

A Robotic Platooning Testbed for Cooperative
ITS Components

Orientação científica: Ricardo Severino

Masters Thesis

CISTER-TR-191208

Nuno Guedes

Masters Thesis CISTER-TR-191208 A Robotic Platooning Testbed for Cooperative ITS Components

© 2019 CISTER Research Center
www.cister-labs.pt

1

A Robotic Platooning Testbed for Cooperative ITS Components

Nuno Guedes

CISTER Research Centre

Polytechnic Institute of Porto (ISEP P.Porto)

Rua Dr. António Bernardino de Almeida, 431

4200-072 Porto

Portugal

Tel.: +351.22.8340509, Fax: +351.22.8321159

E-mail:

https://www.cister-labs.pt

Abstract

Intelligent Transportation Systems are becoming increasingly relevant in the currentand future social and mobility
aspects, since they apply information, communication,and sensor technologies to vehicles and transportation
infrastructure. They providereal-time information for road users and transportation system operators
enablingbetter and more informed and efficient decisions. This technology can be used tomanage road traffic in
order to reduce congestion, increase the efficiency of existingtransport infrastructure and improve
mobility.Although this technology might be the powerhouse of cooperative autonomousdriving, as others matters,
there are still safety concerns to be managed. Thus, itis fundamental to include safety mechanism to assure the
required safety level forthese systems.Currently, research in cooperative autonomous systems usually conducted
oversimulation frameworks as real experiments are still too costly.A good solution for this problem is to rely on
robotic platforms since they arecheaper and replicate with similar functionality real vehicles. In this line, this
Thesisfocuses on developing a platooning robotic testbed platform with a 1/10 scale roboticvehicles.To prove it's
efectiveness, we validate a cooperative safety mechanism for platooning.

ISEP
Instituto Superior de Engenharia do Porto

A Robotic Platooning Testbed
for Cooperative ITS

Components

Master Thesis

To obtain the degree of master at the

Instituto Superior de Engenharia do Porto,

public defend on October by

Nuno Miguel Santos Guedes

Degree in Electronics and Computer Science
Porto, Portugal.

Supervisor:

Prof. Dr. Ricardo Severino

Copyright c© 2019 by EE

All rights reserved. No part of the material protected by this copyright notice may
be reproduced or utilized in any form or by any means, electronic or mechanical,
including photocopying, recording or by any information storage and retrieval
system, without the prior permission of the author.

isbn ++-++++-+++-+

Author email: 1140477@isep.ipp.pt

Acknowledgments

First, I would like to thank my supervisor, Ricardo Severino, for this opportunity
at CISTER. His advice, supervision and availability were remarkable during the
development of this Thesis.

I want to thank all the people that work at CISTER for their support and passion.
These attributes show the exciting and challenging workplace that CISTER is.

To Daniel Almeida and Bruno Vieira, I would like to thank them for these five
years at ISEP and the last, also in CISTER. They were always their for any problem
that would appear, despite having their owns.

I would also like to thank my parents. Without them, I wouldn’t be the person
I am today.

A special thanks to my dearest, Francisca Santos, who believes most than anyone
in me and whose love and support was crucial throughout this master’s degree

Last, I would like to leave a dedication to my grandfather, Joaquim Santos, that
went on to be my inspiration and who was never able to see me succeed.

Resumo

Os Sistemas Inteligentes de Transporte estão a tornar-se cada vez mais relevantes

nos contextos sociais e de mobilidade atuais e futuros, pois aplicam tecnologias

de informação, comunicação e sensores em véıculos e infraestrutura de transporte.

Estes sistemas fornecem informações em tempo real para condutores e operadores de

sistemas de transporte, permitindo decisões melhores, mais informadas e eficientes.

Esta tecnologia pode ser usada para controlar o tráfego rodoviário, a fim de reduzir o

congestionamento, aumentar a eficiência da infraestrutura de transporte e melhorar

a mobilidade.

Embora esta tecnologia possa ser a força motriz da condução autónoma co-

operativa, ainda existem problemas de segurança a serem resolvidos. Portanto, é

fundamental incluir mecanismos de segurança para garantir o ńıvel de segurança

exigido para estes sistemas.

Atualmente, a investigação em sistemas autónomos cooperativos é geralmente

realizada em ambiente de simulação, devido ao facto de experiências reais serem

ainda muito caras.

Uma boa solução para esse problema é depender de plataformas robóticas, uma

vez que são mais baratas e replicam véıculos reais com funcionalidade semelhante.

Nesta linha, esta Tese concentra-se no desenvolvimento de uma plataforma robótica

para ”platooning” com véıculos robóticos à escala de 1/10.

Para provar sua eficácia, validamos um mecanismo de segurança cooperativo

para ”platooning”.

Palavras-Chave: ”Platooning” Cooperativo, Plataforma Robótica, Sistemas

Inteligentes de Transporte, Mecanismos de Segurança.

i

Abstract

Intelligent Transportation Systems are becoming increasingly relevant in the current

and future social and mobility aspects, since they apply information, communication,

and sensor technologies to vehicles and transportation infrastructure. They provide

real-time information for road users and transportation system operators enabling

better and more informed and efficient decisions. This technology can be used to

manage road traffic in order to reduce congestion, increase the efficiency of existing

transport infrastructure and improve mobility.

Although this technology might be the powerhouse of cooperative autonomous

driving, as others matters, there are still safety concerns to be managed. Thus, it

is fundamental to include safety mechanism to assure the required safety level for

these systems.

Currently, research in cooperative autonomous systems usually conducted over

simulation frameworks as real experiments are still too costly.

A good solution for this problem is to rely on robotic platforms since they are

cheaper and replicate with similar functionality real vehicles. In this line, this Thesis

focuses on developing a platooning robotic testbed platform with a 1/10 scale robotic

vehicles.

To prove it’s effectiveness, we validate a cooperative safety mechanism for pla-

tooning.

Keywords: Cooperative Platooning, Robotic Testbed, Intelligent Transporta-

tion Systems, Safety Mechanisms.

iii

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Research Context . 2

1.3 Research Objectives . 2

1.4 Thesis Structure . 2

2 Platooning Overview 5

2.1 General Aspects . 5

2.2 Communications . 7

2.3 Control Strategies . 9

2.4 Platooning Testbeds . 11

3 Technologies and Tools 15

3.1 Hardware . 15

3.1.1 Traxxas RC Car . 15

3.1.2 Jetson TX2 and Developer Kit 16

3.1.3 Teensy 3.2 . 17

3.1.4 Inertial Measurement Unit (IMU) 18

3.1.5 ZED stereo camera . 19

3.1.6 Range Finders . 19

3.1.7 Sonar . 20

3.1.8 Cohda On Board Unit . 20

3.2 Software . 21

3.2.1 NVIDIA Jetpack 3.3 . 21

3.2.2 Robot Operating System . 21

3.2.3 OpenCV 3.4.2 . 24

3.2.4 ZED Python API . 24

3.2.5 Virtual Network Computing (VNC) 24

v

CONTENTS

4 Robotic Platooning Testbed Architecture 25

4.1 System’s Architecture . 25

4.2 ZED Camera mount . 27

4.3 Teensy PCB Board . 28

4.4 Sensor Board . 29

4.5 MK5 ROS Bridge . 31

4.6 Software Setup . 32

5 Platooning Algorithms 35

5.1 Sensor Board based Platooning . 35

5.1.1 Lateral Control . 39

5.1.2 Longitudinal Control . 40

5.2 Camera-based Platooning . 41

5.2.1 Lateral Control . 43

5.2.2 Longitudinal Control . 44

5.3 Results . 44

5.3.1 Lateral Control Results . 44

5.3.2 Longitudinal Control Results 51

5.3.3 Camera Detection Result . 58

6 OBU Cooperation Platooning 61

6.1 System . 61

6.2 CLW integration . 62

7 Conclusions and Future Work 65

7.1 Conclusions . 65

7.2 Future Work . 66

vi Nuno Guedes

List of Figures

2.1 Driving Patterns in a Platoon [1] . 6

2.2 Driving Applications . 7

2.3 Autonomous Vehicle Interaction [2] 8

2.4 VC-Bots . 12

2.5 VC-Bots Hardware [3] . 13

3.1 Traxxas RC CAR [4] . 16

3.2 Jetson TX2 Technical Specifications 16

3.3 Developer Kit Tech Spec . 17

3.4 Teensy 3.2 . 18

3.5 Sparkfun Razor IMU . 18

3.6 ZED Camera . 19

3.7 Range Finder GP2Y0A02YK0F . 20

3.8 Sonar SRF08 . 20

3.9 Cohda Wireless MK5 OBU [5] . 21

3.10 Publish and Subscribe Example . 22

4.1 Hardware Architecture . 26

4.2 Software Architecture . 27

4.3 Mount of the ZED camera base . 28

4.4 Teensy PCB Board Schematic . 28

4.5 Jetson TX2 Pinout [6] . 29

4.6 Sonar Pinout [7] . 30

4.7 Sensor Board . 30

4.8 Sensor Board Representation . 31

4.9 ROS Bridge Architecture . 32

4.10 Work Environment . 33

5.1 Baseline Rqt Graph . 35

5.2 /Sonars Ranging Node Flowchart . 36

5.3 /vel angle calc Flowchart without camera 37

vii

LIST OF FIGURES

5.4 /serial talker Node Flowchart . 37

5.5 /serial node Node Flowchart . 38

5.6 /kill switch Node Flowchart . 39

5.7 Car State Flowchart without camera 39

5.8 Sensor Control Board . 40

5.9 Stop Sign . 41

5.10 Camera-based Rqt Graph . 42

5.11 /vel angle calc Flowchart . 42

5.12 Stop Sign Detection Scenarios . 43

5.13 Car State Flowchart . 43

5.14 Track and Car Positioning . 45

5.15 Real Time Headings at 0.8 m/s without camera detection 45

5.16 Comparison between Headings at 0.8 m/s without camera detection 46

5.17 Heading Errors at 0.8 m/s without camera detection 46

5.18 Real Time Headings at 0.8 m/s . 47

5.19 Comparison between Headings at 0.8 m/s 47

5.20 Heading Errors at 0.8 m/s . 48

5.21 Real Time Headings at 0.9 m/s . 48

5.22 Comparison between Headings at 0.9 m/s 49

5.23 Heading Errors at 0.9 m/s . 49

5.24 Real Time Headings at 1.0 m/s . 50

5.25 Comparison between Headings at 1.0 m/s 50

5.26 Heading Errors at 1.0 m/s . 51

5.27 Comparison between Distances from Car 2 and Car 3 at 0.8 m/s

without camera detection . 51

5.28 Distance Errors at 0.8 m/s without camera detection 52

5.29 Comparison between Distances from Car 2 and Car 3 at 0.8 m/s . . 53

5.30 Distance Errors at 0.8 m/s . 54

5.31 Comparison between Distances from Car 2 and Car 3 at 0.9 m/s . . 54

5.32 Distance Errors at 0.9 m/s . 55

5.33 Comparison between Distances from Car 2 and Car 3 at 1.0 m/s . . 56

5.34 Distance Errors at 1.0 m/s . 56

5.35 Comparison of Car 2 metrics . 57

5.36 Comparison of Car 3 metrics . 57

5.37 Correlation between Camera Detection and Distance to Leader with

Natural Lighting . 58

viii Nuno Guedes

LIST OF FIGURES

5.38 Correlation between Camera Detection and Distance to Leader with

Artificial Lighting . 59

6.1 Cooperative System Architecture . 62

6.2 CLW Overview . 63

6.3 Platooning with Safety Mechanism 64

Nuno Guedes ix

Acronyms

3D three-dimensional

ANN Artificial Neural Network

BSM Basic Safety Message

CAM Cooperative Awareness Message

CCH Control Channel

CISTER Research Centre in Real-Time & Embedded Computing Systems

CoCPS Cooperative Cyber-Physical Systems

DCC Decentralized Congestion Control

ESC Electronic Speed Controller

ETSI European Telecommunications Standards Institute

GNSS Global Navigation Satellite System

GUI Graphical User Interface

I2C Inter-Integrated Circuit

IDE Integrated Development Environment

IEEE Institute of Electrical and Electronics Engineers

IMU Inertial Measurement Uni

IR Infrared emitting diode

ITS Intelligent Transport System

LiDAR Light Detection And Ranging

LOD Loss of Direction

OBU On-board Unit

OpenCV Open Source Computer Vision Library

OSRF Open Source Robotics Foundation

PCB Printed Circuit Board

PD Proportional-Derivative

xi

LIST OF FIGURES

PID Proportional-Integral-Derivative

PWM Pulse Width Modulation

ROS Robot Operating System

RSU Road-Side Unit

SCH Service Channel

SDK Software Development Kit

SLAM Simultaneous Localization and Mapping

SPI Serial Peripheral Interface

UI User Interface

uRLLC ultra reliable and low-latency communication

USB Universal Serial Bus

V2I Vehicle-to-Infrastructure

V2V Vehicle-to-Vehicle

V2X Vehicle-to-Everything

VANET Vehicle ad hoc Network

VC-bot vehicular cloud robot

VNC Virtual Network Computing

WAVE Wireless Access in Vehicular Environments

xii Nuno Guedes

1
Introduction

1.1 Motivation

Platooning is a very interesting subject that is in expansion. This approach brings

many benefits to society as lower fuel consumption and CO2 emissions, improved

safety, since we eliminate human factor that is estimated to be the cause of 90% of

accidents, and it is more efficient has the potential to deliver goods faster and reduce

traffic jams. When we introduce wireless communication in a platoon, we enable

what is called cooperative platooning. In such setup, each following vehicle uses

information from its own in-vehicle sensors, plus data received via wireless from the

front vehicle, to cooperatively measure and adjust its position, based on the speed,

direction and acceleration of the preceding vehicle.

This brings us to the various challenges platooning also presents concerning the

reliability of the communications between vehicles and it’s impact on road safety.

Due to these facts, there is the need to implement monitoring tools or mechanisms in

cooperative platooning, to prevent accidents and/or to assure the correct trajectory

to a certain target. The Control Loss Warning (CLW) mechanism analyzes real

time data of exchanged messages and alerts if some error is detected triggering an

emergency action. To validate this technology, we developed a physical cooperative

robotic testbed capable of testing and validating this technology.

Robotic testbeds are very important for this matter, since they are a low-cost

solution for testing purposes and they replicate real vehicle’s functionality and phys-

1

CHAPTER 1. INTRODUCTION

ics. In this Thesis, we show different components that a cooperative platooning

vehicle can possess, as their interactions in control algorithm and with other vehicles

of a platoon.

1.2 Research Context

This project was developed at CISTER in line with the SafeCOP european pro-

ject [8], that envisages the use of wireless communication, multiple stakeholders,

dynamic system definitions, and unpredictable operating environments. The ad-

vantages of this project include lower certification costs, increased trustworthiness

of wireless communication, better management of increasing complexity, reduced ef-

fort for verification and validation, lower total system costs, shorter time to market

and increased market share.

In this context, CISTER’s participation aimed at participating in the automot-

ive use case on safe cooperative vehicular platooning and particularly in developing

a robotic testbed to validate and demonstrate cooperative vehicular platooning ap-

plications and safety mechanisms.

1.3 Research Objectives

This Thesis main purpose is to create a low-cost robotic cooperative platooning

testbed to validate different technologies and algorithms. To achieve this, we first

aimed at the implementation of a base example of a platoon that’s based on sonars

and range finders exclusively. Following this, the inclusion of cameras, on each car,

and an improvement of the platooning control. Lastly, the integration of OBUs

to support V2V communications and consequently the demonstration of the CLW

mechanism.

1.4 Thesis Structure

In chapter 2, there is an overview of different types of platooning mixing sensor

and/or communications and various control models for the followers. There is also

an overview of other robotic testbeds relevant to these topics. Chapter 3 contains

all technologies and tools that were used to accomplish this project’s objectives

and their respective clarification. Chapter 4 describes the setup of our testbed and

explains how the vehicle’s components interact between them and their respective

purpose for this application. Chapter 5, one of the main chapters, exhibits the work

2 Nuno Guedes

1.4. THESIS STRUCTURE

that was implemented in this Thesis and the results retrieved from it. Chapter 6,

similar to the previous chapter, presents the work carried out with GMV Skysoft SA,

on platooning related communications and safety features, particularly regarding the

CLW module. Chapter 7 concludes the document and points out projects that can

and should be carried out in the future to extend this testbed.

Nuno Guedes 3

2
Platooning Overview

2.1 General Aspects

The interest in platooning is having an exponential growth in academic and indus-

trial areas and therefore there are increasingly more studies being carried out in

such topics. These studies focus on the impact that platoons may have in society,

mostly focusing on transportation efficiency and safety.

This section presents the state of the art of platooning focusing on communic-

ations and control aspects and it’s challenges. One of the main issues to be solved

is how to regulate the increase of vehicles in the streets. For this, platoon-based

driving can be a viable solution since it improves the traffic flow in the cities and

highways.

This approach has many advantages to both traffic and drivers. The cars in a

platoon have a constant safety distance that is shorter than in real life situations

and this results in less traffic congestion and more road capacity. As the cars are

close to each other and in line, the air resistance reduces, forming a slipstream that

will result in less energy consumption and emissions to the environment.

It also has a huge impact in communication applications, since there is a constant

distance between vehicles. As referred, the drivers also benefit since it’s safer and

more comfortable driving in a platoon. The vehicles adopt a cooperative autonomous

pattern, following the leader’s route in a platoon. These patterns consist in some

operations that can be done in a platoon, as merging, preserving or splitting a

5

CHAPTER 2. PLATOONING OVERVIEW

platoon, represented in Figure 2.1.

Figure 2.1: Driving Patterns in a Platoon [1]

The control and behavior of autonomous vehicles can be managed by many

sensors in the vehicles. However, wireless communication can improve the safety

and reliability of the platoon. The Intelligent Transportation System (ITS) are

defined as ”advanced applications which without embodying intelligence as such aim

to provide innovative services relating to different modes of transport and traffic

management and enable various users to be better informed and make safer, more

coordinated and ”smarter” use of transport networks”, by the European Union [9].

Each vehicle can carry an On-Board Unit (OBU), responsible for collecting the data

from the sensors and send them to the neighbours or to Road Side Units (RSU).

Those RSU can be responsible for analyzing the data and redistribute them or even

alert the vehicles for conditions of the road.

Considering the vehicles that form a platoon as a complex system that defines

the course of action based on sensors and communication with others, it is possible

to define them as an instantiation of Cooperative Cyber-Physical Systems (CoCPS)

[10]. They can be analyzed in two perspectives: intra-vehicle CPS, where the main

goal is to optimize the response time and the performance of each car, and inter-

vehicular, where the objective is to improve the traffic or the network behavior of the

platoon. In both cases, the safety of the platoon is the most important parameter

to be guaranteed. The design of the applications and full visualization of platoons

as CoCPS is shown in Figure 2.2.

6 Nuno Guedes

2.2. COMMUNICATIONS

Figure 2.2: Driving Applications

The most common VP applications focus on the optimization of traffic, reducing

energy consumption and service delivery to vehicles, like information about the road.

There are many studies on those areas, such as [11], where the authors present an

analysis of the traffic flow, considering an autonomous platoon and a mix of human-

driven vehicles and autonomous vehicles. Regards the consumption, [12] evaluate

the reduction caused by platoons, given the small distance between the cars. There is

another study [13], where the decrease in emissions of CO2 is analyzed in platoons.

In the service area, the communication with the vehicles can also improve some

applications, like internet access and cooperative local service [14, 15].

2.2 Communications

Wireless communications are very important in a platoon since they can provide

improved reliability and safety, enabling ITS. Researchers developed a technology

for this purpose the ITS. For this practical implementation, each car from the platoon

must have an OBU, that will receive information from it’s sensors and send it to the

others or to RSUs. A RSU’s purpose is to collect data from cars and/or the road

condition and send it to the platoon, so they can adapt their control for a safer path.

To have a communication vehicle to vehicle (V2V) or vehicle to infrastructure (V2I)

you can establish a wireless communication through a mobile wireless network that

is a vehicular ad hoc network. These interactions are shown in Figure 2.3.

Nuno Guedes 7

CHAPTER 2. PLATOONING OVERVIEW

Figure 2.3: Autonomous Vehicle Interaction [2]

These operations depend on the exchange of messages as state monitoring, ser-

vices data, control packets and safety messages. The messages’ latency can alter

from milliseconds to seconds, regarding the intended operation. The data can be

disseminated by time, motion or events in the streets and can be distributed in

distinctive ways, as unicast, broadcast or multicast.

In this line, some organizations have been developing Vehicle ad hoc Network

(VANET) standards. Two big standards are European Telecommunications Stand-

ards Institute (ETSI) ITS-G5 from Europe and Wireless Access in Vehicular Envir-

onments (Wave) from North America. Both are based on IEEE 802.11p, but they

have major differences. A comparison is held in [16], where their main focus is ETSI

ITS-G5. It’s physical layer is characterized in IEEE 802.11p, but the MAC layer

features an additional algorithm, that’s named Decentralized Congestion Control

(DCC). According to the channel busy rate, this algorithm can adapt the frequency

of data transmission dynamically. It can change several parameters of the MAC and

physical layer as transmit power, the minimum packet interval, the data rate and

the sensitivity of the radio.

One of the main differences between these two standards is that IEEE Wave

allows nodes to exchange messages on different channels, the Control Channel (CCH)

and one of the Service Channels (SCHs), resulting in the absence of the need for

a dual transceiver system. This method is called alternating access. While ETSI

ITS-G5 doesn’t use this method since it can eliminate the packet loss caused by

synchronization effects. Of course this comes with a downside that’s the increase

of the system’s cost due to the need of an on board unit supporting CCH and

SCHs applications. There’s also a minor difference that consists in the naming of

the messages that are distributed through the network. In ITS-G5 these are called

8 Nuno Guedes

2.3. CONTROL STRATEGIES

Cooperative Awareness Message (CAM) while in Wave they’re named Basic Safety

Message (BSM).

These messages, according to ETSI, CAMs are sent systematically from ITS

stations to all the neighborsâ stations that are in the communication range. ITS-

hosts use this type of messages to help its sensing, as calculating the distance between

two vehicles, adding an extra layer for ITS vehicles, despite the fact that these should

feature other manners of perceiving their surroundings, like sensors and cameras.

Information sent through CAMs is commonly about the ITS host’s position and

status. The frequency of sending CAMs is a very important quality requirement,

since they should be sent periodically and might express an improvement of services

of applications. ETSI set some requirements to the generation of CAMs for most

ITS scenarios [17]:

• maximum time interval between CAM generations: 1s;

• minimum time interval between CAM generations is 0, 1s.

• generate CAM when absolute difference between current and last heading (to-

wards North) CAM heading ≥ ±4◦;

• generate CAM when distance between current position and last CAM position

≥ 5m;

• generate CAM when absolute difference between current and last speed CAM

speed ≥ 1m/s;

• These rules are checked at most every 100ms;

2.3 Control Strategies

As communications are not completely reliable, each car will have it’s own control

based on data received from sensors that are attached to it as sonars, Light Detection

And Ranging (LiDAR), cameras, infrared sensors among others. We will only focus

in the control of the followers as that’s the main purpose of this project.

Since communications may fail due to interference’s or information congestion,

the authors of this work [18] try to compensate the failures using an adaptive

Proportional-Derivative (PD) control to achieve stability in the platoon. They im-

plement a dynamic information flow among the vehicles, applying a predecessor-

follower mode. This way, the information is sent from the preceding vehicle to the

Nuno Guedes 9

CHAPTER 2. PLATOONING OVERVIEW

following two vehicles. There are also sensors to detect the distance and position of

the previous car.

In the following project [19], the authors also consider the predecessor-follower

control problem. In this case study, they contempt a platoon in a track that also has

static obstacles. They adopt a sensor-based platoon which input derives from an on

board camera on each vehicle to detect the previous vehicle and a laser scanner to

detect surrounding object in the track. With this, each vehicle calculates his own

control signal, acquired from the previous sensors. By obtaining these information,

collisions with obstacles and other successive vehicles are avoided.

In [20], the project consists in a platoon of two buses, were the follower was tested

with one longitudinal control and four lateral controls. The longitudinal control was

Proportional-Integral-Derivative (PID) based and there were performed tests were

the input distances were in between 2 m and 10 m. They tested this control with

speed variation of 10 m/s from the leader and different payloads on each bus. The

lateral controls are Pure Pursuit, Spline Pursuit, Circular Pursuit and Modified Pure

Pursuit.

The Pure Pursuit uses the point located at the center of the leader rear axle as

the look ahead point. This control law aims to drive the follower on a circular arc

in such a way that the center of the follower rear axle coincides with the trace of

the center of the leader rear axle.

The second one, Spline Pursuit, takes into account the leaders heading with

respect to the follower. In this study, they fitted a cubic spline between the rear

axles of the buses. The position of the target point was defined the same way as in

Pure Pursuit method. They defined at the follower’s rear axle a, the target steering

angle was derived after the curvature of the spline.

In the Circular Pursuit method, the steering angle of the follower aims to pursue

a circular arc matching with the leaders front axle and tangential to the leaders

heading. The control law intends to steer the follower front axle center on an arc

defined by the leaders front axle trace. This circular arc passes through the leader

and follower front axle centers and is simultaneously coincident with the leaders

heading.

The Modified Pure Pursuit method is refitted version of the Pure Pursuit method.

This modification takes into account the relative heading of the leader. The differ-

ence between both approaches is in the angle between the virtual followers heading

and the look ahead vector. In transient conditions, the follower has a different head-

ing in comparison to the virtual follower. Therefore, there is a term to align the

followers and the virtual followers headings.

10 Nuno Guedes

2.4. PLATOONING TESTBEDS

2.4 Platooning Testbeds

There are several works on platooning and one major aspect is a practical implement-

ation as a robotic testbed to validate your hypothesis’. In [21], they present a testbed

that uses 5G ultra reliable and low-latency communication (uRLLC). They designed

a V2X, based on software defined radio, that features flexible reconfiguration in short

frame structure and numerology, rapid real-time processing, flexible synchronization

and that is easily deployed. The authors examine the system’s design and tech-

nical enablers for use cases and communication requirements for future cooperative

autonomous driving. This testbed consists in an optimized base-band processing

and a reconfigurable RF front-end on general purposed CPUs. The technical en-

ablers include a new OFDM-like waveform based on Pulse-shaping, a flexible and

self-contained frame-structure design, Global Navigation Satellite System (GNSS)

aided hybrid synchronization and low-latency scheduled multiple-access.

Their radio subsystem consists of:

• The NI/Ettus USRP X310 SDR platform as the RF Unit (RFU).

• High performance Intel CPU based PC.

• Lightweight linux distribution.

• Real-time processing framework implemented using C/C++.

• Algorithm simulation environment in Matlab.

• A self-built RF external (RFE) module with power amplifier and TDD switch.

This testbed was integrated with the autonomous car prototypes to test the im-

portant use cases of in the cooperative driving such as semi-simultaneous emergency

brake. Their initial experiments demonstrated that the emergency brake is success-

fully triggered from one car to the other ones with 100% successful rate and less

than one millisecond delay. This work represents proof of concept of their testbed

in a scenario of platooning and has wider applications in the automotive industry.

The work done in [21] has a similar approach to our testbed when comparing to

the safety mechanism implemented by CISTER. They propose a emergency brake

mechanism for improved road safety. In both testbeds are used OBUs to communic-

ate the control warning to result in full stop of the following vehicles. While in our

project we use a Jetson TX2 to process the information, in their project is used high

performance Intel CPU based PC. Each project uses a Linux distribution optimized

for run-time performance.

Nuno Guedes 11

CHAPTER 2. PLATOONING OVERVIEW

At Arizona State University, a group of researchers [3] present vehicular cloud

robots (VC-bots) which are designed to ensure an open platform for both research

experiments and education services on VANET, vehicular cloud computing infra-

structure and future smart vehicles applications, such as on road or indoor. They

developed four standard robot vehicles. These are called VC-truck, VC-van, VC-

sedan and VC-compact, as shown in Figure 2.4. The VC-truck is displayed at

bottom left, VC-van is at bottom right, the VC-sedan is situated at top right and

VC-compact is at top left.

Figure 2.4: VC-Bots

They have different size, weight, payload and maximum speed but our focus is

on the hardware that was used. All robots have IMU and wheel encoders but the

VC-sedan is the only one without a Pi Camera. Instead it has a USB wide-angle

camera. The VC-truck and VC-compact have a Ultrasonic Sensor. For localization,

they all have odometry, but the VC-Compact doesn’t have LiDAR, while the other

three have it. The VC-Truck and VC-Van also are equipped with a GPS. These

characteristics are represented in Figure 2.5

12 Nuno Guedes

2.4. PLATOONING TESTBEDS

Figure 2.5: VC-Bots Hardware [3]

The motor control signals are generated on Raspberry Pi with a two level PID

control algorithm based on current motion states and desired states. Then the

control signals are handled by an Arduino, that measures wheel speed with rotary

encoder, which generates Pulse Width Modulation (PWM) signal to drive the mo-

tors.

The VC-bots support multiple network access methods. where each robot vehicle

is equipped with multiple WiFi interfaces and several WiFi routers are deployed as

RSU which are connected to the Internet. One interface is setup as WiFi access point

and other interfaces can either connect to another robot vehicle for V2V communic-

ation, or connect to an RSU for V2I communication. The robots form a connection

to other vehicles by sending commands over the management network, which is used

by the User Interface (UI) to allow user to setup network topology.

Their motion states include three types, position and orientation, linear speed

and angular speed, and linear acceleration. The rotary encoders sense wheel rotation

speed, which further derive through kinematics model and by dead reckoning. Due to

the accumulated error in dead reckoning, they use a LiDAR sensor with simultaneous

localization and mapping (SLAM) software to correct position and an IMU to correct

orientation. Based on these sensors, they designed multiple controllers as cruise

control and planar stabilizing.

Nuno Guedes 13

CHAPTER 2. PLATOONING OVERVIEW

They have implemented a longitudinal platooning algorithm with their testbed,

that uses V2V communications. The platooning software component registers three

methods. These methods are join, follow, and a state report event source on its local

message broker. By using V2V communications, other platooning elements directly

link to the platooning header and call the headerâs join method as well as subscribe

the state reporting event source. The return of join method is the name of the robot

vehicle at platoon tail. The new platooning member also connects to the platoon tail

and calls its predecessorâs follow method and subscribes the state reporting event

source, since the platooning algorithm requires each robot to send its acceleration

and speed to its successor in the cluster. After successfully joining the platoon, the

algorithm systematically calculates the desired speed based on predecessorâs states,

distance to the leader as well as the headerâs state to maintain steadiness of the

whole platoon. Platoon leaving is implemented in the reverse order by calling the

unfollow method on the predecessor, a leave method on the head and unsubscribing

the event sources.

When comparing this project done at Arizona State University to the work done

at CISTER, it is possible to highlight that both project use ROS as a baseline. They

have four different platforms, of which two use on board computer, Intel NUC, but

since they do not refer which one, it is not possible to perform a comparison to our

testbeds processing power. The other two platforms that don’t use an on board

computer use remote cloud computing to control their movement. They use WiFi,

while in our safe mechanism the communication is done via ETSI ITS-G5, enabling

a higher safety-critical reliability for our scenario.

Despite our communications being more reliable, their testbed offers a wider

sensory input analysis, coming from LiDAR, wheel encoders and GPS.

They also have a larger test flexibility since they have several WiFi routers

deployed as road side unit, simulating a better real life scenario.

14 Nuno Guedes

3
Technologies and Tools

This chapter presents a description of all technologies that were used and imple-

mented for this project. First, we approach the hardware components followed by a

description of the software.

3.1 Hardware

3.1.1 Traxxas RC Car

In the interest of developing a physical testbed, a car model was necessary to be

altered and adapted to have all the components placed and organized. The car

model used is a Traxxas Fiesta ST Rally [22], a 1/10 scale of a real car, like the

one in Figure 3.1. The versatility of the RC model, allows it to be adjusted at will,

creating a well structured platform to test different scenarios.

15

CHAPTER 3. TECHNOLOGIES AND TOOLS

Figure 3.1: Traxxas RC CAR [4]

This RC car comes with a Titan 12T Waterproof DC Motor, up to 8.4 V, a XL-5

Electronic Speed Controller (ESC), a steering servo, a RC receiver and it’s remote

controller. Besides the components that come mounted on the car, a Lipo battery

is necessary to power up the car, in this build case a 2-cell 5800 maH 7.4V Traxxas

Lipo battery was used.

3.1.2 Jetson TX2 and Developer Kit

Jetson TX2 is a very fast, power-efficient embedded AI computing device. This 7.5-

watt has a 256-core NVIDIA Pascal GPU and is loaded with 8GB of memory and

59.7GB/s of memory bandwidth. It has a eMMC 5.1 storage with 32 GB and a Dual-

Core NVIDIA Denver 2 64-Bit CPU and also a Quad-Core ARM R© Cortex R©-A57

MPCore as shown in Figure 3.2.

Figure 3.2: Jetson TX2 Technical Specifications

16 Nuno Guedes

3.1. HARDWARE

The Jetson TX2 Developer Kit gives you a fast, easy way to develop hardware

and software for the Jetson TX2 on a module. It exposes the hardware capabilities

and interfaces of the developer board, comes with design guides and other docu-

mentation, and is pre-flashed with a Linux development environment (Figure 3.3).

It also supports NVIDIA Jetpack a complete software development kit (SDK) that

includes libraries for deep learning, computer vision, GPU computing, multimedia

processing, and much more.

Figure 3.3: Developer Kit Tech Spec

3.1.3 Teensy 3.2

Teensy is a Universal Serial Bus (USB) based micro-controller that features a 32 bit

ARM processor with great processing power and has 24 I/O, from which are digital,

analog, Inter-Integrated Circuit (I2C), Serial Peripheral Interface (SPI), PWM, serial

and touch pins. These characteristics are shown in Figure 3.4. This board is ideal for

this project since it is compatible with Arduino software and libraries, that interfaces

with the Robot Operating System (ROS).

Nuno Guedes 17

CHAPTER 3. TECHNOLOGIES AND TOOLS

Figure 3.4: Teensy 3.2

3.1.4 Inertial Measurement Unit (IMU)

The Sparkfun 9 dof Razor IMU, version sen 14001, equal to the one in Figure 3.5

has 9 degrees of freedom and combines 3 different types of sensors, accelerometer,

gyroscope and magnetometer. These have the ability to sense linear acceleration,

angular rotation speed and magnetic field vector respectively. Combining all three

sensors, it can obtain the orientation of a given object, in this case, a vehicle.

Figure 3.5: Sparkfun Razor IMU

18 Nuno Guedes

3.1. HARDWARE

3.1.5 ZED stereo camera

The ZED, Figure 3.6, is a passive stereo vision based camera that reproduces the

way human vision works. Using it’s two cameras and through triangulation, the

ZED understands it’s surroundings and creates a three-dimensional (3D) model of

the scene it observes. The ZED camera outputs a high resolution side-by-side color

video on USB 3.0. that can go up to 2.2K at 15 frames per second. In our case we

use at most 1080p at 30 fps. It has a depth of 0.5 to 20 meters and has an accuracy

of 1 mm / 0.1. It has the capacity perform real-time depth-based visual odometry

and SLAM and supports ROS, Open Source Computer Vision (OpenCV), Matlab,

Unreal Engine 4 and Unity.

Figure 3.6: ZED Camera

3.1.6 Range Finders

The Range Finder GP2Y0A02YK0F from Sharp, Figure 3.7, is a distance measur-

ing sensor unit. This unit is composed by a position sensitive detector, an infrared

emitting diode (IR) and a signal processing circuit. As this sensor uses the trian-

gulation method, it is not very sensitive to the variation of the reflectivity of the

object, the environmental temperature and the operating duration. These devices

output the voltage corresponding to the distance detection and they can measure

distances from 20 cm up to 150 cm.

Nuno Guedes 19

CHAPTER 3. TECHNOLOGIES AND TOOLS

Figure 3.7: Range Finder GP2Y0A02YK0F

3.1.7 Sonar

The SRF08 sonar, Figure 3.8, is a high performance ultrasonic range finder that

measures an amazingly wide range from 3 cm to 6 m. This sonar interfaces via the

industrial I2C protocol. This module offers two modes, a ranging and a artificial

neural network (ANN) mode.

In the ranging mode, it can register up to 17 echo’s and the default time for

completion of ranging is 65 ms, however it is possible to shorten this by writing to

the range register before issuing a ranging command. This is a major benefit since

there is the possibility to acquire more detection’s in the same amount of time.

The ANN mode provides a multi-echo in a manner that is easier to input that

data into a neural network.

Figure 3.8: Sonar SRF08

3.1.8 Cohda On Board Unit

The MK5, Cohda’s fifth-generation OBU [5], shown in Figure 3.9, is a small, low-cost

module that is adapted to fit in vehicles for aftermarket deployment or field trials

and it’s designed for automotive production and Smart City. This unit performs

in safety-critical scenarios or potential hazards since it exchanges information at a

20 Nuno Guedes

3.2. SOFTWARE

high speed over wide distances. It’s radio performance fulfil purpose in challenging

outdoor conditions where no line-of-sight is available. It offers a robust, secure

foundation for the intelligent transport systems and can be applied in V2X trials.

The MK5 works on Dual IEEE 802.11p radio and has a powerfull processor running

Cohda software applications, a GNSS, integrated security, hardware acceleration and

has a tamper-proof key storage. Also supports DSRC (IEEE 802.11p), Ethernet 100

Base-T.

Figure 3.9: Cohda Wireless MK5 OBU [5]

3.2 Software

3.2.1 NVIDIA Jetpack 3.3

NVIDIA offers solution for building applications, the NVIDIA JetPack SDK which

allows to flash the development board with latest OS image, install developer tools,

libraries and samples. This package contains CUDA toolkit for the host (Ubuntu)

and target platform, the latest NVIDIA Developer Tools (Tegra Graphics Debug-

ger and NVIDIA System Profiler), VisionWorks, cuDNN, Multimedia Application

Programming Interface (API), OpenCV Library 3.3.1, and TensorRT [23].

3.2.2 Robot Operating System

ROS framework, maintained by Willow Garage and Open Source Robotics Found-

ation (OSRF) since 2007, is an open-source middleware that has undergone rapid

development and has been widely used to design robotics applications. With it’s

many software frameworks it provides a variety of tools, libraries and conventions

that facilitates the creation of robotic applications and further encourages the shar-

ing and reusing codes and problem solving through the robotic community. Although

ROS is not a real-time framework, it is possible to integrate it with real-time code.

Nuno Guedes 21

CHAPTER 3. TECHNOLOGIES AND TOOLS

Basically, it consists in establishing communication between two or more nodes

and it will help reusing code that has already been implemented. For example, the

following diagram, Figure 3.10, represents a demo system, where ellipses represent

ROS nodes, which publish and/or subscribe to a topic ”/example” whose message

type is ”std msgs/String”.

Figure 3.10: Publish and Subscribe Example

This kind of diagrams is generated by using rqt graph tool, which automatically

presents a diagram representing the currently running ROS system.

As explained in [24], ROS has 3 levels of concepts: The Filesystem level, The

Computation Graph level, and the Community level.

The Filesystem level covers the overall resources of ROS and includes Packages,

Messages and Services. The Packages are the main unit for organizing software in

ROS. A package may contain ROS runtime processes (nodes), a ROS-dependent

library, datasets, configuration files or anything else that is usefully organized to-

gether. Packages are the most atomic build and release item in ROS. Meaning that

lowest level thing you can build and release is a package. The Messages description

store the messages used in each package. Service description define the request and

response data structures for services in ROS.

The Computation Graph level is what establishes the communication between

ROS processes that are computing data together. The fundamental concepts of this

level are:

• Master [25] - The ROS Master provides naming and registration services to

the rest of the nodes in the ROS system. It tracks publishers and subscribers

to topics as well as services. The role of the Master is to enable individual

ROS nodes to locate one another. Once these nodes have located each other

they communicate with each other peer-to-peer.

• Nodes [26] - Nodes are processes that perform computation. A robot control

system will usually include many nodes, that one can be in charge of controlling

22 Nuno Guedes

3.2. SOFTWARE

a laser range finder, another reading wheel odometry, other performing local-

ization among others.

• Messages [27] - A message is a data structure, containing typed fields and is

used by nodes to pass information between each other. For example a message

can carry the values of a node that reads the scan of a sonar and needs to

share to another node to use that distance in order to apply a longitudinal

control algorithm.

• Topics [28] - Messages need to be transported trough a defined route. To do

that Topics are in charge of guiding the messages via a system with publish

/ subscribe semantics. A node sends out a message by publishing it to a

given topic. The topic is a name that is used to identify the content of the

message. A node that is interested in a certain kind of data will subscribe

to the appropriate topic. There may be multiple concurrent publishers and

subscribers for a single topic, and a single node may publish or subscribe to

multiple topics. In general, publishers and subscribers are not aware of each

others’ existence. The idea is to decouple the production of information from

it’s consumption.

• Bags [29] - When developing and testing the necessity of reproducing the same

environment is crucial. Bags, created from the tool ROS Bags, are a format

that store serialized message data, generally from sensors as it’s received. This

data is then saved in the bag and can be played back the same way as any

other node. This is usually used for debug or demonstrations.

The ROS Master is the central node in the ROS Computation Graph. It stores

topics and services registration information for ROS nodes. Nodes communicate

with the Master to report their registration information and to receive information

about other registered nodes. The Master will also make callbacks to these nodes

when this registration information changes, which allows nodes to dynamically create

connections as new nodes are run.

Nodes connect to other nodes directly, being the master only responsible to store

and associate information. Nodes that subscribe to a topic will request connections

from nodes that publish that topic and will establish that connection over an agreed

upon connection protocol. The most common protocol used in a ROS is called

TCPROS, which uses standard TCP/IP sockets.

The third and last level of ROS, the Community level is responsible for sharing

and providing resources, knowledge and software with distinct communities. This

Nuno Guedes 23

CHAPTER 3. TECHNOLOGIES AND TOOLS

level provides distributions, repositories, a wiki, Q&A web page for answering ded-

icated ROS Questions. In this project the distribution used was ROS Kinetic Kame.

3.2.3 OpenCV 3.4.2

OpenCV is a cross-platform library that enables programming targeting computer

vision. This library is written in C++, however there are bindings for other different

types of programming languages, such as Python. OpenCV provides an extensive

area of applications, such as facial recognition, object identification, motion tracking

and many others. As result of it’s functions, OpenCV was vital tool in order to create

a platoon, as the follower car searches for an image from the car in front of it an

applies the necessary controls to follow it.

3.2.4 ZED Python API

Since the focal programming language used in this project was Python, to obtain

the information necessary from ZED and process it a dependency was required to

install. This dependency is the ZED Python API and allows to use certain functions

that are indispensable for integrating in the image detection.

3.2.5 Virtual Network Computing (VNC)

The purpose of this program was to visualize the NVIDIA Jetson TX2 data from a

remote computer. Since the cars will be running autonomously, there was in need

a way to not only monitor receiving and sending information, but also a remote

way to stop the cars. This way, VNC Viewer was installed both on the Jetson TX2

and another remote computer and created an ad hoc network, to ensure that the

connection to the car was never lost.

24 Nuno Guedes

4
Robotic Platooning Testbed Architecture

This chapter overviews the overall testbed architecture and details the workings of

each implemented component and their interactions.

4.1 System’s Architecture

As explained before, this car was setup based on the F1/10 build [30] with some

modifications.

In Figure 4.1, we can observe, on a lower level, that the teensy is our interface

between the Jetson and the motor and servo. By sending PWM signals, from the

teensy to the motor and servo, we can control the car’s speed and steering. There

are also two switches so that we can opt between controlling the car with it’s original

controller or by software that we developed.

25

CHAPTER 4. ROBOTIC PLATOONING TESTBED ARCHITECTURE

Figure 4.1: Hardware Architecture

We can also observe that the IMU, the teensy and the ZED camera connect to

the Jetson through USB. As the Jetson only provides one USB port, there was the

need to add an USB hub to create further slots.

The sonars connect via I2C communication protocol so that their echo is trans-

mitted as a signal. The range finders that were implemented have their voltage

supply coming from Jetson, but their signal is sent to digital pins from teensy, then

processed through the arduino IDE and published to ROS.

We have a power bank that supplies energy to the Jetson and the OBUs at 12 V.

The OBUs, that are placed on the top of each vehicle with their respective antenna

are used to communicate to other vehicles of the platoon. The Jetson board has an

Ethernet connection to the OBUs in order to send data from the robot to the OBU

and consecutively to the platoon’s network.

As the hardware architecture is presented, there is also a representation of the

software architecture in Figure 4.2.

26 Nuno Guedes

4.2. ZED CAMERA MOUNT

Figure 4.2: Software Architecture

The operating system running on the Jetson TX2 is Linux Ubuntu 16.04. The

ROS-based system has a workspace, Catkin ws, that contains three folders: Devel,

Build and Source. It also has additional ROS packages such as Zed Python API,

Vision OpenCV and Razor IMU 9dof, that complement our coding necessities.

In the Source folder contains folders for various control mechanism. In the pla-

tooning mechanism are included the developed scripts, messages and launch files

necessary to implement the platooning on our testbeds.

These are also other control mechanism, as zed python, rosserial python and

Sonar SRF08. The zed python mechanism is responsible for providing camera image

processing, while the rosserial python establishes connection to the teensy and the

Sonar SRF08 triggers and reads the sonars used.

The image processing is aided by an external package, Darknet, that is used to

classify images in a fast and easy way. Yolo V3 is the object detection algorithm

chosen for this project.

4.2 ZED Camera mount

A support was required to secure the ZED Camera in front of the car. It was

attached in the front part of the car, to analyze the environment. This support has

in it’s constitution 3D printed pieces and the smallest acrylic bases.

Firstly, remove the stands in front of the car, that were supporting the cars

carcass. Secondly, as shown in Figure 4.3, attach on each side of the base both 3D

Nuno Guedes 27

CHAPTER 4. ROBOTIC PLATOONING TESTBED ARCHITECTURE

pieces. If it struggles to fit in, carefully file down the 3D pieces holes and/or the part

from the base that fits in the holes. Finally, insert the ZED camera in the assembled

part.

Figure 4.3: Mount of the ZED camera base

4.3 Teensy PCB Board

The Teensy, purpose explained in section 3.1.3, must be fixed with two switches in

order to vary our purpose to control the vehicle via software or the original controller.

For this purpose, we developed a PCB board that would contain those elements and

the wiring to the motor and servo of the car. The PCB’s connection are represented

in Figure 4.4.

Figure 4.4: Teensy PCB Board Schematic

28 Nuno Guedes

4.4. SENSOR BOARD

4.4 Sensor Board

The developed board contains four range finders and three sonars. The four range

finders are situated above the sonars and are vertically symmetrical as the sonars

are. The range finders edges have holes that will be screwed into this board in

order to make them stable enough to transmit and receive their signal. On the

other of the side, the screws will be held with nuts. In order to pass the sensor’s

cables through the board, there were made holes to pass them. These sensors are

vertically oriented, since the recommendation in the datasheet is to set the sensor in

the moving direction of the object and the line between emitter center and detector

center should be vertical.

Each range finders has three connections that have to be set. The signal wire

connects to the an analog pin in Teensy. The pins designated from Teensy for the

range finders are the 14, 15, 16 and 17. The mass wire connect all between themselves

and the Jetson TX2 mass pin. Lastly, the power supply wire, identical as the mass

wire, connects to the other power supply wires from the other range finders and the

5 V pin from Jetson TX2. In Figure 4.5, there is a presentation of the Jetson TX2

pinout, where we can observe the pins that were used for this project.

Figure 4.5: Jetson TX2 Pinout [6]

The ”SDA1” and ”SCL1” are important when referring to the sonars as they

use the I2C protocol. The ”SCL” is the clock line that is used to synchronize all

data transfers over the I2C bus, while the ”SDA” is the data line. Each sonar has

a ”SDA” and a ”SCL” pin that connect to the respective pins on the Jetson. They

also have a power supply pin and a ground pin that connect to the respective pin

Nuno Guedes 29

CHAPTER 4. ROBOTIC PLATOONING TESTBED ARCHITECTURE

on the Jetson as the range finders. Figure 4.6 shows the sonar SRF08 pinout to

better comprehend the previous explanation. There is also a pin marked as ”Do not

connect” that is only used by manufacturer to program the PIC16F872. The sonars

were placed on the bottom part of the board with the execution of openings in the

same so that they can measure the distance through sent beams.

Figure 4.6: Sonar Pinout [7]

In Figure 4.7, we can observe the final aspect of the developed board throughout

the purpose of establishing a platoon based on sensory input. As mentioned before,

it is noticeable the positioning of the sensors symmetrically. We can also observe

the perforations made for the sonars and the range finder’s cables.

Figure 4.7: Sensor Board

In Figure 4.8, we can observe the basic function of the sensors that were used on

this board, as well as, their reach and, in the case of the sonars, the beam width.

30 Nuno Guedes

4.5. MK5 ROS BRIDGE

In red, we observe the lasers transmitted by the range finders, that are limited by

their minimum and maximum reach of 20 cm and 150 cm respectively. In grey, we

represented the sonars beams. They can measure between 1 cm and 2 meters with

our configuration.

Figure 4.8: Sensor Board Representation

4.5 MK5 ROS Bridge

The MK5 ROS bridge provides a bi-directional bridge between ROS systems imple-

menting a platoon testbed, whether they are simulated or not, and the MK5 OBUs

from Cohda Wireless. This allows a ROS environment to connect and communicate

with others ROS environments through MK5 802.11p platforms.

Nuno Guedes 31

CHAPTER 4. ROBOTIC PLATOONING TESTBED ARCHITECTURE

Figure 4.9: ROS Bridge Architecture

In Figure 4.9, ROS represents a physical platooning testbed. The MK5 ROS

Bridge end-side subscribes to a topic coming from the ROS-based system, in order

to provide their information through the bridge to feed the OBUs. In the opposite

direction, it also, publishes a topic filled with information coming from the Bridge,

so the vehicles can properly acknowledge this. On the OBUs end-side of the Bridge,

all the information coming from it is fed into the Message Broker module, which

segregates and processes this data, in order to, feed it into the remaining OBU

modules, while CLW and ETSI are safety mechanism modules.

4.6 Software Setup

At first, we started by flashing Jetson TX2 with the JetPack 3.3 and Ubuntu 16.04.

We downloaded the SDK from NVIDIA’s web page and proceeded to the setup. In

the setup, we selected which platform was flashed (Jetson TX2). Then, we chose

the packages that should be installed and if we wanted to flash the operating system

into the Jetson. We proceeded with a full installation, as we want to use Jetson’s

full potential for this project. Subsequently, we selected the network layout between

our personal computer and Jetson TX2. In this case, the devices are connected via

router. Then, we followed a simple 5 step guide:

1. Jetson TX2 must be fully powered down.

2. Connect a micro-B plug to the USB micro-b port on the Jetson and a USB

port on the personal computer.

3. Connect the power adapter to Jetson.

4. Press and release the power button to start the Jetson. Press and hold the

force recovery button. While pressing, press and release the reset button.

32 Nuno Guedes

4.6. SOFTWARE SETUP

Then wait 2 seconds to release the force recovery button.

5. Check on your personal computer, that when you type, in the terminal, the

lsusb command for a line that refers ”NVidia Corp”. If it does, press Enter

and it will start flashing your Jetson.

Then we installed ROS for Kinetic distribution [31]. Firstly, we had to configure

our Ubuntu repositories to allow ”restricted,” ”universe,” and ”multiverse”. After,

we setup up sources.list to accept packages from ROS and our keys. Confirmed that

our Debian package index is up-to-date. Subsequently, we installed ROS-Base, that

includes only the basics of ROS, no Graphical User Interface (GUI) tools. Then, we

initialized rosdep that permits us to easily install system dependencies to compile

and run core components in ROS. Lastly, we setup our work environment, were all

the work was implemented and stored. The final aspect is in Figure 4.10.

Figure 4.10: Work Environment

After, we learned how to establish a connection between the Jetson TX2 and

the motor and servo through the teensy 3.2. For this, we programmed the teensy

with a code provided by F1tenth [32] using the Arduino Integrated Development

Environment (IDE) on a personal computer. This was done because there is no

Arduino IDE available for the Jetson’s architecture. As we were programming,

there was the need to install some additional packages for this communication as

the teensy is not recognized by the Jetson [33]. The code provided by F1tenth

envisages a ROS subscription of a topic /drive pwm that contains the speed and

steering values already computed, so that teensy only needs to send two PWM

signals to the servo and the motor.

Further on, we added a implementation to the code in teensy with the Arduino

IDE that would trigger the range finders, register their output and calculate the

distance that was detected in each. Those values would be published through ROS.

Nuno Guedes 33

CHAPTER 4. ROBOTIC PLATOONING TESTBED ARCHITECTURE

For the sonars, as, by default, they all have the same address, there was the need

to develop a code in Python that would change their address. To change the I2C

address of the SRF08 we connected only one sonar on the bus at each time. Then,

we sent 3 sequence commands in the correct order followed by the address. The

sequence was sent to the command register at location 0, which means 4 separate

write transactions on the I2C bus. In the first command we transmitted the value

”0xA0”, followed by ”0xAA” and ”0xA5”. The last value is the address the we

pretend [7]. Also, there was the necessity to change their time ranging, as we want

the maximum output values in the shortest amount of time possible. This value was

adjusted to 20 ms, since we want to capture a maximum of 3 m.

When we successfully established the previous connection, we began to analyse

what was needed to implement the ZED camera. By searching their web page [34],

we downloaded the ZED SDK 2.8.0 for Jetson TX2 and proceeded to the install-

ation. As we were working in Python, there was the need to install a dependency

for the ZED SDK, the ZED Python API [35] and other dependencies as numpy and

cython. After testing the tutorials with success, we then installed OpenCV 3.4.2,

so that we could process and manipulate images as we intended. For this, we fol-

lowed instructions [36] for python 2.7 and without using a virtual environment as

we concluded there was no need.

34 Nuno Guedes

5
Platooning Algorithms

In Chapter 5, there is a presentation and description of the platooning algorithms

that were implemented, together with the corresponding results.

5.1 Sensor Board based Platooning

As our base line was to have a cheap and practical implementation of a platoon

that could be tested in a safe environment as our workplace, we started with 3

sonars and 4 range finders for data input to control both steering and speed through

PWM signals. The range finders, positioned symmetrically, are used to determine

the steering by knowing which one of them is capturing the car in front.

This platoon consists in a group of several nodes, each responsible to calculate a

different property of the autonomous vehicle. These nodes are represented in Figure

5.1.

Figure 5.1: Baseline Rqt Graph

There is one independent node, meaning it only publishes topics and doesn’t

subscribe any. This node is /Sonars Ranging, as we can perceive in Figure 5.2, that

35

CHAPTER 5. PLATOONING ALGORITHMS

is responsible for starting the sonars ranging and calculate the respective values in

cm that will be used for the longitudinal control. These values are published to a

topic called /Sonar.

Figure 5.2: /Sonars Ranging Node Flowchart

Then there is the /Car State node, that subscribes the previous topic, /Sonar,

and the topic /Range Finder. This last topic is published by the /serial node node

with the values of the range finders that are calculated on teensy in cm. The

/Car State node decides, based on the information that is being subscribed, what’s

the car’s status. This definition is explained in sub chapter 5.1.1. It publishes a

topic, /State Info, that contains the information of the distance to the car in front

and it’s status. At that point, the node /vel angle calc subscribes this topic and

is responsible for determining the vehicle’s steering, based on the vehicle’s state

and applying a PD control to calculate the vehicle’s desired speed, as represented

in Figure 5.3. When these computations are done, it publishes them to the topic

named /drive parameters.

36 Nuno Guedes

5.1. SENSOR BOARD BASED PLATOONING

Figure 5.3: /vel angle calc Flowchart without camera

The /serial talker node subscribes the /drive parameters and converts the speed

and steering values in to numbers that will be interpreted as PWM signals, as

demonstrated in Figure 5.4.

Figure 5.4: /serial talker Node Flowchart

These are published to /drive pwm topic that is subscribed by the /serial node

node, running on teensy, and are sent to the motor and servo, as shown in Figure

5.5.

Nuno Guedes 37

CHAPTER 5. PLATOONING ALGORITHMS

Figure 5.5: /serial node Node Flowchart

There is also a safety node called /kill switch that whenever someone wants to

stop the car, only has to press the ”delete” button and activates the topic /eStop.

The car can be restarted, in other words, resume it’s control path by entering the

”home” button. This sequence is shown in Figure 5.6

38 Nuno Guedes

5.1. SENSOR BOARD BASED PLATOONING

Figure 5.6: /kill switch Node Flowchart

5.1.1 Lateral Control

In Figure 5.7, we can observe the algorithm function. The Car State node subscribes

the sonars and range finders data to further decide the vehicle’s state.

Figure 5.7: Car State Flowchart without camera

If the two center range finders are detecting the car, within a maximum threshold

between them and the center sonar, the steering applied will be 0o, denominated

center state. If one of the center range finders is detecting the car and the other one

Nuno Guedes 39

CHAPTER 5. PLATOONING ALGORITHMS

is not, there will a verification of a certain threshold with the sonar in the center and

if it’s validated, there is a compensation of 10o to that side in the steering. These

states are called center right and center left.

In the case that only the peripherals range finders are detecting the car, the

steering is 15o to that direction after the same validation is done with the respective

peripheral sonar and those are the right state and left state. In resume there are five

states that we must consider in this case. For safety reason, the platoon can only

start in the center state and the shift between states can only occur to an adjacent

one, so that it won’t confuse the car with other objects that might be in the track

or even the walls. In Figure 5.8, we can verify the positioning of the range finders

and sonars, for an easier perception of the algorithm applied.

Figure 5.8: Sensor Control Board

5.1.2 Longitudinal Control

To control the vehicles speed, the car depends on the previous states. According to

the sonar that was used to validate the steering, that same distance is utilized to

calculate an error between the actual distance to the car in front and a safe distance

established. This error is then applied in a PD control, that indicates if the car must

accelerate or decelerate to maintain that same distance.

40 Nuno Guedes

5.2. CAMERA-BASED PLATOONING

5.2 Camera-based Platooning

After the implementation of our baseline described earlier on, we proceeded to im-

prove that scenario. For this purpose, the ZED camera was used to provide an image

for further processing and object detection. In this specific case, it was used Yolo

v3, a neural network capable of detecting certain objects in an image, producing a

surrounding box, and Darknet, a framework used to train a neural network. These

were chosen because there is support for the ZED camera, making it simpler to work

with. A pre-trained Yolo v3 algorithm that can detect up to 80 different objects

was selected, from which was chosen a stop sign to perform the detection of the car.

This way, there was no time wasted in training a specific image for this use case.

Therefore, there were stop signs attached at the rear end of the first and second car,

as in 5.9.

Figure 5.9: Stop Sign

This camera-based platoon has a similar way of functioning as our baseline. It

also consists in a set of nodes, but some will have a slight change in their message

comparing to the previous role, while others are completely new. These nodes are

represented in Figure 5.10. /Sonars Ranging is still an independent node, however

there are two new independent nodes. These nodes are /CAMERA and /imu node.

The first one is responsible for detecting the stop sign, calculating it’s x coordinate

in the image and publishing it to the /X topic. The second node takes the heading

values from the IMU and publishes them to a topic named /My IMU.

Nuno Guedes 41

CHAPTER 5. PLATOONING ALGORITHMS

Figure 5.10: Camera-based Rqt Graph

As before, there is the /Car State node, except that it, in this algorithm, sub-

scribes three topics, /Sonar, /X and /Range Finder. This last topic is already

known. The /Car State node determines the car’s status, based on the new in-

formation that is being subscribed. The car’s status is assessed differently and is

explained in sub chapter 5.2.1. It publishes the topic /State Info, containing more

fields than before, with the information of the x coordinate, the distance to the car

in front, it’s status and the distance in the previous iteration. At that point, the

node /vel angle calc subscribes this topic and the newly added topic /My IMU. The

/vel angle calc functions similar as before, with the addition of the camera detec-

tion. The camera detection influences the vehicle’s state and this node applies a

different method to determine the steering and speed, as we can observe in Figure

5.11. The /My IMU topic is only used at the moment for results and conclusions.

The other nodes functions remain the same.

Figure 5.11: /vel angle calc Flowchart

42 Nuno Guedes

5.2. CAMERA-BASED PLATOONING

5.2.1 Lateral Control

The original code [37] was adapted to only consider stop signs and to work with

ROS. In ROS, the /CAMERA node publishes it’s medium width point through a

topic called /X. This value is also displayed on the screen of the detection with the

respective rectangle surrounding the stop sign, as shown in Figure 5.12.

Figure 5.12: Stop Sign Detection Scenarios

The width value will then be subscribed through ROS by /Car State node that

decides, based on the range finders, the sonars and this value, the vehicle’s state.

This node’s flowchart is demonstrated in Figure 5.13.

Figure 5.13: Car State Flowchart

The vehicle’s state is determined a slightly different than in our baseline. The

previous deterministic algorithm still applies if the follower is less than 30 cm apart

from the leader, due to the camera control in this conditions not being reliable.

However, if this distance is surpassed, the vehicle’s state is named ”Camera Mode”,

whereas it will publish the x coordinate of the stop sign detected, as well as, the

Nuno Guedes 43

CHAPTER 5. PLATOONING ALGORITHMS

actual distance to the leader, the distance in the previous iteration and the car’s

state. If the vehicle publishes the vehicle’s state as ”Camera Mode”, the node

/vel angle calc applies a PD control based on the deviation of the midpoint of the

image, that represents the midpoint of the car, calculating the steering angle. The

steering angle value is then published to /State Info topic. Subsequently, there is

a node /serial talker that subscribes the previous topic and converts this steering

angle to a number that will be interpreted as a PWM and is published to a topic,

called /drive parameters. Teensy subscribes this topic and sends the PWM to the

servo.

5.2.2 Longitudinal Control

The deviation value calculated for the lateral control is also used to select which

sonar is used to perform a longitudinal PD control, that’s simultaneously based on

a reference distance to the front car, as in our baseline, and on it’s acceleration,

that is calculated through the distance to the front vehicle in consecutive iterations.

This means that if the distance to the leader has increased, the follower is driving

slower than the front car and must accelerate. There is also the opposite case, where

the distance is decreasing and so the follower starts decelerating or stops, if it’s too

close.

5.3 Results

In this section there will be a presentation of the results obtained for the lateral and

longitudinal control applied to the platoon.

5.3.1 Lateral Control Results

These results are obtained at constant velocities so that it is possible to observe it’s

impact in the lateral control. The results are achieved through the comparison of

the heading of the vehicles when passing the same coordinates. These coordinates

are calculated knowing the vehicles speed in meters per second and the time that has

been passed between iterations. This is done to have a correct comparison between

the metrics that we are using so we can calculate the deviation to the expected

result.

In the first platooning algorithm, our baseline explained in section 5.1, we realized

tests at a constant speed of 0.8 m/s, where the path is an approximation of an oval

track. This is shown in Figure 5.14, as well as the car positioning when starting an

experiment.

44 Nuno Guedes

5.3. RESULTS

Figure 5.14: Track and Car Positioning

In Figure 5.15, we can observe the real time headings of each member of the

platoon while performing a lap around the oval track demonstrated before. The

moment where there is a sudden drop of the heading, represents the instant in

which the vehicle’s are turning and surpass southwest to southeast coordinates.

Figure 5.15: Real Time Headings at 0.8 m/s without camera detection

As our purpose is to be able to compare each vehicle path throughout a full lap

around the track and afterward held a comparison between our algorithms, Figure

5.16 represents each car’s heading at the same positional coordinates on the track.

Nuno Guedes 45

CHAPTER 5. PLATOONING ALGORITHMS

Figure 5.16: Comparison between Headings at 0.8 m/s without camera detection

We can observe that they address the desired path alike, despite having some

oscillations. The second vehicle’s oscillations tend to be on the right side of the

desired path, having an average of -16.65o heading deviation. This is a slight de-

viation, however the maximum and minimum deviation are elevated. These results

are 38.37o and -79.73o.

However, the third vehicle has an average oscillation of 21.28o, when comparing

to the second vehicle. This demonstrates that the third car tends to be on the

left side of the desired path. It’s maximum and minimum deviation are 82.87o and

-22.18o, elevated as the second vehicle. These values are observable in Figure 5.17.

Figure 5.17: Heading Errors at 0.8 m/s without camera detection

For the first tests with the second platooning algorithm, described in section 5.2,

46 Nuno Guedes

5.3. RESULTS

the speed of the leader is 0.8 m/s.

In Figure 5.18, it is observable that the car start the track headed to 50o from

north and end the track with an approximate heading, demonstrating a full lap of

the track. As explained before, the moment there is a drop in the heading represents

that the vehicles are pointing to south.

Figure 5.18: Real Time Headings at 0.8 m/s

As a result of the previous graphic, Figure 5.18, we created a new one, to analyze

the vehicle’s lateral control, that is presented in Figure 5.19.

Figure 5.19: Comparison between Headings at 0.8 m/s

As stated Figure 5.20, the maximum and minimum error between the two first

vehicle’s is respectively, 33.47o and -43.97o. Although these errors, the average

deviation between these two is -9.22o, that represents a satisfying result. The third

Nuno Guedes 47

CHAPTER 5. PLATOONING ALGORITHMS

platoon element, presented errors of 62.15o and -59.54o, as maximum and minimum.

Despite these elevated errors, it’s average remains at 10.20o, being able to complete

the platoon with success.

Figure 5.20: Heading Errors at 0.8 m/s

As the objective is to evaluate how the vehicle perform on different velocities,

there were performed another tests at a higher speed as 0.9 m/s. In Figure 5.21, we

can observe the heading of each element of the platoon during one lap, as before.

Figure 5.21: Real Time Headings at 0.9 m/s

By comparing the heading of the vehicle in Figure 5.22, it is observable that they

have a similar path.

48 Nuno Guedes

5.3. RESULTS

Figure 5.22: Comparison between Headings at 0.9 m/s

When analyzing their data, the second vehicle has an average deviation of -

15.58o to the leader, while having a maximum error of 7.78o and a minimum error

of -49.67o. The last element of the platoon had an average of 12.47o. This value

is symmetrically identical to the second vehicle’s value, meaning that the deviation

is to an opposite side. The third vehicle’s maximum heading is 44.39o, while it’s

minimum is -19.39o, as plotted in Figure 5.23.

Figure 5.23: Heading Errors at 0.9 m/s

Comparing to the experiment in which the speed was lower, it is assumable that

the impact on the heading is higher, having a higher average deviation.

The heading values at 1.0 m/s are shown in Figure 5.24. This information is

calculated in real time, for further comparison.

Nuno Guedes 49

CHAPTER 5. PLATOONING ALGORITHMS

Figure 5.24: Real Time Headings at 1.0 m/s

To have a better method to compare, Figure 5.25 demonstrates the heading

values from each vehicle in the same position.

Figure 5.25: Comparison between Headings at 1.0 m/s

The second vehicle has an average deviation of -24.18o, whereas it’s maximum

heading is 6.22o and minimum is -44.37o. The third vehicle has an average of 27.67o.

The maximum and minimum heading values of this element are 77.26 and -6.13o.

These results are demonstrated in Figure 5.26.

50 Nuno Guedes

5.3. RESULTS

Figure 5.26: Heading Errors at 1.0 m/s

5.3.2 Longitudinal Control Results

The values used to validate our longitudinal control are the nearest and furthest

distance retrieved in real time, the medium distance that the followers keep from

the vehicle in front and the respective deviation error.

For our first longitudinal algorithm, explained in 5.1.2, the test was done with

leader’s speed constant at 0.8 m/s to observe the followers reaction, analyzing the

values described before. In figure 5.27, the orange line represents the real time

distance from the second vehicle to the leader, while the blue line represents the

third vehicle. These results were obtained from an average of three experiments.

Figure 5.27: Comparison between Distances from Car 2 and Car 3 at 0.8 m/s without
camera detection

Nuno Guedes 51

CHAPTER 5. PLATOONING ALGORITHMS

The goal is to have a constant safety distance of 40 cm and, by evaluating the

results, we can observe some oscillations around that value. The average deviation

results in an error of 0.49%, that represents 40.19 cm, while it’s maximum and

minimum error translate to 15% and -20% respectively. These two values stand for

46 cm and 32 cm.

The distance values of the third member indicate a higher fluctuation around the

desired safety distance, resulting in a maximum error of 15%, translating into 46 cm,

and a minimum error of -35%, that represents 26 cm. As the distance tends to be

under the desired value, we can expect a lower average distance, that is translated

to an error of -7.56%, representing 36.98 cm. The obtained errors are plotted in

Figure 5.28 for a better comprehension.

Figure 5.28: Distance Errors at 0.8 m/s without camera detection

We can observe a real time comparison between both safety distance. It is

possible to constate that they have symmetrical reactions. This is due to the fact

that whenever the second vehicle starts falling behind, it accelerates coming closer

to the leader while the third element, that is currently close, recedes because he’s

still maintaining it’s speed.

For the second algorithm, described in 5.2.2, the tests were performed three

times, for each trial. The difference between trials is the constant speed of the

leader that is increasing. It was able to test up to three trials with the following

velocities: 0.8 m/s, 0.9 m/s and 1.0 m/s.

In Figure 5.29, it is possible to observe the followers response to the leader’s

constant speed of 0.8 m/s. The second vehicle is displayed in orange, while the third

element in blue.

52 Nuno Guedes

5.3. RESULTS

Figure 5.29: Comparison between Distances from Car 2 and Car 3 at 0.8 m/s

It is observable that in the first acceleration until the leader reaches it’s speed,

the follower is not able to keep the distance of 40 cm as supposed. The follower’s

maximum distance to the front car is 57 cm, that results in an error of 42.5%, while

it’s minimum is 39 cm, representing an error of -2.50%. Regarding the previous

errors, the second car is able to follow the leader at a 43,03 cm average distance

with an error of 7.58%.

These tests also contemplated the distance of the third car to the car in front.

This car has a similar approach as the second vehicle, whereas in the initial acceler-

ation, it also can’t keep the distance.

However, it’s maximum distance to the front vehicle is lower then in the first

case, as this one is 54 cm, with the corresponding error of 35%.On the other hand,

it’s minimum distance is 31 cm, an error of -22.5%. As the second vehicle has

it’s oscillations, the third has more difficulty in maintaining the speed constant,

resulting in aggravated oscillations, as observable. Despite this fact, the car averages

a distance of 39,28 cm that represents an error of 1.8%. The distance errors obtained

from both vehicles to the car in front are demonstrated in Figure 5.30.

Nuno Guedes 53

CHAPTER 5. PLATOONING ALGORITHMS

Figure 5.30: Distance Errors at 0.8 m/s

Following the previous experiment, the next test was done with a higher con-

stant speed of 0.9 m/s, so that it is possible to analyze differences in the platoon’s

longitudinal control, related to the speed of the leader.

In Figure 5.31 is presented the distance of the second vehicle to the leader at 0.9

m/s in orange and the last element of the platoon in blue.

Figure 5.31: Comparison between Distances from Car 2 and Car 3 at 0.9 m/s

As before, there is an overshoot at the beginning that reaches 60 cm, resulting in

an error of 50%. Yet the car is able to stabilize and averages 45.72 cm to the front

car, translated into an error of 14.3%. Also, it’s minimum distance to the front car

is 40 cm.

The distance of the third car in this scenario is similar to the previous test at

54 Nuno Guedes

5.3. RESULTS

a lower speed. Firstly, in the acceleration, it is not able to accompany the second

vehicle and the maximum distance to the vehicle in front is 59 cm, that represents

an error of 47.5%. It also has more oscillations than the second car, but manages

to have a steady state, averaging 44.05 cm. This metric is traduced to an error of

10.13%. On the other side, it’s minimum distance is 36 cm, that means an error of

10%.

Both vehicle’s distance errors are displayed in Figure 5.32, for a improved un-

derstanding of the metrics.

Figure 5.32: Distance Errors at 0.9 m/s

In the last test, Figure 5.33, the speed was increased up to 1.0 m/s. As expected,

the second vehicle has a substantial overshoot, reaching a distance of 74 cm, that

corresponds to an error of 85%. It’s minimum distance is 40 cm at the beginning,

while further on, the minimum is 43 cm. The average distance has an error of 36.6%,

that corresponds to 54.64 cm.

Nuno Guedes 55

CHAPTER 5. PLATOONING ALGORITHMS

Figure 5.33: Comparison between Distances from Car 2 and Car 3 at 1.0 m/s

Despite the second vehicle having a high initial overshoot, the third elements

overshoot isn’t so elevated, only reaching 67 cm, the equivalent to an error of 67.5%,

as shown in blue. It’s minimum distance, just as the second vehicle is 40 cm at the

initial state, but throughout the platoon test, it is 43 cm. The average distance has

an error of 32.43%, that means the distance is 52.97 cm. The error obtained through

the distance metric from each car are displayed in Figure 5.34.

Figure 5.34: Distance Errors at 1.0 m/s

It is possible to observe the differences in the overshoot mentioned before and the

further stability of the platoon that has a tendency of rising the distances between

vehicles at this speed.

In Figure 5.35, it is evident the increase of the initial overshoot while the speed

56 Nuno Guedes

5.3. RESULTS

also increments. The settle time until there is stability increases likewise. It is also

possible to verify an increase in the average distance to the car in front, as well as

the maximum distance. Although these variations, the car still manages to be quite

stable at all velocities. The reason that there are fewer iterations in the tests where

the speed is higher is the fact that the distance is always the same, so the vehicles

take less time to travel it.

(a) Comparison between Distances of Car 2
at Different Velocities

(b) Comparison between Distance Errors of
Car 2 at Different Velocities

Figure 5.35: Comparison of Car 2 metrics

In Figure 5.36, it is observable that the overshoot and settle time to stability are

affected the same way as the second car. However, the third car presents less stability

at lower velocities. It also demonstrates the escalation of the average distance to

the front vehicle at higher velocities, just as the minimum and maximum errors.

(a) Comparison between Distances of Car 3
at Different Velocities

(b) Comparison between Distance Errors of
Car 3 at Different Velocities

Figure 5.36: Comparison of Car 3 metrics

From these results, additionally, it was concluded that the second vehicle has

always a superior overshoot than the third vehicle, due to the fact that the acceler-

ation of the first car is higher then the second one. This can be justified, since the

first car aims directly to the constant speed of each test, while the second and third

car are controlled by a PD control.

Nuno Guedes 57

CHAPTER 5. PLATOONING ALGORITHMS

5.3.3 Camera Detection Result

We felt the need to demonstrate the quality of our detection with the ZED camera

while accelerating the leader. With this, we assured a correlation between the quality

of the detection presenting the confidence of itself and the distance to the leader.

Throughout three experiments, this test is done with the follower stopped. We also

made these tests in different lighting conditions. In a first case scenario, we use

natural lighting during the day, while in the second experiment we use artificial

lighting whilst night.

In Figure 5.37, where the test was performed with natural lighting, we can ob-

serve that, as expected, while the distance to the leader is increasing, the confidence

of the detection is diminishing. At a approximate distance of 92 cm, there is a

sudden drop of the confidence, making the detection unstable. At approximately

100 cm, the confidence drops below 50%. Therefore, it is not advisable working at

higher distances than this breaking point. Despite this, the stop signal detection

can work up to a maximum distance of 117 cm, in this condition.

Figure 5.37: Correlation between Camera Detection and Distance to Leader with Natural
Lighting

The Figure 5.38 demonstrates our experiment with artificial lighting at night. As

in the first case, we see the same behaviour of inverted proportionality between the

distance and the confidence. Although this resemblance, at 60 cm, the confidence

starts to drop steeper, maintaining the confidence around 85% until 84 cm, where

it start declining harshly and at 90 cm falls under 50% confidence. It reaches a

maximum distance of 93 cm.

58 Nuno Guedes

5.3. RESULTS

Figure 5.38: Correlation between Camera Detection and Distance to Leader with Artificial
Lighting

Nuno Guedes 59

6
OBU Cooperation Platooning

One of this Thesis objectives is to validate a safety mechanism on a platooning

scenario. The testbeds were used as before, with cooperative ITS-G5 OBUs as

additional components.

6.1 System

The presented system architecture, in Figure 6.1, refers to the fully implemented

cooperative testbed, where the robots plan and run a platoon with V2V communic-

ations supported by the OBUs, and where the CLW and ETSI modules guarantee

safety and security compliant with the defined standards. The OBU interface was

achieved via a bridge, developed in partnership with GMV Skysoft, SA, through

TCP sockets.

61

CHAPTER 6. OBU COOPERATION PLATOONING

Figure 6.1: Cooperative System Architecture

On the OBUs side, the received messages are processed by the message broker

and used by the other modules, as CLW and ETSI. On the robot side, the ROS-

based system, running on the Jetson board, with all the above modules, uses the

information received through the bridge in topics, carINFO and RXNetwork, shown

in Figure 4.9, to get a good awareness of its surrounding environment and cars

involved in the platoon. The ROS-based system is responsible to perceive the sur-

roundings with the information received from the sensors and camera, plan according

to the algorithm being applied and control the gas and steering actuators.

6.2 CLW integration

Control Loss Warning (CLW) systems, Figure 6.2, are designed to detect and alert

about control loss situations. A CLW system has the ability to monitor systemś

status, and trigger alerts if a control loss situation is detected. CLW mechanisms

are particularly useful to monitor individual nodes that work together to create

a complex autonomous system. As these system are appropriate to monitor the

status of individual nodes, they can be applied to a platoon of vehicles travelling

along a motorway. As alerts triggered by one node of the system may influence the

behaviour of other nodes, these systems are identified as safety-critical ones. This

use case aims at demonstrating how a safety assurance framework can be applied to

automotive cooperative V2X-based systems.

62 Nuno Guedes

6.2. CLW INTEGRATION

Figure 6.2: CLW Overview

Considering a scenario where a platoon of vehicles is travelling along a motor-

way, the CLW system should be able to detect a control loss warning situation, for

example, the brakes on one of the cars fails. The CLW system detects the failure and

sends a CLW alert to the other elements involved in the process. Those elements

can be the rest of the cars in the platoon, police, emergency services, etc.

The CLW mechanism used in the platooning testbed is able to detect when a

vehicle in a platoon loses control, and its platooning ability is thus affected. When

this is detected all the vehicles on the platoon and the road infrastructure conces-

sionary are notified of a control loss situation. If in any situation a CLW alert

is activated, a safety analysis must take place before any action of other vehicles.

Safety-assurance methods and tools, applicable to V2x systems, developed in the

project, will be used in the demonstrator. These methods and tools include design

and runtime mechanisms for safe V2X communications between cooperative vehicles,

in order to ensure overall system safety.

In the platooning robotic testbed platform’s experiments, we validated a CLW

mechanism as Loss of Direction (LOD). The LOD is detected when the steering and

the heading of the elements of the platoon are not within the desired parameters and

triggers this safety mechanism, that results in the emergency breaking of the mem-

bers of the platoon. In Figure 6.3, we can observe the robotic testbeds implemented

with the OBU MK5, able to trigger a LOD mechanism if necessary.

Nuno Guedes 63

CHAPTER 6. OBU COOPERATION PLATOONING

Figure 6.3: Platooning with Safety Mechanism

64 Nuno Guedes

7
Conclusions and Future Work

7.1 Conclusions

This Thesis main objective was the creation and development of a low-cost, pla-

tooning robotic testbed that relied on the Robot Operating System. This was done

by following the F1 tenth build, while adapting and improving their testbed. As

this objective was achieved early on, there were assembled three examples with the

hardware components that are described throughout this Thesis, in order to form a

platoon.

Secondly, as platooning is an emerging concept and becoming a trend, we pro-

posed ourselves to develop a stable platoon merely based on sonars and range finders

as our data input. This platooning baseline was achieved, but it’s only stable for

velocities lower then 0.8 m/s.

In the next objective we proceeded to improve this baseline with an additional

camera with object detection. This enhancement resulted in reaching higher velo-

cities without compromising the vehicle’s stability.

In our lateral results, we are clearly able to conclude that our second algorithm

in an obvious improvement on our baseline as we can achieve lower average deviation

error even at higher velocities when comparing to our baseline that travelled at a

maximum of 0.8 m/s. Only at 1.0 m/s of our improved platoon, there are super-

ior average error, however the maximum and minimum error are still lower in the

enhanced algorithm.

65

CHAPTER 7. CONCLUSIONS AND FUTURE WORK

The fact that our baseline platoon presents better results in our longitudinal

control throughout the tests, doesn’t indicate, in this specific case, that it is a

superior platoon model. These results are all influenced by the initial delay that

the second platoon model presents. This delay impacts hugely on the maximum

distance that the vehicles achieve. Consequently, it impacts the average distance by

increasing it, despite being far more stable than our baseline. Truth of the matter

that the camera algorithm method works on higher velocities proves our previous

affirmation.

We also decided to held a comparison of the image detection algorithm when

exposed to different lighting. For this purpose, by analyzing the confidence in the

stop signal detection and the distance to the leader, at natural and artificial lighting,

we were able to conclude that the detection results better with natural light. This is

expected as the ZED camera has a greater performance outdoor rather than indoor.

Lastly, the bridge between the OBU and Jetson was accomplished with success,

whilst working with GMV Skysoft, SA. This was validated successfully demonstrat-

ing the CLW implementation over the specific use case of loss of direction.

7.2 Future Work

We are currently looking into the possibility to advance to a cooperative platooning

control model, based on communications and sensory input from the vehicle’s already

existing detection devices with the purpose of achieving a better and more stable

platoon than the developed for this Thesis.

The aim is to implement a fusion between communications, that receive data

from the sensors and transmit through a platoon network, and the sensors aboard

the vehicles. This means that our purpose is that each car has it’s own control

model, aside from receiving information about the other vehicles from the platoon

and then decides his actions, based on this data. With this fusion, our objective

is to have a more stable platoon, considering our lateral control and longitudinal

control, and also to reach superior velocities.

Another point would be to increase the number of vehicles of the platoon. Also,

we are examining the potential in applying our platoon knowledge acquired from

ground vehicles to airborne platforms such as drones. Also drones pose signific-

ant and similar challenges in terms of cooperation and could benefit from safety

mechanisms similar to the one presented in this Thesis.

66 Nuno Guedes

Bibliography

[1] “Various-driving-patterns-in-Highway-scenario.png (734Ã305),”, https://

www.researchgate.net/profile/Dongyaotony_Jia/publication/

273770053/figure/fig1/AS:614368203005967@1523488202397/

Various-driving-patterns-in-Highway-scenario.png, (Accessed
on 09/10/2019).

[2] “IEEE Xplore Full-Text PDF:,”, https://ieeexplore.ieee.org/

stamp/stamp.jsp?arnumber=8240910, (Accessed on 09/13/2019).

[3] D. Lu, Z. Li, D. Huang, X. Lu, Y. Deng, A. Chowdhary, and B. Li, “VC-bots:
A Vehicular Cloud Computing Testbed with Mobile Robots,” In Proceedings
of the First International Workshop on Internet of Vehicles and Vehicles of
Internet, IoV-VoI ’16 pp. 31–36 (ACM, New York, NY, USA, 2016).

[4] “tra74054-4 1.jpg (1200Ã960),”, https://images.amain.com/images/

large/tra/tra74054-4_1.jpg, (Accessed on 09/20/2019).

[5] “MK5 OBU - Cohda Wireless,”, https://cohdawireless.com/

solutions/hardware/mk5-obu/, (Accessed on 09/10/2019).

[6] “NVIDIA Jetson TX2 J21 Header Pinout - JetsonHacks,”, https://www.
jetsonhacks.com/nvidia-jetson-tx2-j21-header-pinout/, (Ac-
cessed on 09/18/2019).

[7] “SRF08 Ultra sonic range finder,”, https://www.robot-electronics.
co.uk/htm/srf08tech.html, (Accessed on 09/17/2019).

[8] “Safecop â Safe Cooperating Cyber-Physical Systems using Wireless Commu-
nication,”, http://www.safecop.eu/, (Accessed on 10/09/2019).

[9] R. Smith, “Directive 2010/41/EU of the European Parliament and of the Coun-
cil of 7 July 2010,” in Core EU Legislation (Macmillan Education UK, London,
2015), pp. 352–355.

[10] J. Wan, D. Zhang, S. Zhao, L. T. Yang, and J. Lloret, “Context-aware vehicu-
lar cyber-physical systems with cloud support: architecture, challenges, and
solutions,” IEEE Communications Magazine 52, 106–113 (2014).

[11] S. Gong and L. Du, “Cooperative platoon control for a mixed traffic flow in-
cluding human drive vehicles and connected and autonomous vehicles,” Trans-
portation Research Part B: Methodological 116, 25–61 (2018).

67

BIBLIOGRAPHY

[12] E. Larsson, G. Sennton, and J. Larson, “The vehicle platooning problem: Com-
putational complexity and heuristics,” Transportation Research Part C: Emer-
ging Technologies 60, 258–277 (2015).

[13] S. Tsugawa and S. Kato, “Energy ITS: another application of vehicular com-
munications,” IEEE Communications Magazine 48, 120–126 (2010).

[14] Y. Zhang and G. Cao, “V-PADA: Vehicle-Platoon-Aware Data Access in
VANETs,” IEEE Transactions on Vehicular Technology 60, 2326–2339 (2011).

[15] F. Dressler, F. Klingler, M. Segata, and R. L. Cigno, “Cooperative Driving and
the Tactile Internet,” Proceedings of the IEEE 107, 436–446 (2019).

[16] D. Eckhoff, N. Sofra, and R. German, “A performance study of cooperative
awareness in ETSI ITS G5 and IEEE WAVE,” In 2013 10th Annual Conference
on Wireless On-demand Network Systems and Services (WONS), pp. 196–200
(2013).

[17] European Telecommunications Standards Institute, “ETSI EN 302 637-2
V1.4.0,” Technical Report No. V1.4.0, ETSI (2018) .

[18] C. Wang, S. Gong, A. Zhou, T. Li, and S. Peeta, “Cooperative adaptive cruise
control for connected autonomous vehicles by factoring communication-related
constraints,” Transportation Research Part C: Emerging Technologies (2019).

[19] I. M. Delimpaltadakis, C. P. Bechlioulis, and K. J. Kyriakopoulos, “Decentral-
ized Platooning With Obstacle Avoidance for Car-Like Vehicles With Limited
Sensing,” IEEE Robotics and Automation Letters 3, 835–840 (2018).

[20] K. Tammi and V. HyvÃrinen, “Lateral and longitudinal control of bus pla-
toon,” In 2018 IEEE International Conference on Electrical Systems for Air-
craft, Railway, Ship Propulsion and Road Vehicles International Transportation
Electrification Conference (ESARS-ITEC), pp. 1–6 (2018).

[21] H. Cao, S. Gangakhedkar, A. R. Ali, M. Gharba, and J. Eichinger, “A Testbed
for Experimenting 5G-V2X Requiring Ultra Reliability and Low-Latency,” In
WSA 2017; 21th International ITG Workshop on Smart Antennas, pp. 1–4
(2017).

[22] “Traxxas Ford Fiesta ST Rally — RC Rally Car,”, https://traxxas.

com/products/models/electric/ford-fiesta-st-rally, (Accessed
on 09/08/2019).

[23] “JetPack 3.3 Release Notes — NVIDIA Developer,”, https://developer.
nvidia.com/embedded/jetpack-3_3, (Accessed on 09/10/2019).

[24] “ROS/Concepts - ROS Wiki,”, http://wiki.ros.org/ROS/Concepts,
(Accessed on 09/10/2019).

68 Nuno Guedes

BIBLIOGRAPHY

[25] “Master - ROS Wiki,”, http://wiki.ros.org/Master, (Accessed on
09/10/2019).

[26] “Nodes - ROS Wiki,”, http://wiki.ros.org/Nodes, (Accessed on
09/10/2019).

[27] “Messages - ROS Wiki,”, http://wiki.ros.org/Messages, (Accessed on
09/10/2019).

[28] “Topics - ROS Wiki,”, http://wiki.ros.org/Topics, (Accessed on
09/10/2019).

[29] “Bags - ROS Wiki,”, http://wiki.ros.org/Bags, (Accessed on
09/10/2019).

[30] “Build,”, http://f1tenth.org/build.html, (Accessed on 10/09/2019).

[31] “kinetic/Installation/Ubuntu - ROS Wiki,”, http://wiki.ros.org/

kinetic/Installation/Ubuntu, (Accessed on 09/19/2019).

[32] “GitHub - mlab-upenn/f1tenthpublic,”, https://github.com/

mlab-upenn/f1tenthpublic/, (Accessed on 09/17/2019).

[33] “GitHub - jetsonhacks/installACMModule: Install the CDC ACM and USB
to Serial Modules for the Jetson TX1 or Jetson TX2 Development Kit,”,
https://github.com/jetsonhacks/installACMModule, (Accessed on
09/17/2019).

[34] “Stereolabs - Capture the World in 3D,”, https://www.stereolabs.com/,
(Accessed on 09/17/2019).

[35] “GitHub - stereolabs/zed-python-api: Python API for the ZED SDK,”,
https://github.com/stereolabs/zed-python-api, (Accessed on
09/17/2019).

[36] “Ubuntu 16.04: How to install OpenCV - PyImage-
Search,”, https://www.pyimagesearch.com/2016/10/24/

ubuntu-16-04-how-to-install-opencv/, (Accessed on 09/17/2019).

[37] “GitHub - stereolabs/zed-yolo: 3D Object detection using Yolo and the ZED in
Python and C++,”, https://github.com/stereolabs/zed-yolo, (Ac-
cessed on 07/05/2019).

Nuno Guedes 69

	Introduction
	Motivation
	Research Context
	Research Objectives
	Thesis Structure

	Platooning Overview
	General Aspects
	Communications
	Control Strategies
	Platooning Testbeds

	Technologies and Tools
	Hardware
	Traxxas RC Car
	Jetson TX2 and Developer Kit
	Teensy 3.2
	Inertial Measurement Unit (IMU)
	ZED stereo camera
	Range Finders
	Sonar
	Cohda On Board Unit

	Software
	NVIDIA Jetpack 3.3
	Robot Operating System
	OpenCV 3.4.2
	ZED Python API
	Virtual Network Computing (VNC)

	Robotic Platooning Testbed Architecture
	System's Architecture
	ZED Camera mount
	Teensy PCB Board
	Sensor Board
	MK5 ROS Bridge
	Software Setup

	Platooning Algorithms
	Sensor Board based Platooning
	Lateral Control
	Longitudinal Control

	Camera-based Platooning
	Lateral Control
	Longitudinal Control

	Results
	Lateral Control Results
	Longitudinal Control Results
	Camera Detection Result

	OBU Cooperation Platooning
	System
	CLW integration

	Conclusions and Future Work
	Conclusions
	Future Work

