

Caos: A Reusable Scala Web Animator of

Operational Semantics

Conference Paper

CISTER-TR-230611

José Proença

Luc Edixhoven

Conference Paper CISTER-TR-230611 Caos: A Reusable Scala Web Animator of Operational Semantics

© CISTER Research Center
www.cister-labs.pt

1

Caos: A Reusable Scala Web Animator of Operational Semantics

José Proença, Luc Edixhoven

CISTER Research Centre

Rua Dr. António Bernardino de Almeida, 431

4200-072 Porto

Portugal

Tel.: +351.22.8340509, Fax: +351.22.8321159

E-mail:

https://www.cister-labs.pt

Abstract

This tool paper presents : Caos a methodology and a programming framework for computer-aided design of

structural operational semantics for formal models. This framework includes a set of Scala libraries and a

workflow to produce visual and interactive diagrams that animate and provide insights over the structure and the

semantics of a given abstract model with operational rules.Caos follows an approach in which theoretical

foundations and a practical tool are built together, as an alternative to foundations-first design (1ctool justifies

theory 1d) or tool-first design (1cfoundations justify practice 1d). The advantage of is that the tool-under-
development can immediately be used to automatically run numerous and sizeable examples in order to identify

subtle mistakes, unexpected outcomes, and unforeseen limitations in the foundations-under-development, as
early as possible.We share two success stories of Caos methodology and framework in our own teaching and

research context, where we analyse a simple while-language and a choreographic language, including their
operational rules and the concurrent composition of such rules. We further discuss how others can include in

their own analysis and Scala tools.

Caos: A Reusable Scala Web Animator of

Operational Semantics

José Proença1[0000−0003−0971−8919] and Luc Edixhoven2[0000−0002−6011−9535]

1 CISTER, ISEP, Polytechnic Institute of Porto, Portugal pro@isep.ipp.pt
2 Open University (Heerlen) and CWI (Amsterdam), Netherlands led@ou.nl

Abstract. This tool paper presents Caos: a methodology and a pro-
gramming framework for computer-aided design of structural operational

semantics for formal models. This framework includes a set of Scala li-
braries and a work�ow to produce visual and interactive diagrams that
animate and provide insights over the structure and the semantics of a
given abstract model with operational rules.
Caos follows an approach in which theoretical foundations and a practical
tool are built together, as an alternative to foundations-�rst design (�tool
justi�es theory�) or tool-�rst design (�foundations justify practice�). The
advantage of Caos is that the tool-under-development can immediately
be used to automatically run numerous and sizeable examples in order
to identify subtle mistakes, unexpected outcomes, and unforeseen limi-
tations in the foundations-under-development, as early as possible.
We share two success stories of Caos' methodology and framework in our
own teaching and research context, where we analyse a simple while-
language and a choreographic language, including their operational rules
and the concurrent composition of such rules. We further discuss how
others can include Caos in their own analysis and Scala tools.

Demo video: https://zenodo.org/record/7876060 & https://youtu.be/Xcfn3zqpubw

Hands-on tutorial: In a companion report [17, Appendix A].

1 Introduction

Designing formal methods can be hard. Typical challenges of formal-methods-
related research include identifying and dealing with corner cases, discovering
missing assumptions, �nding the right abstraction level, and�of course�proving
theorems (and adequately decomposing them into lemmas). Curiously, and un-
like other scienti�c disciplines, we �nd that a large majority of papers written in
our community primarily focuses on research results instead of methods. In con-
trast, this tool paper contributes to the methodology of designing formal methods,
with special emphasis on Structural Operational Semantics (SOS): we share our
experiences with computer-aided design of SOS for formal methods with a set
of examples produced by our toolset Caos. Source code and a compilation of ex-
amples can be found at https://github.com/arcalab/caos. We hope that it may
inspire colleagues both to apply our methodology and tools, and to share their
own methodology-related experiences to our community's bene�t.

https://zenodo.org/record/7876060
https://youtu.be/Xcfn3zqpubw
https://github.com/arcalab/caos

In a nutshell, in Caos, theoretical foundations and a practical tool are built
together side-by-side, from the start, as an alternative to the more typical foun-
dations-�rst design (�tool justi�es theory�) or tool-�rst design (�foundations jus-
tify practice�). The main advantage of Caos is that the tool-under-development
can immediately be used to automatically run numerous and sizeable examples in
order to identify subtle mistakes, unexpected outcomes, and/or unforeseen limi-
tations in the foundations-under-development, as early as possible. This need for
validation and supporting tools in formal methods has been acknowledged, e.g.,
by Garavel et al. in a recent survey over formal methods in critical systems [12].

The Caos toolset is based on ReoLive,3 which was developed as an online set
of Scala & JavaScript (JS) tools to analyse Reo connectors [6]. Currently it also
hosts many extensions unrelated to Reo [13,5], where common code blocks can
be compiled both to JS (client) and to Java binaries (server), allowing computa-
tions to be delegated to a remote server. Consequently, it became a monolithic

implementation with many replicated blocks of code for di�erent independent
extensions, and it is non-trivial to reuse it for di�erent projects. Our alternative
Caos toolset aims at addressing these issues, targeting the following requirements:

� R1: Caos should use a general programming language, facilitating adoption
and supporting more complex back-ends when desired;

� R2: The output from Caos-supported implementation should be easy to ex-
ecute and use, without requiring speci�c platforms or complex installations;

� R3: Caos should be easily reused, and Caos-supported implementations should
be modular and easily extended with new analyses.

Guided by these requirements, our Caos toolset is implemented in Scala (R1),
compiles to JS that generates intuitive and interactive websites (R2), and in-
cludes a simple-to-extend API that facilitates its usage and reuse by other de-
velopers (R3). By using the Caos toolset, one can produce a webpage such as the
one in Fig. 1. This webpage has an input text box and a collection of widgets that
depict or animate di�erent analyses over the input program, exploiting possible
operational semantics when applicable. This example will be further detailed in
Section 2, which analyses a simple while-language (with contracts).

Caos includes dedicated support for SOS, by animating, depicting, or compar-
ing terms that implement a next and an accepting method. It further supports
building SOS for networks of interacting components, mentioned in Section 3.

Similar approaches to support the development of language semantics exist,
such as the ones below, which do not address all of the 3 requirements above.

The Maude language and toolset [3] focus on how to specify (1) a con-
�guration (a state) using a sequence of characters, and (2) a set of possible
rewrite rules capturing how con�gurations can be modi�ed. It further provides
a set of constructs to facilitate the creation of new syntactical notations, such as
marking operators as being associative and with a given identity. Maude includes
well polished model checkers and other analysis tools; other model checkers (e.g.,
mCRL2 [1], UPPAAL [7]) also have speci�cation languages with an operational

3
https://github.com/ReoLanguage/ReoLive

2

https://github.com/ReoLanguage/ReoLive

Fig. 1. Screenshot of the web interface to analyse a simple while-language, available
at https://cister-labs.github.io/whilelang-scala/

semantics, restricted by design to provide better model-checking support. These
approaches provide a similar functionality but do not target our requirements.

Racket (and its DrRacket graphical frontend) [11] is a Language-Oriented

Programming Language, i.e., a language meant for making languages. It is widely
adopted and comes with a large collection of libraries, and includes a set of con-
structs that facilitate the creation of new syntactical notations, bundled as new
languages, allowing multiple languages in a program to exist and to be created
on the �y. Embedded in Racket, PLT Redex [10] is a domain speci�c language
for specifying and debugging operational semantics, which receives a grammar
and reduction rules and supports an interactive exploration of the terms. Ar-
guably, Racket is a general purpose language (R1), although less adopted than
Java or Scala, with extension mechanisms to support reusability (R3), and which
we believe to be harder to deploy products (R2).

Some teaching languages, such as Pyret [16], are designed to be compiled
to JavaScript and to be used when teaching introductory computing, balancing
expressiveness and performance. It includes a powerful runtime to hide from the
user some of the intricacies and limitations of JS, and this and similar languages
include visualisation libraries to better engage students. These languages do not
share the same functional goal, and do not use a general programming language
(R1), but can often produce easy-to-run code (R2) and be extendable (R3).

Caos is particularly useful for users familiarised with Scala/Java, and less to
users with some experience in languages such as Maude, Racket, or Pyret.

Paper structure: This paper starts by describing our experience with Caos both
in a teaching (Section 2) and a research (Section 3) context, focused on what
can be produced using the toolset. Section 4 describes how the Caos toolset is
structured and how it can be used by others, and Section 5 concludes this paper.

3

https://cister-labs.github.io/whilelang-scala/

2 Use-case: a While-language for Teaching

In the context of a university course, students were taught about natural and
operational semantics, and how to infer weakest preconditions. We, as teachers,
used a simple while-language with integers to describe these concepts. We created
a simple website in a couple of days using Caos, depicted in Fig. 1, improving
core widgets over the period of one week. Note that we were familiarised with the
tools and had some experience with writing parsers in Scala. This website was
used by the students to experiment and gain better insights over the concepts.

Fig. 1 illustrates the compiled output of Caos: a collection of widgets that al-
ways includes an input widget (here called WhileLang) and a list of example input
programs. The other widgets are custom-made, and include: (1) visualisation of
a string produced from the program, representing plain text, code, or a mermaid
diagram (a popular Markdown-like language for diagrams); 4 and (2) execution
given a next function that evolves the program, which can be presented either
step-wise (interactive) or as a single state diagram with all reachable states. Caos
also provides widgets for (3) comparing two program behaviours using bisimi-
larity or trace equivalence; and (4) checking for errors or warnings in a program.

Figure 1 depicts a visualisation of the source code (bottom left) and a step-
wise evolution using a small-step semantics with a textual representation (right),
and the remaining widgets are collapsed. These collapsed widgets use di�erent
semantics, provide a view of all steps, or calculate the weakest preconditions, and
are not processed while collapsed. Students could use better understand which
rules could be applied at each moment, and navigate through the state space.

3 Use-case: Analysing Choreographies in Research

Caos can be used to illustrate research concepts using prototyping tools. We used
it, for example, when investigating choreographic languages. A choreographic
language describes possible sequences of interactions between agents, e.g.,

ctr→wrk1:Work ; ctr→wrk2:Work ; (wrk1→ctr:Done ∥ wrk2→ctr:Done)

captures a scenario where a controller ctr delegates some Work to two work-
ers, and they reply once they are Done. Together with Guillermina Cledou and
Sung-Shik Jongmans we published several choreography analyses supported by
Caos-based prototypes, investigating how to detect that the behaviour of the lo-
cal agents induce the global behaviour (known as realisability) using a novel un-
derlying mathematical structure [9,8] (https://lmf.di.uminho.pt/b-pomset) and
how to generate APIs that statically guarantee that the local agents follow their
interaction protocol [4,14] (https://lmf.di.uminho.pt/{pompset,st4mp}).

An underlying mathematical structure was used to give semantics to chore-
ographies: branching pomsets [9] (which are similar to event structures [15,2]).
As shown in Fig. 2, using Caos it was possible to: (1) visualize the pomset struc-
ture (top left); (2) execute a pomset (B-Pomset Semantics) and the composition

4
https://mermaid-js.github.io/mermaid

4

https://lmf.di.uminho.pt/b-pomset
https://lmf.di.uminho.pt/{pompset,st4mp}
https://mermaid-js.github.io/mermaid

Fig. 2. Analysis of branching pomsets produced by Caos from a choreography language

of its projections to each agent involved (Composed Local B-Pomset Semantics); (3)
check well-formedness (Well-formed), a novel syntactic (sound but incomplete)
realisability check; (4) check realisability using a (complete but more complex)
search for a bisimulation between the global behaviour and the composed be-
haviour of the projections (Realisability via bisimulation); and (5) generate Scala

code with libraries that can guarantee at compile time that local agents obey
the expected protocol (bottom right). Caos provides constructors for the compo-
sition of the behaviour of the local agents and for the search for bisimulations.
Setting up each of these websites took around half a week of work by one per-
son. During our investigation, the Caos-supported implementation was a crucial

mechanism to experiment with many variations of the semantics and projections
of the choreography language, of the pomset structure, and of the realisability
analysis, ultimately converging to the current version.

4 Caos framework

This section describes what Caos provides and how to use it to produce anima-
tors such as the ones in Sections 2 and 3. Figure 3 depicts the structure of a
typical Scala project that uses Caos. The user provides data structures for the
input language with functions to parse this language and to compute analysis

Analsysis.scala Con�guration.scala

Caos.scala

compiled.js index.html
imports

extendsimports
compiles inlcudes

Fig. 3. Architecture of a Scala project that uses Caos

5

(Analysis.scala), and compiles a collection of widgets that use these functions us-
ing special constructors (Con�guration.scala). Compiling this con�guration yields
a JS �le used by a provided HTML �le. The Con�guration is an object that ex-
tends an associated class in Caos and holds: the name of the language and the
website; the parser for the language; a list of examples, each as a triple (name,
program, description); and a list of widgets using the provided constructors [17].

Tool demonstration with the iLambda language

We provide a short demonstration on how to use Caos; an expanded version
can be found in the companion report [17] and the video tutorial [18]. In this
demonstration we implement a lambda-calculus language with integers (iLambda);
the full source-code can be found in https://github.com/arcalab/lambda-caos.

This project requires JVM (>=1.8) and SBT (Scala Builder Tool) to compile,
and a web-browser to execute. The top folder should contain the following �les:

� build.sbt � is the main con�guration �le of the project (top-left of Fig. 4);
� project/plugins.sbt � describes the plug-in to compile to JS, in our case
with addSbtPlugin("org.scala-js" % "sbt-scalajs" % "1.7.1");

� lib/Caos � includes all Caos �les, as-is in its git repository; and
� src/main/scala/iLambda � includes all the source-code of our project.

build.sbt

src/main/scala/iLambda/syntax/Program.scala

src/main/scala/iLambda/frontend/Main.scala src/.../iLambda/backend/LazySemantics.scala

val Caos = project.in(file("lib/Caos"))

.enablePlugins(ScalaJSPlugin)

.settings(scalaVersion := "3.1.1")

val iLambda = project.in(file("."))

.enablePlugins(ScalaJSPlugin)

.settings(

name := "iLambda",

version := "0.1.0",

scalaVersion := "3.1.1",

scalaJSUseMainModuleInitializer := true,

Compile/mainClass := Some("iLambda.frontend.Main"),

Compile/fastLinkJS/scalaJSLinkerOutputDirectory:=

baseDirectory.value / "lib" / "Caos"/

"tool" / "js" / "gen",

libraryDependencies += "org.typelevel" %%%

"cats-parse" % "0.3.4")

.dependsOn(Caos)

enum Term:

case Var(x:String)

case App(e1:Term, e2:Term)

case Lam(x:String, e:Term)

case Val(n:Int)

case Add(e1:Term, e2:Term)

case If0(e1:Term, e2:Term, e3:Term)

def main(args: Array[String]):Unit =

Caos.frontend.Site.initSite[Term](MyConfig)

object MyConfig extends Configurator[Term]:

val name = "Animator of a simple lambda calculus"

val parser = iLambda.syntax.Parser.parseProgram

val examples = List(

"succ" → "(\x→x+1) 2" → "Adds 1 to 2", ...)

val widgets = List(

"View program" →view(Show(_), Code("haskell")),

"View structure"→view(Show.mermaid, Mermaid),

"Run semantics"→steps(e⇒e,Semantics,Show(_),Text),

"Build LTS" →lts(e⇒e,Semantics,Show(_)),

...)

object LazySemantics extends SOS[String,Term] {

/** What are the set of possible evolutions

(label and new state) */

def next(t:Term): Set[(String,Term)] =

t match {

// Cannot evolve variables

case Var(_) ⇒ Set()

// Evolve body of a lambda abstraction

case Lam(x, e) ⇒

for (by, to) ← next(e) yield

by → Lam(x, to)

// Apply a lambda abstraction

case App(Lam(x,e1),e2) ⇒

Set(s"beta-$x" →

Semantics.subst(e1,x,e2))

// Evolve 1st the left of an application

case App(e1, e2) ⇒

next(e1).headOption match

case Some((s,t))⇒Set(s→App(t,e2))

...

// Remaning cases...

}}

Fig. 4. Snippets of code and con�gurations used in the iLambda project

6

https://github.com/arcalab/lambda-caos

Figure 4 presents 4 snippets from the iLambda project. The build.sbt con�g-
ures the compilation process, including the main class to be compiled and the
target folder to place the compiled JS, marked in bold. The project is compiled by
the command line instruction �sbt fastLinkJS�. The Program.scala de�nes the in-
ternal data structure, which represents our lambda terms produced by our parser
in src/main/scala/iLambda/syntax/Parser. The Main.scala provides the Con�gu-

ration object mentioned above, and the LazySemantics exempli�es the de�nition
of an SOS semantics. SOS semantics are speci�ed by extending a SOS[Act,State]

class providing a function next(s:State): Set[(Act,State)] that, given a State

s, returns a set of new states labelled by an Action. These instances can be
animated, compared, or combined using provided widget constructors. For ex-
ample, lts(e=>e,LazySemantics,Show(_)) builds the LTS, where e=>e states that
the initial state is the original lambda term, LazySemantics de�nes the semantics,
and Show(_) de�nes how to visualise states (which are lambda terms).

5 Conclusions and lessons learned

This paper follows a computer-aided design approach for formal methods by
means of Caos, introducing its toolset and sharing experiences of its application
to develop operational semantics of di�erent systems. During the development
of new structures and operational semantics, the Caos toolset provided support
to quickly view, simulate, and compare di�erent design choices. We were able
to identify problems and solutions with a small investment of time in tool de-
velopment. We further claim that the Caos toolset is reusable, provides intuitive
outputs, and is expressive by using a general programming language. By using
standard HTML and CSS, the resulting websites can be easily customisable.

Currently we consider two possible improvements. On one hand, to support
a lightweight server (inspired in ReoLive [6] but using, e.g., https://http4s.org)
that could be used to delegate heavier tasks, such as the usage of a model-checker.
On the other hand, to support the parser development with tools such as https:
//antlr.org instead of using parsing combinators. All tools are available as open-
source, and we welcome any feedback, contribution, or sharing of experiences.

Acknowledgments This work was supported by the CISTER Research Unit (UID-

P/UIDB/04234/2020), �nanced by National Funds through FCT/MCTES (Portuguese

Foundation for Science and Technology) and by project PTDC/CCI-COM/4280/2021

�nanced by national funds through FCT. It is also a result of the work developed un-

der projects and Route 25 (ref. TRB/2022/00061 - C645463824-00000063) funded by

the EU/Next Generation, within the Recovery and Resilience Plan (RRP); and project

VALU3S (ECSEL/0016/2019 - JU grant nr. 876852) �nanced by national funds through

FCT and European funds through the EU ECSEL JU. The JU receives support from

the European Union's Horizon 2020 research and innovation programme and Austria,

Sweden, Spain, Italy, France, Portugal, Ireland, Finland, Slovenia, Poland, Netherlands,

Turkey - Disclaimer: This document re�ects only the author's view and the Commission

is not responsible for any use that may be made of the information it contains.

7

https://http4s.org
https://antlr.org
https://antlr.org

References

1. Bunte, O., Groote, J.F., Keiren, J.J.A., Laveaux, M., Neele, T., de Vink, E.P.,
Wesselink, W., Wijs, A., Willemse, T.A.C.: The mCRL2 Toolset for Analysing
Concurrent Systems. In: Vojnar, T., Zhang, L. (eds.) TACAS. LNCS, vol. 11428,
pp. 21�39. Springer (2019). https://doi.org/10.1007/978-3-030-17465-1_2

2. Castellani, I., Dezani-Ciancaglini, M., Giannini, P.: Event structure semantics
for multiparty sessions. In: Boreale, M., Corradini, F., Loreti, M., Pugliese,
R. (eds.) Models, Languages, and Tools for Concurrent and Distributed Pro-
gramming - Essays Dedicated to Rocco De Nicola on the Occasion of His
65th Birthday. Lecture Notes in Computer Science, vol. 11665, pp. 340�
363. Springer (2019). https://doi.org/10.1007/978-3-030-21485-2_19, https://

doi.org/10.1007/978-3-030-21485-2_19

3. Clavel, M., Durán, F., Eker, S., Lincoln, P., Martí-Oliet, N., Meseguer, J., Talcott,
C.L.: The maude 2.0 system. In: Nieuwenhuis, R. (ed.) Rewriting Techniques and
Applications, 14th International Conference, RTA 2003, Valencia, Spain, June 9-
11, 2003, Proceedings. Lecture Notes in Computer Science, vol. 2706, pp. 76�87.
Springer (2003). https://doi.org/10.1007/3-540-44881-0_7, https://doi.org/10.
1007/3-540-44881-0_7

4. Cledou, G., Edixhoven, L., Jongmans, S.S., Proença, J.: Api genera-
tion for multiparty session types, revisited and revised using scala 3. In:
Ali, K., Vitek, J. (eds.) 36th European Conference on Object-Oriented
Programming, ECOOP 2022, June 6-10, 2022, Berlin, Germany. LIPIcs,
vol. 222, pp. 27:1�27:28. Schloss Dagstuhl - Leibniz-Zentrum für Infor-
matik (2022). https://doi.org/10.4230/LIPIcs.ECOOP.2022.27, https://doi.org/
10.4230/LIPIcs.ECOOP.2022.27

5. Cledou, G., Proença, J., Sputh, B.H.C., Verhulst, E.: Hubs for virtuosonext: On-
line veri�cation of real-time coordinators. Science of Computer Programming 203,
102566 (2021). https://doi.org/10.1016/j.scico.2020.102566, https://doi.org/10.
1016/j.scico.2020.102566

6. Cruz, R., Proença, J.: Reolive: Analysing connectors in your browser. In: Maz-
zara, M., Ober, I., Salaün, G. (eds.) Software Technologies: Applications and
Foundations - STAF 2018 Collocated Workshops, Toulouse, France, June 25-29,
2018, Revised Selected Papers. Lecture Notes in Computer Science, vol. 11176, pp.
336�350. Springer (2018). https://doi.org/10.1007/978-3-030-04771-9_25, https:
//doi.org/10.1007/978-3-030-04771-9_25

7. David, A., Larsen, K.G., Legay, A., Miku£ionis, M., Poulsen, D.B.: Uppaal SMC
tutorial. STTT 17(4), 397�415 (Aug 2015). https://doi.org/10.1007/s10009-014-
0361-y, https://doi.org/10.1007/s10009-014-0361-y

8. Edixhoven, L., Jongmans, S.S.: Realisability of branching pomsets. In: Tapia Tar-
ifa, S.L., Proença, J. (eds.) Formal Aspects of Component Software - 18th Inter-
national Conference, FACS 2022, Virtual Event, November 10-11, 2022, Revised
Selected Papers. Lecture Notes in Computer Science, Springer (2022), to appear

9. Edixhoven, L., Jongmans, S.S., Proença, J., Cledou, G.: Branching pom-
sets for choreographies. In: Aubert, C., Giusto, C.D., Sa�na, L., Scalas,
A. (eds.) Proceedings 15th Interaction and Concurrency Experience, ICE
2022, Lucca, Italy, 17th June 2022. EPTCS, vol. 365, pp. 37�52 (2022).
https://doi.org/10.4204/EPTCS.365.3

10. Felleisen, M., Findler, R.B., Flatt, M.: Semantics Engineering with PLT Redex.
MIT Press (2009), http://mitpress.mit.edu/catalog/item/default.asp?ttype=
2&tid=11885

8

https://doi.org/10.1007/978-3-030-17465-1_2
https://doi.org/10.1007/978-3-030-21485-2_19
https://doi.org/10.1007/978-3-030-21485-2_19
https://doi.org/10.1007/978-3-030-21485-2_19
https://doi.org/10.1007/3-540-44881-0_7
https://doi.org/10.1007/3-540-44881-0_7
https://doi.org/10.1007/3-540-44881-0_7
https://doi.org/10.4230/LIPIcs.ECOOP.2022.27
https://doi.org/10.4230/LIPIcs.ECOOP.2022.27
https://doi.org/10.4230/LIPIcs.ECOOP.2022.27
https://doi.org/10.1016/j.scico.2020.102566
https://doi.org/10.1016/j.scico.2020.102566
https://doi.org/10.1016/j.scico.2020.102566
https://doi.org/10.1007/978-3-030-04771-9_25
https://doi.org/10.1007/978-3-030-04771-9_25
https://doi.org/10.1007/978-3-030-04771-9_25
https://doi.org/10.1007/s10009-014-0361-y
https://doi.org/10.1007/s10009-014-0361-y
https://doi.org/10.1007/s10009-014-0361-y
https://doi.org/10.4204/EPTCS.365.3
http://mitpress.mit.edu/catalog/item/default.asp?ttype=2&tid=11885
http://mitpress.mit.edu/catalog/item/default.asp?ttype=2&tid=11885

11. Flatt, M.: Creating languages in racket. Commun. ACM 55(1), 48�
56 (2012). https://doi.org/10.1145/2063176.2063195, https://doi.org/10.1145/
2063176.2063195

12. Garavel, H., ter Beek, M.H., van de Pol, J.: The 2020 expert survey on formal
methods. In: ter Beek, M.H., Nickovic, D. (eds.) Formal Methods for Industrial
Critical Systems - 25th International Conference, FMICS 2020, Vienna, Austria,
September 2-3, 2020, Proceedings. Lecture Notes in Computer Science, vol. 12327,
pp. 3�69. Springer (2020). https://doi.org/10.1007/978-3-030-58298-2_1, https:
//doi.org/10.1007/978-3-030-58298-2_1

13. Goncharov, S., Neves, R., Proença, J.: Implementing hybrid semantics: From func-
tional to imperative. In: Pun, K.I., da Silva Simão, A., Stolz, V. (eds.) Theoretical
Aspects of Computing - ICTAC 2020 - 17th International Colloquium, Macau
S.A.R., China, October 31 - November 30, 2020, Proceedings. Lecture Notes in
Computer Science, vol. 12545. Springer (2020)

14. Jongmans, S.S., Proença, J.: St4mp: A blueprint of multiparty session typing for
multilingual programming. In: Margaria, T., Ste�en, B. (eds.) Leveraging Applica-
tions of Formal Methods, Veri�cation and Validation - 10th International Sympo-
sium on Leveraging Applications of Formal Methods, ISoLA 2022, Rhodes, Greece,
October 24-28, 2022, Proceedings. Lecture Notes in Computer Science, Springer
(2022), to appear

15. Nielsen, M., Plotkin, G.D., Winskel, G.: Petri nets, event structures and domains,
part I. Theor. Comput. Sci. 13, 85�108 (1981). https://doi.org/10.1016/0304-
3975(81)90112-2, https://doi.org/10.1016/0304-3975(81)90112-2

16. Politz, J.G., Lerner, B.S., Porncharoenwase, S., Krishnamurthi, S.: Event
loops as �rst-class values: A case study in pedagogic language design. Art
Sci. Eng. Program. 3(3), 11 (2019). https://doi.org/10.22152/programming-
journal.org/2019/3/11, https://doi.org/10.22152/programming-journal.org/

2019/3/11

17. Proença, J., Edixhoven, L.: Caos: A reusable scala web animator of operational
semantics (extended with hands-on tutorial). CoRR abs/2304.14901 (2023).
https://doi.org/10.48550/arXiv.2304.14901, https://arxiv.org/abs/2304.14901

18. Proença, J., Edixhoven, L.: Demonstration video of Caos: A reusable
scala web animator of operational semantics. CoRR (April 2023).
https://doi.org/10.5281/zenodo.7876059, https://zenodo.org/record/7876059

9

https://doi.org/10.1145/2063176.2063195
https://doi.org/10.1145/2063176.2063195
https://doi.org/10.1145/2063176.2063195
https://doi.org/10.1007/978-3-030-58298-2_1
https://doi.org/10.1007/978-3-030-58298-2_1
https://doi.org/10.1007/978-3-030-58298-2_1
https://doi.org/10.1016/0304-3975(81)90112-2
https://doi.org/10.1016/0304-3975(81)90112-2
https://doi.org/10.1016/0304-3975(81)90112-2
https://doi.org/10.22152/programming-journal.org/2019/3/11
https://doi.org/10.22152/programming-journal.org/2019/3/11
https://doi.org/10.22152/programming-journal.org/2019/3/11
https://doi.org/10.22152/programming-journal.org/2019/3/11
https://doi.org/10.48550/arXiv.2304.14901
https://arxiv.org/abs/2304.14901
https://doi.org/10.5281/zenodo.7876059
https://zenodo.org/record/7876059

	 Caos: A Reusable Scala Web Animator of Operational Semantics

