Adding Local Priority-Based Dispatching Mechanismsto P-NET Networks: a
Fixed Priority Approach

Eduardo Tovar
Dept. of Computer Engineering,
Polytechnic Institute of Porto,
Portugal
e-mail: emt@dei.isep.ipp.pt

Abstract

In this paper we address the real-time capabilities of
P-NET, which is a multi-master fieldbus standard based
on a virtual token passing scheme. We show how P-NET's
medium access control (MAC) protocol is able to
guarantee a bounded access time to message requests. We
then propose a model for implementing fixed priority-
based dispatching mechanisms at each master’'s
application level. In this way, we diminish the impact of
the first-come-first-served (FCFS) policy that P-NET uses
at the data link layer. The proposed model rises several
issues well known within the real-time systems community:
message release jitter; pre-run-time schedulability
analysis in non pre-emptive contexts; non-independence of
tasks at the application level. We identify these issues in
the proposed model and show how results available for
priority-based task dispatching can be adapted to
encompass priority-based message dispatching in P-NET
networks.

1. Introduction

Real-time computing systems are defined as those
systems in which the correctness of the system depends
not only on the logical result of computation, but also on
the time at which the results are produced [1]. Distributed
real-time systems are those systems that have timeliness
requirements and include several inter-operating
computing components.

In distributed rea-time systems, the co-operation
between the different computational devices is supported
by some kind of inter-processor communication. Back-
plane buses, like Futurebus+ [2] or VME [3] are an
interesting solution when processors are in the same
physical platform, or indeed very close to each other.
Instead, if the processors are physically distant, real-time
serial communication networks must be used.

Francisco Vasques
Dept. of Mechanica Engineering,
University of Porto,
Portugal
e-mail: vasgues@fe.up.pt

Alan Burns
Dept. of Computer Science,
University of York,
United Kingdom
e-mail: burns@cs.york.ac.uk

Two main application areas have been emerging for
real-time communication networks. One is the multimedia
domain, which includes digita audio and video
transmission. Another concerns the factory automation and
process control systems. In the former, humans interact
with the communication services and, in one way or
another, set the real-time requirements. In the latter,
however, communication needs are much more a system
design issue, and thus, is the physica environment
(process or mechanical apparatus which is being
controlled) that imposes the real-time requirements. In this
paper we address real -time communications for distributed
computer controlled systems (DCCS), which are included
in the factory automation and process control systems.

The communication requirements of DCCS triggered
the need for specific serial communication networks [4,5].
Consequently, during the past decade or so, a significant
number of industrial communication networks, usually
called fieldbus networks, have been proposed to support
DCCS applications. Some distinguished examples are FIP
[6], PROFIBUS [7], CAN [8] and P-NET [9]. In paralldl,
several international standardisation efforts have been and
are till being carried out. One of the most relevant
resulted into the European Standard EN 50170 [10], which
encompasses three different fieldbus profiles. FIP,
PROFIBUS and P-NET.

In multi-point broadcast networks, the network bus is
shared between a number of nodes, which means that there
is access contention. This access contention is arbitrated
by the medium access control (MAC) protocol. To
guarantee a bounded access time, the MAC protocol must
be deterministic, meaning that the bus access delay must
be bounded. In FIP, the determinism is guaranteed by a
bus arbitrator, which controls periodic data transfers
according to a dtatic scanning table. The real-time
capabilities of FIP have been widely studied, and [11,12]
are just some examples. PROFIBUS adopts a simplified
version of the timed token (TT) protocol [13]. Despite
some differences to the TT protocol used in FDDI or
IEEE802.4, for which real-time characterisation have been

extensively addressed ([14,15] are just some examples), it
is still possible to guarantee real-time behaviour with
PROFIBUS networks [16,17]. CAN isitself apriority bus,
which adopts a collision avoidance version of the well-
known CSMA/CD protocol. In [18,19] the authors show
how to guarantee real-time behaviour with CAN networks.

In [20] the authors analyse the P-NET's MAC
behaviour and propose a worst-case response time
(WCRT) analysis for P-NET messages. Such analysis on
the knowledge of the maximum virtual token rotation
time. Later, this analysis is improved in [21] by
considering the actual token utilisation, instead of
considering aways the worst-case token rotation time.
Both studies show however that the WCRT is very much
penalised by the first-come-first-served (FCFS) policy
adopted by P-NET for processing the pending requests.
This motivated us to propose a model for adding local
priority-based dispatching mechanisms to P-NET masters.
Such dispatching mechanisms must be performed at the
application process level, to preserve the compatibility
with the P-NET standard. Figure 1 depicts the proposed
architecture. A priority ordered queue is implemented at
each master's application level and the FCFS
communication stack outgoing queue is limited to one
pending request.

Application

Requests from Process (AP)

tasks

Requests R
(Priority Queue) esponse
Low AP Queues
5 D
(v
P-NET Outgoing Queue Communication
Sty O || com

N /

\4 Bus

Figure 1. Proposed Architecture.

Each message request generated at the application level
is placed in a priority ordered queue. Each time the
communication stack queue becomes empty, a pending
request may be transferred from the priority ordered
queue.

Different schemes for priority assignment could be
considered. We opt for fixed priority with priorities
assigned by the deadline monotonic (DM) scheme.

The remaining of this paper is organised as follows. In
section 2 we describe the concepts behind the P-NET's
MAC mechanisms. In section 3 we give the worst-case
communication response time analysis for P-NET's
message requests, which were first developed in [20,21].
In section 4 we introduce the proposed model for adding
local priority-based dispatching mechanisms to P-NET
masters. The proposed model rises several issues well
known within the real-time systems community: release
jitter; pre-run-time schedulability analysis in non pre-
emptive contexts, non-independence of tasks at the
application process level. We identify these issues in the
proposed model and then survey the most significant
results available from the field of single processor task
scheduling. We will adapt those results for the case of
message scheduling and update the analysis made in
section 3 to consider DM priority-based message
dispatching. Finaly, in section 5, we give conclusions.

2. P-NET'sVirtual Token Passing Protocol

P-NET isamulti-master protocol, where a master sends
a request and the addressed slave immediately returns a
response. For multi-master support, P-NET uses a Virtual
Token Passing (VTP) scheme.

The VTP scheme is implemented using two protocol
counters. The first one, the Access Counter (AC), holds
the node address of the currently transmitting master.
When a request has been completed and the bus has been
idle for 40 bit periods (520ns @ 76,8Kbps"), each one of
the ACs is incremented by one. The master whose AC
value equals its own unique node address is said to hold
the token, and is allowed to access the bus. When the AC
is incremented as it exceeds the “maximum No of
Masters’, the AC in each master is pre-set to one. This
alows the first master in the cycling chain to gain access
again. The second counter, the Idle Bus Bit Period Counter
(IBBPC), increments for each inactive bus bit period.
Should any transactions occur, the counter isre-set to zero.
As explained above, when the bus has been idle for 40 bit
periods following a transfer, all ACs are incremented by
one, and the next master is thus allowed to access the bus.
If amaster have nothing to transmit (or indeed is not even
present), the bus will continue inactive. Following a
further period of 130ns (10 bit periods), the IBBPC will
have reached 50, (60, 70,...) all the ACs will again be
incremented, allowing the next master access. The virtual
token passing will continue every 130ms, until a master
does require access.

1 The P-NET standard uses a data rate of 76800 bps. This data rate
resulted from weighing up the conflicting requirement for data to be
transported as fast as possible, but not at such speed as to negate the
use of standard microprocessor UARTS, or restrict the usable
distance or cable type [22].

None of these masters

used the token 2-7 Bit Periods

11-30 Bit Periods
<

>

Response

A

> <

Request Response

Bus

Access
Counter

IBBPC

7\

A

A

Message Cycle

A

3
>

Token Holding Time (H)

&<
<

Y

Figure 2. VTP Timing Example.

The P-NET standard also stands that each master is
allowed to perform only one message transaction (later on
defined as message cycle) per token visit. This is an
important notion for the remaining of the paper.

After receiving the token, the master must transmit a
request before a certain time has elapsed. This is denoted
as the master’s reaction time, and the standard imposes a
worst-case value up to 7 bit periods). A daveis alowed to
access the bus, between 11 and 30 bit periods after
receiving a request, measured from the beginning of the
stop hit in the last byte of the frame. The maximum
allowed delay is then 390ps (corresponding to 30 bit
periods). Later on, this delay will also be denoted as the
dlave'sturnaround time.

As aready stressed, at each token visit, a master may
perform at most one message cycle. A message cycle
consists on a master’s request followed by the addressed
dave's response. Assume that Cy is the maximum
transmission duration of a message cycle in a P-NET
network.

We define the maximum token holding time as:

(D)

In equation (1), t (= 40 bit periods) corresponds to the
time to pass the token after a message cycle has been
performed. r (£ 7 bit periods) denotes the worst-case
master’s reaction time. If a station does not use the token
to perform a message cycle, the bus will be idle during s
(= 10 bit periods) before all ACs are incremented. For
better understanding both the basic MAC procedures and
this notation, refer to figure 2.

H=r +C, +t

Note that s (= 10 bp) is normally much shorter than H,
since H includes both the request and response frames. In
fact, aP-NET frameis limited (if network segmentation is
not supported) to 69 bytes. As each frame byte actually
corresponds to 11 bits®, a frame may have up to 759 bits
(69 x 11 hits). Thus, considering the case that both the
request and response frames have 759 bits (more
redigticaly either the request will be longer - case of
writing data to a slave - or the response will be longer -
case of receiving data from a slave), the overall sum for
the token holding (H) time may go up to 1595 bit periods,
corresponding to 20.8 ms @ 76800 bps.

3. Worst-Case Response Time Analysis

3.1. Network and Message M odels

We consider a network with n masters, with addresses
ranging from 1 to n. Each master accesses the network
according to the VTP scheme. Hence, first master 1, then
master 2, 3, ... until master 1, and then again 2, 3, ...
Slaves will have network addresses higher than n. We also

assume the following message stream model:
S =(Ci.T".Dy) @

S¥ defines a message stream i in master k (k = 1, .., n).
A message stream is a temporal sequence of message

2 In P-NET all the frame bytes are sent asynchronously, with one start

bit (logical zero), 8 data bits (with LSB first), one address/data bit and
one stop bit. Within a frame, a start bit must immediately follow a
stop hit.

cycles concerning, for instance, the remote reading of a
specific process variable. C¥ is the longest message cycle
of stream S¥. T is the periodicity of stream S* requests.
Finally, D is the relative deadline of the message cycle,
that is, the maximum admissible time span between the
instant when the message request is placed in the outgoing
gueue and the complete reception of the related response
at the master's incoming queue. We consider both periodic
and sporadic messages. For the case of sporadic message
requests, its period corresponds to the minimum time
between any two consecutive requests for that stream.

In our model the relative deadline of a message stream
can be equal or smaller than its period (D £ T{¥). Thus, if
in the outgoing queue there are two message requests from
the same message stream, this means that the deadline of
the first request was missed®. It also means that the
maximum number of pending requests in the outgoing
queue will be, in the worst-case, ns*.

We denote the worst-case response time of a message
stream S as R¥. This time is measured starting at the
instant when the request is placed in the outgoing queue,
until the instant when the response is completely received
at the incoming queue. Basically, this time span is made
up of the two following components: the time spent by the
request in the outgoing queue, until gaining access to the
bus (queuing delay); the time needed to process the
message cycle, that is, to send the request and receive the
related response (transmission delay)”.

Thus,

R =Q“+Cf 3)

where Q is the worst-case queuing delay of a message
stream i in a master k.

In order to have simpler and more understandable
analysis, we will use the maximum token holding time
(see equation (1)) for all message cycle transactions,
instead of considering the actual length for each particular
message cycle. Thus, we will use equation (4), instead of
equation (3) to define the worst-case response time for a
message request belonging to stream S*:

R‘=Q"+C, “)

It also follows, from considering Cy, instead of ck (since
GY£ Cy), that Q'=Q" " ; and R=R, " ; [21].

3.2. Basic Analysisfor the WCRT

A basic analysis for the worst-case response time can
be performed if the worst-case token rotation time is

® Actually, we can be more precise saying that deadlines will be missed

if a new request appears, in the outgoing queue, before the deadline
of the previous message cycle for the same message stream.

4 Asthe hit rate in P-NET is 76800 bps, the propagation delay can be
neglected, even for P-NET networks with length of some kilometers.

assumed for all token cycles. As the token rotation time is
the time span between two consecutive token visits to a
particular station, the worst-case token rotation time,
denoted as V, is:

V=n"H ©)

with H as defined in (1), and it gives the longest time
interval between two consecutive token visits to any
master k (k=1, .., n).

Application
Requests from Process (AP)

tasks A
|

|
\4

FCFS Queue
(length ns")

D Communication
N Stack

Figure 3. P-NET Architecture.

In P-NET, the outgoing queue is implemented as a
FCFS queue (figure 3). Therefore, a message request can
be in any position within the ns pending requests. ns* is
also the maximum number of requests which, at any time,
are pending in the master k outgoing queue. This results
from the adopted message stream model, which considers
DX £ TX Hence, the maximum number of token visits to
process a message request in a master k, is ns*.

The worst-case queuing delay occurs if ns* requests are
placed in the outgoing queue just after a message cycle
was completed (at the beginning of the token passing
interval: t) and the token is fully utilised in the next ns*
consecutive token cycles.

In [21], we denoted this time instant as the Master's
Critical Instant, and defined the Master’s Busy Period as
being the time span between the critical instant and the
time instant when the last of the ns‘ requests is completely
processed. Based on these two definitions, we introduce
the following 2 theorems.

Theorem 1 In P-NET networks, the worst-case response
time of a master's message request corresponds to the
longest busy period in such master.

Proof: The busy period starts when a critical instant
occurs: the instant t. By the critical instant definition, ns¢
reguests are placed in the outgoing queue at the earliest
possible instant. As the end of the busy period is defined
as being the time instant t,, when the last of those ns*

both requests from
master 1 placed in
outgoing queue

req(S:")

s [I I L

res(S:") req(S:) res(SY)

Access
Counter [

R (busy period in master 1)

A\ 4

A

Figure 4. Example Scenario.

requests is completely processed, the difference t.-t. gives
the worst-case response time for a message request in
master k, since due to the FCFS behaviour of the outgoing
gueue, at t., a message request can be in any position, from
1st to ns‘-nd. Q

Theorem 2 In P-NET networks, assuming that the token is
fully utilised, the worst-case response time of a message
request in amaster kis:

R=ns*" Vv (6)

Proof: Assuming that the token is fully utilised, the token
will take t+(n-1)" H from instant t. until the next visit to
master k. At the first visit, the token arrives at
t=ts+t+(n-1)" H, and only then the master will be able to
process the first of the ns‘ pending requests. As only one
of the ns* message requests is processed per token visit,
the token will arrive at master k only at instant
ty=t,+(ns‘-1)" V to process the last of the ns requests. The
time elapsed since . is then ty-t=t +(n-1)” H+(ns1)" V. As
the worst-case reaction time of a master isr, the last one
of the ns message requests will start to be transmitted
with a queuing delay Q*=t+(n-1)" H+(ns“1)" V+r. Note
that as we are assuming C=Cu, " ik the worst-case
queuing delay is equal for all message requests in the same
master (Q*=Q*, "). As R=Q+Cy, the worst-case
response time for a message stream i in master k is (note
that R = RY): Rst+(n-1) H+(ns“1)" V+r +Cy, which,
considering that H=r +Cy+t, can be re-written as follows:
R=n" H+(ns1) V=V+(ns-1)" V=ns“ V. a

Coroallary In P-NET networks, assuming that the token is
fully utilised, the worst-case queuing delay of a message
request in amaster k is:

Q =t +(n-1)" H+(ns - 1) V+r (7)

To illustrate both theorems 1 and 2, assume a hetwork
scenario with n = 3 and ns' = 2. Figure 4 shows both Q*
and R' for such scenario. Note that at instant t,, ns'
requests are placed in the outgoing queue in an arbitrary
order. Whichever the ordering, the busy period
corresponds to R', and therefore, the worst-case response
time for a message request in master 1 is (6):
ns’ V=2 V=23 H=6 H.

3.3. Consideringthe Actual Token Utilisation in
the WCRT Analysis

In the previous section we derived a basic timing
analysis for the evaluation of the worst-case message
response time. Such analysis may however be very
pessimistic, since we assumed the token as being fully
utilised in the ns¢ consecutive token cycles of the busy
period. However, the token can only be fully utilised
during that period if:

k n
ns’ 3 ns," ()

as, only in such case, the number of pending requests, in
each master y, may be greater than ns’. Otherwise, if
Sk ng<ns‘, the token utilisation depends on the
periodicity of message streams for those mastersyy.

3 master 1 busy period

Master 1

'
i
i
i
i
i
i

‘ i ‘

Master 2 “ i -
i
i

1

Master 3

Master 4

\ 4

Master 2 requests
not being considered
during the master 1
busy period

|

3

- Token Holding Time (H)

S

h
|
|
|
|
:
3 4 5 6 7 8 9 10 11

>
units of H

te

C? # = ns* requests placed in the outgoing queue of master x

Figure 5. Example of Processing Window.

We define the Eligible Requests of Master y (y* k), as
the maximum number of requests generated in that master
that will be pending® within the busy period of master k.

Based on this definition, in [21] we proved the
following P-NET theorems:

Theorem 3 In P-NET networks, the longest busy period of
master k occurs when all k predecessors started their busy
periods in the token cycle previous to the busy period in
master k.

Theorem 4 The minimum number of unused tokens by a
master y within a busy period of master k, is

Ut'=ng“min{ ns, ns’ + & -, _oy&R“+Ja)/TY}.

We denote Ja’=Jr¥-JV' as the Logical Ring Aggregate
Jitter of master y in respect to master k.

Jr¥ is the Logical Ring Request Jitter of mastery
(Ir=t’-ty), being t¥ how much earlier than the critical
instant in k, @ master y can made its ns’ requests, without
violating a deadline, nor processing any of those ns’
requests prior to the critical instant in master k.

JV is the Logica Ring Visit Jitter of mastery
(IV'=tt)), being the time span between t. and t,” () < to)
the Processing Window of Master’s k Busy Period, within
which, a first-positioned pending request in master y will
assuredly be processed.

In a master k, the number of token cycles during the
busy period is ns’. Thus, the actual token utilisation by a

5 Even if they are processed during the busy interval, for a while they

were pending.

master y, during the busy period of master k, is
min{ ns’, ng'+& ;o &R+I)/TVG}.

Note that ns'+di.; .y&/T'0 gives the maximum
number of requests generated by a master y within atime
interval t: ns’ requests are made at the beginning of the
interval, and then, new requests are made at their
maximum rate. This is also known as the asap (as soon as
possible) pattern [23].

Embodied in expression &-; .&R+Ja")/TY0 is that
the worst-case situation appears when the ns’ requests are
not simultaneously made in al masters y * k, but some
time before t;, which, for each master y, depends of its
logical ring position. That quantity of time before is given
by Jr¥:

Jr¥ =[(n+k- y)modn| H ©)

Since Ja’=Jr’-)v’, also embodied in expression
4oy ny&R4+J2Y)/TY0 is that from the requests generated
by mastersy t k during the time span of the busy period in
master k, only those that appear JV' before the end of the
busy period may be processed, with v

IV =[(n+k- y)modn)]'s +C, + §(H-s) (10
e
nd3ng¢
Figure 5 illustrates these logica ring jitters when
evaluating the WCRT for master 1. Note that both masters
3 and 4 have a number of streams equal to master 1. Only
master 2 has fewer streams than master 1, therefore, it may

not use al the 3 consecutive token cycles to process

message cycles. The periodicity of the only stream of
master 2 is 12" H. Even a new request for that stream is
made before the end of the busy period in master 1, that
request will not be processed within that period, as it
appeared after the last visit (within the busy interval of
master 1) of the token to master 2.

It is now possible to update (6) to incorporate the actual
token utilisation, considering that, for each unused token
we must subtract the corresponding value of the token
holding time (H), and add a s corresponding to the token
passing time for the case of an unused token:

RC=ns*" V-Ut" (H-s) (11)

where Ut gives the overal number of unused tokens
during a busy period in master k:

ut=g ut (12)
y=1
with the number of unused tokens by each master y being
trivially derived from the number of eligible requests:

nsy K Y
Ut’ =ns*- mlrr nsk ns'+3 S(L"Ja) (13)

| |-1e T'y

Therefore, equation (11) can be updated to:

R=ns‘" V-

. , (14)
%ge m|n1|'ns ns’ +§§Mu‘w (H-s)
g 2T b

As expected, this equation embodies a mutua
dependence, since R* appears in both sides of the equation.
In fact, all the previous analysis underlay this mutual
dependence, since in order to evaluate RS, Ut must be
found, and vice-versa. The easiest way to solve equation
(14) isto form arecurrence relationship [24]:

W™ =ngd'" V -
én ns’ an™+J yww (15)
- 83 Gns' - m|n1|'n§< ns’ +a97a

@/18 1 g T

The set {W°, W}, ..., W", ...} is monotonically non-
decreasing, since as W evolves, less unused tokens are
being considered. Starting with WP = 0; when W" = W™?,
the solution of eguation (14) has been found.

Note that, due to the FCFS behaviour of the P-NET’s
pending requests queue, the WCRT will always consist of
the worst-case ns® consecutive token cycles. By
considering the actual token utilisation (14) we improve
the results obtained by (6). Nonetheless, a priority
inversion with the length:

ns -1 (16)

i (H-s)

may occur, as, in the worst-case, a message request with a
more stringent deadline may stand pending in the outgoing
queue in a position after the other ns‘ — 1 message requests
from the same master.

A priority-based dispatching policy would solve this
problem: as compared to the FCFS dispatching policy,
reguests with more stringent deadlines would have smaller
worst-case response times, as they would not wait ns‘
token visits to be processed.

4. Adding Priority-Based M echanismsto
P-NET Masters

In this section we survey the main results available for
single processor pre-run-time schedulability analysis for
systems with tasks dispatched according to the DM
priority assignment. Special emphasis will be given to the
analysis for non pre-emptive systems, since the anaysis
for pre-emptive systems is not of much use for
communicating messages in P-NET, as a message cycle
can not be pre-empted.

We will then adapt these results to encompass the
worst-case response time analysis of P-NET messages
dispatched according to the DM priority assignment
(model of figure 1).

4.1. Pre-Run-Time Schedulability Analysis of
DM Dispatched Tasks

Joseph and Pandya [25] proved that the worst-case
response time r; of atask t; isfound in a scenario in which
al tasks are synchronously released at instant t = 0, the
critical instant, and then at their maximum rate. r; is
computed by the following recursive equation (where hp(i)
denotes the set of tasks of higher priority than t;):

_C + a gé b 17)
ji hpli) 8@ JLJ g

The recursion ends when r,™*=r,"=ri and can be solved
by successive iterations starting from r%=C;. Indeed, it is
easy to show that r;"™ is non-decreasing. Consequently, the
series either converges or exceeds D;. If the series exceeds
D;, thetask t; is not schedulable.

This result is valid for the pre-emptive context. Fewer
results are known about fixed priority-based non pre-
emptive dispatching. In [24] Audsley et al. updated the
analysis of Joseph and Pandya to include blocking factors
introduced by periods of non pre-emption. The following
equations represent this analysis:

=w, +C, (18)

highest priority
request from master 1
placed in outgoing
queue

a lower priority one
induces a priority
inversion of V

highest priority
requests processed
here

req(Sy) res(S:})

Access
Counter 1 2

A

o

Figure 6. New Assumptions for the Critical Instant.

where w; is given by:

& wu 0
WM =B+ § Se_-0 C, (19)
QI OFC LI

B; is the blocking factor of task t;, that is, an upper
bound on the time a lower priority task can execute (thus
resulting in priority inversion) and prevent the execution
of task t;. Although the inclusion of such blocking factor
was to solve the problem of non-independence between
tasks, we can use this blocking factor for the
schedulability analysis of non pre-emptive tasks. In this
case, the blocking factor will be:

B = max(C,} (20)

where Ip(i) denotes the tasks with lower priority thani.

4.2. WCRT of P-NET Messageswith DM
Priority-Based Dispatching

In this sub-section we will adapt both equations (6) and
(15) to embody the results surveyed in sub-section 4.1.

When developing the basic WCRT anaysis which
resulted in equation (6), we considered that all ns* requests
were placed in the outgoing queue just before the token is
passed after a message cycle is processed. To adapt the
results of equation (19) to the case of P-NET messages, we
now consider that, for the WCRT, the critical instant is at
the time instant when a previous pending message request
is started to be processed (see figure 6). In this case,
equation (6) is updated to:

o ZRU O
R=B'+ Q ‘?eT—ku Vi+ct (1)
" ji hpli) 8@ J Q j%}

with B* defined asfollows:

18=0, pfi)= min {p(}

o (22

iB =V, pli)* min{pl}

| 1=1,..,nsk
where p(l) is the priority of the message stream S¥ (we
assume that the message streams in a master have distinct
priority levels).

The message stream with the highest priority will have

aqueuing delay of V. In order to consider the actual token
utilisation, we can update equation (13) to:

0o
uty = a geR—u+l -

0] TJ g ﬂ (23)
} u 0 e’ & Rk g3
iy a s Rﬂ In Sy+ae(e7+y‘]ay)$
fr0 8l 0 5 <& T o

since the number of unused tokens in each master y is not
the minimum vaue chosen from ns* and
ng + &y &R+J2)/TY0 anymore, as the worst-case
number of consecutive token visits to process a message
requests now depends on the priority of the particular
message stream of master k and is given by
& ji oy (ERMTU1) (in the case of the message stream
with the lowest priority, we must consider only
& ji iy RITD).

4.3. Message Release Jitter

For the analysis made in section 3, we assumed that the
periodicity we were considering for message requests was
the minimum interval between any two consecutive
requests for that stream. This was a useful abstraction, as
we were only focusing on the WCRT imposed by the P-
NET'sMAC.

When assuming the model (represented in figure 1) for
adding priority-based dispatching mechanisms to P-NET
masters, it is of more relevance to speak about application
tasks, asit isthe application tasks that place requests in the
AP priority ordered queue.

We can assume that message requests are placed in the
priority-ordered application process queue by an
application task. Consequently, we can say that messages
inherit from sending tasks both their period and priority
level. It is implicit that tasks, at the application process
level, are scheduled according to the DM priority-based
policy, and most probably in a pre-emptive context.
Assume also that during the execution of a message
requesting task, only one request is queued.

This rises the problem of message release jitter, which,
in the context of communication networks, has been
addressed by Tindell [26] and Spuri [27]. It results from
the inheritance approach that messages which are
generated by requesting tasks, may have a minimum inter-
arrival time smaller than the period of the tasks which
generate them.

Message’s Inter-
> arrival time

Pl
<€
i

task

request queued request queued

Task's response
time

Figure 7. Message Release Jitter.

Therefore, assuming that in both equations (21) and
(23) the periods of the message streams correspond to the
period of the respective generating tasks, then, equation
(21) must be updated to:

k %R +J u " k
R =B+ 3 §@e—u \ +C (24)
0] j ﬂ

and equation (23) must be updated to:

Ut = g@R +J0 0
a 97u+l
0| 8@ i EI ﬂ (25)

i o @R +J0 O 5’ 8 y
m|n¥ a ‘?eL u+1‘nsy+a eR" +Ja’ +J) $
X e 1
T il hp(i) i U ﬂ e Ub

where J,” is the message release jitter of the message
request of message stream a in master b. Figure 7
illustrates the concept of message release jitter. In the
worst-case the message release jitter will be the worst-case
response time of the generating task.

We can now define the end-to-end communication
delay as:

E=g+R+d (26)

g represents the worst-case generation delay for a master
application task to generate and queue a specific message
reguest. Thiswould also correspond to the message release
jitter, which will be used for computing R¥ (the WCRT of
a P-NET message request). Finally, d represents the
delivery delay, that is, the worst-case response time of the
receiving task (isin the same host processor as the sending
task) to process the response.

For the computation of the worst-case response time of
the sending tasks (and receiving tasks), the consideration
of offsets [28,29] can be used to model each pair of
sending and receiving task as a transaction, hence reducing
the end-to-end response time analysis. Furthermore, using
the results from [29], the sending and receiving tasks can
actually be modelled as being the same task, which
suspends itself by the worst-case message response time.

5. Conclusions

In this paper we have drawn a comprehensive study on
how to use P-NET to support real-time communications in
distributed computer controlled systems. We surveyed the
previous analysis for the worst-case response time
(WCRT) in P-NET networks. Even by considering the
actual token utilisation during a busy period, the WRCT is
still very much penalised by the first-come-first-served
(FCFS) policy that P-NET uses at the data link layer.
Hence, we proposed a model for implementing fixed
priority-based dispatching mechanisms at each master’'s
application process level. In this way, we are able to
support distributed computer controlled systems with
tighter deadlines.

References

[1] Stankovic, J.: “Rea-Time Computing Systems. the Next
Generation”, in Stankovic J., Ramamritham, K. (Eds)
“Tutorial: Hard Real-Time Systems” (IEEE, 1988), pp. 14-
38, 1988.

(2]

(3]

[4]

(9]

6]

(8]

(9]
[10]

[11]

[12]

[13]

[14]

[19]

[16]

Sha, L., Rakumar, R., Lehoczky, J: “Rea-Time
Applications Using |EEE Futurebust+”, in |IEEE Micro,
June 1990.

Jeong, S., Kim, Y., Kwon, W.: “Point-to-Point Real-Time
Communication Over Backplane Bus’, in Proceedings of
the 15" IFAC Workshop on Distributed Computer Control
Systems, September 1998.

ISO TC184/SC5/WG1, A Reference Model for Discrete
Parts Manufacturing, Technical Report No 58, International
Organisation for Standardisation 1988.

Decotignie, J.-D., Pleinevaux, P., “A Survey on Industrial
Communication Networks’, in Annales des
Télécommunications, invited paper, Vol. 48, No. 9-10, pp.
435-448, 1993.

Normes FIP NF C46-601 to NF C46-607, Union Technique
del'Electricité, AFNOR, 1990.

Profibus Standard DIN 19245 part | and 1. Translated from
German, Profibus Nutzerorganisation e.V., 1992.

SAE J1583, Controller Area Network (CAN), an In-Vehicle
Serial Communication Protocol. SAE Handbook, Val. I,
1992

The P-NET Standard.
Organisation ApS, 1994.
Genera Purpose Field Communication System, Vol. 1/3 (P-
NET), Vol. 2/3 (Profibus), Vol. 3/3 (FIP), CENELEC,
1996.

Pedro, P., Burns, A.: “Worst Case Response Time Analysis
of Hard Real-Time Sporadic Traffic in FIP Networks’, in
Proceedings of 9th Euromicro Workshop on Real-time
Systems, Toledo, Spain, pp. 5-12, 1997

Raja, P., Ruiz, L., Decotignie, J-D.: “On the Necessary
Rea-Time Conditions for the Producer-Distributer-
Consumer Model”, In Proceedings of 1st IEEE Workshop
on Factory Communication Systems (WFCS95), Leysin,
Switzerland, 1995.

Grow, R.: “A Timed Token Protocol for Loca Area
Networks’, Proceedings of Electro'82, Token Access
Protocols, Paper 17/3, May 1982.

Agrawal, G., Chen, B., Zhao, W., Davari, S.: “Guaranteeing
Synchronous Message Deadlines with the Timed Token
Protocol”, Proceedings of the 12th IEEE International
Conference on Distributed Computing Systems, June 1992.
Montuschi, P., Ciminiera, L., Vaenzano, A.. “Time
Characteristics of |IEE802.4 Token Bus Protocol”, |EE
Proceedings, 139 (1), pp. 81-87, January 1992.

Tovar, E., Vasgues, F., “Guaranteeing Real-Time Message
Deadlines in Profibus Networks’, in proceedings of the
10th Euromicro Workshop on Real-time Systems, Berlin,
Germany, June 1998.

International P-NET User

(17]

(18]

(19]

[20]

(21]

[22]

(23]

[24]

[29]

[26]

[27]

(28]

[29]

Tovar, E., Vasques, F., “Setting Target Rotation Time in
Profibus Based Real-Time Distributed Applications’, in
proceedings of the 15th IFAC Workshop on Distributed
Computer Control Systems (DDCS98), Como, Italy,
September 1998.

Tindell, K., Hansson, H., Wellings, A., “Analysing Real-
Time Communications: Controller Area Network (CAN)”,
in Proceedings of the IEEE Rea-Time Systems
Symposium, pp. 259-263, December 1994.

Tindell, K., Burns, A., Wellings, A., “Analysis of Hard
Real-Time Communications’, in Journal of Rea-Time
Systems, No. 9, 1995.

Tovar, E., Vasgues, F., Burns, A., “Supporting Real-Time
Distributed Computer-Controlled Systems with Multihop
P-NET Networks’, submitted to Control Engineering
Practice, September 1998.

Tovar, E., Vasques, F., Burns, A., “Communication
Response Time in P-NET Networks: Worst-Case Analysis
Considering the Actual Token Utilisation”, Submitted to
the Journal of Rea-Time Systems, December 1998.
Available as Technical Report YCS-99-312, from the
University of York. (http://www.cs.york.ac.uk/rts).

Jenkins, C., “P-NET as a European Fieldbus Standard EN
50170 vol. 1", in the Institute of Measurement + Control
Journal, 1997.

Liu, C., Layland, J, *“Scheduling Algorithms for
Multiprogramming in Hard-Real-Time Environment”, in
Journal of the ACM, 20(1), pp. 46-61, 1973.

Audsley, N., Burns, A., Richardson, M., Tindell, K.,
Wellings, J., “Applying New Scheduling Theory to Static
Priority Pre-emptive Scheduling”, in Software Engineering
Journal, 8(5), pp. 284-292, 1993.

Joseph, M., Pandya, P., “Finding Response Times in a
Real-Time System”, The Computer Journal, Vol. 29, NO.
5, pp. 390-395, 1986.

Tindell, K., “Holistic Schedulability Analysis for
Distributed Hard Real-Time Communications’, University
of York, Technical Report YCS-93-197, 1993.

Spuri, M., “Holistic Analysis for Deadline Scheduled Real-
Time Distributed Systems’, INRIA, Technical Report No.
2873, 1996.

Tindell, K., “Adding Time-Offsets to Schedulability
Analysis’, Technical Report YCS 221, Dept. of Computer
Science, University of York, 1994,

Palencia, J., Harbour, M., “Schedulability Anaysis of
Tasks with Static and Dynamic Offsets’, in Proceedings of
IEEE Rea-Time Systems Symposium, pp. 26-37,
December 1998.

