

A preliminary idea for an 8-competitive,
log2 DMAX + log2 log2 (1/U) asymptotic-
space, interface generation algorithm for
two-level hierarchical scheduling of
constrained-deadline sporadic tasks on a
uniprocessor

www.hurray.isep.ipp.pt

Technical Report

HURRAY-TR-101005

Version:

Date: 10-26-2010

Björn Andersson

Technical Report HURRAY-TR-101005 A preliminary idea for an 8-competitive, log2 DMAX + log2 log2 (1/U)

 asymptotic-space, interface generation algorithm for two-level

 hierarchical scheduling of constrained-deadline sporadic tasks

 on a uniprocessor

© IPP Hurray! Research Group
www.hurray.isep.ipp.pt

1

A preliminary idea for an 8-competitive, log2 DMAX + log2 log2 (1/U)
asymptotic-space, interface generation algorithm for two-level hierarchical
scheduling of constrained-deadline sporadic tasks on a uniprocessor
Björn Andersson

IPP-HURRAY!

Polytechnic Institute of Porto (ISEP-IPP)

Rua Dr. António Bernardino de Almeida, 431

4200-072 Porto

Portugal

Tel.: +351.22.8340509, Fax: +351.22.8340509

E-mail:

http://www.hurray.isep.ipp.pt

Abstract
Consider a single processor and a software system.The software system comprises components and interfaceswhere
each component has an associated interface and eachcomponent comprises a set of constrained-deadline sporadictasks.
A scheduling algorithm (called global scheduler) determinesat each instant which component is active. The
activecomponent uses another scheduling algorithm (called localscheduler) to determine which task is selected for
executionon the processor. The interface of a component makes certaininformation about a component visible to other
components;the interfaces of all components are used for schedulabilityanalysis. We address the problem of generating
an interfacefor a component based on the tasks inside the component. Wedesire to (i) incur only a small loss in
schedulability analysisdue to the interface and (ii) ensure that the amount of space(counted in bits) of the interface is
small; this is because suchan interface hides as much details of the component as possible.We present an algorithm for
generating such an interface.

A preliminary idea for an 8-competitive, log2 DMAX + log2 log2
1
U asymptotic-space,

interface generation algorithm for two-level hierarchical scheduling of
constrained-deadline sporadic tasks on a uniprocessor

Björn Andersson
CISTER Research Unit, ISEP/IPP
Polytechnic Institute of Porto

Porto, Portugal
bandersson@dei.isep.ipp.pt

Abstract—Consider a single processor and a software system.
The software system comprises components and interfaces
where each component has an associated interface and each
component comprises a set of constrained-deadline sporadic
tasks. A scheduling algorithm (called global scheduler) deter-
mines at each instant which component is active. The active
component uses another scheduling algorithm (called local
scheduler) to determine which task is selected for execution
on the processor. The interface of a component makes certain
information about a component visible to other components;
the interfaces of all components are used for schedulability
analysis. We address the problem of generating an interface
for a component based on the tasks inside the component. We
desire to (i) incur only a small loss in schedulability analysis
due to the interface and (ii) ensure that the amount of space
(counted in bits) of the interface is small; this is because such
an interface hides as much details of the component as possible.
We present an algorithm for generating such an interface.

I. INTRODUCTION

Software design for embedded computer systems is af-
fected by the steadily increasing (i) supply of execution-
speed of microprocessors and (ii) demand from end-users
for new features and improved application-level perfor-
mance. Since these two factors increase each year, the
complexity of embedded software (in terms of number of
lines of code, function points or use cases) has now reached
all-time-high levels. One way to deal with this complexity
is to subdivide the software into components where each
component has an interface (i) which is less complex than
its corresponding component and (ii) which describes how
it interacts or can interact with other components.
The problem of decomposing a (future) software system

into components is typically driven by requirements on the
system. Clearly functional requirements impact how the
decomposition is done but non-functional requirements (also
called quality-attributes or parafunctional requirements) play
an important role as well. For example, a requirement may
be that two different development teams (with their distinct
expertise) should be able to work only on software that
is within their expertise. Another requirement may be that
the decomposition should be done so that already available

(COTS) components can be used. Yet another requirement
may be that two different functionalities should belong to
different components because one functionality should not
be able to obtain information about another component
(confidentiality). Furthermore, in order to reduce overall
certification cost (and re-certification cost in the event of
design changes), it may be desirable for an architecture
to have for each component, functionalities with no more
than one criticality level. The problem of decomposing a
software system into components is a significant problem
in the discipline of software engineering (see [4] for an
excellent coverage) but it is not the problem addressed in
this paper. Therefore, we assume that the decomposition has
already been done.
Typically, a software designer or developing organization

or prime contractor (i) develops or acquires the needed com-
ponents according to the decomposition mentioned above
and then (ii) verifies correctness properties of the component
assembly. For some correctness properties (typically logical
correctness), it holds that the property is dependent only on
a single component. This is ideal because it considerably
simplifies integration of components into a working system.
For many other correctness properties, however, the correct-
ness property depends on more than one component. An
example of this is real-time requirements. The response time
of a task in a component depends on how much other tasks
(for example higher-priority tasks) execute and these other
tasks may be part of other components. In order determine
if such a correctness property is true, each component must
provide an interface which makes some information about
the internals of the component visible to other components.
From systems integration perspective, the interface of a

component should make as little as possible of the internals
of the component visible to other components. (We can
measure the ‘size’ of an interface as in how many bits are
needed for storing the information that is made visible.) On
the other hand, the more an interface makes visible to other
components, the more accurate information is available to
schedulability analysis techniques (or other quality-attribute
analyses) and this reduces pessimism which can be translated

into benefits such as (i) lower costs of hardware and/or
(ii) lower power ‘consumption’. Therefore, we must strike
a suitable balance between schedulability and information
hiding and in order to do so, we must quantify these.
The real-time research literature has provided a wealth

of literature on the design of interfaces (see for example
[8], [9], [7], [5]). The idea is to let each component be
characterized by two numbers; typically (i) a bandwidth-
like metric describing the fraction of the processor that the
component may use and (ii) a period-like metric describing
the granularity of this distribution of the used processor ca-
pacity. Some interfaces also allow a third number a, deadline,
which can be used for a component to describe with slightly
better accuracy how its requested processing capacity must
be distributed. These interfaces have the benefits that (i) they
are easy understand, (ii) they have associated algorithms for
schedulability analysis and run-time scheduling and these
allow practical issues such as non-processing resources to
be shared between tasks in different components, (iii) they
allow different local scheduling algorithms in different
components and (iv) if all tasks are of the type implicit-
deadline periodic or implicit-deadline sporadic then the loss
of schedulability is typically small. Unfortunately, these
interfaces can cause very poor performance for constrained-
deadline sporadic tasks [1, page 3]. Specifically, there exist
a task set which is schedulable with preemptive EDF on a
single processor but with these interfaces, deadlines cannot
be guaranteed although a processor k times as fast is used;
and this holds for every finite value of k [1, page 3].
Constrained-deadline sporadic tasks are common in prac-

tice. For this reason, it behooves us to design new interfaces
for such tasks. These interfaces should not suffer from the
drawback of requiring an infinite speed processor when
a speed-1 processor can do to meet deadlines. Also, the
interfaces should make as little of the internals of the task
sets in a component visible to other components.
Recent advances in interface design [1] has shown that

even for constrained-deadline sporadic tasks, it is possible
to create an interface where the loss in schedulability is
provably small (can schedule every task set if provided
a processor 8 times as fast). Unfortunately, it required
((log2 n) + 1) · ((log2 TMAX) + 2) · ((log2 DMAX) + 2) ·
((log2 CMAX) + 1) bits; it is desired to reduce this space.
Therefore, in this paper, we present a new interface gen-

eration algorithm for constrained-deadline sporadic tasks to
be scheduled on a single processor. We consider preemptive
EDF to be used to as a scheduler in each component (local
scheduler) and preemptive EDF to be used to schedule
components upon the processor (global scheduler). The new
interface generation algorithm offers two salient features:
(i) for each task set which is feasible on a single 1-speed
processor, it holds that if these tasks would be in components
and scheduled on an 8-speed processor and the new interface
generation algorithm is used then an offline schedulability

test can guarantee that all deadlines are met and (ii) the
space required by the interface of a component is asymp-
totically log2 DMAX + log2 log2

1
U where DMAX is the

maximum relative deadline of all tasks in the component and
U is the sum of the utilization of all tasks in the component.
The remainder of this paper is organized as follows. Sec-

tion II presents the system model and assumptions we make.
Section III presents some results we will use. Section IV
presents the new algorithm. Section V gives conclusions.

II. SYSTEM MODEL

We consider a system with the following assumptions:
A1. The system has a single processor;
A2. The software is composed of a set COMP=

{COMP1, COMP2, . . . , COMPK} of K compo-
nents;

A3. A component COMPk is composed of a
set τk={τk

1 , τk
2 , τk

3 , . . . , τk
nk} of nk constrained-

deadline sporadic tasks (note that in this way, we
restrict our attention to a 2-level hierarchy);

A4. A constrained-deadline sporadic task τk
i is char-

acterized by the parameters T k
i , Ck

i , Dk
i with the

interpretation that τk
i releases a (possibly infinite)

sequence of jobs with at least T k
i time units be-

tween successive jobs of task τk
i and each job of

τk
i requires Ck

i units of execution to be performed
at least Dk

i time units after the release of the job.
It is assumed that the release times of jobs cannot
be controlled by the scheduling algorithm;

A5. A task which executes for L time units on a
processor of speed S completes L · S units of
execution;

A6. If the speed of a processor is not explicitly speci-
fied, it is assumed that the speed is one;

A7. The parameters T k
i , Ck

i , Dk
i are integers (we use

the assumption of integer parameters only because
it simplifies our discussion about the amount of
storage needed for task sets and interfaces); arrivals
of tasks are allowed to occur at non-integer times
and preemptions are allowed to occur at non-
integer times as well;

A8. A task needs no other resource than a processor;
A9. A component COMPk has a static interface

STATIC INTERFACEk and a dynamic interface
DYNAMIC INTERFACEk. The static interface
is composed of variables that remain constant
over time (for example, pre-specified bandwidth)
whereas the dynamic interface is composed of
variables that may change with time (for example,
a variable indicating whether there is any task in
the component with unfinished execution at current
time);

A10. There is a global scheduler GLOBAL SCHED
which decides at run-time, at every instant, which

(a) A small example. (The interfaces and the schedulability tests are
not shown.)

(b) Illustrations of dbf , dbf∗, dbf ∗ ∗ and dbf ∗ ∗∗ for the tasks
in Figure 1(a).

Figure 1: A small example of the type of system we consider and also some important concept we will use.

component is assigned the processor. In every
component COMPk, there is a local scheduler
LOCAL SCHEDk;

A11. The global scheduler takes decisions based on
both the static and the dynamic interface of all
components;

A12. The global scheduler is EDF [6];
A13. The local scheduler of COMPk executes a task in

τk at time t if the global scheduler has assigned
the processor to COMPk at time t;

A14. The local scheduler in a component takes decisions
based only on the properties of the tasks in the
component;

A15. The local scheduler in each component is EDF [6];
A16. There is a schedulability test for the global sched-

uler and a schedulability test for each local sched-
uler; these schedulability tests are used before run-
time;

A18. The schedulability test for the global scheduler
does not know tasks in each component and it does
not know the dynamic interface of components.
The schedulability test for the global scheduler
takes as input the static interface of all components
and outputs ‘schedulable’ or ‘unschedulable’;

A19. The schedulability test for the local scheduler of
COMPk only knows the tasks in τk and the
interface of COMPk. The schedulability test for
the local schedulerCOMPk takes as input the tasks
in τk and the interface of COMPk and outputs
‘schedulable’ or ‘unschedulable’.

A20. There is an interface generation algorithm. This
algorithm takes as input all tasks in one component
and generates the static interface for this compo-
nent. The interface should be generated so that for
each component, the local schedulability test out-
puts ‘schedulable’. For this reason, it follows that
once interfaces have been generated, determining if
all tasks meet their deadline amounts to performing
only the global schedulability test.

Figure 1(a) shows an example of such a system.
Recall that we address the problem of deciding which

parameters should be used to represent the interfaces and
how to select parameters for them and how the dynamic
interface should be used at run-time. We are interested in
doing so and fulfilling the following two (often conflicting)
requirements:
R1. The loss in schedulability should be small;
R2. The interface of a component should reveal as little

as possible about the tasks in the component.
For the purpose of our discussion, we need to quantify

how well an interface fulfills the two requirements above.
Therefore, we will define the concepts competitive ratio and
”narrowness”. The former is related to R1 and the latter is
related to R2.
We say that an interface generation algorithm A has

competitive ratio R if R is the smallest number such that
it holds that for every constrained-deadline sporadic task
set partitioned into components, that if this task set can
be scheduled on a single processor with EDF directly on
the processor (that is, without components and without a
global scheduler) then this task set can be guaranteed to meet
its deadlines as well with interface generation algorithm A
provided that the processor is R times as fast. Clearly, a
low competitive ratio is desired. R=1 is the best one can get.
R=∞ suggests that we pay a high price for compositionality.
In order to characterize the ”narrowness” of the interface,

we consider the amount of storage needed to describe the
interface.

III. RESULTS WE WILL USE

A. Scheduling theory

1) Previously known results: The demand-bound function
is a common concept for performing schedulability analysis
[3]. The demand-bound function of a task τk

i is defined as:

dbf(τk
i , L) = max(0,

⌊

L − Dk
i

T k
i

⌋

+ 1) · Ck
i (1)

Since we consider constrained-deadline sporadic tasks (for
which Dk

i ≤ T k
i) we can rewrite it as:

dbf(τk
i , L) =

⌊

L + T k
i − Dk

i

T k
i

⌋

· Ck
i (2)

We can also define an upper bound on dbf of a task τk
i as:

dbf∗(τk
i , L) =

{

0 if L < Dk
i

Ck
i + (L − Dk

i) · Ck
i

T k
i

if L ≥ Dk
i

(3)

It has been shown in previous research (see for example
Equation 3 in [2]) that

dbf(τk
i , L) ≤ dbf∗(τk

i , L) ≤ 2 · dbf(τk
i , L) (4)

We can define these concepts also for tasks in a compo-
nent k. Hence we get:

dbf(τk, L) =
∑

τk
j
∈τk

⌊

L + T k
j − Dk

j

T k
j

⌋

· Ck
j (5)

dbf∗(τk, L) =
∑

τk
j
∈τk

dbf∗(τk
j , L) (6)

dbf(τk, L) ≤ dbf∗(τk, L) ≤ 2 · dbf(τk, L) (7)

Figure 1(b) illustrates these concepts.
Let us also define Uk as:

Uk =
∑

τk
j
∈τk

Ck
j

T k
j

(8)

We also define DMAXk as:

DMAXk = max
τk

j
∈τk

Dk
j (9)

and

DMAX = max
k∈{1,2,...,K}

DMAXk (10)

We let τ denote the union of tasks in all components. We
can clearly define the functions dbf and dbf∗ for τ as well.
We can use the concept of dbf∗ to check schedulability

— Lemma 1 shows this.
Lemma 1: If EDF is used as a local scheduler in each

component and EDF is used as the global scheduler and
∑

k=1..K Uk ≤ 1 and

∀L ∈ {1, 2, 3, . . . , DMAX} :
∑

k=1..K

dbf∗(τk, L) ≤ L (11)

then all deadlines are met.
Proof: Follows from [3] and Equation 4.

2) New results: We say that an integer L is a two-power
if L there is a non-negative integer l such that L can be
written as L = 2l. Clearly, 2 is a two-power; 4 is a two-
power; 8 is a two-power. But also 0 and 1 are two-powers.
Recall that dbf∗ is an upper bound on dbf . We will now

define dbf ∗ ∗ which is an upper bound on dbf∗. We will
do so by obtaining the dbf∗ at a value of L such that L is
a two-power. Since dbf∗ is monotonically increasing with
L, it holds that the value obtained is also an upper bound
on dbf∗ for all values less than L. Formally, we define the
following:

dbf ∗ ∗(τk, L) = dbf∗(τk, 2"log2 L#) (12)

In addition, we define:

dbf ∗ ∗∗(τk, L) = (13)
{

2"log2 dbf∗∗(τk,L)# if dbf ∗ ∗(τk, L) > 0
0 otherwise

Let us also define U∗k as:

U∗k =

{

1

2
!log2

1
Uk

"
if Uk > 0

0 otherwise

Clearly, we have:

dbf(τk, L) ≤ dbf∗(τk, L)

≤ dbf ∗ ∗(τk, L) ≤ dbf ∗ ∗∗(τk, L) (14)

Lemma 2: If EDF is used as a local scheduler in each
component and EDF is used as the global scheduler and
∑

k=1..K U∗k ≤ 1 and

∀L ∈ {1, 2, 3, . . . , DMAX} :
∑

k=1..K

dbf ∗ ∗∗(τk, L) ≤ L (15)

then all deadlines are met.
Proof: Follows from Lemma 1 and the fact that Uk ≤

U∗k and dbf∗(τk, L) ≤ dbf ∗ ∗∗(τk, L).
We will see later in this paper that the function

dbf ∗ ∗∗(τk, L) for component k can be represented in a
compact form if dbf ∗ ∗∗(τk, L) only needs to be evaluated
for L ∈ [1, 2"log2 DMAXk#]. We should we aware that dif-
ferent components may have different maximum deadlines
however so when we wish to perform schedulability analysis
of a system comprising such components, we will need
to evaluate dbf ∗ ∗∗(τk, L) for large values of L. For this
reason, let us define the following:

dbf ∗ ∗ ∗ ∗(τk
, L) =

{

dbf ∗ ∗∗(τk, L) if L ≤ 2%log2 DMAXk&

dbf ∗ ∗∗(τk, L) + (L − 2%log2 DMAXk&) · U∗k otherwise

Clearly, we have:

∀L ∈ [1..2"log2 DMAXk#) : dbf ∗ ∗∗(τk, L) ≤ dbf ∗ ∗ ∗ ∗(τk, L)

and

∀L ∈ [1..2"log2 DMAXk#) : dbf ∗ ∗(τk, L) ≤ dbf ∗ ∗ ∗ ∗(τk, L)

Together this gives us:

∀L ≥ 1 : dbf∗(τk, L) ≤ dbf ∗ ∗ ∗ ∗(τk, L)

Lemma 3: If EDF is used as a local scheduler in each
component and EDF is used as the global scheduler and
∑

k=1..K U∗k ≤ 1 and

∀L ∈ {1, 2, 3, . . . , 2!log2 DMAXk"} :
∑

k=1..K

dbf ∗ ∗ ∗ ∗(τk
, L) ≤ L

then all deadlines are met.
Proof: Follows from the reasoning above.

3) Discussion about representation: For illustrative pur-
pose, let us show dbf ∗ ∗∗(τ1, L) and dbf ∗ ∗∗(τ2, L) in
tabular form and show them only for those L which are
two-powers (because the function changes only at those L).
The upper part of Figure 2a shows this. We let αk denote the
number of such L-values in component k such that the L-
value is at most DMAXk. In this case, α1 = 6 and α2 = 4.
In general, we obtain αk as:

αk = (log2 DMAXk) + 1 (16)

If a certain value of dbf ∗ ∗∗ is zero then we can represent
that with a zero. If a certain value of dbf ∗ ∗∗ is non-zero
however, then we can (since it is a two-power) represent it
by the logarithm of the value and then add one. This gives
us, for each component, a sequence which characterizes
dbf ∗ ∗∗ of the component. The lower part of Figure 2a
shows this. The length of the sequence is determined by
α; component 1 has a sequence of length α1 = 6 whereas
component 2 has a sequence of length α2 = 4.
Given that component 1 can be represented by a string

of α1 = 6 numbers such that a number is at least zero
and at most α1 = 6 and the numbers in the sequence are
non-descending, let us consider all such possible sequences.
Figure 2c shows this for α1 = 6 which is relevant for
component 1. Figure 2d shows this for α2 = 4 which is
relevant for component 2.
We can therefore represent dbf ∗ ∗∗ for component k for

values within [1..DMAXk] with a single integer; we call
it the sequence number of the component. For example,
dbf ∗ ∗∗ for component 1 for values within [1..DMAXk) can
be represented by sequence number1 = 44. Also, dbf ∗ ∗∗
for component 2 for values within [1..DMAXk] can be
represented by sequence number2 = 3.
Figure 2b shows how we can represent U∗k. We compute

U∗k from Uk. If Uk is zero then we can represent U∗k

with the number zero. If Uk is one then we can represent
U∗k with the number one. If Uk is half or smaller then we
can represent U∗k with the number *log2

1
Uk ++1. We let

util reprk denote the number representing U∗k.

Considering Lemma 3, we can represent a component k
by <αk, sequence numberk, util reprk>. Figure 3 shows
this representation. In order to know if this is an efficient
representation however, we need to find an upper bound on
sequence numberk and therefore, let us turn our attention
to combinatorics.

B. Combinatorics
When proving the space required for our new interface

later in this paper, we will need a result in combinatorics.
This section proves that result in combinatorics.
Let us consider sequences of non-negative integers such

that the elements in the sequence are in non-descending
order. An example of such a sequence is <1,4,5>. An-
other example of such a sequence is <0,2,6,9,9,9,9,10>.
Let T (α, β) denote the number of unique sequences of α
elements such that the elements of the sequence is non-
descending and the last element is at most β. It is assumed
that α and β are positive integers. Figure 4 illustrates this.
Let us now reason about how to compute T (α, β). Let q

denote the last number in the sequence. It is a number at
most β and at least 0. We know that whatever number we
pick, the remaining sequence would have a length α − 1.
Hence we obtain that:

T (α, β) =
β

∑

q=0

T (α − 1, q) (17)

This can be rewritten as:

T (α, β) = (
β−1
∑

q=0

T (α − 1, q)) + T (α − 1, β) (18)

Observing that the left term on the right-hand side is equal
to T (α, β − 1) gives us:

T (α, β) = T (α, β − 1) + T (α − 1, β) (19)

It also holds that:

∀β ≥ 1 : T (α = 1, β) = β + 1 (20)

and

∀α ≥ 1 : T (α, β = 1) = α + 1 (21)

Given these equations, we are now interested in finding an
upper bound on T (α, β) as a closed-form expression.
Lemma 4:

∀α ≥ 1, β ≥ 1 : T (α, β) ≤ 2α+β (22)

Proof: Let us consider the claim:

∀α ≥ 1, β ≥ 1 : α + β ≤ l : T (α, β) ≤ 2α+β (23)

where l is a positive integer.
If we can prove Inequality 23 for each l ≥ 1 then we

know that Inequality 22 is true. We will prove Inequality 23
by using induction on l.

(a) Table of dbf ∗ ∗∗(τ1, L) and dbf ∗ ∗∗(τ2, L) and show-
ing how sequences are generated.

(b) Interface of component 1 and component 2

(c) Table showing the set of sequences for α1 = 6 and their
6-element-sequence number.

(d) Table showing the set of sequences for α2 = 4 and their
4-element-sequence number.

Figure 2: From dbf ∗ ∗∗ to sequence number and also how to represent utilization.

Figure 3: Interfaces for component 1 and component 2.

Base case: We claim: Inequality 23 is true for l = 1.
For this case we obtain that α = 1 and β = 1 and using

Inequality 20 gives us: T (α = 1, β = 1) = 2. Hence, the
base case is true.

Induction step: We claim: If Inequality 23 is true for
l = k then Inequality 23 is true for l = k + 1.
We prove the induction step by contradiction. Suppose

that the induction step would be false. Then there is a
positive integer k such that the following two inequalities
are true:

∀α ≥ 1, β ≥ 1 such that α + β ≤ k : T (α, β) ≤ 2α+β (24)

and

∃α ≥ 1, β ≥ 1 such that α + β = k + 1 : T (α, β) > 2α+β (25)

Considering Inequalities 24 and 25, let α0 and β0 denote
the values which exist in Inequality 25. This gives us:

T (α0 − 1, β0) ≤ 2α0−1+β0 (26)

and

T (α0, β0 − 1) ≤ 2α0+β0−1 (27)

and

T (α0, β0) > 2α0+β0 (28)

Applying Inequality 19 on α0 and β0 gives us:

T (α0, β0) = T (α0, β0 − 1) + T (α0 − 1, β0) (29)

Figure 4: Tabular specification of the function T (α,β).

Applying Inequality 29 on Inequalities 26, 27 and 28 yields:

2α0+β0 < 2α0+β0−1 + 2α0−1+β0 (30)

We can observe that the two terms on the right-hand side
are the same. Hence, rewriting yields:

2α0+β0 < 2α0+β0−1 · 2 (31)

Further rewriting yields:

2α0+β0 < 2α0+β0 (32)

This is a contradiction. Hence the induction step is true.
Since both the base case and the induction step are true,

the induction argument yields Inequality 23 is true for each
l ≥ 1. Hence the lemma is true.

Lemma 5:

∀α ≥ 1 : T (α, α) ≤ 4α (33)

Proof: Follows from Lemma 4.

C. Encoding and decoding sequences
Recall that we can represent a sequence as a sequence

number. Figure 5a and 5b provides us with functions for
doing this encoding/decoding.

IV. THE NEW ALGORITHM

Figure 6 shows pseudocode for generating the interface of
a component. Let us now compute (asymptotically) the space
needed (in bits) for the interface < αk , sequence numberk,
util reprk >. The space needed for αk is (asymptotically)
(log2 αk) and using the expression for αk gives us that the
storage for αk is (log2(log2 DMAXk)).
The space needed for sequence numberk is asymptoti-

cally (log2(sequence numberk)). Using Lemma 5 gives us
that the space needed for sequence numberk is asymptoti-
cally at most (2 · log2(2 · DMAXk)).
Let us now discuss the space needed for util repr. If

Uk = 0 then U∗k = 0. This gives us util repr = 0 which
requires just a single bit. If Uk > 1/2 then U∗k = 1. This
gives us util repr = 1 which requirest just a single bit
as well. If 0 < Uk ≤ 1/2 then U∗k = 1

2
!log2

1
Uk

"
. This

gives us the number util repr = *log2
1

Uk +. This can be
stored with asymptotically with (log2*log2

1
Uk +) bits. We

can use two bits to decide which of the three above cases is
the case. Hence, util repr requires asymptotically at most
(log2*log2

1
Uk +).

Putting all this together gives us that an upper bound
on the space required for the interface of component k is
asymptotically:

log2(DMAXk) + log2 log2
1

Uk
(34)

Let us now reason about the competitive ratio. Let us
consider a component k and let us consider a value L and
compare it with 2"log2 DMAXk# and reason about the loss in
terms of schedulability.
1) If L ≤ 2"log2 DMAXk# then we can reason as
follows. The approximation of dbf ∗ ∗∗(τ, L) by
dbf ∗ ∗ ∗ ∗(τ, L) causes no loss. The approximation
of dbf ∗ ∗(τ, L) by dbf ∗ ∗∗(τ, L) causes a loss by
a factor of two. The approximation of dbf∗(τ, L) by
dbf ∗ ∗(τ, L) causes a loss by a factor of two. The
approximation of dbf(τ, L) by dbf∗(τ, L) causes a
loss by a factor of two. Hence, we lose a factor of
eight.

2) If L > 2"log2 DMAXk# then we can reason as fol-
lows. When we compute dbf ∗ ∗ ∗ ∗(τ, L) we have
two terms. One is dbf ∗ ∗∗(τ, L) and the other is
(L − 2"log2 DMAXk#) · U∗k. Let us discuss the term
dbf ∗ ∗∗(τ, L). The approximation of dbf ∗ ∗(τ, L)
by dbf ∗ ∗∗(τ, L) causes a loss by a factor of two.
The approximation of dbf∗(τ, L) by dbf ∗ ∗(τ, L)
causes no loss. The approximation of dbf(τ, L) by
dbf∗(τ, L) causes a loss by a factor of two. Hence,
we lose a factor of four. Let us discuss the term
(L− 2"log2 DMAXk#) ·U∗k. The approximation of Uk

by U∗k cause a loss by a factor of two. The loss
in schedulability because of our approximation of
dbf ∗ ∗ ∗ ∗(τ, L) is the maximum of the two terms.
Hence, we lose a factor of eight.

Based on this reasoning, we can see that our new schedu-
lability test which takes input from our interface generation

(a) Encoding. (b) Decoding

Figure 5: Encoding and decoding of sequence numbers.

(a) Creating an interface. (b) Performing schedulability analysis

Figure 6: Creating an interface and using interfaces for performing schedulability analysis.

algorithm gives us a competitive ratio of eight.

V. CONCLUSION
We have shown an 8-competitive, log2 DMAX +

log2 log2
1
U space, interface generation algorithm for

constrained-deadline sporadic tasks on a single processor.
We gave an informal argument why it is 8-competitive but
left open the problem of proving it.

Acknowledgements
This work was partially funded by the Portuguese Science

and Technology Foundation (Fundação para a Ciência e a
Tecnologia - FCT) and the European Commission through
grant ArtistDesign ICT-NoE-214373 and Luso-American
Development Foundation (FLAD).

REFERENCES
[1] B. Andersson. A pseudo-medium-wide 8-competitive in-

terface for two-level compositional real-time scheduling of
constrained-deadline sporadic tasks on a uniprocessor. In Proc.
of 2nd Workshop on Compositional Theory and Technology for
Real-Time Embedded Systems (Co-located with RTSS), 2009.

[2] S. Baruah and N. Fisher. The partitioned multiprocessor
scheduling of deadline-constrained sporadic task systems.
IEEE Transactions on Computers, 55(7):918–923, 2006.

[3] S. K. Baruah, A. K. Mok, and L. E. Rosier. Scheduling hard-
real-time sporadic tasks on one processor. In Proc. of 11th
Real-Time Systems Symposium (RTSS), pages 182–190, 1990.

[4] L. Bass, P. Clements, and R. Kazman. Software Architecture
in Practice. Addison Wesley, second edition, 2003.

[5] A. Easwaran, M. Anand, and I. Lee. Compositional analysis
framework using EDP resource models. In Proc. of 28th Real-
Time Systems Symposium (RTSS), pages 129–138, 2007.

[6] C. L. Liu and J. W. Layland. Scheduling algorithms for
multiprogramming in a hard real-time environment. Journal
of the Association for the Computing Machinery, 20:46–61,
1973.

[7] A. Mok, X. Feng, and D. Chen. Resource partition for real-
time systems. In Proc. of 7th IEEE Real-Time Technology and
Applications Symposium (RTAS), pages 75–84, 2001.

[8] I. Shin and I. Lee. Periodic resource model for compositional
real-time guarantees. In Proc. of 24th Real-Time Systems
Symposium (RTSS), pages 2–10, 2003.

[9] I. Shin and I. Lee. Compositional real-time scheduling frame-
work. In Proc. of 25th Real-Time Systems Symposium (RTSS),
pages 57–67, 2004.

