

An ImGui for a Cooperating Vehicle Simulation
framework
Orientação Científica: Ricardo Severino

BEng Thesis

CISTER-TR-191217

Francisco Cardoso

BEng Thesis CISTER-TR-191217 An ImGui for a Cooperating Vehicle Simulation framework

© 2019 CISTER Research Center
www.cister-labs.pt

1

An ImGui for a Cooperating Vehicle Simulation framework

Francisco Cardoso

CISTER Research Centre

Polytechnic Institute of Porto (ISEP P.Porto)

Rua Dr. António Bernardino de Almeida, 431

4200-072 Porto

Portugal

Tel.: +351.22.8340509, Fax: +351.22.8321159

E-mail:

https://www.cister-labs.pt

Abstract

Modern embedded systems, combined with the progressions of digital communicationtechnologies, have been
empowering a new generation of systems,firmly connecting with the physical environment via sensing and
actuating actions:Cyber Physical Systems (CPS). Cooperative Vehicular Platooning (CoVP)is one of these emerging
applications among the new generation of safety-criticalCooperating CPS.CoVP is a methods for driving a group of
vehicles together. It can potentiateseveral benefits, such as safety, fuel efficiency and the capacity of roads via
anautomated highway system. COPADRIVe is a co-simulation tool that is currentlybeing developed and aims to
create a fully functional platooning system.Although, one of the components that slows the development process
is relatedto the difficulty of "keeping on track" such complex systems since there are a widenumber of variants
that need to be constantly analyzed.Therefore, to strengthen and improve the work done on this simulation
tool,this Thesis proposes to implement a Graphical User Interface (GUI) that allowsan easier interconnection
between the developer and the simulation developmentsystem, which in this case is the Robot Operating System
(ROS). The mainobjective of this work it to facilitate data analysis and processing of COPADRIVe,serving as front-
end for the simulation analysis and control.

An ImGui for a Cooperating
Vehicle Simulation framework

Francisco Xavier Pinto Cardoso

Licenciatura em Engenharia Eletrotécnica e de Computadores

Departamento de Engenharia Eletrotécnica

Instituto Superior de Engenharia do Porto

2019

Este relatório satisfaz, parcialmente, os requisitos que constam da Ficha de Unidade

Curricular de Projeto/Estágio, do 3o ano, da Licenciatura em Engenharia

Eletrotécnica e de Computadores

Candidato: Francisco Xavier Pinto Cardoso, No 1161253, 1161253@isep.ipp.pt

Orientação cient́ıfica: Dr. Ricardo Augusto Rodrigues da Silva Severino (PhD),

rarss@isep.ipp.pt

Licenciatura em Engenharia Eletrotécnica e de Computadores

Departamento de Engenharia Eletrotécnica

Instituto Superior de Engenharia do Porto

5 Setembro 2019

Acknowledgements

I would like to start by thanking my family and friends for the emotional support.

I also want to thank Dr. Ricardo Severino for his guidance and all the ded-

ication and support. Moreover, i want to thank all my colleagues at Cister for

the help and moral support.

Also, one last special thanks to my friend and fellow student Tiago Pinto for

all the assistance and patience that he had with me over the last few months.

v

Resumo

Os sistemas embebidos modernos combinados com as evoluções tecnologias na

área da comunicação digital, têm criado uma nova geração de sistemas, que se

conectam fortemente ao ambiente f́ısico através de sensores e atuadores: Cyber

Physical Systems (CPS). O Cooperative Vehicular Platooning (CoVP) é uma

das aplicações emergentes na nova geração de sistemas cooperativos de segurança

CPS.

O CoVP é um método para conduzir um grupo de véıculos juntos, que pode

potencializar vários benef́ıcios, como a segurança, a eficiência no consumo de

combustivel e a capacidade das estradas através da automatização das vias de

transporte. O COPADRIVe é uma ferramenta de simulação que se encontra

atualmente em desenvolvimento e que tem como objetivo criar um sistema de

platooning totalmente funcional.

Entretanto, um dos componentes que atrasa o processo de desenvolvimento

está relacionado com a dificuldade de ”manter o controle” de sistemas tão com-

plexos, pois há um grande número de variaveis que precisam de ser constante-

mente analisadas.

Portanto, para fortalecer e aprimorar o trabalho realizado nessa ferramenta

de simulação, nesta tese é proposto a implementação de uma Graphical User

Interface (GUI) que permita facilitar a conexão entre o programador e o sistema

de desenvolvimento da simulação, que neste caso é o Robot Operating System

(ROS). O principal objetivo deste trabalho é facilitar a análise e o processamento

de dados do COPADRIVe, servindo de front-end para a analisa e controlo da

simulação.

Palavras-Chave: Cyber Physical Systems, Cooperative Vehicular Platoon-

ing, Wireless Sensor Network, COPADRIve, Graphic User Interface, Robot Op-

erating System

vii

Abstract

.

Modern embedded systems, combined with the progressions of digital com-

munication technologies, have been empowering a new generation of systems,

firmly connecting with the physical environment via sensing and actuating ac-

tions: Cyber Physical Systems (CPS). Cooperative Vehicular Platooning (CoVP)

is one of these emerging applications among the new generation of safety-critical

Cooperating CPS.

CoVP is a methods for driving a group of vehicles together. It can potentiate

several benefits, such as safety, fuel efficiency and the capacity of roads via an

automated highway system. COPADRIVe is a co-simulation tool that is currently

being developed and aims to create a fully functional platooning system.

Although, one of the components that slows the development process is related

to the difficulty of ”keeping on track” such complex systems since there are a wide

number of variants that need to be constantly analyzed.

Therefore, to strengthen and improve the work done on this simulation tool,

this Thesis proposes to implement a Graphical User Interface (GUI) that allows

an easier interconnection between the developer and the simulation development

system, which in this case is the Robot Operating System (ROS). The main

objective of this work it to facilitate data analysis and processing of COPADRIVe,

serving as front-end for the simulation analysis and control.

Keywords: Cyber Physical Systems, Cooperative Vehicular Platooning, Wire-

less Sensor Network, COPADRIve, Graphic User Interface, Robot Operating Sys-

tem

ix

Contents

Agradecimentos v

Contents i

List of Figures iii

Acrónimos v

1 Introduction 1

1.1 Overview . 1

1.2 Research Context . 2

1.3 Research Objectives . 2

1.4 Research Contributions . 3

1.5 Structure of this thesis . 3

2 Graphical User Interface 5

2.1 GUI . 5

2.1.1 Overview . 5

2.1.1.1 Qt . 6

2.1.1.2 GTK + . 7

2.1.1.3 wxWidgets . 8

2.1.1.4 Rviz . 8

2.1.1.5 Dear Imgui . 9

2.1.1.6 OpenGL and SDL 12

3 Simulation Tools 13

3.1 ROS . 13

3.1.1 Overview . 13

3.1.2 ROS Communication model 14

3.2 ROS 2 . 15

3.2.1 Overview . 15

i

ii CONTENTS

3.2.2 DDS . 16

3.3 Gazebo . 17

3.4 COPADRIVe . 18

4 Integration between Dear ImGui and COPADRIVe 19

4.1 Develop of GUI in Dear ImGui . 19

4.1.1 Plugging Dear ImGui into SDL2 and OpenGL 20

4.1.2 Compile Dear ImGui . 23

4.2 Implement of Dear ImGui into ROS 24

4.2.1 Setup the ROS workspace 25

4.2.2 Combine Dear ImGui with ROS environment 26

4.2.2.1 Compile packages through CMakeList.txt 28

4.3 Gazebo Platooning Model . 30

4.3.1 Integration Dear ImGui package on Platoon Simulation . . 33

5 Conclusion 37

5.1 Future Work . 38

References 39

A Project Roadmap 43

B CMakeLists.txt template for Dear ImGui package 45

List of Figures

2.1 Windows 10 GUI interface [1] . 6

2.2 Qt application example [2] . 7

2.3 GTK+ application example [3] . 7

2.4 wxWidgets application example [4] 8

2.5 Rviz application example [5] . 9

2.6 Comparison between Retained-mode and Immediate-Mode code 10

2.7 Dear ImGui application example [6] 10

2.8 Dear ImGui Demo Windows [7] . 11

2.9 SDL and OpenGL in Dear ImGui Framework 12

3.1 P2P Communication [8] . 14

3.2 ROS Communication concept . 15

3.3 ROS1 and ROS2 Architectures [9] . 16

3.4 DDS Communication . 17

3.5 Gazebo simulation example [10] . 18

3.6 COPADRIVe framework Architecture [11] 18

4.1 Initialization of GLW3 library . 20

4.2 Initialize SDL2 . 21

4.3 Initialize OpenGL loader . 21

4.4 Setup Dear ImGui context and Platform/Renderer bindings 21

4.5 Main application loop . 22

4.6 Cleanup after end of the loop . 22

4.7 Filesystem Dear ImGui first example 23

4.8 Makefile set directories of sources and flags 23

4.9 Compile with SDL2 library . 24

4.10 Compile OpenGL using GL3W library 24

4.11 Dear ImGui first GUI example . 24

4.12 ROS Communication tools . 25

4.13 Structure of Catkin Workspace [12] 25

iii

iv LIST OF FIGURES

4.14 Filesystem Dear ImGui and ROS . 26

4.15 Includes for ROS environment . 27

4.16 ROS initialization and subscribing . 27

4.17 Callback function . 27

4.18 Talker Node . 28

4.19 Include GL3W directories to compile 28

4.20 Include SDL2 directories and libraries to compile 28

4.21 Include Dear ImGui directories . 29

4.22 Build executable target gui copa drive 29

4.23 Add dependencies and libraries to target gui 29

4.24 Communication between Talker and gui 30

4.25 Graphic respond from interaction between Talker and gui 30

4.26 Vehicles running in platoon simulation 31

4.27 Gazebo platoon simulation . 32

4.28 Include librarie . 33

4.29 Subscribe functions . 33

4.30 Callback ”carX/carINFO” topic . 34

4.31 Callback ”carX/Platoon dist” topic 34

4.32 Gazebo Platoon simulation running 34

4.33 GUI developed under Gazebo Platoon simulation 35

List of Acronyms

Acronym Description

ADAS Advanced Driver-Assistance Systems

API Application Programming Interface

CoVP Cooperative Vehicular Platooning

OpenGL Open Graphics Library

CPS Cyber Physical Systems

DSPC Data-Centric Publish-Subscribe

DDS Data Distribution Service

GDS Dlobal Data Space

GPS Global Positioning System

GPU Graphics Processing UniT

GUI Graphical User Interface

IMGUI Immediate Mode Graphical User Interface

IoT Internet of Things

NUI Natural User Interfaces

OMG Object Management Group

OS Operating System

P2P Peer-to-Peer

ROS Robot Operating System

RTPS Real-Time Publish/Subscribe Protoco

SDL Simple DirectMedia Layer

TCP Transmission Control Protocol

UDP User Datagram Protocol

UI User Interfaces

V2I Vehicle-to-Infrastructure

V2V Vehicle-to-Vehicle

v

Chapter 1

Introduction

1.1 Overview

The last decades are considered to be the years when there has been the biggest

technological breakthrough. It’s safe to say that we now live in a society where

the use of new technologies and tools are a crucial part of our everyday routine.

Nowadays, companies such as Tesla are working in a continuous way to reduce the

human factor in daily critical applications, approaching us to a reality that was

far distant many years ago. One of the most invested areas of these companies is

autonomous vehicles.

Although, creating new technological advances is not an easy task. Despite

the amount of information and tools available, there is still room for improvement

regarding the technological development from a wide number of industrial areas,

namely the vehicle sector.

In autonomous vehicles, there are three important types of systems: Advanced

Driver-Assistance Systems (ADAS), Vehicle-to-Vehicle (V2V) and Vehicle-to-

Infrastructure (V2I). These systems carry the potential to radically improve

transportation. From reduced collisions to increased energy efficiency.

ADAS are intelligent systems that reside inside the vehicle and assist the

driving in a variety of ways[13]. Moreover, V2V communication settles in a

wireless network where vehicles send messages to each other with information

about what they are doing [14]. Finally, V2I address the wireless exchange of

data between vehicles and road infrastructures [15].

This new communication mechanism is due to a new technological concept:

the Internet of Things (IoT). IoT allows the expansion of the interaction between

the physical environments with digital systems, which is referred to as Cyber

Physical Systems (CPS), via sensors and actuators. The emerging CPS can be

1

2 CHAPTER 1. INTRODUCTION

applied throughout a big range of areas. Such as Smart Houses, Medical and

health-care, Industrial automation and, as mentioned before, vehicle automation.

Inside this new concept, platooning stands out for its capability to drive a

group of vehicles together, in order to provide an automated highway system.

Many research project, such as COPADRIVe, has been done to find the best ap-

proach to implement this kind of systems with safety insurances. COPADRIVe

is a realistic simulation framework for cooperative autonomous driving applica-

tion, each has a platoon model scenario implemented under the Robot Operating

System (ROS) and Gazebo [11].

In the world of autonomous vehicles, there is no single provision of a graphi-

cal interface for direct control over the various components of the system. Even

Robot Operating System (ROS), only provides standard operating system ser-

vices such as hardware abstraction, low-level device control, implementation of

commonly-used functionality, message-passing between processes and package

management. Although, ROS has an interface that allows graphical represen-

tations, called Rviz, it fails to directly control the various components of a sim-

ulation tools, such as the frameworks developed outside of ROS environment.

However, ROS supply packages which allow linking the system with a external

Graphical User Interface (GUI) such as Qt, GTK+, wxWidgets and Dear ImGui.

This Thesis propose to develop a GUI interface and develop the software

modules which link the GUI to the various software components through the ROS

framework. This allows the user to interact with COPADRIVe simulation tool

thought graphics and visual indicators and control certain simulation parameters.

1.2 Research Context

This Thesis is being accomplished at the CISTER - Research Centre in Real-Time

and Embedded Computing System, synced with the COPADRIve simulation tool

which is a realistic simulation framework for cooperative autonomous driving

applications with a Gazebo platoon model scenario. This Thesis context comes up

with the quality improvement of the cooperative autonomous driving applications.

1.3 Research Objectives

The objectives of this Thesis emphasize the development of a solution that allows

the developer interaction with the cooperative autonomous car simulations in the

ROS1 and ROS2 development environments through a graphical interface. This

goal is intended to be achieved by creating a GUI interface that allows direct

connection thought graphics and visual indicators, and also can provide control

over certain simulation parameters.

1.4. RESEARCH CONTRIBUTIONS 3

1.4 Research Contributions

The contribution of this Thesis is to provide a first draft tool that allows the

developer to ease data and system analysis of connected vehicular application.

Usually similar systems are based on complex structures that are difficult to adapt

to unpredictable situations. Thus, the application developed in this Thesis must

aim to control and configure these applications through the graphical application

developed in this Thesis.

1.5 Structure of this thesis

This Thesis is divided into five chapters, including the current one, which is the

Introduction chapter. The second chapter introduces the GUI frameworks detail-

ing its main functions and described some options for GUI frameworks. In the

third chapter, the technologies required to implementation are present, including

ROS1, ROS2, Gazebo and the COPADRIVe. Then, chapter four focus on the

full implementation of Dear ImGui over the ROS enabled system (COPADRIVe)

including the code development, the compilation in the ROS environment, con-

cluding with experimental visual validation in other to legitimize the implemen-

tation. Finally, chapter five, overviews the results and present the future plans

for the GUI implementation.

Chapter 2

Graphical User Interface

This chapter starts by presenting and describing the Graphical User Interface

(GUI). Then, it presents an overview of some options of GUI Frameworks such

as Rviz, Qt, GTK+, wxWidgets and Dear Imgui. Concluding with a brief review

over the selected GUI framework, Dear Imgui and introduce the external tools

required to render a Dear ImGui program.

2.1 GUI

2.1.1 Overview

Graphical User Interface (GUI) announces a new era for users to interact with

machines and computer systems. Gone are the days where operating computers

needed a huge knowledge of code and the inner workings of a system to interact

with the command-line user interface such as MS-DOS, waiting for a response

from the computer. The term GUI was created in the 1970s to distinguish graph-

ical interfaces from text-based ones, such as a command-line interface.

This innovation offered a new form of interaction between the user and the

systems, in a way they didn’t need to learn code, killing a step learning curve

[16].

PARC was the first commercially available GUI, developed by Xerox. It was

used by the Xerox 8010, which was released in 1981. During a tour in Xerox,

Steve Jobs saw this interface and was inspired by it. Therefore, the first Apple

operating system was very similar to the PARC interface.

The first Apple’s GUI-based OS was included in the Macintosh, which was

released in 1984 becoming the most popular commercial computer since having

5

6 CHAPTER 2. GRAPHICAL USER INTERFACE

a graphical representation of an OS makes it more accessible and easy to inter-

act. Apple was followed by Microsoft that released its first GUI-based OS with

Windows 1.0, in 1985 [17].

GUI is a form of user interface that enables a person to communicate with a

computer through the use of windows, icons, menus, text and other visual indi-

cator representations to display information and related user controls as opening,

deleting and moving files.

During a long time, GUIs were controlled exclusively by a mouse and a key-

board, because these types of inputs are sufficient for desktops computers, but do

not work for mobile devices. Mobile devices are projected to use a touchscreen

interface, and now some mobile devices can be controlled by spoken commands as

well as motion detection. These types of GUIs are called Natural User Interfaces

(NUI)[18].

As there are many types of digital devices available, GUIs need to be designed

for the appropriate type of input.

Figure 2.1: Windows 10 GUI interface [1]

2.1.1.1 Qt

Qt [19] is a free and open-source widget toolkit that allows creating GUI and

cross-platform applications that runs on all major desktop platforms and most

mobile or embedded platforms. Qt is made with the C++ programming language

but can be used in several other languages such as python, PHP, Ruby, and Java.

It also supports many compilers as well, as Visual Studio suite and GCC C++

Compiler.

It has many non-GUI-related classes, such as data/time, containers, network-

ing, and OpenGL functionality. The GUI projects created by Qt do not use the

system provided widgets but emulates it with themes. Each means that Qt draws

its own widgets on each platform. Qt has a full-featured embeddable GUI (Qt

for embedded Linux) based on GNU/Linux with framebuffer [20]. This means

2.1. GUI 7

that having Linux with /dev/fb is possible running examples without additional

work. Also, it’s possible to develop non-GUI programs, such as command-line

tools and consoles for servers.

Figure 2.2: Qt application example [2]

2.1.1.2 GTK +

GTK+ [21], original knows as Gimp toolkit, is a free and open-source, cross-

platform toolkit for creating graphical user interfaces. Its primary development

and focus are for the Unix platform and it is the primary library used to construct

user interfaces in GNOME.

GTK+ offers a complete set of widgets and is appropriate for diverse projects

from small one-off tools to complete application suites [22]. Unlike wxWidgets

and Qt, GTK+ supports C but is also design to support multi-languages, such as

C/C++, Perl, Python, Ruby, and Java. It looks and behaves exactly the same

on all platforms unless themes are used. On windows, it has the ability to get the

native look with the Wimp theme [23], doesn’t using system provided widgets,

but emulates them.

Figure 2.3: GTK+ application example [3]

8 CHAPTER 2. GRAPHICAL USER INTERFACE

2.1.1.3 wxWidgets

wxWidgets [24] is open-source and mature widget toolkit and tools library for

creating GUIs for cross-platform application, it is a C++ library that allows

developers to create applications for Windows, OS X, Linux, and UNIX 32-bits

and 64-bits architectures, as well as several mobile platforms. It supports multi-

languages such as python, Perl, Ruby, Java, PHP, and some others. It is one of

the most complete GUI toolkits with a lot of documentation

This multi-platform toolkit uses the native platform SDK and system provided

widgets instead of emulating the GUI, given the applications a native look and

feel. This means that a program compiles in Windows will look like a Windows

program, and when compiling on a Linux machine, it will get the look of a Linux

program. Focusing on native looks also mean wxWidgets may not be a good

option for an application that wants a customized look, instead of the system’s

theme.

Figure 2.4: wxWidgets application example [4]

2.1.1.4 Rviz

Rviz [25] is a 3D visualizer for the ROS framework, which allows to display sensor

data and state information from ROS. Rviz displays 3D sensor data from stereo

cameras, lasers, Kinects, and other 3D devices in the form of point clouds or depth

images. 2D sensor data from webcams, RGB cameras, and 2D laser rangefinders

can be viewed in rviz as image data.

If an actual robot is communicating with a workstation that is running rviz,

rviz will display the robot’s current configuration on the virtual robot model.

ROS topics will be displayed as live representations based on the sensor data

published by any cameras, infrared sensors, and laser scanners that are part of

2.1. GUI 9

the robot’s system. This can be useful to develop and debug robot systems and

controllers. Rviz provides a configurable Graphical User Interface (GUI) to allow

the user to display only information that is pertinent to the present task.

Figure 2.5: Rviz application example [5]

2.1.1.5 Dear Imgui

Dear Imgui [7] is a graphical user interface library accent in C++ language pro-

gramming. It generates optimized vertex buffers that make possible render any-

time in any application. Dear ImGui is designed to enable create content creation

tools and visualization/debug tools. Therefore, this framework is fast, portable,

render agnostic and does not need external dependencies.

Dear Imgui is appropriate for integration in game engines, real-time 3D,

fullscreen and embedded applications, or any applications on consoles platforms

where OS features are non-standard. It is an immediate mode GUI (IMGUI)

library which allows to adapt GUI for all kind of tools.

An immediate mode GUI (IMGUI) is different from the traditional GUI. The

classic way of developing a GUI is through a retained-mode. Unlike IMGUI,

which involves creating and drawing widgets in each frame, instead of creating

button objects and adding a callback to it [26]. Figure. 2.6 shows the difference

between these two different methods.

Dear ImGui is very dynamic (periodic upgrades), allows fast prototyping and

is really useful for real-time simulation since IMGUI is very responsive to real-time

environment based systems. For that reason, in this Thesis, since the main ob-

jective is to provide graphical environment to real-time simulations, Dear ImGui

is the obvious GUI framework choice to be implemented on ROS based systems.

Moreover, it also has the advantage of being a framework independent of the

ROS system, unlike Rviz, allowing the implementation with the various compo-

nents of the COPADRIVe simulation tool, such as ROS-based robotic simulation

(Gazebo) and network simulator (OMNeT++).

10 CHAPTER 2. GRAPHICAL USER INTERFACE

Figure 2.6: Comparison between Retained-mode and Immediate-Mode code

Figure 2.7 shows an example of a game that uses ImGui as graphical interface

and debugger.

Figure 2.7: Dear ImGui application example [6]

Programming User Interfaces (UIs) has a reputation of being difficult, perhaps

due to the fact that UI toolkits tend to be large and complex software systems.

IMGUI represents a new paradigm in GUIs where the user interface is simpler to

create and simpler to be implemented.

Most of the problems associated with the design and use of the traditional

GUIs are a direct result of such systems to retain state. From the user’s point

of view, the UI must look like a collection of objects, with encapsulating a state

that needs to be frequently synchronized with the application [26].

This synchronization goes both ways. To become visible to the user, states

move from the application to the UI and in order to change the state of the

application, when a user interacts with the interface, states move from the user

interface back to the application.

IMGUI tries to minimize superfluous state duplication, state synchronization

and state retention from the user’s point of view by requiring the application to

2.1. GUI 11

explicitly pass all state required for visualization and interaction with any given

widget in real-time.

Widgets are no longer objects. Its take the form of procedural method calls,

and the UI goes from retain-state of objects to be a real-time sequence of method

calls [27]. The application processes logic and draws its displays at real-time

rates.

It is less code and less bugs than the traditional GUI and allows to create

dynamic user interfaces [7]. Dear ImGui provides vertex buffers and a small list

of draw calls batches that enable an easy render in the application. The number

of draw calls and state changes required to render them is fairly small. It never

touches the Graphics Processing Unit (GPU) directly, so it is possible to call its

functions anywhere in the application code, in the middle of a running algorithm

or in the middle of the render process.

Dear ImGui, is not just for tweaking values. It is possible to trace a running

algorithm by just emitting text commands, using it along with reflection data

to browser the live dataset. Additionally, it can also expose the internals of a

subsystem in the engine, create a logger, an inspection tool, a profile, a debugger

and an entire game making editor/framework.

However, since Dear ImGui is only a library and renders agnostic, we need

to provide external tools to render, which will interact with the GPU. As an

example, OpenGL needs a toolkit to guarantee the API related to input, window

and events handling libraries, which are included in SDL.

Figure 2.8: Dear ImGui Demo Windows [7]

12 CHAPTER 2. GRAPHICAL USER INTERFACE

2.1.1.6 OpenGL and SDL

Open Graphics Library (OpenGL) is a cross-platform-language Application Pro-

gramming Interface (API) for render 2D and 3D vector graphics. This API is

mostly used to interact with a Graphics Processing Unit (GPU).

The specification does not say anything on the subject of obtaining and man-

aging an OpenGL context, leaving this as a detail of the underlying windows

system. OpenGL is only concerned with rendering and does not provide APIs

related to input, audio or windowing.

To create, manage OpenGL windows and to manage input, there are toolkits

design for that, such as SDL, which complements OpenGL by setting up the

graphical output and providing mouse and keyboard input. It is a multimedia

libraries with a C API that beyond manage OpenGL windows and input. Also

can manage sound, file access, event handling and time. In this Thesis, SDL and

OpenGL will be important to provide a visual response in software development

to the Dear ImGui framework.

Figure 2.9: SDL and OpenGL in Dear ImGui Framework

Chapter 3

Simulation Tools

This chapter presents and describes the technologies used in this Thesis. Starting

by introducing and describing the ROS software, including the ROS1 and its evo-

lution ROS2. Then, the ROS simulation tool Gazebo is presented. Concluding

with a brief review over COPADRIVe simulation tool.

3.1 ROS

3.1.1 Overview

Robotic Operating System (ROS) is an open-source Linux based framework for

creating high-performance robot applications. ROS is not a traditional operating

system (OS) in the sense of process management and scheduling, but it provides

services similar to a normal OS such as including hardware abstraction, low-

level device control, implementation of commonly-used functionality, message-

passing between process and package management [28]. Also, it provides tools

and libraries to build, write and run code across multiple computers.

There are available a big variety of other robots frameworks, such as PLAYER,

CARMEN, Orca, and MOOS. Although the motivation of ROS is to support

software reuse and to build robotic systems with software components in robotics

research and development.

The ROS runtime ”graph” is a Peer-to-Peer (P2P) network that executes

programs called nodes communicate with each other at runtime. P2P systems

are very used when it comes to sharing big quantities of data.

13

14 CHAPTER 3. SIMULATION TOOLS

Figure 3.1: P2P Communication [8]

3.1.2 ROS Communication model

The principal concepts of ROS implementation are nodes, messages, topics, sub-

scribers, and publisher. In ROS development, o robot system is designed using

a set of components called nodes and a communication channel called topic. It’s

possible to choose from several distributed packages and build software by con-

necting them. The communication model of ROS is based on Publish-Subscribe

messaging [29].

Publish-Subscriber messaging is an asynchronous messaging in which ROS

nodes do not communicate directly with each other but through a topic. The

advantage is a dynamic network configuration that allows adding new ROS nodes

to the system easily. There are two rules in ROS nodes: publisher and subscriber.

A publisher node, send a message by publishing it to a given topic. The

topic is the communication path that holds a sequence of messages. A subscriber

is a node that needs a certain kind of data and subscribes to the appropriate

topic to receive the message, as shown in Figure 3.2. It is possible to exist a lot

of concurrent for publishers and subscribers for just one topic. As ROS nodes

do not have information on their communication partners, ROS is able to be

configured dynamically, which is very suitable for rapid system prototyping.

3.2. ROS 2 15

Figure 3.2: ROS Communication concept

3.2 ROS 2

All the developments that have been made in the area of improving cooperative

autonomous driving accentuate in the ROS1 development environment. But as

this system does not allow real-time communication, in the future all the work de-

veloped must be updated to ROS2. Therefore, with this in mind, this Thesis aims

to implement the graphical interface developed over this innovative technology.

3.2.1 Overview

ROS does not satisfy real-time run requirements and only runs on a few OSs,

besides that ROS cannot guarantee fault-tolerance, deadlines, or process syn-

chronization [9]. Thus, ROS is not suitable for real-time embedded systems, and

to satisfy that ROS have a significant upgrade to ROS2.

ROS2 have new functions such as real-time systems, small embedded plat-

forms, non-ideal networks and cross-platform (e.g. Linux, Windows, Mac, Real-

time OS, no OS) and to satisfy this requirements ROS (ROS1) has been recon-

structed to improve user-interface APIs and incorporate new technology such as

Data Distribution Service (DDS), Zeroconf, Protocol Buffers, ZeroMQ, Redis and

WebSockets. DSS is the one that replaces the ROS1 transport system, and in

this Thesis will focus only on this one.

16 CHAPTER 3. SIMULATION TOOLS

Figure 3.3: ROS1 and ROS2 Architectures [9]

3.2.2 DDS

DDS is an industry-standard real-time communication system and end-to-end

middleware, that can provide reliable publish/subscribe transport similar to that

of ROS1. DDS has been applied in mission-critical environments (e.g. trains,

ships, financial systems, medical service). DDS is appropriate to real-time em-

bedded systems because of its various transport configurations such as deadline,

reliability and durability and scalability [30].

DSS collects the requirements of distributed systems for safety, resilience,

scalability, fault-tolerance, and security. Also can provide solutions for real-time

environments and small/embedded system by reducing library sizes and memory

footprints.

The DDS specification is defined for a publish/subscriber system by the Ob-

ject Management Group (OMG), each manages the definitions and standardized

APIs. The core of DDS is a Data-Centric Publish-Subscribe (DCPS) model de-

signed to arrange efficient data transport between processes even in distributed

different applications. The DCPS model creates a Global Data Space (GDS) that

can be accessed by any independent application, to efficient data distribution.

In DDS, every process that publishes or subscribe to data is called partic-

ipants, witch in ROS correspond to a node. Participants can read and write

from/to the GDS using a typed interface.

As well as ROS1, a Publisher is an application that sends data to one or

more Topics. A DataWriter is an object used by the Participant to publish data

through a Publisher, and a DataReader is an object used by Participants to

receive and access data that must correspond to the DataWritter data.

After this transaction, a DataWriter and a DataReader connect with each

other, using the Real-Time Publish/Subscribe Protocol (RTPS), as shown in Fig-

ure 3.4. The RTPS protocol and the DDS protocol allow DDS implementations

3.3. GAZEBO 17

from a different vendor to operate simultaneously by abstracting and optimizing

transport, like TCP, UDP, and IP.

The transport of data between a DataWriter and a DataReader is executed

in the RTPS protocol according to the QoS Policy, which represents their data

transport behavior and configured the deadlines period, depth of history and

communication reliability.

This introduction of DCPS into the ROS model allows the possibility of man-

aging the node communication without the necessity of a central server, with al-

lowing the Real-Time Communication between the publisher and the subscriber.

Figure 3.4: DDS Communication

3.3 Gazebo

Gazebo [31] development start in 2002 at the University of Southern California

and it is one of the most used robot simulations. The gazebo is a 3D ROS-based

robotic simulation with dynamics and kinematic physics that offers the ability

to accurately and efficiently simulate robots in indoor and outdoor environments

[32], with supports for multiple robots.

Gazebo used ROS features, such as the message interface, which is the same

as the ROS system, making the ROS nodes compatible with the simulation, of-

fering simulation synchronization, and communication between different software

present on simulation scenarios.

The most relevant features present in Gazebo are Dynamics Simulation each

permit access to multiple high-performance physics engines, Advanced 3D Graph-

ics, Sensors and Noise that provide generation of sensor data optionally with

noise, Plugins for robot/environment control, Robot Models already developed,

TCP/IP transport for simulation running on remote servers, cloud simulation

on Amazon AWS and GzWeb to interact with the simulation by a browser and

command-line tools.

18 CHAPTER 3. SIMULATION TOOLS

Figure 3.5: Gazebo simulation example [10]

3.4 COPADRIVe

COPADRIVe is a realistic simulation framework for cooperative autonomous driv-

ing applications. It is a powerful framework to test and validate cooperative au-

tonomous driving applications, that integrates a well-known ROS-based robotic

simulation (Gazebo) with a network simulator (OMNeT++), by extending Artery

[33].

In the one hand, COPADRIVe utilize upon Gazebo’s robotic simulation most

prominent features, such as its support for multiple physics engines, and its rich

library of components and vehicles in integration with ROS, which enables to

build realistic vehicle control scenarios.

On the other hand, OMNet++ supports the underlying network simulation

relying on an ITS-G5 communications stack which is, currently, the standard

for C-ITS applications in Europe. This integration provides the support for an

accurate analysis of the communications impact upon the cooperative application,

and on the other hand, the tools to carry out a thorough evaluation of the network

performance using the OMNet++/INET framework. In Figure 3.6 is shown the

COPADRIVe Architecture.

Figure 3.6: COPADRIVe framework Architecture [11]

Chapter 4

Integration between Dear ImGui

and COPADRIVe

This chapter presents the integration between Dear ImGui and the COPADRIVe

simulation tool. Starting with the development of the GUI in Dear Imgui Frame-

work. Following this all the precedents needed to implement the graphical interface

in the ROS environment will be presented. Finishing with the presentation of the

implementation of GUI developed into Gazebo Platooning scenario.

4.1 Develop of GUI in Dear ImGui

Dear ImGui should be able to write bindings for pretty much any platform and

any 3D graphics APIs. It is highly portable and only needs a few requirements to

run and render the graphical component. These requirements are mouse and key-

board input, uploading the font atlas texture into graphics memory and providing

a render function to render indexed textured context.

Dear ImGui is self-contained within a few files that can easily be copied and

compiled into the application/engine:

• imgui.cpp

• imgui.h

• imgui demo.cpp

• imgui draw.cpp

• imgui widgets.cpp

19

20 CHAPTER 4. INTEGRATION BETWEEN DEAR IMGUI AND COPADRIVE

• imgui internal.h

• imconfig.h

• imstb rectpack.h

• imstb textedit.h

• imstb truetype.h

4.1.1 Plugging Dear ImGui into SDL2 and OpenGL

Dear ImGui, is renderer agnostic in the way that to create a working program

it is necessary to provide the tools to render the data, combining one platform

(e.g. GLFW, SDL2, and GLUT) with one renderer (e.g. OpenGL, DirectX, and

Vulkan).

In this case, the platform binding that is in charge for mouse and keyboard

input, cursor shape, timing, and windowing, is the SDL2 [34] and the renderer

binding, in charge of creating the main font texture and rendering ImGui draw

data, is the OpenGL [35].

Modern OpenGL does not have a standard header file and for that reason,

requires individual function pointers to be loaded manually. In Figure 4.1 it is

possible to see how to initialize GL3W [36], which is a helper library used for this

purpose. Alternatives are GLEW and Glad.

Figure 4.1: Initialization of GLW3 library

As mention above, Dear ImGui is independent of the rendering system and

platform, and it is necessary to introduce some binding for the rendering system.

Fortunately, they are many pre-made bindings in Dear ImGui’s repository. In

order to use SDL2 and OpenGL theses are the ones used:

• imgui impl opengl3.cpp

• imgui impl opengl3.h

• imgui impl sdl.cpp

• imgui impl sdl.h

4.1. DEVELOP OF GUI IN DEAR IMGUI 21

The code required to integrate the platform and the render is in the source

code, main.cpp. First, it is necessary to initialize SDL and OpenGL loader.

Then initialize the windows for rendering and initialize a Dear ImGui context,

the helper platform, and renderer bindings, like is shown below, in Figures 4.2,

4.3 and 4.4.

Figure 4.2: Initialize SDL2

Figure 4.3: Initialize OpenGL loader

Figure 4.4: Setup Dear ImGui context and Platform/Renderer bindings

22 CHAPTER 4. INTEGRATION BETWEEN DEAR IMGUI AND COPADRIVE

After that, it is the main application loop, where it is possible to see the

difference with the traditional GUI modes. Instead of a retained mode with

callbacks, the Dear ImGui creates and draws widgets in every frame, as shown

in Figure 4.5, with the rendering process after the initialization of the frame.

Additionally, Figure 4.6 presents the cleanup in the end of the loop.

Figure 4.5: Main application loop

Figure 4.6: Cleanup after end of the loop

4.1. DEVELOP OF GUI IN DEAR IMGUI 23

4.1.2 Compile Dear ImGui

In order to make an available executable project it is necessary to compile and

link all the files that integrate the Dear ImGui framework. The files and their

localization, incorporated in this first GUI example have the following filesystem,

Figure 4.7.

Figure 4.7: Filesystem Dear ImGui first example

To build an executable, a Makefile was created, which directs on how to

compile and link the program. The Makefile contains a set of directories that are

used by the make build automation tool to generate a target. That process is

visible in Figure 4.8.

Figure 4.8: Makefile set directories of sources and flags

In this specific project, is crucial to include in the Makefile specification the

project with the SDL2 platform, as shown in Figure 4.9 and the renderer OpenGL,

described in Figure 4.10.

After a successful compilation and linking files, the executable program has

created and ready to be used. Figure 4.11 shows the final result.

24 CHAPTER 4. INTEGRATION BETWEEN DEAR IMGUI AND COPADRIVE

Figure 4.9: Compile with SDL2 library

Figure 4.10: Compile OpenGL using GL3W library

Figure 4.11: Dear ImGui first GUI example

4.2 Implement of Dear ImGui into ROS

In order to implement the GUI developed before into the ROS environment, it

was necessary to create a bridge between the Dear ImGui framework and the

ROS system, which allows the communication between Dear ImGui and another

program through ROS Communication tools. For this purpose it was required a

ROS workspace, in order to build a package with Dear ImGui context.

4.2. IMPLEMENT OF DEAR IMGUI INTO ROS 25

Figure 4.12: ROS Communication tools

4.2.1 Setup the ROS workspace

The next step is to create a catkin workspace. A catkin workspace is a directory

in which it is possible to create and modify existing catkin packages [12]. Catkin

packages can be built as a standalone project like the normal CMake projects can

be built, but catkin also provides the concept of workspace, where it is feasible

to build multiple, independent packages together all at once [35]. It structures

simplifies the building and installation process for ROS packages.

A catkin workspace can contain three or more different subdirectories, such

as build, devel, source, and install, which each one serves a different purpose in

the software development process. Figure 4.13 represents the structure of catkin

workspace.

Figure 4.13: Structure of Catkin Workspace [12]

26 CHAPTER 4. INTEGRATION BETWEEN DEAR IMGUI AND COPADRIVE

The source space has the source code of catkin packages. This is where the

source code for the packages build is placed. The root of the source space contains

a symbolic link to catkin’s boiler-plate top-level CMakeLists.txt. This file is in-

voked by CMake during the configuration of the catkin projects in the workspace.

The build space is where CMake is invoked to build the catkin packages

located in the source space. And also it is where CMake and catkin save their

cache information and other intermediate files [37].

The devel space is where built targets are placed to being installed. The

targets are organized in the devel space in the same way as their layout when

they are installed.

The binary catkin package includes a set of environment setup files that are

used to extend the shell environment so that they can find and use any resource

that has been installed to that location.

4.2.2 Combine Dear ImGui with ROS environment

After the setup of the catkin workspace, it’s needed to incorporate Dear ImGui

framework in the workspace as shown in Figure 4.14. Adding all the dependencies

and files necessary to create the executable project there and build a package with

Dear ImGui context.

Figure 4.14: Filesystem Dear ImGui and ROS

4.2. IMPLEMENT OF DEAR IMGUI INTO ROS 27

It also require to make some changes to the main code of the GUI project, in

order to make the GUI able to subscribe a topic and display a graph with their

values.

Besides that, to test the communication in the ROS environment, a simple

Talker node was created. That node generates some random number and pub-

lishes them to a certain topic.

The main code of GUI had to add ”ros/ros.h” which include all the headers

necessary to use the most usual public pieces of ROS system and the ”std msgs/Float32.h”

that include the std msgs/Float32 message, which resides in the std msgs pack-

age.

Figure 4.15: Includes for ROS environment

To initialize ROS, the function ros::init() is called. The ImGui ROS node sub-

scribe a messages through the function ”ros::Subscriber sub = n.subscribe(”chatter”,

1000, Callback)”, subscribing to the ”chatter” topic. ROS will call the Callback()

function whenever a new message arrives, as Figure 4.16 shows.

Figure 4.16: ROS initialization and subscribing

The Callback() function, Figure 4.17, is, as the name suggests, the callback

function that is called when a new message has arrived on the ”chatter” topic.

It is where the values are received, stored and processed to be able to use in the

ImGui::PlotLine() function. This is a Dear ImGui function that allows to create

dynamic graphs.

Figure 4.17: Callback function

28 CHAPTER 4. INTEGRATION BETWEEN DEAR IMGUI AND COPADRIVE

The Talker node, Figure 4.18, publish a messages through the function ”ros::Publisher

chatter pub = n.advertise<std msgs::Float32>(”chatter”, 1000)”, which commu-

nicate to the master that a message of type std msgs/Float32 is being published

on the topic ”chatter”. This allows the master to communicate to any nodes who

is listening to ”chatter” topic.

Figure 4.18: Talker Node

4.2.2.1 Compile packages through CMakeList.txt

As explained above, ROS works with CMake using file CMakeLists.txt as an

input to the CMake build system for building software packages. Any CMake-

compliant packages contain one or more CMakeLists.txt files that describe how

to build the code and where to install it.

As mentioned earlier, Dear ImGui is independent of the rendering system

and platform, in such a way to create a functional program that need to provide

specifications to compile the project with the SDL2 platform and the OpenGL

renderer, as shown on Figure 4.19 and 4.20.

Figure 4.19: Include GL3W directories to compile

Figure 4.20: Include SDL2 directories and libraries to compile

4.2. IMPLEMENT OF DEAR IMGUI INTO ROS 29

When it is needed to specify which other CMake packages are needed to

be found to build the project, the function find packages() has to be called.

That result in the creation of several CMake environment variables that give

information about the founded packages, such as the localization of the headers

files exported by the packages, source files, required libraries and the associated

path.

To add any directories that need to be included, the function include directories()

serves this purpose. Normally, the argument should be the * INCLUDE DIRS

variables generated by the find packages() call.

The function link libraries() is used to specify libraries to build. By default,

catkin builds shared libraries.

To specify an executable target that must be built, we use the add executable()

function. In this project, this builds an executable target called ”gui”, which is

built from the sources of Dear ImGui framework, as shown in Figure 4.22

Figure 4.21: Include Dear ImGui directories

Figure 4.22: Build executable target gui copa drive

A target that depends on some other target that needs messages/services/ac-

tions to be built, need to add an explicit dependency on target catkin EXPORTED TARGETS,

through the function add dependencies(), so they are built in the correct order.

This case applies to the target ”gui”, that need to receive messages. Additionally,

function target link libraries() is used to specify which libraries the executable

target link against, as the Figure 4.23 shows.

Figure 4.23: Add dependencies and libraries to target gui

30 CHAPTER 4. INTEGRATION BETWEEN DEAR IMGUI AND COPADRIVE

After running the catkin make command, it builts the target ”gui”. The

communication between the talker and the ImGui ROS, which is the name of

the node responsible for subscribing inside the ”gui” target, is made through

the publication of a message by the talker node to the ”chatter” topic, which is

subscribed by the ImGui ROS node, as shown in Figure 4.24. In Figure 4.25 it’s

possible to see the final result of the graphic respond.

Therefore, we can conclude that the implementation of GUI into the ROS

environment was successful.

Figure 4.24: Communication between Talker and gui

Figure 4.25: Graphic respond from interaction between Talker and gui

4.3 Gazebo Platooning Model

COPADRIVe has mention early on this Thesis, is a realistic simulation frame-

work for cooperative autonomous driving applications which has a platoon model

scenario implemented under ROS and Gazebo.

The Gazebo Platooning model is based on a V2V reliant platooning algorithm,

featuring a platoon of three vehicles starting in a stop-motion manner already

aligned inside a scenario resembling a motor sports track.

In this particular scenario, communication is made between the front car

and those following one, which receive information transmitted by the front car

4.3. GAZEBO PLATOONING MODEL 31

and process that same information in order to actuate properly. An example of

vehicles running the platoon model during a simulation run is shown in Figure

4.26.

Figure 4.26: Vehicles running in platoon simulation

A rqt graph demonstrating all the connections are sorted out is appeared

in Figure 4.27. The blocks named as ”carX” represent the namespace for each

vehicle. Inside these, smaller blocks represent topics, which are being published

by these same vehicles modules. Additionally, circles represent ROS nodes that

may be publishing or subscribing.

Every vehicle has important applications running in their nodes. One module

is in charge of the topic publishing, as ”carX/carINFO” that is a topic giving

information with respect to the present status of the vehicle, steering angle, speed,

GPS coordinates, heading, etc. This topic is distributed in a 20Hz recurrence,

running exclusively with gazebo and ROS subjects as the main correspondence

instruments accessible [11].

Separated from this module, every one of the vehicles include a control ap-

plication that uses information from several topics in order to control the vehicle

actuators to pursue the direction appropriately.

32 CHAPTER 4. INTEGRATION BETWEEN DEAR IMGUI AND COPADRIVE

Figure 4.27: Gazebo platoon simulation

4.3. GAZEBO PLATOONING MODEL 33

4.3.1 Integration Dear ImGui package on Platoon Simulation

The Gazebo Platoon Simulation as mention above is based on a V2V reliant

platooning algorithm. The front car share data with the following car, that use

it to control the vehicle actuators to seek after the course fittingly.

Due to the lack of any available software platform or architecture that allows

the user to monitor its diagnostics, the Dear ImGui packages developed into the

ROS system is used to enable a quick and easy interaction with the simulation.

In short, the GUI developed is used to congregate the data published by the car

nodes in one place, allowed to facilitate the work of data analysis and processing.

The information that matters to be viewed in the graphical interface is the

one who represent the present status of the vehicle such as sterring angle, speed

and GPS coordinates. These information are published on the topic ”carX/car-

INFO”, every vehicle has their own application running in their nodes. Also,

it’s important know the distance between a car an the front one, that data is

published on the topic ”carX/Platoon dist”.

For visualize that information, the GUI must include the type of message that

are being publish to the topic, as shown on Fig. 4.15 as well as add in the CMake-

Lists.txt the REQUIRED COMPONENTS ”ros its msgs” on the find package()

function.

Figure 4.28: Include librarie

In other to receive the data from that topics the main.cpp of GUI should has

subscribers functions appointed to them, as shown on Fig.4.29.

These functions receive the data using the callback() functions, ”carX info Callback()”,

Figure 4.30, and ”carX distance Callback()”, Figure 4.31. Processing the collect

data and make them available to integrate the ImGui::PlotLines() function.

Figure 4.29: Subscribe functions

34 CHAPTER 4. INTEGRATION BETWEEN DEAR IMGUI AND COPADRIVE

Figure 4.30: Callback ”carX/carINFO” topic

Figure 4.31: Callback ”carX/Platoon dist” topic

The final product of this implementation, using the Gazebo Platoon simu-

lation integrated with the Graphic User Interface can be shown in Figure 4.32

and 4.33. The first images demonstrate the Gazebo Platoon simulation running

and the second images display the graphics response to what’s happening on the

simulation.

Figure 4.32: Gazebo Platoon simulation running

4.3. GAZEBO PLATOONING MODEL 35

Figure 4.33: GUI developed under Gazebo Platoon simulation

Chapter 5

Conclusion

This chapter reviews the objectives proposed in this Thesis and analyzes its final

result, summarizing its main contributions. Finally, some considerations about

future work will be presented, considering the work developed in this Thesis

The work presented in this Thesis aims to create a tool that facilitates the

intercommunication between the developer and COPADRIVe, by enabling the

visualization and data analysis in real time and in a more visual and intuitive

way.

Therefore, it was proposed to implement an existing GUI framework named

as Dear ImGui, which differs from the traditional frameworks since it provides

an immediate mode GUI, making it responsive to real-time environment based

systems.

The implementation of this framework in the ROS environment was successful

since, as result of Thesis, we developed a package that allows the integration of

Dear ImGui framework into any ROS based system. This package has been

tested on the COPADRIVe simulation tool. It create a scenario analysis at run-

time, which allows the developer know, during the course of the simulation, how

data transfers between vehicles and simplifies the error detection and correction

process.

Also, this package is useful for simulation tools that test other types of com-

munication systems within the autonomous vehicle environment.

All procedures and documentation for this implementation are available in

this Thesis, for future reference when all the work done in the area of cooperative

autonomous driving in ROS1 is updated to ROS2, which will enable real-time

communications.

37

38 CHAPTER 5. CONCLUSION

5.1 Future Work

As future work, we plan to implement a system capable of controlling certain

simulation parameters without the need to manually reprogram these same vari-

ants, building a more integrated simulation environment for COPADRIVe. That

will allow the GUI to control the various components of a simulation tools.

Additionally, when upgrading from ROS1 to ROS2 developments, the goal

will be to adapt this tool to the new environment, which is already prepared to

support real-time operations.

References

[1] “Windows 10 user interface solution | conceptdraw.com.” https://www.

conceptdraw.com/solution-park/software-windows-user-interface.

[cited on p. iii, 6]

[2] “Qt quick controls - imagine style example: Automotive | qt

quick controls 5.15.0.” https://doc-snapshots.qt.io/qt5-dev/

qtquickcontrols-imagine-automotive-example.html. [cited on p. iii,

7]

[3] “Getting started with gtk+: Gtk+ 3 reference manual.” https:

//developer.gnome.org/gtk3/stable/gtk-getting-started.html.

[cited on p. iii, 7]

[4] “Audacity R© | free, open source, cross-platform audio software for

multi-track recording and editing..” https://www.audacityteam.org/.

[cited on p. iii, 8]

[5] “Moveit! quickstart in rviz — moveit tutorials kinetic documenta-

tion.”http://docs.ros.org/kinetic/api/moveit_tutorials/html/doc/

quickstart_in_rviz/quickstart_in_rviz_tutorial.html. [cited on p. iii, 9]

[6] “Gallery: Post your screenshots / code here (part 2) · issue #539 · ocor-

nut/imgui · github.” https://github.com/ocornut/imgui/issues/539.

[cited on p. iii, 10]

[7] “Github - ocornut/imgui: Dear imgui: Bloat-free immediate mode graphical

user interface for c++ with minimal dependencies.” https://github.com/

ocornut/imgui. [cited on p. iii, 9, 11]

[8] “P2p-accelerated streaming with webrtc | wowza.” https://www.wowza.

com/resources/guides/p2p-unicast-streaming. [cited on p. iii, 14]

[9] Y. Maruyama, S. Kato, and T. Azumi, “Exploring the performance of ros2,”

pp. 1–10, 10 2016. [cited on p. iii, 15, 16]

39

40 REFERENCES

[10] “Sec. 2: Driving the husky robot in gazebo · smartlab-purdue/ros-

tutorial-gazebo-simulation wiki · github.” https://github.com/

SMARTlab-Purdue/ros-tutorial-gazebo-simulation/wiki/Sec.-2:

-Driving-the-Husky-robot-in-Gazebo. [cited on p. iii, 18]

[11] E. V. F. A. K. E. T. Bruno Vieira, Ricardo Severino, “Copadrive - a realis-

tic simulation framework for cooperative autonomous driving applications.”

Cister Research Centre. [cited on p. iii, 2, 18, 31]

[12] “catkin/workspaces - ros wiki.” http://wiki.ros.org/catkin/

workspaces#Catkin_Workspaces. [cited on p. iii, 25]

[13] “Advanced driver assistance systems - an overview | sciencedirect

topics.” https://www.sciencedirect.com/topics/engineering/

advanced-driver-assistance-systems, 2016. [cited on p. 1]

[14] “V2v: What are vehicle-to-vehicle communications and how do they work?.”

https://bit.ly/2lvho49. [cited on p. 1]

[15] “What is vehicle-to-infrastructure (v2i) communication and why do we need

it?.” https://bit.ly/2jZfYyn. [cited on p. 1]

[16] “What is a graphical user interface?.” https://www.itpro.co.uk/

operating-systems/30248/what-is-a-graphical-user-interface.

[cited on p. 5]

[17] “Gui (graphical user interface) definition.” https://techterms.com/

definition/gui. [cited on p. 6]

[18] “Natural user interfaces – what are they and how do you design user inter-

faces that feel natural? | interaction design foundation.” https://bit.ly/

2mcfP7g. [cited on p. 6]

[19] “Qt | cross-platform software development for embedded & desktop.”https:

//www.qt.io/. [cited on p. 6]

[20] “Qt for embedded linux | qt 4.8.” https://doc.qt.io/archives/qt-4.8/

qt-embedded-linux.html. [cited on p. 6]

[21] “The gtk project.” https://www.gtk.org/. [cited on p. 7]

[22] “The gtk open source project on open hub.” https://www.openhub.net/p/

gtk. [cited on p. 7]

[23] “gtk-wimp.sourceforge.net.” http://gtk-wimp.sourceforge.net/.

[cited on p. 7]

REFERENCES 41

[24] “wxwidgets: Cross-platform gui library.” https://www.wxwidgets.org/.

[cited on p. 8]

[25] “rviz - ros wiki.” http://wiki.ros.org/rviz. [cited on p. 8]

[26] “Immediate mode model/view/controller.” http://www.johno.

se/book/imgui.html?fbclid=IwAR04sqs_jb6TThpIcatmFAtxQ_

5BlAooFWPfEjydedw1fobbblQ0e-D4L-o. [cited on p. 9, 10]

[27] “Could imgui be the future of guis?.” https://games.greggman.com/game/

imgui-future/. [cited on p. 11]

[28] “Ros/introduction - ros wiki.” http://wiki.ros.org/ROS/Introduction.

[cited on p. 13]

[29] M. Quigley, K. Conley, B. P. Gerkey, J. Faust, T. Foote, J. Leibs, R. Wheeler,

and A. Y. Ng, “Ros: an open-source robot operating system,” 2009.

[cited on p. 14]

[30] M. P. Thomas White, Michael N. Johnstone, “An investigation into some

security issues in the dds messaging protocol,” 2017. [cited on p. 16]

[31] “Gazebo.” http://gazebosim.org/. [cited on p. 17]

[32] X. W. LINGJIE YANG, ZHIHONG LIU and Y. XU, “An optimized image-

based visual servo control for fixed-wing unmanned aerial vehicle target

tracking with fixed camera.” College of Intelligence Science and Technol-

ogy, National University of Defense Technology, Changsha 410073, China, 5

2019. [cited on p. 17]

[33] C. F. R. Riebl, H. Gnther and L. Wolf, “Artery: Extending veins for vanet

applications,” 2015. [cited on p. 18]

[34] “Simple directmedia layer - sdl version 2.0.10 (stable).” https://www.

libsdl.org/download-2.0.php. [cited on p. 20]

[35] “Khronos opengl R© registry - the khronos group inc.” https://www.

khronos.org/registry/OpenGL/index_gl.php. [cited on p. 20, 25]

[36] “Github - skaslev/gl3w: Simple opengl core profile loading.” https://

github.com/skaslev/gl3w. [cited on p. 20]

[37] “catkin/cmakelists.txt - ros wiki.” http://wiki.ros.org/catkin/

CMakeLists.txt. [cited on p. 26]

Appendix A

Project Roadmap

43

Appendix B

CMakeLists.txt template for Dear

ImGui package

cmake_minimum_required(VERSION 2.8.3)

project(imgui_ros)

find_package(catkin REQUIRED COMPONENTS

roscpp

rospy

std_msgs

message_generation

)

find_package(catkin REQUIRED COMPONENTS

message_generation

rostime

roscpp

rosbag

rosconsole

roscpp_serialization

rospy

gazebo_ros

ros_its_msgs

)

find_package(Boost REQUIRED)

link_directories(${catkin_LIBRARY_DIRS})

catkin_package(CATKIN_DEPENDS message_runtime std_msgs)

##SET(CMAKE_CXX_FLAGS "-std=c++0x")

include_directories(

include

${catkin_INCLUDE_DIRS}

45

46APPENDIX B. CMAKELISTS.TXT TEMPLATE FOR DEAR IMGUI PACKAGE

)

if(NOT CMAKE_BUILD_TYPE)

set(CMAKE_BUILD_TYPE Debug CACHE STRING "" FORCE)

endif()

set (CMAKE_C_FLAGS "${CMAKE_C_FLAGS} -DVK_PROTOTYPES")

set (CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -DVK_PROTOTYPES")

GLFW

set(GL_DIR imgui/examples/libs/gl3w)

include_directories(${GL_DIR})

#SDL2

find_package (SDL2 REQUIRED)

include_directories(${SDL2_INCLUDE_DIRS})

link_libraries(${SDL2_LIBRARIES})

ImGui

set(IMGUI_DIR imgui)

include_directories(${IMGUI_DIR} ..)

Libraries

set(OpenGL_GL_PREFERENCE GLVND)

find_package(OpenGL REQUIRED)

file(GLOB sources *.cpp)

add_executable(gui_copa_drive ${sources}

${IMGUI_DIR}/examples/imgui_impl_sdl.cpp

${IMGUI_DIR}/examples/imgui_impl_opengl3.cpp

${IMGUI_DIR}/imgui.cpp

${IMGUI_DIR}/imgui_draw.cpp

${IMGUI_DIR}/imgui_demo.cpp

${IMGUI_DIR}/imgui_widgets.cpp

${GL_DIR}/GL/gl3w.c)

add_dependencies(gui_copa_drive ${catkin_EXPORTED_TARGETS} gui_gencpp)

target_link_libraries(gui_copa_drive ${catkin_LIBRARIES} ${Boost_LIBRARIES} ${SDL2_LIBRARIES}

${OpenGL_LIBRARIES} GL dl glfw)

	Agradecimentos
	Contents
	List of Figures
	Acrónimos
	Introduction
	Overview
	Research Context
	Research Objectives
	Research Contributions
	Structure of this thesis

	Graphical User Interface
	GUI
	Overview
	Qt
	GTK +
	wxWidgets
	Rviz
	Dear Imgui
	OpenGL and SDL

	Simulation Tools
	ROS
	Overview
	ROS Communication model

	ROS 2
	Overview
	DDS

	Gazebo
	COPADRIVe

	Integration between Dear ImGui and COPADRIVe
	Develop of GUI in Dear ImGui
	Plugging Dear ImGui into SDL2 and OpenGL
	Compile Dear ImGui

	Implement of Dear ImGui into ROS
	Setup the ROS workspace
	Combine Dear ImGui with ROS environment
	Compile packages through CMakeList.txt

	Gazebo Platooning Model
	Integration Dear ImGui package on Platoon Simulation

	Conclusion
	Future Work

	References
	Project Roadmap
	CMakeLists.txt template for Dear ImGui package

