programming approach al-

lows to express the relations between variables in the form of constraints. This approach

is guaranteed to find a feasible solution, if one exists, in contrast to other approaches based

on heuristics (e.g., the ones presented in Chapter 5). The work presented in this chapter is

supported on results presented in (Metzner and Herde, 2006), with the following specific

characteristics:

i. this work models P/D tasks executing over a distributed multi-core architecture, and;

ii. it considers messages being transmitted through a FTT-SE network.

Furthermore, similar approaches based on constraint programming have shown that

it is possible to obtain solutions for these type of formulations in reasonable time (Zhu

et al., 2013; Metzner and Herde, 2006).

The constraint programming formulation is introduced in Section 7.2 which addresses

issues related to consider P/D tasks, the constraints related to the partitioned approach and

105

106 Allocation of P/D Tasks in Multi-core Architectures supported by FTT-SE Protocol

it also addresses the modelling constraints of the FTT-SE network. Finally, a summary of

the chapter is provided in Section 7.3.

7.1.1 Chapter Considerations

This chapter considers that the set π is composed of m multi-core nodes to execute tasks.

Each node πp (p ∈ {1, . . . ,m}) is composed of mp identical cores πp,s (s ∈ {1, . . . ,mp}).

The total number of cores in the system is therefore equal to mtot = ∑πp,s∈π mp. The

processing nodes are interconnected by an FTT-SE network ϖ .

Note that the decision variables of the formulation are type setted. For example, the

deadline of a segment σi, j is denoted as di, j, but in this formulation is a decision variable

of the problem, therefore, it is denoted as di,j.

7.2 Constraint Programming Formulation

As discussed in Chapter 5. The problem of task allocation can be seen as a two-sided

problem:

i. finding the partitioning of threads and messages onto the processing elements of the

distributed system, and

ii. finding the priority assignment for the threads and messages in that partition so that

the real-time tasks and messages complete their execution before reaching their re-

spective end-to-end deadlines.

In this section the system requirements are analysed and a constraint programming

formulation is provided.

7.2.1 P/D Tasks

In a similar manner as in Chapter 4, in this chapter threads composing a P/D task are

transformed into a set of tasks with constrained deadlines. This transformation is based

on the imposition of a set of artificial intermediate deadlines (denoted as di,j), to threads

θi, j,k and messages µi, j,k in each segment σi, j composing a task τi.

The following two constraints must be associated to each intermediate deadline di,j:

• Even if all threads execute in parallel, the relative deadline di,j cannot be smaller

than the maximum WCET of a thread in that segment, thereby imposing that:

∧

∀τi∈T

∧

∀σi, j∈τi

di,j ≥ max
k ∈ σi, j

{Ci, j,k}. (7.1)

7.2 Constraint Programming Formulation 107

• The total execution granted to all segments constituting a task τi must be smaller or

equal than the relative deadline of τi, that is:

∧

∀τi∈T

∑
∀σi, j∈τi

di,j ≤ Di. (7.2)

Thus, the artificial deadline di,j is the maximum time that threads of a segment σi, j are

permitted to take, from the moment they are released, to the moment they complete their

execution. Therefore, the problem can be formulated as to find the artificial intermediate

deadlines di,j for every segment σi, j, in a way that the Worst-Case Response Time (WCRT)

of threads θi, j,k (and messages µi, j,k) is smaller or equal to their respective intermediate

deadlines and the sum of such intermediate deadlines is smaller or equal to its end-to-end

deadline Di. More constraints are presented in Sections 7.2.2 and Section 7.2.3.

7.2.2 Fully-Partitioned Distributed Multi-core Systems

It is assumed a fixed-priority fully-partitioned scheduling algorithm, it is also assumed

that each core in the system (regardless the processing node they are part of) is assigned

a unique identifier in the interval [1,mtot]. An integer variable Πθi,j,k is defined, indicating

the identifier of the core on which the thread θi, j,k is mapped. By definition of the core

identifier, the following constraints apply:

Πθi,j,k > 0, (7.3)

Πθi,j,k ≤ mtot . (7.4)

A constraint of the P/D task model is that all sequential segments of a task τi must execute

on the same core πr,s. This is imposed by Eq. (7.5):

∧

∀θi,2 j+1,1∈T

∧

∀θi,2b+1,1∈T

Πθi,2j+1,1
= Πθi,2b+1,1

. (7.5)

The variable pi,j,k denotes the priority of a thread θi, j,k. Although pi,j,k could be a decision

variable of the problem for which the solver should find a valid value, in a concern of

drastically reducing the number of variables and therefore the complexity of the problem,

one may also assume that priorities are assigned using DM (Leung and Whitehead, 1982).

In that case pi,j,k = di,j, and pi,j,k can be omitted in the description of the problem. Yet,

it is necessary to evaluate if a certain partitioning leads to a valid solution. It is known

from (Joseph and Pandya, 1986), that the worst-case response time ri,j,k of an independent

108 Allocation of P/D Tasks in Multi-core Architectures supported by FTT-SE Protocol

thread θi, j,k scheduled with a preemptive fixed-priority scheduling algorithm, is given by:

ri,j,k =Ci, j,k + ∑
θa,b,c∈HPi,j,k

⌈

ri,j,k

Ta

⌉

Ca,b,c,

where HPi,j,k is the set of threads with higher or equal priority than θi, j,k, and executing

on the same core than θi, j,k.

One of the challenges of using a constraint programming approach it to formulate

conditions without complex operators (e.g., ceiling functions). Therefore, the previous

example can be modelled in the constraint problem as:

∧

∀θi, j,k∈T

ri,j,k =Ci, j,k + ∑
∀θa,b,c∈T

IHP
a,b,c
i,j,k , (7.6)

where IHP
a,b,c
i,j,k is the interference caused by a thread θa,b,c on θi, j,k.

The higher priority relation is represented by the following boolean variable:

p
a,b,c
i,j,k =







1 if θa,b,c has higher priority than θi, j,k (i.e., pi,j,k ≤ pa,b,c),

0 otherwise.

Because Πθi,j,k = Πθa,b,c indicates that the thread θi, j,k and the thread θa,b,c execute on

the same core. Thus, the interference over a thread θi, j,k depends of two cases, if they

execute in the same core, or not. This is expressed as:

∧

∀θi, j,k∈T

∧

∀θa,b,c∈T

IHP
a,b,c
i,j,k =







I
a,b,c
i,j,k ×Ca,b,c if

(

(pa,b,ci,j,k = 1)∧ (Πθi,j,k =Πθa,b,c)
)

,

0 otherwise,
(7.7)

where I
a,b,c
i,j,k is the number of preemptions a thread θi, j,k suffers from a thread θa,b,c. Since

I
a,b,c
i,j,k is an integer, the ceiling operator can be rewritten as follows:

⌈

ri,j,k

Ta

⌉

= I
a,b,c
i,j,k =⇒

ri,j,k

Ta
≤ I

a,b,c
i,j,k <

ri,j,k

Ta
+1,

thereby, leading to the following constraints:

∧

∀θi, j,k∈T

∧

∀θa,b,c∈T

(Πθi,j,k = Πθa,b,c) → (Ia,b,ci,j,k ×Ta ≥ ri,j,k)

∧
(

(Ia,b,ci,j,k −1)×Ta < ri,j,k

)

,

(7.8)

∧

∀θi, j,k∈T

∧

∀θa,b,c∈T

(Πθi,j,k 6= Πθi,j,k) → I
a,b,c
i,j,k = 0. (7.9)

7.2 Constraint Programming Formulation 109

Furthermore, in the P/D task model, some threads within a P/D segment may be ex-

ecuted on remote nodes. Consequently, for each such thread θi, j,k, two messages µi, j−1,k

and µi, j,k are transmitted between the invoker and remote node. That is, a distributed

execution path is generated (µi, j−1,k→ θi, j,k→ µi, j,k).

NV(θi,j,k) is a function denoting to which node πq a thread θi, j,k has been assigned.

Then, NV(θi,j,k) = NV(θa,b,c) indicates that the threads θi, j,k and θa,b,c execute on the

same node, in which case no message is transmitted through the network. However,

if NV(θi,j,k) 6= NV(θa,b,c), two messages µi, j−1,k and µi, j−1,k are generated. Thus, the

WCRT rDPi,j,k
of a distributed execution path DPi, j,k is calculated as follows:

∧

∀µi, j,k∈T

∧

∀θi, j,k∈T

rDPi,j,k
=







r
msg
i,j−1,k+ ri,j,k+ r

msg
i,j,k if NV(θi,j,k) 6= NV(θa,b,c),

ri,j,k otherwise,
(7.10)

where ri,j,k is the WCRT of thread θi, j,k obtained with Eq. (7.6), and r
msg
i,j−1,k and r

msg
i,j,k are the

WCRTs of messages µi, j−1,k and µi, j,k respectively, obtained with a network dependent

analysis (as the one presented in Section 7.2.3). Similarly to previous chapters, in this

chapter it is considered the network analysis presented Section 6.2 for FTT-SE networks.

For a partition of tasks τi to be considered a valid solution (all deadlines are met), the

following condition has to be respected:

∧

∀θi, j,k∈T

rDPi,j,k
≤ di,j. (7.11)

7.2.3 FTT-SE Protocol

The communications within a FTT-SE network are done based on fixed duration slots

called Elementary Cycles (ECs). The construction of the EC schedule is done by keeping

updated tables for synchronous (i.e., periodic) and asynchronous (i.e., sporadic) messages.

The scheduler applies a scheduling policy (e.g., Deadline Monotonic) over these tables,

generating the ready queues for transmission for that EC. This process is repeated until

no other message fits in its respective scheduling window for that EC (i.e., considering all

messages from higher to lower priority). More details about the FTT-SE protocol can be

found in Section 6.2. For building the ECs it is important to consider:

i. the architecture of the distributed system: for convenience, in this chapter the system

architecture is represented as an adjacency-matrix of a graph G = (V,E). The set

V = {v1, . . . ,v|V |} of vertices vi represents the set of switches in ϖ and the set of

nodes in π , and the set E = {(v1,v2), . . . ,(v|V |−1,v|V |)} of edges (vi,v j), represent

the communication links, from nodes to switches, from switches to nodes or between

110 Allocation of P/D Tasks in Multi-core Architectures supported by FTT-SE Protocol

switches. The main reason behind that is the use of the Breadth First Search (BFS)

algorithm. The architectural model must include the full-duplex transmission links.

Note that:

(a) direct links between nodes do not exist,

(b) links are directed; that is, (vi,v j) and (v j,vi) represent two different links, and

(c) the network is full-duplex; that is, if (vi,v j) is part of the graph, then (v j,vi) is

also part of the graph.

Thus, the adjacency matrix representation of a graph G consists of a |V |× |V | matrix

A = (ai, j) such that:

ai, j =







1 if (vi,v j) ∈ E,

0 otherwise,

depending on the partitioning of threads onto the nodes πl of the system, there exists

a set PNµi,j,k
⊆V containing the vertices (i.e., switches) that a message µi, j,k traverses

during a D-fork or a D-join operation. For determining PNµi,j,k
, the BFS Algorithm

(Cormen et al., 2001) is used for each message µi, j,k. The BFS inputs are: the matrix

A (representing the system architecture), the origin vertex (invoker core/remote core),

and the destination vertex (the remote core/invoker core). The BFS finds the shortest

path from the origin node to the destination node (See Algorithm 3.5). Therefore, the

BFS algorithm finds the switches that a message µi, j,k crosses during a D-fork or a

D-join operation. The set PNµi,j,k
is required for computing the WCRT of a message

µi, j,k in the FTT-SE network.

ii. the switching delays: it is considered a switching delay (denoted as SDi,j,k) when a

message µi, j,k crosses a switch SWx. SDi,j,k has two components, the switch relaying

latency (denoted as ∆), which has a constant value related to the specifications of

the switch, and the Store-and-Forward Delay (denoted as SFDi,j,k), i.e., SDi,j,k =

SFDi,j,k+∆. However, for each EC, only the maximum switching delay SDi,j,k is

considered.

iii. the EC windows: the EC is subdivided into time slots for transmitting different types

of traffic (e.g. synchronous window, asynchronous window, etc.). Thus, one must

consider the length of the specific transmission window for each type of traffic (de-

noted as LW). The length of such a window is the reserved bandwidth for trans-

mission in that EC, and cannot be exceeded when transmitting messages within the

FTT-SE protocol. This is modeled by the request bound function in Eq. (7.12), and

the supply bound function in Eq. (7.17), presented in the following.

7.2 Constraint Programming Formulation 111

7.2.3.1 Response Time Analysis for FTT-SE networks.

Depending on a given partition, it is required to calculate the WCRT of the messages in

the network to verify if the condition in Eq. (7.11) is respected. The work presented in

(Ashjaei et al., 2013) is used for the computation of the WCRT of messages within the

FTT-SE protocol, with a slight modification.

The request bound function (denoted as rbfi,j,k(t)) represents the maximum trans-

mission requirements generated by a message µi, j,k and all its higher priority messages

during an interval [0, t]. The rbfi,j,k(t) is computed as:

∧

∀µi, j,k∈T

rbfi,j,k(t) = Mi, j,k + sni,j,k×SFDi,j,k+Wli,j,k(t)+Wri,j,k(t), (7.12)

where, sni,j,k is the number of switches that a message µi, j,k traverses from the origin node

to its destination node, Wli,j,k(t) is the “Shared Link Delay”, and Wri,j,k(t) is the “Remote

Link Delay”, which are explained below.

Shared Link Delay. The transmission of a message µi, j,k may be delayed by all the

higher priority messages that share a link with µi, j,k. However, such interference oc-

curs only once, so messages that caused such interference on a previous link are ex-

cluded from the analysis for the next links. Also, when building the schedule for each

EC, the scheduler considers the maximum switching delay SDz (see Eq. (7.14)), only

once. Therefore, Wli,j,k(t) is computed by separating the interference of messages from

the switching-delay-effect (denoted as Isi,j,k(t)) for each EC. The shared link delay is com-

puted in (7.13):

Wli,j,k(t) = ∑
∀µa,b,c∈SLDi,j,k

⌈

t

Ta

⌉

Ma,b,c + Isi,j,k(t), (7.13)

where SLDi,j,k = {∀µa,b,c : µa,b,c 6= µi, j,k ∧ (PNµi,j,k
∩PNµa,b,c

6= 0)∧ µa,b,c ∈ hp(µi,j,k)∧

µa,b,c ∈WT (µi, j,k)}, where, hp(µi,j,k) is the set of messages with priority higher or equal

than µa,b,c and WT (µi, j,k) is the set of messages that are scheduled in the same window as

µa,b,c (i.e. the synchronous or the asynchronous window). The set hp(µi,j,k) for messages

µi, j,k in Eq. (7.13), as well as the ceiling function, can be formulated in a similar manner

as in Section 7.2.2.

For computing the switching-delay-effect Isi,j,k(t), it is needed to compute an upper

bound on the number of switching delays (SDi,j,k) from each message that contributes to

Eq. (7.13), at time t. In (Ashjaei et al., 2013), depending on time t, a number of switching

delays are inserted into an array whenever a message crosses a switch in the network.

The array is sorted in order to consider the maximum switching delays only. A sorting

112 Allocation of P/D Tasks in Multi-core Architectures supported by FTT-SE Protocol

operation is not amenable to optimization solvers. Therefore, a simpler upper bound with

the cost of slightly increment the pessimism is introduced.

The number of ECs in an interval [0, t] is given by: z(t) =
⌈

t
EC

⌉

(the ceiling function,

can be formulated as in Section 7.2.2), thus, in order to consider the worst-case scenario

for the computation of the WCRT, the maximum switching delay (SDmax
i,j,k) for each mes-

sage that contributes to Eq. (7.13) it is considered, and computed as:

SDmax
i,j,k = max

∀µa,b,c∈SLDi,j,k

{SFDi,j,k+∆}. (7.14)

Then, the maximum switching delay is multiplied by the number of ECs at time t

(given by z(t)). Thus, the switching-delay-effect is computed as:

Isi,j,k = SDmax
i,j,k × z(t). (7.15)

Remote Link Delay. A message µi, j,k can be blocked by other higher priority messages

even if they do not share a transmission link. Thus, a higher priority message can delay a

lower priority message even though they do not share a transmission link (Ashjaei et al.,

2013). Therefore, to compute the worst-case remote link delay, it is needed to consider

all messages that share links with the messages that contributed to the shared link delay

(see Eq. (7.13)), excluding all messages that are already considered in Eq. (7.13). Hence:

Wri,j,k(t) = ∑
∀µp,q,r∈RLDi,j,k

⌈

t

Tp

⌉

Mp,q,r (7.16)

where, RLDi,j,k = {∀µp,q,r : µp,q,r 6= µa,b,c 6= µi, j,k∧ (PNµp,q,r
∩PNµa,b,c

6= 0)∧ (PNµp,q,r
∩

PNµi,j,k
= 0)(PNµa,b,c

∩PNµi,j,k
6= 0)∧µp,q,r ∈ hp(µa,b,c)∧µp,q,r ∈WT (µa,b,c)}.

The request bound function is compared with the supply bound function (denoted as

sbfi,j,k(t)). The supply bound function represents the minimum effective communication

capacity that the network supplies to a message µi, j,k during the time interval [0, t]. In

each EC, the bandwidth provided for transmitting each type of traffic (e.g., synchronous

or asynchronous traffic) is equal to
(LW−I)

EC
, where LW is an input and represents the length

of the specific transmission window and I is the maximum inserted idle time of such

window. The inserted idle time results from the fact that the maximum window duration

cannot be exceeded.
∧

∀µi, j,k∈T

sbfi,j,k(t) = (
LW − I

EC
)× t. (7.17)

Then, the response time of a message µi, j,k is computed by introducing a new variable

7.2 Constraint Programming Formulation 113

ti,j,k such that:
∧

∀µi, j,k∈T

ti,j,k > 0, (7.18)

∧

∀µi, j,k∈T

sbfi,j,k(ti,j,k)≥ rbfi,j,k(ti,j,k). (7.19)

Since it is not possible to determine the specific time of transmission of messages

inside an EC, the computation of the WCRT for a message µi, j,k is rounded to a multiple

of ECs, thus the WCRT of a message µi, j,k is given by:

∧

∀µi, j,k∈T

r
msg
i,j,k =

⌈

ti,j,k

EC

⌉

×EC. (7.20)

7.2.4 Constraint Satisfiability

The constraints sketched above are a combination of linear and non-linear constraints

over a set of integer and boolean variables. This implies the use of extremely powerful

optimization methods. It has been shown (e.g., (Metzner and Herde, 2006)) that such

type of optimization problems are not amenable for conventional numerical optimization

solvers. However, for real-time purposes, a correct solution is obtained by guaranteeing

that all the constraints are satisfied, regardless of the value of a given objective function.

Thus, the optimization problem gets reduced to a Satisfiability (SAT) problem, in which

solutions can be obtained in reasonable time (Metzner and Herde, 2006). The constrains

and optimization variables are summarized in the following.

7.2.4.1 Constraints Summary.

A set of P/D tasks τi is converted into a set of independent sequential tasks, by imposing

a set of artificial intermediate deadlines. The constraints for intermediate deadline are

presented in Eq. (7.1) and Eq. (7.2). A valid partition, in which all threads respect their

intermediate deadlines di,j, is constrained with Eq. (7.5) and Eq. (7.6). The WCRT of

a distributed execution path (DPi, j,k) depends on where the threads in a P/D segment are

executed (i.e., locally or remotely), that is modeled in Eq. (7.10). If threads θi, j,k are

executed remotely, the WCRT of messages transmitted through an FTT-SE network has

to be considered. That is modeled with Eqs. (7.18)-(7.19). Finally, all tasks have to

respect the condition in Eq.(7.11).

The system constraints are summarised in the following:

∧

∀τi∈T

∧

∀σi, j∈τi

di,j ≥ max
k ∈ σi, j

{Ci, j,k},

114 Allocation of P/D Tasks in Multi-core Architectures supported by FTT-SE Protocol

∧

∀τi∈T

∑
∀σi, j∈τi

di,j ≤ Di,

Πθi,j,k > 0,

Πθi,j,k ≤ mtot ,

∧

∀θi,2 j+1,1∈T

∧

∀θi,2b+1,1∈T

Πθi,2j+1,1
= Πθi,2b+1,1

,

∧

∀θi, j,k∈T

ri,j,k =Ci, j,k + ∑
∀θa,b,c∈T

IHP
a,b,c
i,j,k ,

∧

∀θi, j,k∈T

∧

∀θa,b,c∈T

IHP
a,b,c
i,j,k =







I
a,b,c
i,j,k ×Ca,b,c if

(

(pa,b,ci,j,k = 1)∧ (Πθi,j,k =Πθa,b,c)
)

,

0 otherwise,

∧

∀θi, j,k∈T

∧

∀θa,b,c∈T

(Πθi,j,k = Πθa,b,c) → (Ia,b,ci,j,k ×Ta ≥ ri,j,k)

∧
(

(Ia,b,ci,j,k −1)×Ta < ri,j,k

)

,

∧

∀θi, j,k∈T

∧

∀θa,b,c∈T

(Πθi,j,k 6= Πθi,j,k) → I
a,b,c
i,j,k = 0.

∧

∀µi, j,k∈T

∧

∀θi, j,k∈T

rDPi,j,k
=







r
msg
i,j−1,k+ ri,j,k+ r

msg
i,j,k if NV(θi,j,k) 6= NV(θa,b,c),

ri,j,k otherwise,

∧

∀θi, j,k∈T

rDPi,j,k
≤ di,j.

∧

∀µi, j,k∈T

rbfi,j,k(t) = Mi, j,k + sni,j,k×SFDi,j,k+Wli,j,k(t)+Wri,j,k(t),

∧

∀µi, j,k∈T

sbfi,j,k(t) = (
LW − I

EC
)× t.

∧

∀µi, j,k∈T

ti,j,k > 0,

∧

∀µi, j,k∈T

sbfi,j,k(ti,j,k)≥ rbfi,j,k(ti,j,k).

∧

∀µi, j,k∈T

r
msg
i,j,k =

⌈

ti,j,k

EC

⌉

×EC.

7.3 Summary 115

7.3 Summary

In this chapter the formulations for modelling the allocation of P/D tasks in a distributed

multi-core architecture supported by an FTT-SE network was introduced, by using a con-

straint programming approach. The constraint programming approach is guaranteed to

find a feasible allocation, if one exists, in contrast to other approaches based on heuristic

techniques. Furthermore, similar approaches based on constraint program have shown

that it is possible to obtain solutions for these formulations in reasonable time.

The following publication has been derived from the research related to this chapter:

• R. Garibay-Martínez, G. Nelissen, L. L. Ferreira, and L. M. Pinho. Allocation of

parallel real-time tasks in distributed multi-core architectures supported by an ftt-

se network. In Luís Miguel Pinho Pinho, Wolfgang Karl, Albert Cohen, and Uwe

Brinkschulte, editors, Architecture of Computing Systems – ARCS 2015, volume

9017 of Lecture Notes in Computer Science, pages 224–235. Springer International

Publishing, 2015.

116 Allocation of P/D Tasks in Multi-core Architectures supported by FTT-SE Protocol

Chapter 8

Simulations and Experimental

Evaluation

8.1 Introduction

This chapter presents some simulations and a experimental evaluation of the concepts

presented in previous chapters. Section 8.3 introduces a simulator for P/D tasks that con-

siders a FTT-SE network (Oliveira, 2015; Oliveira et al., 2015). The simulator is based

on the ns-3 (network simulator version 3) which is introduced in Section 8.2. In Sec-

tion 8.5 the Parallel/Distributed Real-Time (PDRT) library is introduced. The objective

of presenting the PDRT library is to demonstrate that it is possible to implement the P/D

task model in real systems. Finally, the results from the experimental evaluation are com-

pared with the results obtained by simulation and with the timing analysis presented in

this dissertation.

8.2 A brief Description of ns-3

This section presents a brief description of the Network Simulator version 3 (ns-3) archi-

tecture. The main objective is to introduce the super classes from ns-3 that are extended in

the implementation of the FTT-SE protocol simulator and the P/D tasks execution model.

The ns-3 is an open source network simulator based on C++. Its design is based

on modules which allow the efficient re-use of code. Figure 8.1 shows the organiza-

tion of such modules. The core and network modules implement generic component

that can be used with any network configuration. The modules on the upper layer, im-

plement more specific functionalities. The Internet module implements the ARP, IPv4,

IPv6, TCP e UDP protocols. The Applications module implement the applications that

generate traffic on the network (e.g., UdpClient, UdpServer, UdpEchoClient,

UdpEchoServer, OnOffApplication and PacketSink). The Devices module

117

118 Simulations and Experimental Evaluation

����

�

������

������� ��	�
�
��	

�����
��	
�

	��
���

��������	���	��

����

�����������	
����

�

��
����
���������
�

���������
�
������

��������������
�

�
�������
�������

	���
�������

�����

����� ��

!�����
��������

"�����

"������!��

"�����������

"���#�
��� $����	
�����

���
��������

�����������������%�������
��!
�����

&������������
�
��������������������������'������

���
�� ��
������������������������(������)�
�����

*�������

*��&����� �+%

���
�

�����

�,"�-����%�������

. � �

��������+%

,"�-#,"�/��+%

"������
�����

�+%�
����
�$�
�0��
�
������
�����

1

���������

Figure 8.1: ns-3 modules (ns 3, 2015).

implement the network protocols like: CSMA, Wi-Fi, Point-to-Point, etc. ns-3 also pro-

vides specific helpers to each module which help on the configuration of such modules.

ns-3 simulations are based on discrete events, that is, events are executed from the

beginning to the end and scheduled before the execution of the next event. In an ns-3

simulation there are fundamental elements: Nodes, Applications, Sockets, NetDevices,

Channels and Packets.

Figure 8.2 provides a simplified class diagram (omitting the attributes and methods of

the classes) and shows the relations between the main classes of the ns-3 simulator. Some

of the main classes are described in the following:

• Node. An object of the class node represents a processing node belonging to the

network. An object node contains a list of installed Applications which commu-

nicate through the implementation of Sockets. An object node also has a list of

NetDevices that are installed in the node. Two of the most relevant methods in this

class are:

– AddApplication: this method installs an application in the node;

– AddDevice: this method associated a network interface to a node.

• Application. All applications in ns-3 are implemented based on this class.

The programmer defines in this class the attributes, for example, StartTime and

StopTime, which specify the time instant at which an application starts and fin-

ishes, respectively. These attributes are used by the following methods:

– StartApplication: this method is called by the StartTime attribute,

and defines the time at which an application starts;

8.2 A brief Description of ns-3 119

������ ���� 	

���
�����

�
���������� ��������� ���
���������

��
���� ���
��
����

�
����

�������

�������

�������

�������

�������

���������������������

�������

������� �������
�������

������� �������

Figure 8.2: ns-3 standard classes.

– StopApplication: this method is called by the StopTime attribute, and

defines the time at which an application stops.

• Socket. This is a class based on Berkeley sockets. It implements the transport

protocols (layer 4 of the OSI model), for example, TCP or UDP. The more utilised

methods of this class are:

– Bind: this method associates an address to a socket;

– Connect: this method initiates the connection between a socket and the des-

tination address;

– Recv: this method reads data from its associated socket;

– Send: this method sends Packets to a remote node.

There are different implementations of Sockets in ns-3, but all the implementations

inherit the attributes and methods of that class. Some of the more relevant imple-

mentations of the Socket class are:

– TcpSocket: implements a Socket for communications based on the TCP

protocol;

– UdpSocket: implements a Socket for communications based on the UDP

protocol;

– PacketSocket: implements a Socket that allows the communication be-

tween an Application and a NetDevice in the node.

120 Simulations and Experimental Evaluation

• NetDevice. This class is an interface that describes how the third layer of the

OSI model interacts with the second layer of the OSI model. All implementations

of the class NetDevice emulate a real network device. Some of the most notable

methods of the class NetDevice are:

– Send : this method is in charge of sending packets thought the NetDevice;

– SetReceiveCallback: this function is in charge of associating a Recei-

veCallback to a NetDevice. This means, that every time a Packet reaches a

NetDevice, the ReceiveCallback is executed.

Some examples of relevant NetDevices for this work are:

– CsmaNetDevice: implements a network interface for the communications

that use the CSMA implemented in Ethernet (IEEE 802.3);

– WifiNetDevice: this device emulates the interface of the IEEE 802.11 stan-

dard.

• Channel. This is a superclass that implements the network Channels. The class

Channel implements the connection between the interfaces (i.e., NetDevices) of

the nodes in the network and the channels in the network (e.g., if a CsmaNetD-

evice is considered, the channel should be a CsmaChannel). Some examples of

Channel types are:

– CsmaChannel: implements the Chanel between two nodes in a CSMA (i.e.,

Ethernet) network;

– WifiChannel: it implements the physical properties of a Wi-Fi network.

• Packet. This implements a packet on the network. It contains a buffer, a set of

byte tags, and a set of packet tags. The buffer contains the serialised information of

a Packet (e.g., headers, trailers, data, etc.) which allows the proper modelling of a

certain protocol (e.g., FTT-SE protocol).

8.3 Implementation of the FTT-SE Protocol and P/D Ex-

ecution in ns-3

The FTT-SE protocol considers full-duplex links, but the current standard implementation

of ns-3 does not provide full-duplex channels by default. In order to support full-duplex

Ethernet communications, the patch Rietveld-Code-Review-Tool (2015) had to be applied

to the CsmaNetDevice and the CsmaChannel classes.

8.3 Implementation of the FTT-SE Protocol and P/D Execution in ns-3 121

8.3.1 Analysis of Requirements

The analysis of requirements is based on the study of (Marau, 2009) and on the require-

ments of P/D applications (presented in this dissertation). The functional requirements of

the simulator are:

• Master node. The master application simulates the Master node within the FTT-SE

protocol. The master node is in charge of coordinating and scheduling the traffic

to be transmitted through the network. A fundamental functionality of the Master

node is to build the TM.

• Slave node. The slave application simulates a Slave node within the FTT-SE proto-

col. The Slave nodes transmit streams (messages) as indicated by the TM sent by

the Master node. The Slave nodes implement the sending of Signalling messages

whenever asynchronous traffic is considered.

• Plug-and-play (PnP) mechanism. In the FTT-SE protocol, the Master and Slave

applications have to be registered. The PnP mechanism is in charge of registering

the Master and Slave applications.

• Message scheduling. The master application is in charge of scheduling the mes-

sages to be transmitted in each EC. Thus, the master node is the message scheduler

that builds the TM in each EC.

• Trigger Message (TM). The information about which messages to transmit over the

network is indicated though the TM.

• Transmission of synchronous and asynchronous traffic. Each application has to gen-

erate (publish) and transmit traffic (or streams) to the receiving nodes (subscribers).

The asynchronous traffic can be divided into three subtypes: hard real-time, soft-

real-time and best-effort traffic.

• Fork-Join Parallel-Distributed Applications. Perform simulations based on the

Fork-Join Parallel/Distributed model (Chapter 3). The P/D task model consid-

ers time-triggered (synchronous transmissions) and event-triggered (asynchronous

transmissions).

• Calculating the offset for synchronization. When considering P/D tasks based on

the time-triggered (synchronous traffic) paradigm, the Master node has to calculate

a synchronous offset that tells when the message associated to a D-Join can be

transmitted. This offset is based on the WCRT presented in Section 6.3.

122 Simulations and Experimental Evaluation

• Task processing. It simulates the processing of tasks in uniprocessor systems.

• Exporting the results. It exports the results of the simulations to text files, creating

one file per each existing stream during the simulations.

• Helper. A helper facilitates the configuration (i.e. defining the architecture) of an

FTT-SE network. It considers sequential messages and P/D tasks.

The non-functional requirements are related to the attributes and restrictions of the

software. Some of of such requirements are:

• Usability. Easy to configure atributes and values for a simulation, start the simula-

tion and obtain results of such simulation.

• Implementation. The chosen language for implemetation is C++, since the ns-3

simulator is based on C++.

8.3.2 Implemented Classes and Functionality

The simulator is implemented based on the Applications class of ns-3. An FTT-SE

Master application and a set of FTT-SE Slave applications are derived from that class.

Figure 8.3 shows a simplified class diagram of this implementation (Oliveira et al., 2015).

In Figure 8.3 it is possible to observe the FttseMaster class representing the Mas-

ter node application, the class FttseSlave defines the characteristics of a Slave node

application, the FttseStream class models the characteristics of the streams that are

interchanged between the Slave node applications. The Class SrdbNrdb represents the

data base containing streams that are part of the Master node and Slave node applications.

Each application FttseSlave has an object of the class Task which represents a P/D

������ ����

	

���
�����

�
����������

���������

���������	
��

��
����

���
��
����

�
����

�������

�������

�������

�������

�������

�������

�������

�������

�������

�������

�������

�������

�������

�������

������
����

��������

�������
��

���������
�

��������
��

�
��

�������

�������

�������

�������

�������

�������

�������

�������

��
�������������������

��
��
����������

��������

Figure 8.3: ns-3 implemented modules.

8.3 Implementation of the FTT-SE Protocol and P/D Execution in ns-3 123

thread executing on a Slave application. Finally, the class FttseHelper is a helper that

provides the necessary methods to configure the network topology and its parameters.

A brief description of functionalities of the implemented classes is presented in the

following:

• FttseMaster. This class simulates the behaviour of the Master node in the FTT-

SE protocol and it is extended from the class Applications from ns-3. The main

implemented functionalities are:

– Register of streams during the Plug-and-Play phase;

– Scheduling of the traffic, given a certain scheduling policy;

– Sending the TM which contain the transmission schedule for that EC;

– Calculating the synchronization offsets for the synchronous communications

used by the P/D tasks.

This class defines the characteristics of the network (e.g. the duration of the EC and

its respective sub-windows).

• FttseSlave. This class simulates the behaviour of the Slave nodes in the FTT-

SE protocol. Similarly to the FttseMaster, the FttseSlave it is also extended

from the Applications class of ns-3. It is important to recall that the FTT-SE Pro-

tocol is based on the producer/consumer paradigm. The main functionalities of the

FttseSlave class are:

– Request for registration of streams during the Plug-and-Play phase;

– Sending Signalling Messages to inform their intentions of transmission;

– Sending synchronous and asynchronous messages;

– Simulating the concurrent execution of threads, by considering a processing

node composed of a single processor.

• FttseStream. This class simulates a stream in the FTT-SE protocol. It is used to

define the type of traffic to be transmitted (e.g. synchronous, asynchronous, best-

effort), the size of the messages, the WCML of the message, period, and deadline.

Those, characteristics are used by the Master node to schedule the traffic in the

network.

• SrdbNrdb. This class simulates the data base that are kept in the nodes of the FTT-

SE protocol containing the set of streams to be transmitted. There are two different

124 Simulations and Experimental Evaluation

types of data bases the ones in the Slave nodes containing the messages that have

to compete for transmission, and the one kept in the Master node that aggregates

the competing messages from all Slave nodes.

• Task. This class defines the tasks that are executed on the Slave nodes. It indicates

the WCET of the task instance and simulates its execution and the scheduling policy

of the Slave node.

• FttseHelper. This class has the objective of helping on network setup, thus, it

starts the parameters of the network. Such parameters include: the EC size, the

size of the sub-windows in the EC, the reserved time for the Signalling Window

and the number of switches used in the simulation. The main functionalities of the

FttseHelper are:

– Installing the FttseMaster application in the master node;

– Configuring the communications between the slave nodes (e.g. indicating the

origin and destination of streams (messages) in the network).

8.4 Simulation Results of the ns-3 Module Implementa-

tion

In this section we evaluate the performance of an FTT-SE network through a series of

simulations based on the implementation described in Section 8.3. These experiments

are inspired on research presented in (Lim et al., 2011) in which automotive applications

are considered. In Section 8.4.1 the evaluation of the transmission of messages within

the FTT-SE protocol is presented and the evaluation of the execution of P/D tasks is

shown in Section 8.4.2. The objective of these experiments is to show how different

parameters chosen in the configuration of the FTT-SE network can affect the response

time of messages and therefore the execution of P/D tasks.

8.4.1 Evaluating the Transmission of Messages

Figure 8.4 shows a system architecture that is used on the experiments presented in this

section. It is assumed that all links in the network are full-duplex and have a capacity

of 100Mb/s. The Maximum Transmission Unit (MTU) of the network is fixed to 1400

Bytes.

In this section it is evaluated the effect of the parameters of the FTT-SE network on

the response time of messages. There are four categories of messages that are considered:

8.4 Simulation Results of the ns-3 Module Implementation 125

��
��
��
��
��
��
��
��
��
��

����

���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���

���

���
���
���
���
���
���
���
���

���	�

���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���

���������	

�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������

���
����������������������������������
����������������������������������
����������������������������������
���������������������������������� ��
���

���
���
���
���
���
���
���
���

��������	

��
��
��
��
��
��
��
��
��
��

���

���
���
���
���
���
���
���

��	��

��
��
��
��
��
��
��
��
��
��

����

�����	��

Figure 8.4: Simulated automotive architecture for the evaluation of message transmis-

sions.

control, navigation, multimedia (which include video and audio), and TV (which include

video and audio). Messages have implicit deadlines (i.e. Di = Ti).

8.4.1.1 Synchronous Messages

The characteristics of the synchronous messages are as follows. There are two control

messages µ1 and µ2 with origin in the CTRL-1 ECU producing a 64 bytes message with

a WCML of 7 µs and a period of 11 ECs. In the case of message µ1, the destination node

is the CTRL-2 and µ2 has as destination the Rear Seat Entertainment (RSE) node. The

navigation message µ3, has an origin in the Head-Unit (HU) and sends a message to the

RSE of 5000 bytes with a WCML of 406 µs and a period of 100 ECs. The multimedia

messages µ4 (Video) and µ5 (Audio) send streams of 1400 bytes with a WCML of 114 µs

which has an origin in the Multimedia node and is sent to the RSE node. The Video

message has a period of 1 EC and the Audio message has a period of 2 ECs. Messages

µ6 (Video) and µ7 (Audio) produce data for the TV node. Both send messages of 1400

bytes with a WCML of 114 µs. The origin of messages µ6 and µ7 is the TV node, they

are sent to the HU node. µ6 and µ7 have a periodicity of 2 ECs and 3 ECs, respectively.

The characteristics of the applications are summarised in Table 8.1.

For this experiments the characteristics of the FTT-SE network are: the EC is fixed

with a duration of 1000 µs, 100 µs are reserved for the Signaling Window (SIG), 60%

of 900 µs (i.e. 540 µs) are reserved for the transmission of synchronous messages (the

Synchronous Window (SW)) and 40% of 900 µs (i.e. 360 µs) are reserved for the trans-

mission of asynchronous messages (the Asynchronous Window (AW)). Table 8.2 shows

the characteristics of the FTT-SE network for the simulation of synchronous message

transmissions.

126 Simulations and Experimental Evaluation

Table 8.1: Characteristics of the synchronous messages for the simulation in th ns-3 mod-

ule presented in Section 8.3.

Message Type Period Size WCML Origin Destination

µ1 Control 11 ECs 64 B 7 µs CTRL-1 CTRL-2

µ2 Control 11 ECs 64 B 7 µs CTRL-1 RSE

µ3 Navigation 100 ECs 5000 B 406 µs Head Unit RSE

µ4 MM Video 1 EC 1400 B 114 µs Multimedia RSE

µ5 MM Audio 2 ECs 1400 B 114 µs Multimedia RSE

µ6 TV Video 2 ECs 1400 B 114 µs TV Head-Unit

µ7 TV Audio 3 ECs 1400 B 114 µs TV Head-Unit

Table 8.2: Parameters of the FTT-SE network for the simulation of the sequential syn-

chronous applications in ns-3.

Elementary Cycle (EC) 1000 µs

Signalling Window (SIG) 100 µs

Synchronous Window (SW) 60% of 900 µs(540 µs)

Asynchronous Window (AW) 40% of 900 µs(360 µs)

Figure 8.5 shows the response times for the synchronous messages. Messages µ1, µ2,

µ3, µ4, µ5, µ6 and µ7 have an average response time of 109 µs, 117 µs, 5250 µs, 430 µs,

548 µs, 425 µs and 482 µs, respectively. It is possible to observe that all application are

sent within 1 EC (1000 µs) with the exception of µ3 which has an average response time

inferior to 6 ECs (6000 µs). The increased response time on µ3 is due to the fact that it has

the largest WCML and it has the lowest priority between all other applications, therefore,

it was not possible to schedule it in a single EC. Please notice that if the message size is

superior to the defined MTU, it is divided in a set of messages with maximum size equal

to the MTU. It is also possible to observe that µ5 and µ7 present some slight variations

in their response times. In the case of µ5 this is due to the interference provoked by the

control messages (µ1 and µ2) since they share some links and sometimes they coincide in

their activation. In the case of message µ7 such interference is due to message µ6.

An important parameter when choosing the parameters of the FTT-SE network is the

EC size. Figure 8.6 shows the response times of message µ3 when varying the EC size

to 1000 µs, 1500 µs and 2000 µs. The average response times are for EC sizes equal to

1000 µs, 1500 µs and 2000 µs are 5250 µs, 1750 µs and 958 µs, respectively. It is also

important to notice that the number of ECs in which the transmission is completed is 6

ECs (6000 µs), 2 ECs (3000 µs) and 1 EC (2000 µs), respectively.

One can notice that when the EC size increases the SW also increases therefore there

is more bandwidth to transmit messages. In this case, the bandwidth is required and

harnessed, but it is important to carefully chose this parameter since it could lead to band-

8.4 Simulation Results of the ns-3 Module Implementation 127

Figure 8.5: Average response times for synchronous messages: the messages character-

istics are summarised in Table 8.1 and the FTT-SE network configuration is shown in

Table 8.2.

Figure 8.6: Average response times for sequential synchronous message µ3 varying the

EC to 1000 µs, 1500 µs and 2000 µs.

width wasting if the EC is too large in comparison with the requirements of the messages

to transmit. Thus, it is possible to conclude that the EC size (and therefore the SW and

AW size) directly impact the response time of messages transmitted within a FTT-SE

network, and therefore impact the response time of P/D tasks over FTT-SE.

8.4.1.2 Asynchronous Messages

The characteristics of asynchronous messages are very similar to the ones presented in

Table 8.1. However, one of the main differences from Table 8.1 is that in Table 8.3 the

periodicities of some applications are larger. The reason behind that change, is that there

exist some delays related to the signalling mechanism, that have to be considered in the

response time of the applications (see Section 6.2.2).

128 Simulations and Experimental Evaluation

Table 8.3: Parameters of the asynchronous messages for the simulation in ns-3.

Message Type Period Size WCML Origin Destination

µ1 Control 11 ECs 64 B 7 µs CTRL-1 CTRL-2

µ2 Control 11 ECs 64 B 7 µs CTRL-1 RSE

µ3 Navigation 24 ECs 5000 B 406 µs Head Unit RSE

µ4 MM Video 3 ECs 2800 B 227 µs Multimedia RSE

µ5 MM Audio 6 ECs 2800 B 227 µs Multimedia RSE

µ6 TV Video 6 ECs 2800 B 227 µs TV Head-Unit

µ7 TV Audio 9 ECs 2800 B 227 µs TV Head-Unit

The characteristics of the asynchronous messages are as follows. There are two con-

trol messages µ1 and µ2 with origin in the CTRL-1 ECU producing 64 bytes message

with a WCML of 7 µs and a period of 11 ECs. In the case of message µ1, the destination

is the CTRL-2 node and µ2 has as destination the Rear Seat Entertainment (RSE) node.

The navigation message µ3, has an origin in the Head-Unit (HU) and is sent to the RSE

of 5000 bytes (i.e. with a WCML of 406 µs) with a period of 24 ECs. The multimedia

streams τ4 and τ5 send messages of 2800 bytes (equivalent to a WCML of 227 µs) which

have an origin in the Multimedia node and their destination on the RSE node. The Video

message has a period of 3 ECs and the Audio message has a period of 6 ECs. Messages µ6

(Video) and µ7 (Audio) produce data for the TV node. Both applications send messages

of 2800 bytes (equivalent to a WCML of 227 µs). The origin of messages τ6 and τ7 is the

TV node and it is send to the application in the HU node. τ6 and τ7 have a periodicity

of 6 ECs and 9 ECs, respectively. The characteristics of the asynchronous messages are

shown in Table 8.3.

Similarly to synchronous messages, Table 8.3 shows the parameters of the FTT-SE

network for the simulation of the asynchronous messages.

Figure 8.7 shows the results of the experiments. Messages µ1, µ2, µ3, µ4, µ5, µ6

and µ7 have an average response time of 1642 µs, 1640 µs, 4006 µs, 2078 µs, 2957 µs,

2103 µs and 2478 µs, respectively. The average response time of applications µ1 and µ2

is inferior to 2 ECs (i.e., 2000 µs), for applications µ4, µ5, µ6 and µ7 the average response

time is below 3 ECs (i.e., 3000 µs) and for application µ3 it is inferior to 5 ECs (i.e.,

5000 µs).

When comparing Figure 8.5 and Figure 8.7, it is possible to notice that in Figure 8.7

none of the response times of the applications is inferior to 1 EC. The reason is because

the signalling mechanism can take up to 2 ECs for initiating transmission for the case

of asynchronous applications (see Section 6.3). In relation with the results presented in

Figure 8.5, for the case of asynchronous the variations are very similar but including the

signalling mechanism overhead.

8.4 Simulation Results of the ns-3 Module Implementation 129

Figure 8.7: Average response times for sequential asynchronous messages: EC of

1000 µs, SW of 540 µs, AS of 360 µs.

8.4.2 Evaluating the Execution of P/D Tasks and Sequential Applica-

tion

Figure 8.8 shows a system architecture that is used for the experiments of P/D tasks pre-

sented in this section. The architecture is composed of 3 switches and 7 ECUs (one

acting as a master node of the FTT-SE network). It is assumed that all links in the net-

work are full-duplex and they have a capacity of 100Mb/s. The Maximum Transmission

Unit (MTU) of the network is fixed to 1400 Bytes.

Figure 8.8: Simulated automotive architecture for the execution of P/D tasks and sequen-

tial applications.

The characteristics of the FTT-SE network for these experiments are: the EC is fixed

to have a duration of 1500 µs, 100 µs are reserved for the SIG window, 50% of 1400 µs

(i.e. 700 µs) are reserved for the transmission of synchronous messages (in the SW) and

50% of 1400 µs (i.e. 700 µs) are reserved for the transmission of asynchronous messages

(in the AW). Table 8.4 shows the parameters of the FTT-SE network for this simulation.

130 Simulations and Experimental Evaluation

Table 8.4: Characteristics of the FTT-SE network for the simulation of P/D tasks and

sequential synchronous applications in ns-3.

Elementary Cycle (EC) 1500 µs

Signalling Window (SIG) 100 µs

Synchronous Window (SW) 50% of 1400 µs(700 µs)

Asynchronous Window (AW) 50% of 1400 µs(700 µs)

The experiments related to P/D tasks correspond to the execution pattern introduced

in Section 3.4. A P/D task starts its execution by performing a D-Fork operation which

triggers a set of messages that are transmitted over the network, activating the execution

of threads in remote processors and returning their partial results to the node that triggered

the process by executing a D-Join operation. This execution pattern inside a P/D segment

is called Distributed Execution Path (DEP). The P/D tasks simulate vehicular applications

that execute in a parallel and distributed manner. Also, sequential applications are execut-

ing in the system. Sequential applications consist of a message that is transmitted through

the network and the execution of a thread that is triggered by the arrival of the message in

a remote processor. Therefore, in contrast with Section 8.4.1 , in this section we denote

the applications win τi instead of using µi.

In here, three types of applications are considered: (i) control, which is a sequential

application; (ii) multimedia video (MM video), which is a P/D task; and (iii) multimedia

audio (MM audio), which is a sequential application. The three control applications τ1,

τ2 and τ3 produce messages of 350 bytes, with a WCML of 30 µs which activates the

execution of a remote threads with a WCET of 80 µs. τ1, τ2 and τ3 have a period of 5

ECs and have an origin in the Head-Unit ECU and a destination in the ECUs CTRL-1,

CTRL-2 and CTRL-3, respectively.

Application τ4, is a P/D task application. The MM Video P/D application τ4 has

an WCET for Fork and Join execution of 150 µs. In this section, the parallel workload

(6400 µs) of the application τ4 is divided in 8 P/D threads which are sent to CTRL-1 to

CTRL-4 (2 threads to each CRTL node) and in 16 P/D threads are alo sent to CTRL-1

to CTRL-4 (4 threads to each CRTL node), with the objective of analysing what it is the

impact on the load of both the WCML, and the WCET of the threads executing remotely.

The WCET of the remote execution (WCET (rem)) is of 800 µs when the parallel load

is divided between 8 threads and 400 µs when the load is divided between 16 threads.

τ4 has a period of 10 ECs. Also, τ4 sends messages of 1400 bytes with a WCML of

114 µs with origin in the Multimedia node and destination in the nodes CTRL-1-4. MM

Audio applications is sequential application which produces a message of 2000 bytes,

8.4 Simulation Results of the ns-3 Module Implementation 131

Table 8.5: Characteristics of the applications (sequential and P/D tasks) for the simulation

in ns-3.

Application Type Period WCET (F/J) WCET (Rem) Size WCML Origin Destination

τ1 Control 5 ECs - 80 µs 350 B 30 µs Head-Unit CRTL-1

τ2 Control 5 ECs - 80 µs 350 B 30 µs Head-Unit CRTL-2

τ3 Control 5 ECs - 80 µs 350 B 30 µs Head-Unit CRTL-3

τ4 (8 threads) MM Video 10 ECs 150 µs 800 µs 1400 B 114 µs Multimedia CRTL-1-4

τ4 (16 threads) MM Video 10 ECs 150 µs 400 µs 700 B 57 µs Multimedia CRTL-1-4

τ5 MM Audio 30 ECs - 350 µs 2000 B 163 µs Multimedia CRTL-1

with a WCML of 163 µs and a period of 5 ECs. The WCET for its remote execution

is of 350 µs. Applications τ1 has an origin in the Multimedia ECU and destination in

the CTRL-1 ECU. Table 8.5 shows the characteristics of the P/D tasks and sequential

applications for this simulation.

8.4.2.1 Synchronous P/D Tasks and Sequential Applications

Figure 8.9 and Figure 8.11 show the response times for applications shown in Table 8.5,

when τ4 is divided in 8 and 16 threads, respectively. Messages are transmitted using

synchronous messages and FTT-SE parameters are shown in Table 8.4.

Figure 8.9 shows the results of the experiments when τ4 is divided in 8 threads. Ap-

plication τ1, τ2, τ3, τ4, and τ5 have an average response time of 228 µs, 288 µs, 319 µs,

8303 µs, and 2481 µs, respectively. It is possible to observe that applications τ1, τ2 and τ3

are sent within 1 EC (1500 µs), τ4 is sent within the 6 ECs (9000 µs) and τ5 is sent within

the 2 ECs (3000 µs). It is important to remember that in synchronous systems, it is nec-

essary to know the exact instants at which threads and messages are activated, therefore,

it is necessary to compute the sum of the WCRT of the first message µi,2 j−1,k and the P/D

thread θi,2 j,k, and use it as an offset for the activation of µi,2 j,k.

Figure 8.10 shows the response times for the Distributed Execution Paths (DEPs) of

τ4 when it is divided in 8 threads. DEPs: DP4,2,1, DP4,2,2, DP4,2,3, DP4,2,4, DP4,2,5, DP4,2,6,

DP4,2,7 and DP4,2,8 have an average response time of 3575 µs, 5076 µs, 4961 µs, 6461 µs,

5190 µs, 8188 µs, 6688 µs, and 8303 µs, respectively. It is possible to observe that the

maximum observed average response time for the 8 DEPs is the one of DP4,2,8 = 8303 µs,

therefore, DP4,2,8 is the DEP that dictates the response time of the P/D task τ4. Therefore,

DP4,2,8 is the same as the response time of τ4 in Figure 8.9 .

Figure 8.11 shows the results of the experiments when τ4 is divided in 16 threads.

Application τ1, τ2, τ3, τ4, and τ5 have an average response time of 228 µs, 288 µs, 319 µs,

8017 µs, and 3564 µs, respectively. It is possible to observe that applications τ1, τ2 and τ3

are sent within 1 EC (1500 µs), τ4 is sent within the 6 ECs (9000 µs) and τ5 is sent within

the 3 ECs (4500 µs).

132 Simulations and Experimental Evaluation

Figure 8.9: Average response times for applications shown in Table 8.5, τ4 is divided in

8 threads, transmitted using synchronous messages and FTT-SE characteristics: EC of

1500 µs, SW of 700 µs, AS of 700 µs.

Figure 8.10: Average response times of the Distributed Execution Paths of τ4 when di-

vided in 8 threads, for the values presented in Table 8.5, transmitted using synchronous

messages and FTT-SE characteristics: EC of 1500 µs, SW of 700 µs, AS of 700 µs.

Figure 8.11: Average response times for applications shown in Table 8.5, τ4 is divided in

16 threads, transmitted using synchronous messages and FTT-SE characteristics: EC of

1500 µs, SW of 700 µs, AS of 700 µs.

8.4 Simulation Results of the ns-3 Module Implementation 133

Comparing Figure 8.9 and Figure 8.11 , one can notice that the response time of τ4 in

8.11 is reduced from 8303 µs to 8017 µs and for τ5 it increases from 2481 µs to 3564 µs.

The reason is because since the WCML of the messages related to τ4 is half when divided

in 16 threads (when compared to when is divided among 8 threads), it is possible to fit

those messages in earlier ECs (since they have higher priority than the ones belonging to

τ5). As a consequence, messages of lower priority belonging to τ5 are postponed to be

scheduled in other ECs.

8.4.2.2 Asynchronous P/D Tasks and Sequential Applications

Figure 8.12 and Figure 8.13 show the response times for applications shown in Table 8.5,

when τ4 is divided in 8 and 16 threads, respectively. Similarly to Section 8.4.2.1, the

response times for τ4 in both cases is taken from the maximum response times of their

respective DEPs. Messages of a P/D task are transmitted using asynchronous messages

and FTT-SE characteristics are as shown in Table 8.4.

Figure 8.12 shows the results of the experiments when τ4 is divided in 8 threads. Ap-

plication τ1, τ2, τ3, τ4, and τ5 have an average response time of 2481 µs, 2549 µs, 2570 µs,

9021 µs, and 4773 µs, respectively. It is possible to observe that applications τ1, τ2 and

τ3 are sent within 2 EC (3000 µs), τ4 is sent within the 7 ECs (10500 µs) and τ5 is sent

within 4 ECs (6000 µs). For the case of asynchronous applications, the messages/threads

are activated whenever the previous thread/message completes its execution/transmission.

This activation is made through the signalling mechanism. When comparing synchronous

and asynchronous P/D tasks, one can observe that the response time of the asynchronous

messages increases up to 2 ECs due to the signalling mechanism.

Figure 8.12: Average response times for applications shown in Table 8.5, τ4 is divided in

8 threads, transmitted using asynchronous messages and FTT-SE characteristics: EC of

1500 µs, SW of 700 µs, AS of 700 µs.

134 Simulations and Experimental Evaluation

Figure 8.13 shows the results of the experiments when τ4 is divided in 16 threads.

Application τ1, τ2, τ3, τ4, and τ5 have an average response time of 2481 µs, 2489 µs,

2559 µs, 8838 µs, and 4830 µs, respectively. It is possible to observe that applications τ1,

τ2 and τ3 are sent within 2 EC (3000 µs), τ4 is sent within the 6 ECs (9000 µs) and τ5 is

sent within the 4 ECs (6000 µs).

Figure 8.13: Average response times for applications shown in Table 8.5, τ4 is divided in

16 threads, transmitted using asynchronous messages and FTT-SE characteristics: EC of

1500 µs, SW of 700 µs, AS of 700 µs.

By comparing Figure 8.12 and Figure 8.13 one can notice that in a similar situation to

the synchronous case, the response time of τ4 in 8.13 is reduced from 9021 µs to 8838 µs

and for τ5 it increases from 4773 µs to 4830 µs. Again, the reason is because since the

WCML of the messages belonging to τ4 is smaller (half), when compared to when is

divided among 8 threads, therefore, it is possible to fit those messages in earlier ECs

(since they have higher priority than the ones belonging to τ5). Contrarily, the messages

of lower priority belonging to τ5 are postponed to be scheduled in other ECs.

8.4.3 Evaluating the Average Response Time Reduction by Applying

the Parallel/Distributed Approach

This section presents the evaluation of the average response time for P/D tasks and its be-

haviour (e.g. increases or decreases), whenever is parallelised and distributed in different

number of nodes in the architecture.

Similarly to Section 8.4.2, in this section we consider the architecture depicted in

Figure 8.8 and the same network characteristics (full-duplex links in the network with a

capacity of 100Mb/s and a MTU equal to 1400 Bytes). Asynchronous messages are used

for transmission. The parameters of the FTT-SE network are described in Table 8.4

Figure 8.14 shows the response times for applications shown in Table 8.5, these appli-

cations are the same as the ones presented in Section 8.4.2. However, only the response

8.4 Simulation Results of the ns-3 Module Implementation 135

time of the P/D task τ4 is depicted and the load of τ4 is divided in 2, 3, 4, 8, 16 threads.

Threads (and the respective messages) that τ4 generates have an origin in the Multimedia

node. Whenever 2 threads are used, the destination for remote execution are CRTL-1

and CTRL-2, when 3 threads are generated the destination nodes are CRTL-1, CTRL-2

and CTRL-3, and whenever 4, 8 and 16 threads are used the destination of the nodes for

remote execution are CRTL-1, CTRL-2, CTRL-3 and CTRL-4 as in Section 8.4.2.1. This

is summarised in Table 8.6.

Figure 8.14: Average response times for applications shown in Table 8.5, the character-

istics of the network are described in Table 8.4, only the response time of τ4 is depicted

and the load of τ4 is divided in 2, 3, 4, 8, 16 threads as shown is Table 8.6.

Table 8.6: Characteristics of the applications (sequential and P/D tasks) for the simulation

in ns-3.

Application Type Period WCET (F/J) WCET (Rem) Size WCML Origin Destination

τ4 (2 threads) MM Video 10 ECs 150 µs 3200 µs 5600 B 456 µs Multimedia CRTL-1-2

τ4 (3 threads) MM Video 10 ECs 150 µs 2133 µs 3733 B 304 µs Multimedia CRTL-1-3

τ4 (4 threads) MM Video 10 ECs 150 µs 1600 µs 2800 B 228 µs Multimedia CRTL-1-4

τ4 (8 threads) MM Video 10 ECs 150 µs 800 µs 1400 B 114 µs Multimedia CRTL-1-4

τ4 (16 threads) MM Video 10 ECs 150 µs 400 µs 700 B 57 µs Multimedia CRTL-1-4

It is possible to see that there is a decreasing in the response time of application τ4

whenever more threads are used. There is a significant decrease from the use of 2 threads

to the use of 3 threads, since there are more physical resources (ECUs) being used. It

is interesting to notice that although the amount of used ECUs does not augment for a

number of threads superior to 4, there is a slight improvement on the response time of the

applications which is due to the better utilization of the reserved bandwidth in the network

(see Section 8.4.2.1).

136 Simulations and Experimental Evaluation

8.5 Comparing Experimental Results and Simulation Re-

sults

In order to demonstrate the feasibility of using such an execution pattern in a real-time

environment, the Parallel/Distributed Real-Time (PDRT) library has been implemented.

Also, in this section we compare the simulation results obtained with the simulator de-

scribed in Section 8.3 versus the results obtained with the PDRT library and versus the

results of the WCRT analysis presented in this thesis.

The PDRT library makes the workload distribution between a set of distributed nodes.

The PDRT library implements a for loop with parallel distributed real-time behaviour as

the one described in (Garibay-Martínez et al., 2013a). The PDRT distributes the load

in a for loop by following a similar behaviour as the example in Figure 6.6, that is, it

evenly distributes the iterations in the for loop between the nodes in the system (the DST

algorithm is not used.). The PDRT library implements the execution of multiple copies

of code (one per each Slave node in the systems, in a similar manner as in the MPI

programming model) which are distributed by a distribution server (e.g., New Technology

File System (NTFS)). The data code distribution is made off-line in such a way that it

does not affect the real-time behaviour of the code. Each copy of the code, implements

its own functionality based on processes IDs (e.g., master and slave roles). The real-time

communications are implemented (the main requirements described on Section 8.3) using

the module of the FTT-SE for Linux which can be found in (Marau, 2015).

������

��	�
�

���

��

���

��

���

��

���

��

���

��������	

���

��������	

���

��������	

���

��������	

���������	
������	

Figure 8.15: Experimental evaluation architecture.

Figure 8.15 shows the deployment diagram of the configuration used for the experi-

mental evaluation of the PDRT library. The deployment diagram is based on three differ-

ent processing elements with the following characteristics:

8.5 Comparing Experimental Results and Simulation Results 137

1. Master Node (Desktop CPU):

• Operating system: Debian 7.8 kernel 3.2.0-4-rt-686-pae with PREEMPT RT

3.2.68-1+deb7u1 i686 patch.

• Processor: AMD Sempron 2800+, 1600 MHz.

• RAM: 1 GB.

• Applications: Master application. The objective of the Master application is

to arbitrate and grant access for transmission to the slave nodes (Marau, 2015).

2. 4 Slave Nodes (Laptop HP ProBook 6460b):

• Operating system: Debian 7.8 kernel 3.2.0-4-rt-686-pae with PREEMPT RT

3.2.68-1+deb7u1 i686 patch.

• Processor: Intel Celeron B840 1895 MHz.

• RAM: 2 GB.

• Applications: Slave application. In the context of the P/D task model, the

Applications (App) make use of the PDRT library to generate the threads and

messages for execution (Marau, 2015).

3. Ethernet Switch (TPLINK TL-SF1008D)

• Speed: 100 Mbps.

• Number of ports: 8.

In order to provide more determinism for the experiments presented in this section,

the Advanced Configuration and Power Interface (ACPI) and the Advanced Power Man-

agement (APM) features are disabled. Also, the multi-core capabilities of the Slave nodes

are disabled, therefore, the architecture is composed by uni-processor nodes only.

The experiment consists on executing two applications (P/D tasks) τ1 and τ2. Appli-

cation τ1 has a sequential WCET of 200ms and a period of 150ms, application τ2 has a

sequential WCET of 300ms and a period of 300ms. Both applications start its execution

at the Slave-1 node and create 4 threads for execution (i.e., θ1,2,1−4 and θ2,2,1−4). One

of the threads is kept for local execution and the other 3 threads are executed in the slave

nodes 2-4. Each one of the created threads (θ1,2,1−4 and θ2,2,1−4) have a WCET as shown

in Table 8.7. The FTT-SE network is being operated on event-triggered mode. Due to

the OS-related overheads, Linux-based FTT-SE applications use an EC duration of 10ms

Marau (2015). Therefore, the resolution of the applications in this experiments is in ms.

138 Simulations and Experimental Evaluation

Table 8.7: Characteristics of the P/D tasks for comparison of the experimental and simu-

lation evaluation.

App Type Period WCET(Seq.) WCET(F/J) WCET(Remote) WCML Invok. Node Rem. Node

τ1 - 150ms 200ms - - - - -

- µ1, j,k 150ms - - - 112 µs Slave-1 -

- θ1,2,k 150ms - 38ms 50ms - Slave-1 Slave 2-4

τ2 - 300ms 300ms - - - - -

- µ2, j,k 300ms - - - 112 µs Slave-1 -

- θ2,2,k 300ms - 38ms 75ms - Slave-1 Slave 2-4

The characteristics of the P/D tasks for comparison of the experimental and simulation

evaluation are shown in Table 8.7.

By observing Table 8.7, it is easy to notice that the task set composed of τ1 and τ2

would not be schedulable without a parallel distributed execution. This, shows the value

of our approach for real-time distributed environments.

Figure 8.16: Response Time of Experiments (RT-EXP) of P/D tasks τ1 and τ2, Response

Time of Simulations (RT-EXP) of P/D tasks τ1 and τ2 and WCRT of P/D tasks τ1 and τ2.

Figure 8.16 shows the response times which are obtained by executing 1000 experi-

ments for applications τ1 and τ2 when executed concurrently. RTτ1 (equal to 77.84ms)

represents the average observed response time of application τ1, WCRTτ1 (148ms) rep-

resents the WCRT estimation of τ2 using the analysis presented in Chapter 6, similarly,

RTτ2 = 177.82ms represents the average observed response time of τ2, and WCRTτ2

(equal to 223ms) represents the WCRT of τ2. Also, note that for RTτ1, the error bars rep-

resent the minimum observed response time RTmin(τ1) (equal to 70.33ms) and maximum

observed response time RTmax(τ1) (equal to 87.74ms), similarly, for RTτ2 the error bars

8.6 Summary 139

represent the minimum RTmin(τ2) (equal to 154.22ms) and maximum RTmax(τ2) (equal

to 207.24ms) observed response times.

In Figure 8.16 one can observe that the WCRT computed with the analysis presented

in Chapter 6 is always an upper bound of the observed response time of applications τ1

and τ2. These experiments show that our holistic analysis is valid for this example and

valuable for designers when developing parallel and distributed systems with real-time

constraints.

8.6 Summary

This chapter presented the simulations and a experimental evaluation of the concepts pre-

sented in previous chapters. These results allows to confirm that the solutions proposed

in this dissertation can be implemented in real systems.

The following publication has been derived from the research related to this chapter:

• Fábio Oliveira, Ricardo Garibay-Martínez, Tiago Cerqueira, Michele Albano,

and Luis Lino Ferreira. A module for the ftt-se protocol in ns-3. Demo session in

Workshop on ns-3 (WNS3 2015), 2015.

140 Simulations and Experimental Evaluation

Chapter 9

Conclusions and Future Work

9.1 Research Context and Research Contributions

This dissertation proposed an extension multi-threaded parallel real-time task models that

considers the cases in which there exists a parallel distributed execution pattern. Such ex-

ecution pattern provides more capabilities and processing power, which is transformed on

execution flexibility for distributed real-time applications. Furthermore, in some applica-

tions the use of parallel computations is the only possibility in which the applications can

comply with their time constraints.

Modern cars are a good example of time-constrained distributed systems composed of

tens of computing nodes interconnected by various types of communication networks that

require executing computational intensive applications such as infotainment or a driver

assistance applications. Furthermore, other type of applications such as avionic applica-

tions, industrial environments, smart city applications, etc., can take advantage of such

execution patterns.

The dissertation focused on a particular distributed multi-threaded parallel model;

the Fork-Join Parallel/Distributed Real-Time Task Model (P/D Tasks). On the P/D task

model, threads start by executing sequentially in a local processor and then fork (distributed-

fork) to be executed in parallel in remote processors, when the parallel execution has

completed, the results are aggregated by performing a join (distributed-join) operation.

This dissertation presented a framework for the development of parallel and dis-

tributed real-time embedded systems that enables high demanding and time-constrained

software applications to be distributed cooperatively by both local and distributed proces-

sors.

The dissertation addressed three inter-related objectives. The first objective is related

to the definition of an execution model based on a realistic programming framework:

141

142 Conclusions and Future Work

Propose an execution model for parallel and distributed real-time embedded platforms

and introduce an easy to use programming framework for the development of such

systems.

On that matter, Chapter 3 introduced the Fork-Join Parallel/Distributed Real-Time

Task Model (P/D task model) which is derived from OpenMP and MPI programming

models. A timing model for OpenMP/MPI programs was derived by individually studying

the behaviour of typical OpenMP and MPI programs. However, such a model is able to

model any program which is based on a distributed fork-join paradigm.

The second objective is related to the scheduling and allocation of tasks and messages

onto the elements of the distributed system:

Propose a set of scheduling algorithms and heuristics for the allocation of parallel and

distributed applications (P/D tasks) onto a distributed system composed of identical

embedded nodes.

In relation of that objective, Chapter 4 presented the Partitioned/Distributed-Deadline

Monotonic Scheduling (P/D-DMS) algorithm for P/D tasks. The P/D-DMS algorithm is

shown to have a resource augmentation bound of 4. Also, it presented the Distributed

Stretch Transformation (DST) algorithm which tries to keep as many threads as possible

to be executed locally. It is shown that the use of the DST considerably reduces the

interference on the processors and the network when scheduling P/D tasks.

Chapter 5 presents the Distributed using Optimal Priority Assignment (DOPA) and

the Parallel-DOPA (P-DOPA) heuristics, which partitions a set of sequential and P/D

tasks, respectively, and assign their priority by using the Optimal Priority Assignment

Algorithm (OPA) (Audsley, 1991). It was confirmed that the use of OPA increases in

average the number of task sets that were successfully scheduled when compared with

Deadline Monotonic (DM) that it is normally used in other approaches.

Chapter 7 introduces a set of formulations for modelling the allocation of P/D tasks in

a distributed multi-core architectures by using a constraint programming approach. The

constraint programming formulation is guaranteed to find a feasible allocation, if one

exists, in contrast to other approaches based on heuristics.

The third objective is related to providing a technique that confirms if P/D task dead-

lines are met. This is a problem of providing a holistic analysis :

Propose a holistic response time analysis technique that validates the allocations

produced by the scheduling algorithms and heuristics proposed in (ii).

9.2 Future Work 143

On relation to this objective, Chapter 6 presented a holistic timing analysis for the

computation of the Worst-Case Response Time (WCRT) for P/D tasks when transformed

by the DST algorithm. The holistic approach considered both synchronous and asyn-

chronous communication patterns. Also, the Flexible Time Triggered - Switched Ether-

net (FTT-SE) protocol is considered. Furthermore, it was shown that computation of the

WCRT can be improved with respect to traditional approaches by considering a pipeline

effect that occurs on those systems.

Finally, the holistic analysis and proposed algorithms in this dissertation are validated

through simulations and an experimental evaluation in Chapter 8.

9.2 Future Work

As a future work, it is considered lifting some of the limiting assumptions of the the-

sis. These extensions can consider both main elements composing a real-time distributed

system:

i. a set of real-time software applications, and;

ii. a distributed computing platform.

Related to the set of software real-time applications, perhaps one of the most limiting

assumptions is the consideration of the fork-join paradigm only. A possible extension

of this work, it would be to considering a more general approach to model real-time

applications; Distributed Acyclic Graphs (DAGs). The consideration of DAGs will allow

the modelling of a variety of different execution patterns (precedence constraints) in the

software components, for example, nested parallelism that is not considered in this thesis.

Some other assumptions that can be lifted are the assumptions of considering identi-

cal WCET for P/D thread θi,2 j,k within the same P/D segment θi,2 j and that the number

of threads in a P/D segment is smaller or equal than the number of processing nodes

(this assumptions are considered in Chapters 4 and 5). these last restrictions allowed the

computation of the resource augmentation for the DST algorithm. However, it would be

interesting to investigate extensions of those approaches by considering a more general

approach.

Related to the distributed computing platform. As explained through this dissertation,

the heterogeneity of technologies used in modern cars reflects the variety of requirements

from the integrated software components in terms of processing performance and network

bandwidth.

144 Conclusions and Future Work

Modern automotive applications are an important example of the combination of dif-

ferent architectures: modern vehicles may integrate up to a few ECUs to run hundreds

of different functionalities, all connected using various network technologies (e.g., CAN,

LIN, FlexRay, FTT-SE, etc.).

In that regard, future investigations may include extensions (i.e., the design of algo-

rithms, heuristics and analysis tools) to consider the different processing capacities of the

processing nodes and different combinations of network technologies.

Related to the processing capacity of processing nodes it can be considered:

• Identical multi-processor nodes;

• Uniform multi-processor nodes.

Related to the heterogeneity of the network technologies. An extension that is being

considered is the combination of a high bandwidth real-time network (e.g. FTT-SE), used

as a backbone in the system, and several links to sensors that do not have large bandwidth

requirements (e.g., CAN).

I believe that the extensions of this dissertation mentioned above, can lead to interest-

ing scientific contributions.

Author’s List of Publications

The following publications have been derived from work directly related to this disserta-

tion:

Journals

• R. Garibay-Martínez, G. Nelissen, L.L. Ferreira, and L.M. Pinho. Task parti-

tioning and priority assignment for hard real-time distributed systems. J Comput.

Syst. Sci. (2015). http://dx.doi.org/10.1016/j.jcss.2015.05.005.

Impact Factor: 1.091.

• R. Garibay-Martínez, G. Nelissen, L.L. Ferreira, P. Pedreiras, and L.M. Pinho.

An Improved Holistic Analysis for Fork-Join Parallel Distributed Real-Time Tasks

using the FTT-SE Protocol. Selected as candidate paper for a Special Section on

IEEE Transactions of Industrial Informatics (revision process: second review). Im-

pact Factor: 8.785.

Conferences and Workshops

• R. Garibay-Martínez, L.L. Ferreira, and L.M. Pinho. A framework for the devel-

opment of parallel and distributed real-time embedded systems. In Software Engi-

neering and Advanced Applications (SEAA), 2012 38th EUROMICRO Conference

on, pages 39–46, Sept 2012. doi: 10.1109/SEAA.2012.60.

• R. Garibay-Martínez, L.L. Ferreira, C. Maia, and L.M. Pinho. Towards trans-

parent parallel/distributed support for real-time embedded applications. In Indus-

trial Embedded Systems (SIES), 2013 8th IEEE International Symposium on, pages

114–117, June 2013. doi: 10.1109/SIES.2013.6601483.

• R. Garibay-Martínez, G. Nelissen, L. L. Ferreira, and L. M. Pinho. Task parti-

tioning and priority assignment for hard real-time distributed systems. In Marisol

García-Valls and Tommaso Cucinotta, editors, Second International Workshop on

Real-time and distributed computing in emerging applications. Universidad Carlos

III de Madrid, 2013b.

145

http://dx.doi.org/10.1016/j.jcss.2015.05.005

146 Conclusions and Future Work

• R. Garibay-Martínez, G. Nelissen, L.L. Ferreira, and L.M. Pinho. On the schedul-

ing of fork-join parallel/distributed real-time tasks. In Industrial Embedded Systems

(SIES), 2014 9th IEEE International Symposium on, pages 31–40, June 2014b. doi:

10.1109/SIES.2014.6871184.

• R. Garibay-Martínez, G. Nelissen, L.L. Ferreira, P. Pedreiras, and L.M. Pinho.

Towards holistic analysis for fork-join parallel/distributed real-time tasks. In Work

in Progress Session (ECRTS), 2014 26th Euromicro Conference on Real-Time Sys-

tems, pages 21–24, July 2014a.

• R. Garibay-Martínez, G. Nelissen, L. L. Ferreira, and Luís Miguel Pinho. Allo-

cation of parallel real-time tasks in distributed multi-core architectures supported

by an ftt-se network. In Luís Miguel Pinho Pinho, Wolfgang Karl, Albert Cohen,

and Uwe Brinkschulte, editors, Architecture of Computing Systems – ARCS 2015,

volume 9017 of Lecture Notes in Computer Science, pages 224–235. Springer In-

ternational Publishing, 2015.

• R. Garibay-Martínez, G. Nelissen, L.L. Ferreira, P. Pedreiras, and L.M. Pinho.

Holistic analysis for fork-join distributed tasks supported by the ftt-se protocol. In

Factory Communication Systems (WFCS), 2015 11th World Conference on, May

2015.

Posters and Demos

• R. Garibay-Martínez, L.L. Ferreira, and L.M. Pinho. A framework for the de-

velopment of parallel and distributed real-time embedded systems. In Design

Tools and Architectures for Multi-Core Embedded Computing Platforms (PARMA-

DITAM). Workshop in conjunction with the 7th International Conference on High-

Performance and Embedded Architectures and Compilers (HiPEAC 2012), 24, Jan,

2012. Paris, France.

• Fábio Oliveira, Ricardo Garibay-Martínez, Tiago Cerqueira, Michele Albano,

and Luis Lino Ferreira. A module for the ftt-se protocol in ns-3. Demo session in

Workshop on ns-3 (WNS3 2015), 2015.

Bibliography

M. Ashjaei, M. Behnam, T. Nolte, and L. Almeida. Performance analysis of master-slave

multi-hop switched ethernet networks. In Industrial Embedded Systems (SIES), 2013

8th IEEE International Symposium on, pages 280–289, June 2013. doi: 10.1109/SIES.

2013.6601501.

M. Ashjaei, P. Pedreiras, M. Behnam, R.J. Bril, L. Almeida, and T. Nolte. Response

time analysis of multi-hop hartes ethernet switch networks. In Factory Communication

Systems (WFCS), 2014 10th IEEE Workshop on, pages 1–10, May 2014. doi: 10.1109/

WFCS.2014.6837579.

N. Audsley, A. Burns, M. Richardson, K. Tindell, and A. J. Wellings. Applying new

scheduling theory to static priority pre-emptive scheduling. Software Engineering Jour-

nal, 8:284–292, 1993.

N.C. Audsley. Optimal priority assignment and feasibility of static priority tasks with

arbitrary start times, 1991.

Neil C Audsley, Alan Burns, Mike F Richardson, and Andy J Wellings. Real-time

scheduling: the deadline-monotonic approach. In in Proc. IEEE Workshop on Real-

Time Operating Systems and Software. Citeseer, 1991.

Ekain Azketa, Juan P Uribe, J Javier Gutiérrez, Marga Marcos, and Luıs Almeida. Per-

mutational genetic algorithm for the optimized mapping and scheduling of tasks and

messages in distributed real-time systems. In 10th International Conference on Trust,

Security and Privacy in Computing and Communications, 2011.

S.K. Baruah, A.K. Mok, and L.E. Rosier. Preemptively scheduling hard-real-time spo-

radic tasks on one processor. In Real-Time Systems Symposium, 1990. Proceedings.,

11th, pages 182–190, Dec 1990. doi: 10.1109/REAL.1990.128746.

H. Bauer, J. Scharbarg, and C. Fraboul. Worst-case end-to-end delay analysis of an avion-

ics afdx network. In Design, Automation Test in Europe Conference Exhibition (DATE),

2010, pages 1220–1224, March 2010. doi: 10.1109/DATE.2010.5456993.

147

148 BIBLIOGRAPHY

John Carpenter, Shelby Funk, Philip Holman, Anand Srinivasan, James Anderson, and

Sanjoy Baruah. A categorization of real-time multiprocessor scheduling problems and

algorithms. In HANDBOOK ON SCHEDULING ALGORITHMS, METHODS, AND

MODELS. Chapman Hall/CRC, Boca, 2004.

Cilk. The cilk project, 2013. URL http://supertech.csail.mit.edu/cilk.

Thomas H. Cormen, Clifford Stein, Ronald L. Rivest, and Charles E. Leiserson. In-

troduction to Algorithms. McGraw-Hill Higher Education, 2nd edition, 2001. ISBN

0070131511.

R.I Davis and A Burns. Priority assignment for global fixed priority pre-emptive schedul-

ing in multiprocessor real-time systems. In 30th IEEE Real-Time Systems Symposium,

pages 398–409, Dec 2009. doi: 10.1109/RTSS.2009.31.

Robert I. Davis and Alan Burns. A survey of hard real-time scheduling for multipro-

cessor systems. ACM Comput. Surv., 43(4):35:1–35:44, October 2011. ISSN 0360-

0300. doi: 10.1145/1978802.1978814. URL http://doi.acm.org/10.1145/

1978802.1978814.

Robert I Davis, Steffen Kollmann, Victor Pollex, and Frank Slomka. Schedulability anal-

ysis for controller area network (can) with fifo queues priority queues and gateways.

Real-Time Systems, 49(1):73–116, 2013.

RobertI. Davis, Alan Burns, ReinderJ. Bril, and JohanJ. Lukkien. Controller area network

(can) schedulability analysis: Refuted, revisited and revised. Real-Time Systems, 35

(3):239–272, 2007. ISSN 0922-6443. doi: 10.1007/s11241-007-9012-7. URL http:

//dx.doi.org/10.1007/s11241-007-9012-7.

M.L. Dertouzos and A.K. Mok. Multiprocessor misc scheduling of hard-real-time tasks.

Software Engineering, IEEE Transactions on, 15(12):1497–1506, Dec 1989. ISSN

0098-5589. doi: 10.1109/32.58762.

Paul Emberson, Roger Stafford, and Robert I Davis. Techniques for the synthesis of multi-

processor tasksets. In 1st International Workshop on Analysis Tools and Methodologies

for Embedded and Real-time Systems, pages 6–11, 2010.

Frédéric Fauberteau, Serge Midonnet, and Manar Qamhieh. Partitioned scheduling of

parallel real-time tasks on multiprocessor systems. ACM SIGBED Review, 8(3):28–31,

2011.

http://supertech.csail.mit.edu/cilk
http://doi.acm.org/10.1145/1978802.1978814
http://doi.acm.org/10.1145/1978802.1978814
http://dx.doi.org/10.1007/s11241-007-9012-7
http://dx.doi.org/10.1007/s11241-007-9012-7

BIBLIOGRAPHY 149

Nathan Fisher, Sanjoy Baruah, and Theodore P Baker. The partitioned scheduling of

sporadic tasks according to static-priorities. In 18th Euromicro Conference on Real-

Time Systems, pages 10–pp. IEEE, 2006.

JJ Gutiérrez García and M González Harbour. Optimized priority assignment for tasks

and messages in distributed hard real-time systems. In Third Workshop on Parallel and

Distributed Real-Time Systems, pages 124–132. IEEE, 1995.

R. Garibay-Martínez, L.L. Ferreira, and L.M. Pinho. A framework for the development

of parallel and distributed real-time embedded systems. In Software Engineering and

Advanced Applications (SEAA), 2012 38th EUROMICRO Conference on, pages 39–46,

Sept 2012. doi: 10.1109/SEAA.2012.60.

R. Garibay-Martínez, L.L. Ferreira, C. Maia, and L.M. Pinho. Towards transparent par-

allel/distributed support for real-time embedded applications. In Industrial Embed-

ded Systems (SIES), 2013 8th IEEE International Symposium on, pages 114–117, June

2013a. doi: 10.1109/SIES.2013.6601483.

R. Garibay-Martínez, G. Nelissen, L. L. Ferreira, and L. M. Pinho. Task partitioning

and priority assignment for hard real-time distributed systems. In Marisol García-Valls

and Tommaso Cucinotta, editors, Second International Workshop on Real-time and dis-

tributed computing in emerging applications. Universidad Carlos III de Madrid, 2013b.

R. Garibay-Martínez, G. Nelissen, L.L. Ferreira, P. Pedreiras, and L.M. Pinho. Towards

holistic analysis for fork-join parallel/distributed real-time tasks. In Work in Progress

Session Real-Time Systems (ECRTS), 2014 26th EUROMICRO Conference on, pages

21–24, July 2014a.

R. Garibay-Martínez, G. Nelissen, L.L. Ferreira, and L.M. Pinho. On the scheduling of

fork-join parallel/distributed real-time tasks. In Industrial Embedded Systems (SIES),

2014 9th IEEE International Symposium on, pages 31–40, June 2014b. doi: 10.1109/

SIES.2014.6871184.

R. Garibay-Martínez, L.L. Ferreira, C. Maia, and L.M. Pinho. Task partitioning and

priority assignment for hard real-time distributed systems. J. Comput. Syst. Sci., 2015a.

URL http://dx.doi.org/10.1016/j.jcss.2015.05.005.

R. Garibay-Martínez, G. Nelissen, L.L. Ferreira, P. Pedreiras, and L.M. Pinho. Holistic

analysis for fork-join distributed tasks supported by the ftt-se protocol. In Factory

Communication Systems (WFCS), 2015 11th World Conference on, To be presented in

May 2015b.

http://dx.doi.org/10.1016/j.jcss.2015.05.005

150 BIBLIOGRAPHY

Ricardo Garibay-Martínez, Geoffrey Nelissen, LuisLino Ferreira, and Luís Miguel Pinho.

Allocation of parallel real-time tasks in distributed multi-core architectures supported

by an ftt-se network. In Luís Miguel Pinho Pinho, Wolfgang Karl, Albert Cohen, and

Uwe Brinkschulte, editors, Architecture of Computing Systems – ARCS 2015, volume

9017 of Lecture Notes in Computer Science, pages 224–235. Springer International

Publishing, 2015. ISBN 978-3-319-16085-6. doi: 10.1007/978-3-319-16086-3_18.

URL http://dx.doi.org/10.1007/978-3-319-16086-3_18.

Laurent George, Nicolas Rivierre, and Marco Spuri. Preemptive and Non-Preemptive

Real-Time UniProcessor Scheduling, 1996. URL https://hal.inria.fr/

inria-00073732. Projet REFLECS.

J. Goncalves, L.L. Ferreira, L.M. Pinho, and G. Silva. Handling mobility on a qos-aware

service-based framework for mobile systems. In Embedded and Ubiquitous Computing

(EUC), 2010 IEEE/IFIP 8th International Conference on, pages 97–104, Dec 2010.

doi: 10.1109/EUC.2010.24.

J.J. Gutierrez Garcia, J.C.P. Gutierrez, and M. Gonzalez Harbour. Schedulability analysis

of distributed hard real-time systems with multiple-event synchronization. In Real-

Time Systems, 2000. Euromicro RTS 2000. 12th Euromicro Conference on, pages 15–

24, 2000. doi: 10.1109/EMRTS.2000.853988.

J.Javier Gutiérrez, J.Carlos Palencia, and Michael González Harbour. Holistic schedu-

lability analysis for multipacket messages in afdx networks. Real-Time Systems, 50

(2):230–269, 2014. ISSN 0922-6443. doi: 10.1007/s11241-013-9192-2. URL

http://dx.doi.org/10.1007/s11241-013-9192-2.

Intel. Intel cilk plus, January 2013. URL http://software.intel.com/en-us/

intel-cilk-plus/.

Mathai Joseph and P Pandya. Finding response times in a real-time system. The Computer

Journal, 29(5):390–395, 1986.

A. Kanevsky, A. Skjellum, and A. Rounbehler. Mpi/rt-an emerging standard for high-

performance real-time systems. In System Sciences, 1998., Proceedings of the Thirty-

First Hawaii International Conference on, volume 3, pages 157–166 vol.3, 1998. doi:

10.1109/HICSS.1998.656130.

Henry Kasim, Verdi March, Rita Zhang, and Simon See. Survey on parallel program-

ming model. In Proceedings of the IFIP International Conference on Network and

http://dx.doi.org/10.1007/978-3-319-16086-3_18
https://hal.inria.fr/inria-00073732
https://hal.inria.fr/inria-00073732
http://dx.doi.org/10.1007/s11241-013-9192-2
http://software.intel.com/en-us/intel-cilk-plus/
http://software.intel.com/en-us/intel-cilk-plus/

BIBLIOGRAPHY 151

Parallel Computing, NPC ’08, pages 266–275, Berlin, Heidelberg, 2008. Springer-

Verlag. ISBN 978-3-540-88139-1. doi: 10.1007/978-3-540-88140-7_24. URL

http://dx.doi.org/10.1007/978-3-540-88140-7_24.

Hermann Kopetz. Real-Time Systems: Design Principles for Distributed Embedded Ap-

plications. Kluwer Academic Publishers, Norwell, MA, USA, 1st edition, 1997. ISBN

0792398947.

Hermann Kopetz, A. Ademaj, P. Grillinger, and K. Steinhammer. The time-triggered

ethernet (tte) design. In Object-Oriented Real-Time Distributed Computing, 2005.

ISORC 2005. Eighth IEEE International Symposium on, pages 22–33, May 2005. doi:

10.1109/ISORC.2005.56.

K. Lakshmanan, S. Kato, and R. Rajkumar. Scheduling parallel real-time tasks on multi-

core processors. In Real-Time Systems Symposium (RTSS), 2010 IEEE 31st, pages

259–268, Nov 2010. doi: 10.1109/RTSS.2010.42.

Joseph Y-T Leung and Jennifer Whitehead. On the complexity of fixed-priority schedul-

ing of periodic, real-time tasks. Performance evaluation, 2(4):237–250, 1982.

Hyung-Taek Lim, L. Volker, and D. Herrscher. Challenges in a future ip/ethernet-based

in-car network for real-time applications. In DAC’11, pages 7–12, June 2011.

C. L. Liu and James W. Layland. Scheduling algorithms for multiprogramming in a hard-

real-time environment. J. ACM, 20(1):46–61, January 1973. ISSN 0004-5411. doi: 10.

1145/321738.321743. URL http://doi.acm.org/10.1145/321738.321743.

J. Loeser and H. Haertig. Low-latency hard real-time communication over switched eth-

ernet. In Real-Time Systems, 2004. ECRTS 2004. Proceedings. 16th Euromicro Con-

ference on, pages 13–22, June 2004. doi: 10.1109/EMRTS.2004.1310992.

R. Marau. Real-time communications over switched ethernet supporting dynamic qos

management. U. Aveiro, 2009.

R. Marau. Implementation of the ftt-se protocol for linux. http://paginas.fe.up.

pt/~ftt/sections/Repository/index.html, January 2015.

R. Marau, L. Almeida, and P. Pedreiras. Enhancing real-time communication over cots

ethernet switches. In Factory Communication Systems, 2006 IEEE International Work-

shop on, pages 295–302, 2006. doi: 10.1109/WFCS.2006.1704170.

http://dx.doi.org/10.1007/978-3-540-88140-7_24
http://doi.acm.org/10.1145/321738.321743
http://paginas.fe.up.pt/~ftt/sections/Repository/index.html
http://paginas.fe.up.pt/~ftt/sections/Repository/index.html

152 BIBLIOGRAPHY

R. Marau, M. Behnam, Z. Iqbal, P. Silva, L. Almeida, and P. Portugal. Controlling

multi-switch networks for prompt reconfiguration. In Factory Communication Sys-

tems (WFCS), 2012 9th IEEE International Workshop on, pages 233–242, May 2012.

doi: 10.1109/WFCS.2012.6242571.

Timothy Mattson, Beverly Sanders, and Berna Massingill. Patterns for Parallel Program-

ming. Addison-Wesley Professional, first edition, 2004. ISBN 0321228111.

Alexander Metzner and Christian Herde. Rtsat–an optimal and efficient approach to the

task allocation problem in distributed architectures. In 27th IEEE International Real-

Time Systems Symposium, pages 147–158. IEEE, 2006.

MPI-Forum. Mpi: A message-passing interface standard version 2.2, April 2012. URL

http://www.mpi-forum.org/docs/docs.hmtl/.

ns 3. ns-3 manual, May 2015. URL https://www.nsnam.org/docs/manual/

html/organization.html/.

F. Oliveira. Implementação da rede Flexible Time-triggered para Switched Ethernet no

Simulador NS-3. IPP ISEP, 2015.

Fábio Oliveira, Ricardo Garibay-Martínez, Tiago Cerqueira, Michele Albano, and

Luis Lino Ferreira. A module for the ftt-se protocol in ns-3. 2015.

OpenMP-Arch-Rev-Board. Openmp application program interface v3.1 july 2011, April

2012. URL http://www.openmp.org/wp/openmp-specifications/.

J.C. Palencia and M.G. Harbour. Offset-based response time analysis of distributed sys-

tems scheduled under edf. In Real-Time Systems, 2003. Proceedings. 15th Euromicro

Conference on, pages 3–12, July 2003. doi: 10.1109/EMRTS.2003.1212721.

José Carlos Palencia and Michael Gonzalez Harbour. Schedulability analysis for tasks

with static and dynamic offsets. In The 19th IEEE Real-Time Systems Symposium,

1998. Proceedings, pages 26–37. IEEE, 1998.

José Carlos Palencia and Michael Gonzalez Harbour. Exploiting precedence relations in

the schedulability analysis of distributed real-time systems. In The 20th IEEE Real-

Time Systems Symposium, 1999. Proceedings, pages 328–339. IEEE, 1999.

P. Pedreiras, P. Gai, L. Almeida, and G.C. Buttazzo. Ftt-ethernet: a flexible real-time

communication protocol that supports dynamic qos management on ethernet-based sys-

tems. Industrial Informatics, IEEE Transactions on, 1(3):162–172, Aug 2005. ISSN

1551-3203. doi: 10.1109/TII.2005.852068.

http://www.mpi-forum.org/docs/docs.hmtl/
https://www.nsnam.org/docs/manual/html/organization.html/
https://www.nsnam.org/docs/manual/html/organization.html/
http://www.openmp.org/wp/openmp-specifications/

BIBLIOGRAPHY 153

Paulo Pedreiras and Almeida Luis. The flexible time-triggered (ftt) paradigm: an ap-

proach to qos management in distributed real-time systems. In International Parallel

and Distributed Processing Symposium, pages 9–pp. IEEE, 2003.

Manar Qamhieh, Frédéric Fauberteau, Serge Midonnet, et al. Performance analysis for

segment stretch transformation of parallel real-time tasks. In 5th Junior Researcher

Workshop on Real-Time Computing, pages 29–32, 2011.

K. Ramamritham, J.A. Stankovic, and P.-F. Shiah. Efficient scheduling algorithms for

real-time multiprocessor systems. Parallel and Distributed Systems, IEEE Transactions

on, 1(2):184–194, Apr 1990. ISSN 1045-9219. doi: 10.1109/71.80146.

Michael Richard, Pascal Richard, and Francis Cottet. Allocating and scheduling tasks in

multiple fieldbus real-time systems. In IEEE Conference on Emerging Technologies

and Factory Automation, volume 1, pages 137–144. IEEE, 2003.

Rietveld-Code-Review-Tool. Issue 187880044: full duplex extensions for csma. https:

//codereview.appspot.com/187880044/, June 2015.

A. Saifullah, K. Agrawal, Chenyang Lu, and C. Gill. Multi-core real-time scheduling for

generalized parallel task models. In Real-Time Systems Symposium (RTSS), 2011 IEEE

32nd, pages 217–226, Nov 2011. doi: 10.1109/RTSS.2011.27.

Abusayeed Saifullah, Jing Li, Kunal Agrawal, Chenyang Lu, and Christopher Gill. Multi-

core real-time scheduling for generalized parallel task models. Real-Time Systems, 49

(4):404–435, 2013.

Lui Sha, Tarek Abdelzaher, Karl-Erik Arzén, Anton Cervin, Theodore Baker, Alan Burns,

Giorgio Buttazzo, Marco Caccamo, John Lehoczky, and Aloysius K. Mok. Real time

scheduling theory: A historical perspective. Real-Time Syst., 28(2-3):101–155, Novem-

ber 2004. ISSN 0922-6443. doi: 10.1023/B:TIME.0000045315.61234.1e. URL

http://dx.doi.org/10.1023/B:TIME.0000045315.61234.1e.

Marco Spuri. Holistic Analysis for Deadline Scheduled Real-Time Distributed Systems,

1996. URL https://hal.inria.fr/inria-00073818. Projet REFLECS.

R. Stafford. Random vectors with fixed sum. In [misc]:

http://www.mathworks.com/matlabcentral/fileexchange/9700, 2004.

POSIX Standard. Posix threads programming, 2012. URL https://computing.

llnl.gov/tutorials/pthreads.

https://codereview.appspot.com/187880044/
https://codereview.appspot.com/187880044/
http://dx.doi.org/10.1023/B:TIME.0000045315.61234.1e
https://hal.inria.fr/inria-00073818
https://computing.llnl.gov/tutorials/pthreads
https://computing.llnl.gov/tutorials/pthreads

154 BIBLIOGRAPHY

J.A. Stankovic. misconceptions about real-time computing: a serious problem for next-

generation systems. Computer, 21(10):10–19, Oct 1988. ISSN 0018-9162. doi: 10.

1109/2.7053.

Andrew S Tanenbaum. Distributed operating systems. Pearson Education India, 1995.

K. Tindell, A. Burns, and A.J. Wellings. Analysis of hard real-time communications.

Real-Time Systems, 9(2):147–171, 1995. ISSN 0922-6443. doi: 10.1007/BF01088855.

URL http://dx.doi.org/10.1007/BF01088855.

Ken Tindell and Alan Burns. Guaranteeing message latencies on control area network

(can). In Proceedings of the 1st International CAN Conference, 1994.

Ken Tindell and John Clark. Holistic schedulability analysis for distributed hard real-

time systems. Microprocess. Microprogram., 40(2-3):117–134, April 1994. ISSN

0165-6074. doi: 10.1016/0165-6074(94)90080-9. URL http://dx.doi.org/10.

1016/0165-6074(94)90080-9.

Ken W Tindell, Alan Burns, and Andy J. Wellings. Allocating hard real-time tasks: an

np-hard problem made easy. Real-Time Systems, 4(2):145–165, 1992.

Ian Vessey and Glenn Skinner. Implementing berkeley sockets in system v release 4. In

PROCEEDINGS OF THE WINTER 1990 USENIX CONFERENCE, pages 177–193,

1990.

Wei Zheng, Qi Zhu, Marco Di Natale, and Alberto Sangiovanni Vincentelli. Definition of

task allocation and priority assignment in hard real-time distributed systems. In 28th

IEEE International Real-Time Systems Symposium, pages 161–170. IEEE, 2007.

Qi Zhu, Yang Yang, M. Natale, E. Scholte, and A. Sangiovanni-Vincentelli. Optimizing

the software architecture for extensibility in hard real-time distributed systems. Indus-

trial Informatics, IEEE Transactions on, 6(4):621–636, Nov 2010. ISSN 1551-3203.

doi: 10.1109/TII.2010.2053938.

Qi Zhu, Haibo Zeng, Wei Zheng, Marco DI Natale, and Alberto Sangiovanni-Vincentelli.

Optimization of task allocation and priority assignment in hard real-time distributed

systems. ACM Trans. Embed. Comput. Syst., 11(4):85:1–85:30, January 2013. ISSN

1539-9087. doi: 10.1145/2362336.2362352. URL http://doi.acm.org/10.

1145/2362336.2362352.

http://dx.doi.org/10.1007/BF01088855
http://dx.doi.org/10.1016/0165-6074(94)90080-9
http://dx.doi.org/10.1016/0165-6074(94)90080-9
http://doi.acm.org/10.1145/2362336.2362352
http://doi.acm.org/10.1145/2362336.2362352

	Front Page
	Table of Contents
	List of Figures
	List of Tables
	List of Acronyms
	List of Symbols
	1 Introduction
	1.1 Research Motivation
	1.1.1 Background
	1.1.2 Problem statement

	1.2 Goal and Objectives
	1.3 Structure of the Dissertation

	2 Background and Previous Relevant Work
	2.1 Introduction
	2.2 Real-Time Models and Scheduling Algorithms
	2.2.1 Classification of Real-Time Processing Platforms
	2.2.2 Real-Time Uni-processor Scheduling
	2.2.3 Real-Time Multi-processor Scheduling
	2.2.4 Real-Time Multi-threaded Parallel Task Models for Multiprocessor Systems

	2.3 Distributed Real-Time Systems
	2.4 Task Partition and Priority Assignment in Real-Time Distributed Systems
	2.5 Holistic Analysis for Real-Time Distributed Systems
	2.6 Parallel Programming Models
	2.6.1 Programming Models for Shared Memory Platforms
	2.6.2 Programming Models for Distributed Memory Platforms

	2.7 Summary

	3 The Fork-Join Parallel/Distributed Real-Time Task Model (P/D Tasks)
	3.1 Introduction
	3.2 OpenMP + MPI Programming Models
	3.2.1 OpenMP Programming Model
	3.2.2 MPI Programming model

	3.3 Supporting Parallel and Distributed Real-Time Execution with OpenMP + MPI
	3.3.1 Timing Model for OpenMP/MPI Programs
	3.3.2 Timing Behaviour of OpenMP programs
	3.3.3 Timing Behaviour of MPI communications
	3.3.4 Timing Behaviour of OpenMP + MPI

	3.4 Fork-Join Parallel/Distributed Real-Time (P/D) Task Model
	3.5 Summary

	4 Scheduling P/D Tasks in Distributed Uni-processor Systems
	4.1 Introduction
	4.1.1 Chapter Considerations

	4.2 The Distributed Stretch Transformation Model
	4.2.1 The Task Stretch Transformation and Segment Stretch Transformation Models
	4.2.2 The Distributed Stretch Transformation (DST) Algorithm
	4.2.3 End-to-end Delay Computation in Distributed Systems

	4.3 The P/D-DMS Algorithm
	4.3.1 Demand Bound Function
	4.3.2 Resource Augmentation Bound

	4.4 Evaluation of the P/D-DMS Algorithm
	4.5 Summary

	5 Task Partitioning and Priority Assignment for Sequential Transactional Tasks and P/D Tasks on Hard Real-Time Distributed Systems
	5.1 Introduction
	5.1.1 System Model Adaptations

	5.2 The Distributed using Optimal Priority Assignment (DOPA) Heuristic
	5.2.1 Optimal Priority Assignment (OPA) Algorithm
	5.2.2 Distributed using Optimal Priority Assignment (DOPA)
	5.2.3 Comparing the use of OPA and DM

	5.3 The Parallel-DOPA (P-DOPA) Heuristic
	5.3.1 Intermediate Deadlines for Distributed Execution Paths (DEP)
	5.3.2 P-DOPA heuristic
	5.3.3 Evaluating the Parallel-DOPA Heuristic

	5.4 Summary

	6 Holistic Analysis for P/D Tasks using the FTT-SE Protocol
	6.1 Introduction
	6.2 The FTT-SE Protocol
	6.2.1 Message Scheduling on the FTT-SE Protocol
	6.2.2 Worst-Case Response Time in FTT-SE Networks

	6.3 A Holistic Analysis for Stretched Tasks
	6.3.1 Time-triggered Systems
	6.3.2 Event-triggered Systems

	6.4 Improved Response Time Analysis for Distributed Execution Paths
	6.4.1 Overlap on the Downlink
	6.4.2 Non-interference on the Uplink

	6.5 Numerical Example
	6.6 Assessing of the Gain in the Pipeline Effect
	6.7 Summary

	7 Allocation of P/D Tasks in Multi-core Architectures supported by FTT-SE Protocol
	7.1 Introduction
	7.1.1 Chapter Considerations

	7.2 Constraint Programming Formulation
	7.2.1 P/D Tasks
	7.2.2 Fully-Partitioned Distributed Multi-core Systems
	7.2.3 FTT-SE Protocol
	7.2.4 Constraint Satisfiability

	7.3 Summary

	8 Simulations and Experimental Evaluation
	8.1 Introduction
	8.2 A brief Description of ns-3
	8.3 Implementation of the FTT-SE Protocol and P/D Execution in ns-3
	8.3.1 Analysis of Requirements
	8.3.2 Implemented Classes and Functionality

	8.4 Simulation Results of the ns-3 Module Implementation
	8.4.1 Evaluating the Transmission of Messages
	8.4.2 Evaluating the Execution of P/D Tasks and Sequential Application
	8.4.3 Evaluating the Average Response Time Reduction by Applying the Parallel/Distributed Approach

	8.5 Comparing Experimental Results and Simulation Results
	8.6 Summary

	9 Conclusions and Future Work
	9.1 Research Context and Research Contributions
	9.2 Future Work

	Author's List of Publications
	Bibliography

