S |

IPP HURRAY!

P .
www.hurrav.pt /

Technical Report

Assigning Real-Time Tasks on
Heterogeneous Multiprocessors with Two
Types of Processors

Bjorn Andersson
Konstantinos Bletsas

HURRAY-TR-091104
Version: 1
Date: 11-03-2009

Technical Report HURRAY-TR-091104 Assigning Real-Time Tasks on Heterogeneous Multiprocessors with Two Ty

Assigning Real-Time Tasks on Heterogeneous Multiprocessors with Two
Types of Processors

Bjorn Andersson and Konstantinos Bletsas

IPP-HURRAY!

Polytechnic Institute of Porto (ISEP-IPP)

Rua Dr. Anténio Bernardino de Almeida, 431
4200-072 Porto

Portugal

Tel.: +351.22.8340509, Fax: +351.22.8340509
E-mail:

http://www.hurray.isep.ipp.pt

Abstract

Consider the problem of scheduling a set of implicit deadline sporadic tasks on a heterogeneous multiprocessor so as to
meet all deadlines. Tasks cannot migrate and the platform is restricted in that each processor is either of type-1 or type-2
(with each task characterized by a different speed of execution upon each type of processor). We present an algorithm
for this problem with a time complexity of O(n*m), where n is the number of tasks and m is the number of processors.
It offers the guarantee that if a task set can be scheduled by any non-migrative algorithm to meet deadlines then our
algorithm meets deadlines as well if given processors twice as fast. Although this result is proven for only a restricted
heterogeneous multiprocessor, we consider it significant for being the first realtime scheduling algorithm to use a low-
complexity binpacking approach to schedule tasks on a heterogeneous multiprocessor with provably good performance.

© IPP Hurray! Research Group 1
www.hurray.isep.ipp.pt

Assigning Real-Time Tasks on Heter ogeneous M ultiprocessorswith Two Types of
Processors

Bjorn Andersson and Konstantinos Bletsas
IPP-HURRAY Research Group, CISTER/ISEP, Polytechnicitunst of Porto
Rua Dr. Antonio Bernardino de Almeida 431, 4200-072 Porortugal
bandersson@dei.isep.ipp.pt, ksbs@isep.ipp.pt

Abstract (especially on a single chip) now enjoy widespread use.
Virtually all major semiconductor companies are offering
Consider the problem of scheduling a set of implicit- or have declared plans to offer heterogeneous multiproces-
deadline sporadic tasks on a heterogeneous multiprocessoisors implemented on a single chip [11][15][10][14][20].
so as to meet all deadlines. Tasks cannot migrate and Despite the widespread availability of heterogeneous
the platform is restricted in that each processor is either multiprocessor platforms and the eagerness to use them,
of type-1 or type-2 (with each task characterized by a their deployment in embedded systems is a non-trivial
different speed of execution upon each type of processor)task for designers. The complicating factor is that many
We present an algorithm for this problem with a time- embedded systems have real-time requirements, whose
complexity of0(n-m), wheren is the number of tasks and ~ satisfaction at run-time has to be proven/guarantaed
m is the number of processors. It offers the guarantee thatpriori. The way tasks are scheduled significantly influ-
if a task set can be scheduled by any non-migrative algo-ences whether their timing requirements are met. For this
rithm to meet deadlines then our algorithm meets deadlinesreason, a comprehensive toolbox of real-time scheduling
as well if given processors twice as fast. Although this re- algorithms and analysis techniques [22][23] have been
sult is proven for only a restricted heterogeneous multipro developed in order to help designers. Unfortunately, few
cessor, we consider it significant for being the first real- results apply to heterogeneous multiprocessors.
time scheduling algorithm to use a low-complexity bin- An algorithm for deciding if and only if a task set can
packing approach to schedule tasks on a heterogeneoude scheduled on a heterogeneous platform exists [5] but it
multiprocessor with provably good performance. assumes that tasks can migrate. This algorithm is useful
for researchers but the assumption that tasks can migrate
is often unrealistic in practice, since processing unitwi
different functionalities typically have different instrtion
sets and data layouts (big-endian/little-endian for exam-
ple). The problem of assigning tasks to processors and then
Parallel processing platforms are spreading at an un-scheduling them with a uniprocessor scheduling algorithm
precedented rate [8]. Traditionally, parallel processireg (i.e. without migration) is of much greater practical signi
used to speed up large computational jobs such as preicance. It requires solving two sub-problems: (i) assignin
dicting the weather. Today however, parallel processingtasks to processors and (ii) once tasks are assigned to
platforms are also used in low-end and embedded real-timeprocessors, performing uniprocessor scheduling on each
systems thanks to the availability of multicore processors processor. The latter problem is well-understood (e.g. one
Such systems often consist of numerous independent tasksnay use EDF [19]); the difficult part is the task assignment.
Designers are well-aware that processing units special- Among known task assignment schemes for multipro-
ized for a specific function can offer significant perfor- cessors in general (i.e. not necessarily heterogeneaig), o
mance boost. For example, computer graphics are rendered) bin-packing schemes and (ii) Integer-Linear-Program-
much faster with a graphics processor than with a generalming (ILP) modeling offer provably good performance.
purpose processor. Similar advantages can be obtained Bin-packing schemes are popular for task assignment
using network processors, digital signal processors, SIMD but unfortunately, the proof techniques used on identical
arrays, etc. Consequently, heterogeneous multiprocessormultiprocessors do not easily translate to heterogeneous

1.Introduction

primary { P D) algorithm whose time complexity i€ (n - m), wheren
- Py .
processor ® @ @ andm are the number of tasks and processors respectively.

synergistic @ This algorithm offers the guarantee that if a task set can
processors @@@ be scheduled by any non-migrative algorithm to meet

deadlines then our algorithm meets deadlines as well
provided that it is given processors that are twice as fast.

Figure 1. An example of the task-to-proces- In the remainder of this paper, Section 2 offers neces-
sor assignment problem over a multiproces- sary preliminaries. Section 3 presents some useful lem-
sor with two types of processors. The Cell mata, used in Section 4, where we formulate the new
processor is such an architecture: P, is a algorithm and prove its performance. Section 5 discusses
general purpose processor and P»-Py are the context of the work and previous work and concludes.
8 vector processors (termed “synergistic”).

Each task must be assigned to exactly one 2 Préiminaries

processor; a processor may be assigned
zero, one or many tasks. All task deadlines

must be met with uniprocessor scheduling. In a computer platform with two types of processors,

let P! be the set of type-1 processors aRd be the set

of type-2 processors. The workload is comprisedrpf

set of tasks each of which releases a (potentially infinite)
sequence of jobs. The sporadic model is used, i.e. the exact

multiprocessors. Consequently, the current literature of . . : .
. . T . time of a job release is unknown but the time between any
fers no bin-packing scheme for assigning real-time tasks L :
two successive job releases of a tagks at leastT;.

on heterogeneous multiprocessors. Instead, the task-to- A task is assigned to a processor and all jobs released
processor assignment problem is modelled [6][7] as Zero-IO this task must execute on this Th i
y processor. The execution

One Integer-Linear-Programming (ILP). Such a formula- . L .
.) . : requirement (in time units) of some taskdepends on the
tion can be solved directly but has high computational SO : .

type of processor to which it is assigned. It-f5- upon

complexity. In particular, the decision problem ILP is NP- e
complete and even with knowledge of the structure of the & tYP&-1 host processor bt upon a type-2 processor.

constraints in the modeling of heterogeneous multiproces-Note that we allowr;,; = 0 (or ;2 = 0) if task 7, cannot
sor scheduling, no polynomial-time algorithm is known P€ @ssigned at all to a type-1 (or type-2) processor.
(see [12], p. 245). Via relaxation of the ILP formulation Let 7[p] denote the set of tasks assigned to procegsor
to LP and certain tricks [21], it is possible to design a po- Earliest-Deadline-First (EDF) is a very popular algorithm
lynomial-time approximation scheme [6][7]. The derived N uniprocessor scheduling [19]. A slight adaptation of a

linear program is solvable in polynomial time [16][17] but Previously known result [19] gives us:

unfortunately the degree of the polynomial is high. Lemma 1. If all tasks in 7[p] are scheduled under EDF
Yet, in practice many heterogeneous multiprocessorson processorp (which is of typez, where 2z stands for 1

only use two types of processors; for example one type isor 2) and ZTGT[M % < 1, then all deadlines are met.
a graphics processor and the other one is general-purpose. ’

Intel [15] and AMD [1] pla_n to ship such chips; Free_scale Proof: Follows from Theorem 7 in [19]. 0
already does [11]. Graphics processors were traditionally Then the necessary and sufficient set of conditions for
meant just for graphics tasks, hence task assignment was Y yal .
straightforward. Designers today [13] use graphics proces schedulability on a partitioned heterogenous multipreces

sors in a wide range of calculations though and this makes™°" with two types of processor is the following:

task assignment non-trivial. This is accentuated in thé Cel C; .

processor [14][20] (Figure 1) where the “graphics proces- Z T <1lvpeP 1)
sor” (called synergistic processor) is Turing-compldtest Terlp]

able to compute anything that the main processor can. Such C;)

chips are now deployed in embedded systems for their ex- - <1lvpeP 2)
cellent performance/cost ratio. CAD tool support for task Terlp] 7

assignment algorithms exploiting their special structure Thus our problem of scheduling tasks on a heteroge-
would tap more of the potential performance. neous multiprocessor with two types of processors is re-

This motivates our new task assignment algorithm for duced to finding an assignment of tasks to processors such
heterogeneous multiprocessors, which exploits the factthat the above constraints are satisfied. In the general case
that only two processor types exist. It is a bin-packing however, even this problem is intractable; see Theorem 1.

Theorem 1. Deciding if a feasible mapping exists for a It is possible to assign tasks such that the condition
given task set and computing platform is NP-complete. of Lemma 1 is met for both processors; assigning tasks
] . . indexedl..k to P, and the rest toP; does that. Yet, the
Proof: If |PT|=|P?|=1, riy=ri =1 Vi andZ%_2 application of a normal bin-packing algorithm for identica
the problem reduces to PARTITION — see [121]€,Tp_ 223. Mmultiprocessors (such as Next-Fit or First-Fit) causes
Faced with this fact, we opt for the design of a non- failure. These algorithms consider tasks in a sequence and
0pt|ma| a|gorithm which would still offer good perfor- eaCh t|me use the Condition Of Lemmalto deCide |f the taSk

mance but which would be of polynomial time complexity. in consideration can be assigned to a processor. Whether
Commonly, the performance of an algorithm is char- under Next-Fit or First-Fit,7; will end up onP; (as pro-

acterized using the notion of thatilization bound[19]: cessors are considered by order of ascending index). Yet,

an algorithm with a utilisation bound ofB is always at most one task from among those indeed can be

capable of scheduling any task set with a utilisation up @ssigned there. Thué,— 1 > 2 tasks (those indexetl.k)

to UB so as to meet deadlines. This definition has beenWill then have to be assigned . The bin-packing sche-

used on uniprocessor scheduling [19] and multiprocessorgMe would continue trying to assign tasks indekesl..2k

with identical processors [2]. However, it does not trans- 0 F»; none would fit and the algorithm would fail.

late to heterogeneous multiprocessors hence we rely on L€t us now provide the bin-packing algorithm with pro-

the resource augmentatioframework to characterize the —Cessorsc—1 times faster. Then, tasks indexed: — 1 will

performance of the algorithm under design. be assigned t@; and thek" task toP, before considering
The speed competitive ratioPT 4 of an algorithmA is tasks indexed&-+1..2k. Of the latter, many can be assigned

defined as the lowest number such that for every task set to P? but not all and, since none can be assigned™

and computing platforril it holds that if it is possible for the bin-packing algorithm would again fail.

a non-migrative algorithm to meet all deadlinesrodn II' The above reasoning holds for aky> 3. By consid-

then algorithmA meets all deadlines of on a computing ~ €ring k—oo we obtain that the speed competitive ratio of

platform IT whose every processor &PT 4 times faster ~ such bin-packing schemes is infinite.

. / 1
than the corresponding processorlin It can be seen that the cause of the low performance

A low speed com_petitive_ratio indicatgs high p_)erfor- of such a bin-packing scheme is that, by considering tasks
mance; the best achievablelisif a scheduling algorithm 4 by one, it lacks a “global view” of the problem, hence

has an infinite speed competitive ratio then a task set exists, {551 may be assigned to a processor where it executes
which could be scheduled to meet deadlines (under anothersloww' It seems like a good idea to try to assign each task

algorithm) but which would miss a deadline with the 5 yhe processor where it executes faster. We will use this
actually used algorithm even if processor speeds were Muljge, therefore let us introduce the following definitions:
tlpllgd by an “infinite” factor. Such. behaV|orl|s unde5|rw| Pl is the set of type-1 processors afd is the set of
design tools, consequently we aim to design an algorithmyy ,e 5 nrocessors. The task seis viewed as two disjoint
with a finite (ideally small) speed competitive ratio. subsetsr! andr2. The setr! consists of those tasks which
run at least as fast on a type-1 processor as on a type-2

3. Useful results processor;2 consists of all other tasks. In notation:
_ 1 2
Before describing the new algorithm, we will derive 1T =T uT 3)
some useful statements which facilitate various proofs. VT €T 11 2 i (4)
Bin-packing task assignment algorithms are popular in V1 €%y <Tin (5)

the context of identical [18] and also uniform [3] multipro- . .)
cessors, as they run fast and offer a finite speed competitivé_Ne proceed with two useful observations (their correctness

ratio. Yet, the straightforward application of a bin-pawxi 'S €vident; for formal proof, see the Appendix).
algorithm to heterogeneous multiprocessors with two types|_emma 2. If there is a task; in 7 such thatl < —C

. TT',‘ 'Ti' R
of processors performs poorly, as illustrated by Example 1. it js then impossible to meet deadlines. Likewise if there is
. i C;
Example 1. Consider a set o2k tasks and processors @ taskr; in 72 such thatl < =4
(for an integerk > 3). ProcessorP; is of type-1 and pro- Proof: See the Appendix. 0

cessorP; is of type-2. Tasks indexddk are characterized o]))
by Ci=Ti=1,7;1 = 1, ;2 = k and tasks indexekH1..2k Lemma 3. It is impossible to meet deadlines if
are characterized bﬁ-iT-:l, ri1 =k, r;2=1. C. C.
[[(3 7, Z l 1Tl + ‘ ZT‘ >|P1|+|P2| (6)
1. Our notion of speed competitive ratio in this paper is eajent to B e A R
that in previous work by Baruah [5]. It differs from that usied[3][4].

Proof: See the Appendix. O

C; P!
> i G 7)
o e . . A TZ'71 . Ti 2
3.1. Inequalities which we will use iedl
and for every pair of tasks;€Al and 7;e7 \ Al it
holds that —1> 70 —1. Let A2 denoter!\ Al.

We highlight how the problem in consideration is rela- Let B1 denote a subset of such that

ted to other known computational problems, to help with
proofs later. If you read this paper for the first time, you Z C; < | PL]

may want to skip this section now and revisit later. _ rip-T; = 2 (8)
Fractional knapsack problem: A vector hasn ent _
elements. The problem instance is represented by vectors Let B2 denoter\ B1. It then holds that:
v and w of real numbers, arranged such thgt > 7t.
(Intuitively, v; andw; may be thought of as, respectlvely, Z G + Z + Z
the “value” and “weight” of an item, indexeid while z; as i S riee rie T
the fraction of it that is employed). Consider the problem C; C;
of assigning values to the elements in vectoso as to < Z Y + Z — 9)
. 1, K3 . 1, 3
maximized"" | z; - v; i€Bl © €B2
subject to) ;- , ;- v; < CAP o .
and0 < z; < 1 Proof: Let us arbitrarily choosell and B1 as defined
andz; is a real number. above. Using Inequalities 7 and 8 we clearly get:
(Intuitively, determine how much of each item to use Ci Ci
. W mueh . > >y (10)
such that cumulative value is maximized, subject to cumu- i T egria- T

lati ight not di b d).) .) .
ative weight not exceeding some bound) With this choice of A1 and B1, let us consider two

Lemma 4. The Fractional Knapsack Problem can be instances of the fractional knapsack problem:

solved by the following algorithm: Instancel.
1. reindex tuplesv;,w;} by order of descending; /w; CAP = left-hand side of Inequality 10,
2. for i:= 1ton do vi:(r}g_ril)%’
3 z;:=0; w; = s
i1
4. end for Instance2.
5. @=1; CAP = right-hand side of Inequality 10,
6. SUMWEIGHT:%; v; :(1 _ 1)%,
7. SUMVALUE:=9; w. = g T
. i i < P < i ri1-T;
g whlglf.(_(iUMWElGH'ka < CAP) and (i < n)) do Using, Inequallty 10, we get:
10. SUMWEIGHT:=SUMWEIGHFw;; CAPrystance1 > CAPrpstance2 (11)
11 SUMVALUE:=SUMVALUEv;; whereC AP, stance1 is defined ag AP in Instancel and
12. i:=i+1; . .
i CAPr,stance2 1S defined analogously.
13. end while

Observe that Instancel and Instance 2 differ only in
their value of CAP. Instancel can be perceived as a relaxed
version of Instance2. Therefore we have:

14. if i <n then

15. z;=(CAP-SUMWEIGHT);;

16. SUMWEIGHT:=SUMWEIGHFw; - x;;

17. SUMVALUE:=SUMVALUE; - z;; SUMV ALU Ernstancer =2 SUMV ALU Erpstance2

18. end if (12)
where SUMV ALU Er,stance1 1S defined as the value of
the variableSUMV ALUE in Instancel when the algo-

This is known from undergraduate textbooks (for ex- rithm in Lemma 4 terminates ar§l/ MV ALU E;pstances

ample, see Chapter 16.2 in [9]). We now consider ajs defined analogously. Observe that this choice of

multiprocessor scheduling problem. CAPppstance1 €NSUres that, on line 15 of the pseudocode,

x; is assigned the value 1 when the algorithm of Lemma 4

Lemma 5. Considern tasks and a heterogeneous multi- takes Instance1 as input. Note that

processor conforming to the system model (and notatlon)
of Section 2. Let: denote a number such thatz <21, SUMVALU Epngtancer = > il 1)
Let A1 denote a subset of' such that iear T2

C;

i1 -

- (19)

because of the definition of Al. Also, note that

SUMVALUEInstanceQ > Z
i€B1

C;
-1 14
T2)7“11 T, (14)

because, in Instance?2, the set B1 cannot produce a solution
for the fractional knapsack problem that is higher than the
optimal one. Applying Equation 13 and Inequality 14 on

Inequality 12 yields:

Z (Tziyl B 1) ri7lc’-iTi

"
icAl b2

SR
1€B1

7,2

Then we can reason as follows.

1 C;
Z < 1,2 T11>?

1 1\C;
(15)= Z (7“1',2 ; Ti,l)f‘ =

r
€Al i€B1
ri2 T; ri1 Ti
icAl €Al
1 C; 1 C;
- (ri2 T 7,1 Ti)
i€eB1 i€eB1

Now, observing that=7'Ur?=B1UB2 gives us:

Ci Ci
Zri.z'ﬂ+ZT2 T; ZTﬂ Zri.z'Ti
iert ® er2 i€B2

(16)
Adding these two together produces the inequality:

C; C;
Z T2 1 +i62'r:2 T2 T

1ETL

_(Z Ti,zc'iTi _Z.Z T 1Osz)

i€Al EVRAL
C; C;
= Z 7’1‘2'T' + Z Ti,Q'Ti
1€B1 1€B2
- (iEZBI Ti,2 T B Z i1) (17)

Rearranging the terms yields:

XA: T2 " T)

3,2
C

Z7

(18)

Py

™

e

M

o o e
1 mm mM

Exploiting the fact thatd2 = Tl\Al gives us:

Ci Ci Ci

icAl 'Y o ieA2 iepe 62
C; C;
<> +
iep1 bl” T; icp2 |12 T
This is the statement of the lemma. 0

Lemma 5 considers the task set We can however
apply this on only a subset of Let us assume that’!
and7?2 are two disjoint subsets of. We apply Lemma 5
on7\ (r#turH?) and then add the same sum to the both
sides of Inequality 9. This gives us:

Lemma 6. Considern tasks and a heterogeneous multi-
processor conforming to the system model (and notatlon)
of Section 2. Let denote a number such thata< 271,

Let A1 denote a subset df!\ (7#1ur#?)) such that

, 1
Z.LZ&_"T (19)

and for every pair of tasks ;€A1 and
e(r\(rHturt2))\ Al it holds that:—’;—lzg—’;—l. Let
A2 denote(r! \ (7H! UTH2))\A1. '
Let B1 denote a subset 6f \ (771 U 7H2)) such that

> Ci _@—x (20)

ria - 1 2
iepl bl

Let B2 denotér \ (r7*U72))\ B1. It then holds that:

1 C; 1
S Gy
Z rin T Ti,2 Ti

ierH1 ierH2

1 C; C; 1 C;
E R 4 E)
ris1 T ri2 - T ri2 T

icAl icA2 ier2\ (+H1 | H2)

<Zr71 T1 Zn‘l,z T1+

ierH ierH?2

Domtl @Y

i€B1 i€B2

Lemma 6 will be useful for proving the performance of
our new algorithm, formulated in Section 4.

4. The new algorithm

Our goal is to design an algorithm with a speed com-
petitive ratio 2. The new algorithm is based on two ideas.

Ideal.A task should preferably be assigned to the type
of processor on which it runs faster.

Idea2.A task which has a utilization less than 50% on
one type of processor and utilization greater than

50% on a processor of the other type of pro-
cessor should be assigned to the former type of
processor. This is a special case of Ideal but we
state it separately because this facilitates creating
an algorithm with the desired speed competitive
ratio. The rationale behind this idea is that we
are interested in comparing the performance of
our new algorithm versus every other algorithm
using processors of half the speed; by following

© XN W

Idea2, we create assignments that mimic what 12.
every other algorithm does (assuming that the 13-
other algorithm successfully assigns tasks). 1;:
Based on these ideas, we will use the concepts'of 1?
and7? (already defined in Section 2). We also define: 18
19.
H = (e (22) 20
21
H2 = {rier? (23) 29.
23
= Th\ (24) 24.
7_F2 _ 72 \TH2 (25) 25
Intuitively, 771 and 772 identify those tasks which
should be assigned based on IdeaZ?! stands for "Set
of tasks that are heavy if they are not assigned to their
favorite processor, of type-1.” Analogous fef’2. Also, 2.
intuitively, 771 and 772 identify those tasks which should ~ 3-
be assigned based on Ideaf’! stands for "Set of tasks
that have a processor of type-1 as its favorite and for which 4.
heaviness should not be considered.” Analogousrfor. 2'
Figure 2 shows the new algorithm FF-3C. The intuition
behind the design of our algorithm is that first we assign 3
tasks to their favorite processors so that the tasks are 9'

not heavy (lines 4-5). Then we assign the remaining
tasks to their favorite processors (lines 6-7). Then ifeher
are remaining tasks these tasks have to be assigned to!2
processors that are not their favorite (line 12 and line 20).
The name FF-3C is derived from the fact that first-fit is
used to assign a task to a processor and a task has three!®

chances to be used by first-fit. A task has the chance to be 15
19.

assigned by first-fit if it follows Idea2 (to avoid making a
task heavy). Then a task has the chance to be assigned to2Y

its favorite processor. And then a task has a chance to be g9

assigned to a processor which is not its favorite processor. 23.
24.

The algorithm FF-3C keeps track of processor utiliza-
tions in a global vector U, initialized to zero (line 2).

As already mentioned, the algorithm FF-3C performs
several passes with first-fit bin-packing. It uses a subrou-
tine first-fit which takes two parameters, a set of
tasks to be assigned using first-fit bin-packing and a set
of processors to assign these tasks, and it returns the set

10.
11.

14.
15.

Output 7[p] specifies the tasks assigned to procegsor

Form setsrH1 +H2 +F1 F2 a9 defined by Eq. 22-25
vp: Ulp] == 0
vp: 7[p] == 0

if firstfit(71, P1) # 751 then declare FAILURE

if first-fit(72, P2) # 712 then declare FAILURE
TFLL = firstfit(751, P1)

TE22 = firstfit(752, P2)

if 7F11 = 7F1 A 7F22 — 7F2 then declare SUCCESS
if 7F1L £ 7 F1 A 7F22 £ 782 then declare FAILURE

10. if 71 £ 7L A 722 — 752 then

TF12 . L F1\ L F11

if first-fit(7412, P2) = 7712 then
declare SUCCESS

dse
declare FAILURE

end

.end
Cif 1L = £ FLA 7 F22 £ 2 F2 then

721 = pF2\ £ F22
if first-fit(71721, Pl) = 7721 then
declare SUCCESS
ese
declare FAILURE
end

. end

Figure 2. The new algorithm, FF-3C

function first-fit(ts : set of tasks; ps : set of processors)
return set of tasks
assignedtasks =0
Order the tasks ts and order the processors ps.
This order should be maintained during the execution
of the function first-fit
T; = first task in ts
P, := first processor in ps
Let k denote the type of processét, (either 1 or 2)
if U[p]+T <1 then

Ulp] := U[p”n»m,k
7[p] == 7lp] U {m:}
assignedtasks := assignedasksU {7;}
if remaining tasks exist in then
T; = next task in ts
go to line 5.
ese
return assignedtasks
end if
ese
if remaining processors exist in pisen
P, := next processor in ps
go to line 6.
ese
return assignedtasks
end if
end if

Figure 3. First-fit bin-packing

Theorem 2. The speed competitiveness ratio of FF-3C is
at most 2.

of tasks that were successfully assigned. Figure 3 shows Proof: An equivalent claim is that any task set
pseudo-code fofirst-fit. which is not schedulable under FF-3C over a computing
We next establish the competitiveness ratio of FF-3C. platformII would likewise be unschedulable, using any al-

gorithm, over computing platforrﬁ/ with processors each
half as fast as the corresponding onelinThis, we will
prove (by contradiction). From the definition i :

ra T 1
1 = =2=5v2 (26)

i1 T2

Assume that FF-3C has failed to assigron II but it is
possible (using an algorithm OPT) to assigonIl’. Since
FF-3C failed to assigm onTl, it follows that FF-3C decla-
red FAILURE. We explore all possibilities for this to occur:

Failure on line 4 in FF-3C.
If |7H1| < |P?| then there would be no failure on
line 4 in FF-3C. Therefore, we know thiat?!| >

|P1|+1. Hence OPT must assign at least one task

in 71 on a processor ifP2. Let 7; denote this
task. Using the definition of 7! gives us that
Tcrz > 1/2 and applying Equation 26 yields
% > 1. But since OPT assigned; on a
04,2
processor inP? it must be thatT_C;; < 1. This
04,2
is a contradiction.
Failure on line 5 in FF-3C.

This results in a contradiction. It can be shown

because this case is symmetric to the case above.

Failure on line 9 in FF-3C.
From the case, we obtain that®'l'crf!
and 7722crf2. Therefore, there was a task
Trailea1 € TI which could not be assigned
on any processor ifP! and there was a task
Tfailed2 € 7F2 which could not be assigned on
any processor itP?. Consequently, we obtain:

Cftailedl

Vpe Pl U[p| + > 1(27)

Trailedl * T failedl,1
Ctailed2

and Vp € P?: Ulp] + > 1 (28)

Trailed2 * T failed2,2

Suppose thatrcw > 1/2. We know

failedl 'Tfm'le_dl,l i
that 7/4ieq1 € 711 and this gives Usqitea11 >
1 H C aile
Tj'a-iled-l,Q vythh gives UW > 1/2
This implies that7ygiear € 7 L but this is
impossible because! and 77! are disjoint.
Therefore, we have th<31t'T_Cf°‘+"“‘_1 <
) failed1'T failedl,1)
1/2. With analogous reasoning, we obtain:
7 »Cfa“ed? < 1/2. Using these inequalities
failed2 T failed2,2 2
on Inequalities 27 and 28 gives:

Vpe P :Up] > 1/2 (29)
and Vp e P2:Up] > 1/2 (30)

Observing that tasks assigned on processors in

P! are a subset of! and using Inequality 29

gives us:
C; | P
— 31
T 2 (1)
T, ET! ?
With analogous reasoning, we obtain:
C; | P?|
> — (32)
TET2 Ti- 74,2 2

Observing these two inequalities and Equation 26
and Lemma 3 gives us that OPT fails to assign
tasks onlI . This is a contradiction.

Failure on line 15 in FF-3C.
From the case, we obtain that'cr*! and
rF22=7F2 Therefore, there was a taskyjcq €
(71 \ 711 which was attempted to each of
the processors inP2. But all of them failed.
Therefore, we have:

Ctailed

Vp e P?:Ulp] + >1 (33)

Traited * T failed,2
We can add these inequalities together and get:

> Ulpl > |P?-(1-) (34)

peEP?

Ctailed
Traited * T failed,2
We know that the tasks assigned to processors
in P2 are 712 y 722 y rF12assigned where
rF12assigned jg the set of tasks that were assigned

when executing on line 12 of FF-3C. We also
know thatrf12assigned — +F12 Hance:

Z] C;
o (+H2) F F i 1,2
i€ (TH2UTF22yrFi2)

> |P?- (1

C’. .
. failed) (35)
Traited * T failed,2
We also know that sincesqieq € 7F1 it follows
that 77441cq is not in7H1 and hence:

C .
failed < 1/2 (36)
Trailed * T failed,2
But sincerrqiea1 €771 Crt, using Inequality 4
gives us:

Ctaited <1/2 (37)
Trailed * T failed,1
Combining this with Inequality 34 yields:
C; p?
> il (38)

Ti T2 2
ie(rH2uUrF22UrF12) >

We also know that FF-3C has executed line 6
and when it performed first-fit-bin-packing, there
must have been a task a1 € (7171 \ 771
which was attempted to each of the processors

in PL. But all of them failed. Note that this task
Tfailed1 May be the same asy,;.q Mentioned
above or it may be different. Because it was
not possible to assignyqieq1 On any of the
processors P!, we have:

Ctailedl > 1 (39)

Vpe PL:U[pl+
p) T'tailedl * T failedl,1

Adding these inequalities together gives us:

c aile
> Ul > [P (1 - L) (40)
vepl T'tailed1 * Tfailed1,1

We know that the tasks assigned to processors in
P! arerft u 11, Therefore, we have:

>
T, - r;
ie(rH1urF1y T 0L

C aile
> [P (1 foledl) (1)
Trailedl * T failedl,1

We also know that Sincesgiieq1 € 71 it follows
(from the definitionr#1 in the beginning of this
section) thatr,iieqr IS NOt N 7H1 and hence:

Cltailed <1/2 (42)
Traited1 * T failedl,1
Combining them yields:
C; | P
> T T (43)

i€(TH1YTFI1)

Let us now discuss OPT, the algorithm which
succeeds in assigning the task seton the
computer platformlI’. Let us discuss tasks in
H1 From the definition, we know that:

vr e L >1/2 (44)

T * T2
Using Equation 26 gives us:

C;
VTi S THl : m > 1 (45)

Therefore, OPT would fail if a task in'! was
assigned to a processor 2. Since we know
that OPT succeeded, it follows that every task
in 771 is assigned to a processor iAt. With
analogous reasoning, we have that every task
in 772 is assigned to a processor iR%. Let
TOPTL denote the tasks (except those frefm!)

that were assigned to processorsih by OPT.
Analogously, letr©®72 denote the tasks (except
those fromr#2) that were assigned to processors

in P? by OPT. Therefore (using Inequalities 1
and 2), we know that:

Cs

Tz"’l

<|P' (46)

T, €(THIUrOPT1)

and > Ci, <|P? (47)

T, €(TH2UTOPT2) a ri,Q

Using Equation 26 gives us:
i P!
) DA L g7t
TT',E(THIUTOPTI) i

and Z C; < |j:’2

T, €(TH2UTOPT2) E T2 2

(49)

Having obtained inequalities about the assign-
ments of FF-3C and OPT, we can now reason
about them. Rewriting Inequality 43 yields:

IPI
Z T 7‘11 Z T *Tin (50)

jer 1l ierTH1

Also, simple rewriting of Inequality 48 yields:

C; |PY| C;
< — 51
Z T rin — 2 Z T"Ti,l()

7, €ETOPT1

We can see that Inequalities 50 and 51 with
T=) i m T ensure that the assumptions
of Lemma 6 are true. Using Lemma 6 gives us:

2 : 1 C; z : 1 C;
Ti,l.f—i_ Ti,ghf—i_

> ooly ey e
ria Ti ri2 - Ty ri2 Ty
ierF11 ierF12 ierF22
1 C 1 C
- ri1 1, + Ti,2 T1+
ierH1 ierH2
1 C; 1 C;
) SCINEN S (52)
rix Ti ri2 Ti
i€OPT1 i€OPT2

Applying Inequality 48 and Inequality 49 on
Inequality 52 gives us:

1 C; Z 1 C; Z 1 C;
> p e T T T T

i
ierH1 ierH?2 ierF11

c, 1 L i
Z 7‘7',,2-T1',+ Z Ti,2 T1 - 2 + 2

ierf12 ierF22

Applying Inequality 38 and Inequality 43 on the
above inequality gives us:
[P P2 _ [P [P
2 2 2 2
This is a contradiction.

(53)

Failure on line 23 in FF-3C. provably good performance must be achieved. We claim
A contradiction results — the proof is analogous that our model of heterogeneous multiprocessors with two
that for the case "Failure on line 15 in FF-3C”. types of processors (i) is capable of modelling many of

We see that all cases where FF-3C declares FAILURE those heterogeneous multiprocessors that are of practical

lead to contradiction. Hence, the theorem holds. [interest and (i) allows the design of algorithms that run
much faster but still maintain provably good performance.

Indeed, our new algorithm for task assignment over a hete-
rogeneous multiprocessor with only two types of proces-
sors is certainly faster than algorithms based on Integer Li

near Programming (or relaxation to Linear Programming).

5. Discussion and Conclusions

The model considered is restricted but captures many
current and future single-chip heterogeneous multipro-
cessors. The Cell processor [14][20] is comprised of a
Power processor and 8 synergistic processor elements. ThEREferences
planned AMD Fusion [1] is similarly arranged, with a
processor and graphics processors integrated onto a singlell] AMD Inc. AMD Completes ATl Acquisition and Creates
chip. A difference from the Cell processor is that the Etrt‘;?ﬁmazoc‘j"’g;mﬂfeg?é%i;g?;f;ffe”){ualPress Rbom
graphics processors are not Turlng—complete, hence there 0,,5i_104_543"i13741,00.html, October 2006.
may be some programs which they cannot execute but
the main processor can. This can be easily modelled by [2] B. Andersson, S. Baruah, and J. Jonsson. Static-Briorit

treating the execution rate of those tasks on the graphics ~ Scheduling on Multiprocessors. Rroceedings of the2"*
processor as zero. Intel has similar plans [15]. Similar IEEE Real-Time Systems Symposipages 193-202, 2001.

solutions are already in the marketplace, such as the [3] B. Andersson and E. Tovar. Competitive Analysis of
MPC5121e processor [11] and the network processor [10] Partitioned Scheduling on Uniform Multiprocessors. In

from Freescale. In fact, most network processors are het- Proceedings of thé5"" International Workshop on Parallel
erogeneous multiprocessors with two types of processors. ~ and Distributed Real-Time Systenpages 1-8, 2007.

We specify preemptive EDF scheduling on each proces- 4] g. andersson and E. Tovar. Competitive Analysis of Sati
sor but do not specify which processor performs the sche- Priority of Partitioned Scheduling on Uniform Multiproces
duling. In the Cell processor, the synergistic processors sors. InProceedings of the3'" IEEE International Con-
can only execute tasks assigned to them by the Power ference on Embedded and Real-Time Computing Systems
processor; they are not autonomous. Our approach can be ~ 2nd Applicationspages 111-119, 2007.
applied though by having the Power processor keep track [5] s. Baruah. Feasibility analysis of preemptive realdim
of all tasks (ready, runnable or blocked) of all processors systems upon heterogeneous multiprocessor platforms. In
(i.e. both the Power processor and the synergistic ones) Proceedings of the25 IEEE International Real-Time
and then notify each processor which task to execute and ~ SYStéms Symposiupages 37-46, 2004.

when. Similarly with AMD Fusion and MPC5121e. (6] s, Baruah. Partitioning real-time tasks among heteroge
As seen, the model studied in this paper is of sig- neous multiprocessors. IAroc. of the33™® International
nificant practical interest and its importance is expected Conference on Parallel Processingages 467-474, 2004.

to increase further in the future. But while the hard- — .
Isoft desi itv h dealt with th [7] S. Baruah. Task partitioning upon heterogeneous multi-
ware/software co e§|gn commun|y as aeait wi e processor platforms. IfProceedings of thel0*® IEEE
problem of scheduling real-time tasks (see for exam- International Real-Time and Embedded Technology and
ple [18]), algorithms are evaluated by simulation only; Applications Symposiunpages 536-543, 2004.
not by proofs of their performance. Scheduling theorists [8] S. Borkar. Thousand Core Chips - A Technology Per
; - . : u ips - y -
however offer proofs of algorithm performance. Multipro spective. InProceedings of the 44th ACM/IEEE Design

cessors are commonly categorized as: Automation Conferencepages 746749, 2007.
Identical — All processors have the same speed.

Uniform — Each processor has a speed_ A processor [9] T. H. Cor_men, C. E._Leiserson, R. L. Rivest, _and C. Stein.
with a higher speed executes every task proportionately ~ 'ntroduction to Algorithms, 2nd EdVicGraw-Hill, 2001.

faster. _ [10] Freescale Semiconductor. C-5 Network Processor (NP).
Heterogeneous (sometimes called unrelated parallel http://www.freescale.com/webapp/sps/site/
machines) — A matrix, indexed with and p, gives the prod_summary.jsp?code=C-5&nodeld=01DFTQ3126462S.
Specﬁd tfllat Lastk has when it exﬁ.CUtes on procesptohr l[11] Freescale Semiconductor. Freescale Unveils Multi-
éarly, heterogeneous mulliprocessors are the mos core Processor for Telematics, Consumer, Industrial Ap-
general model but are still plagued by requiring scheduling plications. http://parts.ihs.com/news/freescale-ivaie-

algorithms to have a large computational complexity if processor.htm, May 2007. (Press release).

[12] M. R. Garey and D. S. Johnso@omputers and Intractabil-

ity: A Guide to the Theory of NP-Completenes®/. H. . L
Freeman & Co, 1979. Proof: The proof is by contradiction. Let be a task

set for which Inequality 54 holds. Assume then that a

[13] D. Geer. Taking the Graphics processor Beyond Graphics feasible partitioning of- exists.
IEEE Computer38(9):14-16, 2005.

Given thatr is feasible, the set of constraints expressed

[14] M. Gschwind, H. P. Hofstee, B. Flachs, M. Hopkins, DY Inequalities 1 and 2 must hold. Then, from Inequali-

Y. Watanabe, and T. Yamazaki. Synergistic Processing in ties 1 and 2 respectively we have:
Cell's Multicore Architecture. IEEE Micro, 26(2):10-24,

2006. o
~— <1V¥peP' (55
[15] Intel Corporation. Intel Developer Forum Day 1 Z 731 + Z ,Ti1 Ty P (®5)
News Disclosures From Beijing (Press release). ‘€7PIN7! iErlplnT ‘
http://www.intel.com/pressroom/archive/releases/ i 2
20070416supp.htm, April 2007. Z - + Z T <1Vpe P° (56)
ieT[plnrt 7 €T p]ﬁ7'2 ’

[16] N. Karmakar. A new polynomial-time algorithm for linea : .
programming. Combinatorica 4(4):373-395, 1984. However, from Inequalities 5 and 4 respectively:
C; C;
[17] L. G. Khachiyan. A polynomial algorithm in linear pro- (5) = T > R Vi e r? (57)
gramming. Doklady Akademia Nayk0:1093-1096, 1979. i1 "4 52
and (4) = G o G yie (58)
(3 T
ri1- Ty T orie T

[18] T. G. C. Lavarenne and Y. Sorel. Optimized rapid prgpety
ing for real-time embedded heterogeneous multiprocessors
In Proceedings of th&" International Workshop on Hard- Then (55) (g)
ware/Software Codesigmages 74-48, 1999.

[19] C. L. Liu and J. W. Layland. Scheduling algorithms for C;
multiprogramming in a hard real-time environmedurnal Z - + Z -~ — <1vpe P! (59)
of the ACM 20:46-61, 1973. €T [p]NT? 1" €T [p]NT2

[20] S. Maeda, S. Asano, T. Shimada, K. Awazu, and H. Tago. Likewise, (56 (58)
A real-time software platform for the Cell processtEEE ()=

Micro, 25(5):20-29, 2005. C;
o0, 256) Y e Y ST <iwe P (80)
[21] C. N. Potts. Analysis of a linear programming heurigtic ierfpnrt Bl ierppnre B2t
heduli lated llel hineBi te Applied . .
:,lcat?]elrjnlggcgggflig_ﬁiralgsg achinebiscrete Applie We can combine Inequalities 59 and 60 into:
[22] L. Sha, R. Rajkumgr, and S. S. Sathaye. Generalized rate C; C;
monotonic scheduling theory: a framework for developing Z + Z <1Vp (61)
real-time systemsProc. of the IEEE 82(1):68-82, 1994, ierfpnrt |l T ierfplnr2 B2 T;
[23] K. W. Tindell. An Extensible Approach for Analysing Feg Via summation of Inequality 61 over gl we obtain
Priority Hard Real-Time Tasks. Technical Report YCS 189,
Dept. of Computer Science, University of York, UK, 1992.
> T2 X - < Z !
Appendix v icrfplnrt | v ierlpnr? |
C; C;
=Y ——+) —— <|P'|+|P (62)
Lemma 2. If there is a taskr; in 7! such thatl < T , i - T; T2 - T;
it is then impossible to meet deadlmes leeW|se it there is _ . . .
p This contradicts Inequality 54. O

a taskr; in 72 such thatl < - 2,T,.

Proof: Intuitively, if the execution time of;; exceeds
its deadline even on the type of processor where it runs
fastest, it cannot be assigned anywhere so as to meet
deadlines. it cannot meet deadlines assigned anywhere.

Lemma 3. It is impossible to meet deadlines if

Cs
= > [P+ PP (54)

10

