

Compositional Multiprocessor Scheduling:
the GMPR interface

Technical Report

CISTER-TR-140101

Version:

Date: 1/11/2014

Artem Burmyakov

Enrico Bini

Eduardo Tovar

Technical Report CISTER-TR-140101 Compositional Multiprocessor Scheduling: the GMPR interface

© CISTER Research Unit
www.cister.isep.ipp.pt 1

Compositional Multiprocessor Scheduling: the GMPR interface
Artem Burmyakov, Enrico Bini, Eduardo Tovar

CISTER Research Unit

Polytechnic Institute of Porto (ISEP-IPP)

Rua Dr. António Bernardino de Almeida, 431

4200-072 Porto

Portugal

Tel.: +351.22.8340509, Fax: +351.22.8340509

E-mail: armbv@isep.ipp.pt, , emt@isep.ipp.pt

http://www.cister.isep.ipp.pt

Abstract
Composition is a practice of key importance in software engineering. When real-time applications are composed, it
is necessary that their timing properties (such as meeting the deadlines) are guaranteed. The composition is
performed by establishing an interface between the application and the physical platform. Such an interface
typically contains information about the amount of computing capacity needed by the application. For
multiprocessor platforms, the interface should also present information about the degree of parallelism.

Several interface proposals have recently been put forward in various research works. However, those interfaces
are either too complex to be handled or too pessimistic. In this paper we propose the Generalized Multiprocessor
Periodic Resource model (GMPR) that is strictly superior to the MPR model without requiring a too detailed
description. We then derive a method to compute the interface from the application specification. This method
has been implemented in Matlab routines that are publicly available.

Real-Time Systems manuscript No.

(will be inserted by the editor)

Compositional Multiprocessor Scheduling:

the GMPR interface

Artem Burmyakov · Enrico Bini ·
Eduardo Tovar

Received: date / Accepted: date

Abstract Composition is a practice of key importance in software engineer-
ing. When real-time applications are composed, it is necessary that their timing
properties (such as meeting the deadlines) are guaranteed. The composition
is performed by establishing an interface between the application and the
physical platform. Such an interface typically contains information about the
amount of computing capacity needed by the application. For multiprocessor
platforms, the interface should also present information about the degree of
parallelism.

Several interface proposals have recently been put forward in various re-
search works. However, those interfaces are either too complex to be handled
or too pessimistic. In this paper we propose the Generalized Multiprocessor
Periodic Resource model (GMPR) that is strictly superior to the MPR model
without requiring a too detailed description. We then derive a method to com-
pute the interface from the application specification. This method has been
implemented in Matlab routines that are publicly available.

Keywords Real-time scheduling · Compositional scheduling · Multiproces-
sors · Real-time interfaces

1 Introduction

Reusing application code is driven by the need to shorten the overall design
time, and typically software components are developed in isolation, possibly by

A. Burmyakov
CISTER/INESC-TEC, ISEP, Polytechnic Institute of Porto, Portugal

E. Bini
Department of Automatic Control, Lund University, Sweden

E. Tovar
CISTER/INESC-TEC, ISEP, Polytechnic Institute of Porto, Portugal

2 Artem Burmyakov et al.

di↵erent developers. During the integration phase, all components are bound
to the same hardware platform. Clearly, the integration must be performed
in such a way that the properties of components are preserved even after the
composition is made.

In real-time systems, the key property that has to be preserved during the
integration phase is time predictability: a real-time application (or compo-
nent) that meets all its deadlines when designed in isolation should also meet
all deadlines when it is integrated with other applications on the same hard-
ware platform. This property is often guaranteed by introducing an interface
between the application and the hardware platform. Then the application is
guaranteed over the interface, and the hardware platform must provide a vir-
tual platform that conforms with the interface - a compliant virtual platform.
The scheduling problem over a virtual platform is often called a hierarchical
scheduling problem. In fact, each application task itself may contain another
entire application in a hierarchical fashion.

The benefit of using an interface-based approach is significant. During the
design phase the interface of an application is computed such that all timing
requirements of the application are met. Then, during the integration phase
the interfaces of all applications are bound to the same hardware platform. As
a result, the interface allows to hide an internal complexity of an individual
application, and this property is essential in the development of large-scale
real-time systems.

Typically, interfaces, allowing the composition of real-time applications,
specify details about the amount of resource that has to be provided by a
compliant virtual platform. This information can be described with a varying
degree of detail. For example, a very simple interface for a virtual processor
can be just a fraction of the allocated time.

With the broad di↵usion of multiprocessors, hierarchical scheduling prob-
lems have recently started to be considered over hardware platforms that pro-
vide a concurrent resource supply. The formulation of interface models for
multiprocessors, however, requires the introduction of a new dimension: the
degree of concurrency. This additional characteristic of the interface makes the
problem to be addressed more challenging.

The problem in selecting the appropriate interface model is to find the best
trade-o↵ between accuracy and simplicity of the interface. A simple interface
is intuitive and easy to use, but it tends to cause a significant pessimism in
the resource abstraction. On the other hand, an accurate interface minimizes
the pessimism, but is more complex in use, and it can be very di�cult to
compute. In this paper we propose a simple interface that is a generalization
of the one previously proposed by Shin et al (2008). Our novel approach keeps
the simplicity of that interface while reducing significantly the pessimism in
terms of the needed resource.

Compositional Multiprocessor Scheduling: the GMPR interface 3

1.1 Related works

The problem of composing real-time applications is certainly not new. There
actually have been numerous contributions in this area. Being fully aware of
the impossibility to provide a full coverage of the topic, we describe in this
section the works that, to our best knowledge, are more related to ours.

One of the first contributions to address the isolation of applications using
resource reservations was published in (Parekh and Gallager, 1993). In that
paper the authors introduced the Generalized Processor Sharing (GPS) algo-
rithm to share a fluid resource according to a set of weights. Mercer et al (1994)
proposed a more realistic approach where a resource can be allocated based
on a required budget and period. Later on, Stoica et al (1996) introduced the
Earliest Eligible Virtual Deadline First (EEVDF) for sharing the computing
resource, and Deng and Liu (1997) achieved the same goal by introducing a
two-level scheduler (using EDF as a global scheduler) in the context of multi-
application systems. Kuo and Li (1999) extended the approach to a Fixed
Priority global scheduler. Kuo et al (2000) extended their own work (Kuo
and Li, 1999) to multiprocessors. However, in those approaches the authors
made very stringent assumptions such as not considering task migration and
restricting to period harmonicity. Those assumptions restrict the applicability
of the proposed solution.

Moir and Ramamurthy (1999) proposed a hierarchical approach, where a
set of P-fair tasks can be scheduled within a time partition provided by another
P-fair task (called “supertask”) acting as a server. However, the solution often
requires the weight of the supertask to be higher than the sum of the weights
of the served tasks (Holman and Anderson, 2006).

Many independent works proposed to model the service provided by a
uni-processor through a supply function. Feng and Mok (2002) introduced the
bounded-delay resource partition model. Almeida et al (2002) provided timing
guarantees for both synchronous and asynchronous tra�c over the FTT-CAN
protocol by using hierarchical scheduling. Lipari and Bini (2003) derived the
set of virtual processors that can feasibly schedule a given application. Shin
and Lee (2003) introduced the periodic resource model also deriving a utiliza-
tion bound. Easwaran et al (2007) extended this model allowing the server
deadline to be di↵erent from its period. Fisher and Dewan (2009) proposed an
approximation algorithm to test the schedulability of a task set over a periodic
resource.

More recently, some authors have addressed the problem of specifying an
interface for applications executed upon multiprocessor systems, providing ap-
propriate tests to verify schedulability of applications over that interface.

One of such works is described in (Leontyev and Anderson, 2008), where the
authors proposed to use only the overall bandwidth requirement w as interface
for soft real-time applications. The authors proposed to allocate a bandwidth
requirement of w onto bwc dedicated processors, plus an amount of w � bwc
provided by a periodic server globally scheduled onto the remaining processors.

4 Artem Burmyakov et al.

An upper bound of the tardiness of tasks scheduled on such an interface was
provided.

Shin et al (2008) proposed the multiprocessor periodic resource model
(MPR) that specifies a period, a budget and maximum level of parallelism
of the resource provisioning. Khalilzad et al (2012) later extended the MPR
model, relaxing the assumption of fully synchronized virtual processors. Since
our work is a generalization of the MPR, in Section 2.2 we describe the MPR
in greater details.

Chang et al (2008) proposed to partition the resource available from a
multiprocessor by a static periodic scheme. The amount of resource is then
provided to the application through a contract specification.

Bini et al (2009) proposed the Parallel Supply Function (PSF) interface
of a virtual multiprocessor. This interface is designed to tightly capture the
amount of resource provided by a virtual platform for very general supply
mechanisms, which are not necessarily periodic. In their approach the authors
do not reason on how to compute the interface parameters that guarantee the
schedulability of a real-time application.

Lipari and Bini (2010) described an entire framework for composing real-
time applications running over a multiprocessor. However, their proposed in-
terface was extremely trivial.

Burmyakov et al (2012) extended the multiprocessor periodic resource
model (MPR) by specifying the minimal budgets for each level of parallelism.
However, the assumption of integer budget values made the problem to com-
pute an interface hardly tractable, even for a task set with a low utilization.

1.2 Contributions of the paper

The Multiprocessor Periodic Resource model (MPR) is one of the simplest
interface models for the multiprocessor systems.

In this paper we propose its extension, the Generalized Multiprocessor
Periodic Resource model (GMPR), which generalizes the MPR, reducing its
pessimism while keeping its simplicity. To analyze schedulability over GMPR,
we reuse the schedulability test proposed by Bini et al (2009). We first improve
this test by minimizing its run-time, and then, based on it, we derive several
methods to compute the minimal GMPR which can guarantee a given set
of tasks. We implement the algorithms to compute the GMPR in the Matlab
environment. Then, we evaluate the GMPR against the MPR model to confirm
a reduced resource utilization of GMPR, and therefore a significant reduction
in the level of pessimism.

The remainder of the paper is organized as follows. In Section 2 we briefly
review the concepts and notations related to our research. In particular, we
illustrate the drawbacks of the existing interface models by the examples of
the PSF and the MPR models. In Section 3 we propose a new interface model
called GMPR. Then, in Section 4 we adapt the schedulability test by Bini et al
(2009) over a virtual resource abstracted by a GMPR interface. In Section 5 we

Compositional Multiprocessor Scheduling: the GMPR interface 5

develop an algorithm to compute a feasible GMPR for a given task set. Later,
in Section 6, we propose a technique to schedule GMPR interfaces. Finally, in
Section 7 we evaluate the pessimism of GMPR against the MPR model.

2 Background on multiprocessor interfaces

In the past, there have been some proposals for multiprocessor interfaces.
This section illustrates three of them (Leontyev and Anderson, 2008; Shin
et al, 2008; Bini et al, 2009). The interfaces are ordered by their increasing
complexity and, consequently, by increasing accuracy of the guarantee test for
applications running over the interface.

2.1 The multiprocessor bandwidth interface

Leontyev and Anderson (2008) proposed to use only the overall bandwidth
requirement w (using their original notation) as an interface for soft real-time
tasks. Being a multiprocessor interface, it is well acceptable to have w > 1. To
schedule a task set, the authors proposed to allocate a bandwidth requirement
of w onto bwc fully dedicated processors, plus the bandwidth of w � bwc
provided by a periodic server globally scheduled onto the remaining processors
(see Fig. 1).

€

Π

€

2Π

€

3Π

€

t

Concur.(w− w"# $%()Π

0

w!" #$
dedicated(
processors(

wΠ

€

Π

€

2Π

€

3Π

€

t

Concur.(

w− w"# $%()Π

0

w!" #$
dedicated(
processors(

wΠ

Periodic(server(

Periodic(server(

Fig. 1 The resource allocation over MBI with the bandwidth w

We refer the interface model of Leontyev and Anderson (2008) as the mul-
tiprocessor bandwidth interface (MBI) and denote it as

hw,⇧i,

where w is the interface bandwidth and ⇧ is the server period. Initially de-
signed for soft real-time tasks, the MBI model can easily be extended for hard
real-time systems. The advantage of the MBI is its simplicity and the reduced
pessimism in the resource abstraction compared to many other existing mod-
els.

At the same time, there is a strong limitation of the MBI model as it re-
quires bwc fully dedicated processors. In a general case of the compositional
scheduling, such a requirement cannot be always guaranteed by a virtual ex-
ecution platform, for extended periods of time. To overcome this limitation,

6 Artem Burmyakov et al.

other di↵erent interface models have been introduced, as described in the next
sections.

2.2 The multiprocessor periodic resource model (MPR)

The multiprocessor periodic resource model (MPR) (Shin et al, 2008) is an-
other simple resource abstraction. Its definition is given below.

Definition 1 A Multiprocessor Periodic Resource model (MPR) is modeled
by a triplet

h⇧,⇥,mi,
where ⇧ is the time period and ⇥ is the minimal resource supply provided
within each time interval [k⇧, (k+1)⇧), with k 2 N0, by at most m processors
at a time. Often we also say that m is the concurrency (or the degree of
parallelism) of the interface. The utilization of a MPR interface is the ratio
⇥

⇧

.

Since a MPR interface fixes only the aggregated parameters ⇧, ⇥ and m of
the supply pattern, any feasible allocation of ⇥ resource units per time period
⇧ with a parallelism m should preserve the schedulability of the underlying
task set. It is then necessary to find the worst-case resource allocation for the
MPR. Generalizing the result of Shin et al (2008), derived for a case of integer
⇥, the worst-case scenario for an arbitrary ⇥ is the one depicted in Fig. 2,
where time instant 0 denotes the beginning of the worst-case interval. Note
that in the MPR case the contribution of each processor to the interface is
⇥/m every period ⇧.

α"

1"

2Π"–"2(α+1)"

β"

Concur."

m"

€

Π

€

2Π

€

3Π

€

t0"

µ = Π,Θ, #m

€

Π

€

t

Concur."

Θ

Θ /m

m

0

€

ΠΠ−Θ m

Fig. 2 The worst-case resource allocation over the MPR h⇧,⇥,mi. Instant 0 denotes the
beginning of the worst-case interval.

2.3 Comparison of the MBI and MPR models

The MBI model dominates MPR in terms of overall resource required to sched-
ule an application: over the same time interval, MBI requires at most as much
resource as MPR. However, unlike MBI, an MPR interface can be also pro-
vided over a platform in which the processors are not fully available (possibly

Compositional Multiprocessor Scheduling: the GMPR interface 7

Table 1 An example of a task set.

i Ci Ti Di

1 1 30 30
2 4 40 40
3 11 50 50
4 15 60 60

due to the coexistence with other applications already consuming resource).
In fact, by increasing the interface parallelism m, the requirement ⇥/m on each
processor decreases, making it possible to fit an interface on partially available
platforms.

We illustrate this by an example. Consider a task set with the parameters
reported in Table 1, to be scheduled by global EDF (GEDF) over a virtual
platform. To compute interfaces, we apply the schedulability test of Lipari
and Bini (2010), which is described in details later in Section 4. By setting
the server period to ⇧ = 20, we determine that the minimal MBI interface,
guaranteeing the schedulability of the task set, requires 26 resource units every
⇧, while the MPR of the same concurrency m = 2 requires at least 30.8 units
(see Fig. 3).

MPR$

15.4

10.4
MBI$

6
20

Θ = 26 Θ = 30.8
Θ = 34.2

Θ = 52

020
m = 2
m = 3
m = 5

Π = 20

11.4

Fig. 3 Comparison of MBI and MPR

Let us now increase the MPR concurrency to m = 3. We immediately
obseve a reduction of resource to be provided by each virtual processor, from
15.4 to 11.4 units. For m = 5, the resource fraction decreases further to 10.4.
Notice, however, that the overall resource ⇥ increases with m.

2.4 The parallel supply function (PSF)

The parallel supply function (PSF) was proposed by Bini et al (2009) to char-
acterize the resource allocation in hierarchical systems executed upon a multi-
processor platform. This interface is designed to tightly capture the amount of

8 Artem Burmyakov et al.

resource provided by a virtual platform for very general supply mechanisms,
which are not necessarily periodic. As a drawback it is certainly quite compli-
cated to be handled. Without entering into all the details of the definition (that
can indeed be found in (Bini et al, 2009)), we recall here the basic concepts.

Definition 2 The Parallel Supply Function (PSF) interface of a multipro-
cessor resource is composed by the set of functions {Y

k

}m
k=1, where m is the

number of virtual processors and Y
k

(t) is the minimum amount of resource
provided in any interval of length t with a parallelism of at most k. The func-
tion Y

k

(t) is called the level-k parallel supply function.

To clarify this definition we propose an example. Consider that in the
interval [0, 11] the resource is provided by three processors according to the
schedule drawn in gray in Fig. 4.

10 2 3 4 5 6 7 8 9 10 11

Fig. 4 From a resource schedule to the PSF interface

In this case Y1(11) = 10 because there is always at least one processor avail-
able in [0, 11] except in [8, 9]. Then Y2(11) = 16; that is found by summing
up all the resources except one with parallelism 3 (provided only in [4, 5]). Fi-
nally, Y3(11) = 17; that is achieved by summing all the resources provided in
[0, 11]. In general, the parallel supply functions are also computed by sliding
the time window of length t and by searching for the most pessimistic sce-
nario of resource allocation. This minimization is somehow equivalent to the
one performed on uni-processor hierarchical scheduling (Feng and Mok, 2002;
Lipari and Bini, 2003; Shin and Lee, 2003) for computing the supply function
of a virtual resource.

Since the PSF can be computed for any possible resource allocation scheme,
it is possible to compute it also for the MPR interface. The computation of
the PSF interface {Y

k

}m
k=1 of a MPR enables the adaptation of schedulability

tests developed over a PSF interface to a MPR interface. More details about
the schedulability test will be provided in Section 4.

3 The generalized multiprocessor periodic resource (GMPR) model

The main drawback of the MPR interface is that it may require more com-
putational capacity than needed, and therefore it has an undesirable level of
pessimism in terms of resource allocation. Consider the task set with the pa-
rameters as depicted in Table 2, to be scheduled by global EDF (GEDF) over

Compositional Multiprocessor Scheduling: the GMPR interface 9

Table 2 An example of a task set.

i Ci Ti Di

1 6 40 40
2 13 50 50
3 29 60 60
4 27 70 70

the MPR interface. In that table, for each task we provide its execution time,
C

i

, its period, T
i

, and its deadline, D
i

.
After setting the period of the interface ⇧ = 15, we compute a MPR

interface h⇧,⇥,mi that can guarantee the task set. To check the schedulability,
we reuse the PSF-based test proposed by Bini et al (2009) (see Section 4 for
details). Based on this test, we determine that the minimum feasible value of
resource units to guarantee the schedulability is ⇥ = 39. Notice that there is
quite a significant gap between the utilization of the interface ⇥

⇧

= 2.6 and

the utilization of the task set
P

i

Ci
Ti

= 1.28.
As we will show in greater detail in the next sections, our proposed interface

requires only 34 resource units per period, meaning that it has a utilization of
34
15 = 2.267 for the given example.

3.1 Model description

The main reason for the pessimism of the MPR is that the worst-case of
the supply (Fig. 2) must be very conservative, if the only information in the
interface is that an overall budget ⇥ is provided every⇧. We propose to rectify
this problem, as described below.

Definition 3 We define the Generalized Multiprocessor Periodic Resource
interface model (GMPR) as

h⇧, {⇥1, . . . ,⇥m

}i,

where ⇧ is the time period and ⇥
k

is the minimal resource supply provided
within each time interval [`⇧, (`+ 1)⇧), ` 2 N0, with a degree of parallelism
of at most k. The values of ⇥

k

must satisfy the following constraints for any
k = 1, . . . ,m (for convenience we denote ⇥

k

= 0, k  0):

0  ⇥
k

�⇥
k�1  ⇧

⇥
k+1 �⇥

k

 ⇥
k

�⇥
k�1.

(1)

We assume that the interface parameters ⇧ and ⇥1, . . . ,⇥m

belong to R.
The “degree of parallelism” of a resource supply at time instant t, is the

number of processors providing the resource at that instant. For example, an
application which may have at most ` threads in parallel will not ever benefit
from having a resource provided by `+1 processors simultaneously. Hence, for

10 Artem Burmyakov et al.

such an application, it does not make sense to have ⇥
`+1 strictly larger than

⇥
`

, since the extra amount of resource ⇥
`+1 � ⇥

`

is provided at a too high
parallelism that the application never exhibits.

The motivation for the constraints in Definition 3 is the following:

– ⇥
k

� ⇥
k�1, because the overall supply at higher parallelism cannot de-

crease;
– ⇥

k

�⇥
k�1  ⇧, because the increment of supply at parallelism k (that is

⇥
k

�⇥
k�1) cannot exceed the length of the period;

– ⇥
k+1 � ⇥

k

 ⇥
k

� ⇥
k�1, because the increment of supply at parallelism

k + 1 (that is ⇥
k+1 � ⇥

k

) should not exceed the increment of supply at
parallelism k (that is ⇥

k

�⇥
k�1). Otherwise some of the supply provided

at parallelism k + 1 must instead be available at parallelism k.

Θ2
Θ3

Θ3 −Θ2

Π

0 ≤Θ3 −Θ2 ≤ Π

Θ2 −Θ1

Θ3 −Θ2 ≤Θ2 −Θ1

Θ3 −Θ2

Fig. 5 Illustration of the constraints in the GMPR definition.

Fig. 5 illustrates an example of a resource supply over a GMPR interface
with ⇧ = 6, ⇥1 = 5, ⇥2 = 9, and ⇥3 = 12.

A valid GMPR interface should guarantee the schedulability of a task set:
any resource allocation compliant with the GMPR specification has to guar-
antee that all task deadlines are met.

The proposed GMPR interface model generalizes both MPR and MBI. In
fact, a MPR interface h⇧,⇥,mi is equivalent to a GMPR h⇧, {⇥1, . . . ,⇥m

}i
with

⇥
k

=
k

m
⇥, k = 1, . . . ,m,

and a MBI interface hw,⇧i is equivalent to a GMPR with

⇥
k

= k⇧, k = 1, . . . , bwc
⇥dwe = w⇧.

3.2 Parallel supply functions of GMPR

To borrow the schedulability tests developed over the PSF interface (Bini et al,
2009), we compute the parallel supply functions {Y

k

(t)}
k=1,...,m for the GMPR

specification.

Compositional Multiprocessor Scheduling: the GMPR interface 11

€

0
…"

Concur.(

pΠΠ 2Π t

θi −θi−1
m

1
tm
* t1

*t2
*ti

*...

T = {t1
*, t2

*,..., tm
* }, ti

* =θi −θi−1, θ0 = 0

i

k

€

0
…"

Concur.(

tpΠ

supplyk (t)

Θk

Π 2Π t
Fig. 6 The worst-case resource allocation over GMPR h⇧, {⇥1, . . . ,⇥m}i (top) and the
definition of the supplyk(t) function (bottom) proposed by Burmyakov et al (2012).

Burmyakov et al (2012) proposed to compute the PSF using a classical
approach in hierarchical scheduling. In that work the authors considered the
worst-case scenario of the resource supply (depicted in Fig. 6) and defined
supply

k

(t) as the amount of resource available in [0, t] by at most k concurrent
processors (see Fig. 6). Then, the PSF Y

k

(t) was computed as

Y
k

(t) = min
t02T

(supply
k

(t+ t0)� supply
k

(t0)) ,

with T = {⇥
i

�⇥
i�1|i = 1, . . . , k} being the set of time instants at which the

supply by some processor ends.
Instead of the above mentioned approach, we now propose a significantly

more e�cient method to compute the Parallel Supply Functions Y
k

(t). We
stress that this method is also applicable to the classical problems of hierar-
chical scheduling over a single processor (Lipari and Bini, 2003; Shin and Lee,
2003), as PSF is a generalization of the uni-processor supply function.

To compute the PSF Y
k

(t), let us first introduce an auxiliary function s
k

(t)
over t 2 [0,⇧]. We define s

k

(t) as the overall amount of resource provided
over the pattern of Fig. 7, in a time interval [0, t]. The function s

k

(t) has the
property, formulated in the next lemma.

Lemma 1 Let s
k

: [0,⇧] ! R be defined as

s
k

(t) =
kX

i=1

(t� (⇧ � (⇥
i

�⇥
i�1)))0 . (2)

Then, for any values t1, t2 2 [0,⇧], we have

s
k

(t1) + s
k

(t2) � 2 s
k

✓
t1 + t2

2

◆
. (3)

12 Artem Burmyakov et al.

Concur.(

...

Π0 t1
t

t2 − t1
2

t1 + t2
2

t2 − t1
2

t2

Concur.(

1

k
...

Π0 t

sk (t)

t

k

1

Fig. 7 Properties of the sk(t) function.

Proof: Consider the resource allocation over the time interval [t1, t2] of Fig. 7.
Time instant t = t1+t2

2 is the middle of this interval. Due to the alignment of
the resource blocks to the right side, the resource in [t1,

t1+t2
2] does not exceed

the resource in [t1+t2
2 ; t2]. It follows that

s
k

✓
t1 + t2

2

◆
� s

k

(t1)  s
k

(t2)� s
k

✓
t1 + t2

2

◆
,

what leads us to (3).
The next theorem determines the worst-case scenarios of the resource sup-

ply which are then used to compute Y
k

(t).

…" …"

Π

pevenΠ

…" …"

poddΠ
2

t
reven

peven = 2 t 2Π"# $%

reven =1 2 t − pevenΠ()

rodd poddΠ

podd = 2 (t −Π) 2Π#$ %&+1

rodd =1 2 t − poddΠ()

k

1

1

kΘk 2

Θk

Seven :

Sodd :

pevenΠ
2

0

0

reven

rodd

3Π
2

Π
2

Fig. 8 The worst-case resource allocation patterns Seven and Sodd over GMPR
h⇧, {⇥1, . . . ,⇥m}i.

Theorem 1 The worst-case amount of resource provided over a GMPR inter-
face h⇧, {⇥1, . . . ,⇥m

}i in an arbitrary time interval of length t is the minimum
among the resources provided in [� t

2 ,
t

2] by any of the two patterns Seven and
Sodd depicted in Fig. 8.

Compositional Multiprocessor Scheduling: the GMPR interface 13

Proof: Let supply
k

(S, t) denote the resource provided by an arbitrary scenario
S in the time interval

⇥
� t

2 ,
t

2

⇤
(of length t) at concurrency k. We next consider

two cases depending on the interval length t: t  ⇧ and otherwise.
We recall that, from Definition 3 of GMPR, there always exists a time

instant t⇤ such that the resource provided at concurrency k over each interval
[t⇤+(p�1)⇧, t⇤+p⇧], p 2 Z, equals to ⇥

k

. We refer t⇤ as the replenishment
instant of a GMPR interface, and the time intervals [t⇤ + (p� 1)⇧, t⇤ + p⇧]
are its replenishment cycles.

Case 1: t  ⇧. There always exists a replenishment instant t⇤ 2
⇥
�⇧

2 ,
⇧

2

⇤

such that the resource provided in both intervals [t⇤ �⇧, t⇤] and [t⇤, t⇤ +⇧]
is ⇥

k

each. Let us assume that t⇤ � 0; the proof for t⇤ < 0 is done by analogy.
As t⇤ 2 [0, ⇧

2] and
t

2 2 [0, ⇧

2], the following two cases are possible:

0  t⇤  t

2
 ⇧

2

0  t

2
 t⇤  ⇧

2
.

Each of these cases is considered below.
Case 1a: 0  t⇤  t

2  ⇧

2 . Let us transform the scenario S into S0 by
moving left any resource provided before t⇤ and by moving right any resource
provided after t⇤, as depicted in Fig. 9. Since t⇤ 2 [� t

2 ,
t

2], such a transforma-
tion can only move the resource out of the time interval [� t

2 ,
t

2], so that

supply
k

(S, t) � supply
k

(S0, t).

Time%interval% Allocated%supply%

−t 2, t*"# $%

t*, t 2!" #$

sk t 2+ t
*()

sk t 2− t
*()

0 t*

t 2+ t*

t* +Π−t 2 t 2

t 2− t*

sk t 2+ t
*() sk t 2− t

*()

Fig. 9 Scenario S0 for case 1a: 0  t⇤  t
2  ⇧

2

To analyze the resource supply over S0, we now employ the auxiliary func-
tion s

k

(t) introduced in Lemma 1. From Fig. 9, it follows that

supply
k

(S0, t) = s
k

✓
t

2
+ t⇤

◆
+ s

k

✓
t

2
� t⇤

◆
.

Applying condition (3) to the RHS of the equation above, we get that

supply
k

(S0, t) � 2s
k

✓
t

2

◆
= supply

k

(Seven, t) ,

14 Artem Burmyakov et al.

where Seven is the resource pattern depicted in Fig. 8.
Case 1b: 0  t

2  t⇤  ⇧

2 . Let us transform the scenario S into S0 by
moving out of the time interval [� t

2 ,
t

2] as much resource as possible (see
Fig. 10), so that

supply
k

(S, t) � supply
k

(S0, t).

0 t*−t 2 t 2 Π 2t* −Π

sk (t)

Fig. 10 Scenario S0 for case 1b: 0  t
2  t⇤  ⇧

2

From Fig. 10, it follows that

supply
k

(S0, t) � s
k

(t) = s
k

(t) + s
k

(0) � 2s
k

✓
t

2

◆
= supply

k

(Seven, t) ,

where the inequality holds due to Lemma 1.

The proof for t⇤  0 is done by analogy to cases 1a, 1b. Thus, Seven is the
worst-case scenario for any t  ⇧.

Case 2: t > ⇧. From any scenario S of resource supply, let us transform
it into S0 by moving left any resource provided before time instant 0 and by
moving right any resource provided after 0. Since such a transformation can
only move the resource out of the interval, it must again be that

supply
k

(S, t) � supply
k

(S0, t).

For S0, let us decompose the interval [� t

2 ,
t

2] into the three sub-intervals
[� t

2 , t
⇤], [t⇤, t⇤ + p⇧], and [t⇤ + p⇧, t

2] as shown in Fig. 11, where t⇤ denotes
the first replenishment instant after � t

2 , and p 2 N is the number of full
replenishment cycles in [� t

2 ,
t

2].

0 t 2−t 2 t*

k
...
1

t* + pΠ

sk t 2+ t
() sk t 2− t + pΠ()()pΘk

Fig. 11 Scenario S0 for case 2: t > ⇧

Compositional Multiprocessor Scheduling: the GMPR interface 15

0
1
2
3
4
5
6
7

Π 2Π 3Π 4Π 5Π 6Π 7Π t

p, peven, podd

peven = 2 t
2Π
"

#"
$

%$

podd = 2 t −Π
2Π

#

$#
%

&%
+1

p = t −Π
Π

#

$#
%

&%

p = t
Π

"

#"
$

%$

Fig. 12 Comparison of p, peven, podd.

It follows that

p 2
⇢�

t�⇧

⇧

⌫
,

�
t

⇧

⌫�
,

which can also be written as p 2 {peven, podd} (see Fig. 12 for a graphical
interpretation), with

peven = 2

�
t

2⇧

⌫
podd = 2

�
t�⇧

2⇧

⌫
+ 1.

The resource supply
k

(S0, t) in the interval [� t

2 ,
t

2] is the sum of resource
available over the three considered sub-intervals (see Fig. 11), so that

supply
k

(S0, t) = s
k

✓
t

2
+ t⇤

◆
+ p⇥

k

+ s
k

✓
t

2
� (t⇤ + p⇧)

◆

� p⇥
k

+ 2s
k

✓
t� p⇧

2

◆
,

where the inequality holds due to Lemma 1. In case p = peven, then the equation
above turns into

supply
k

(S0, t) � supply
k

(Seven, t),

otherwise, if p = podd, then

supply
k

(S0, t) � supply
k

(Sodd, t).

Thus, we conclude that no other scenario S exists providing less resource
than Seven and Sodd.

Theorem 1 determines that the worst-case pattern for the resource supply
of a GMPR interface is either Sodd or Seven. The next corollary uses such a
result to compute the PSF of a GMPR interface.

16 Artem Burmyakov et al.

Corollary 1 The PSF function Y
k

(t) for GMPR is computed as

Y
k

(t) = min
�
Y even

k

(t), Y odd

k

(t)
�
, (4)

where Y even

k

and Y odd

k

denote the resource provided by the patterns Seven and
Sodd depicted in Fig. 8, computed as

Y even

k

(t) = peven ⇥
k

+ 2
kX

i=1

(reven �⇧ +⇥
i

�⇥
i�1)0 (5)

peven = 2

�
t

2⇧

⌫
(6)

reven =
1

2
(t� peven ⇧) (7)

and

Y odd

k

(t) = podd ⇥
k

+ 2
kX

i=1

�
rodd �⇧ +⇥

i

�⇥
i�1

�
0

(8)

podd = 2

�
t�⇧

2⇧

⌫
+ 1 (9)

rodd =
1

2

�
t� podd ⇧

�
. (10)

As an example, in Fig. 13 we illustrate the 4 parallel supply functions
{Y1(t), . . . , Y4(t)} of the GMPR interface h7, {6, 11, 15, 17}i. At the bottom of
the figure we also represent the worst-case resource patterns that originate the
parallel supply functions.

Compositional Multiprocessor Scheduling: the GMPR interface 17

0 5 10 15 20 25
0

10

20

30

40

50

60
PSFs for GMPR <7, {6 11 15 17}>

t

Sb
f(t
)

Y4(t)

Y2(t)

Y1(t)

Y3(t)

0714 7 14

Concur.(

1

4

2
3

3,5

t

10,5 10, 53,50
1

4

2
3

t

1
2
2,5
3

6
5
4
2

17

Fig. 13 The PSF (top) and the worst-case supply patterns (bottom) of the GMPR interface
h7, {6, 11, 15, 17}i. The bold points indicate the slope change of the PSF functions.

3.3 The lower and the upper bounds for Y
k

(t)

We now propose a lower and an upper bound to Y
k

(t). These bounds will be
later exploited in Section 5.3 to reduce the time required to compute a GMPR
interface for a given task set.

The supply functions Y even

k

(t), Y odd

k

(t) defined by equations (5), (8) can be
equally expressed as

Y even

k

(t) = peven ⇥
k

+ 2s
k

(reven)

Y odd

k

(t) = podd ⇥
k

+ 2s
k

(rodd),
(11)

with s
k

(t) defined by (2), and peven, reven, podd, rodd defined by (6), (7), (9),
and (10), respectively.

We now observe that the function s
k

(t) can be lower bounded by the func-
tion s

k

(t) defined as (see also Fig. 14)

s
k

(t) � s
k

(t) = (⇥
k

� k (⇧ � t))0 . (12)

18 Artem Burmyakov et al.

Concur.(

1

k
...

Π0 t

sk (t)

t

Concur.(

1

k
...

Π0 t

sk (t)

t

Concur.(

1

Θk Π#$ %&...

Π0 t

sk (t)

t

Fig. 14 The lower and upper bounds sk(t), sk(t) for the supply function sk(t). The overall
supply allocated over [0; ⇧] is ⇥k.

…" …"

Π

pevenΠ
t

reven
k

1
pevenΠ 20

Y k
even (t) :

…" …"

3Π 2 poddΠ 2Π 2

rodd poddΠ

1

k
Y k

odd (t) :

0

Θk

reven

Θk

2

rodd

−t 2

slope: k
2Θk

Θk

0

Resource(

tt0

t0 = 2 Π−
Θk

k
$

%
&

'

(
)

slope: Θk

Π

Y k (t) =
Θk

Π
t − t0()

Y k
odd (t)Y k

even (t)

Y k (t)

Fig. 15 The lower bound for Yk(t).

Substituting (12) into (11), we derive the following lower bounds for Y even

k

(t),
Y odd

k

(t) denoted as Y even

k

(t), Y odd

k

(t):

Y even

k

(t) = peven ⇥
k

+ 2 (⇥
k

� k (⇧ � reven))0 (13)

Y odd

k

(t) = podd ⇥
k

+ 2
�
⇥

k

� k
�
⇧ � rodd

��
0
. (14)

The bounds Y odd

k

(t), Y even

k

(t) are plotted in Fig. 15. Considering equa-
tion (4) and Fig. 15, we conclude that a valid lower bound for Y

k

(t) is Y
k

(t)

Compositional Multiprocessor Scheduling: the GMPR interface 19

defined as

Y
k

(t) =
⇥

k

⇧
t� 2

⇥
k

⇧

✓
⇧ � ⇥

k

k

◆
. (15)

The upper bound Y
k

(t) for Y
k

(t) is derived in a similar way. First, we
observe that the function s

k

(t) is upper bounded by the function s
k

(t) depicted
in Fig. 14. Then, substituting the expression for s

k

(t) into (11), we derive

the upper bounds Y
even

k

(t), Y
odd

k

(t) for Y even

k

(t), Y odd

k

(t), and in the end we
determine that

Y
k

(t) =
⇥

k

⇧
t, (16)

as
Y

k

(t) � max
⇣
Y

even

k

(t), Y
odd

k

(t)
⌘
.

4 Schedulability over the GMPR interface

The GMPR interface describes the amount of computing resources provided to
an application. We can then formulate a schedulability test over the GMPR.

As schedulability test for the application, we choose the extension of the
test by Bertogna et al (2009) to the PSF interface developed by Bini et al
(2009). We choose this condition because it applies to several di↵erent appli-
cation schedulers such as global EDF or global FP, although it assumes con-
strained deadline tasks, i.e. for all tasks ⌧

i

, D
i

 T
i

. While choosing other tests
like the one derived in (Baruah et al, 2010) would be possible, the proposed
formulation has the advantage of highlighting the constraint on the interface.
Thanks to the lossless transformation of a GMPR interface into a PSF (see
Section 3.2), we can apply directly the schedulability condition developed over
PSF. Below we report, for completeness, the schedulability condition in the
simpler expression proposed in (Lipari and Bini, 2010).

Theorem 2 (Theorem 1 in (Lipari and Bini, 2010)) A set of sporadic
tasks T = {⌧1, . . . , ⌧n} is schedulable on a resource modeled by the PSF func-
tions Y1(t), . . . , Ym

(t), if
^

i=1,...,n

_

ki=1,...,m

k
i

C
i

+W
i

 Y
ki(Di

), (17)

where W
i

is the maximum interfering workload that can be experienced by task
⌧
i

in the interval [0, D
i

], defined as

W
i

=
nX

j=1,j 6=i

✓�
D

i

T
j

⌫
C

j

+min

⇢
C

j

, D
i

�
�
D

i

T
j

⌫
T
j

�◆
, (18)

if the application tasks are scheduled by global EDF. Instead if the application
tasks are scheduled by global FP

W
i

=
X

j2hp(i)

W
ji

, (19)

20 Artem Burmyakov et al.

D1 D2 D3

Resource(

Y1(t)

Y2 (t)

Y3(t)

Wi

:Wi + kiCi

Di

Ci

Ci

…"

1

2

ki

t0
(a) Nota-
tion

Wi

:Wi + kiCi

Di

Ci

Ci

…"

1

2

ki

D1 D2 D3

Resource(

Y1(t)

Y2 (t)

Y3(t)

t0
(b) Test is true

D1 D2 D3

Resource(

Y1(t)

Y2 (t)

Y3(t)

t0
(c) Test is false

Fig. 16 Graphical interpretation of the PSF-based schedulability test

where hp(i) denotes the set of indices of tasks with higher priority than i, and
W

ji

is the amount of interfering workload caused by ⌧
j

on ⌧
i

, that is

W
ji

= N
ji

C
j

+min {C
j

, D
i

+D
j

� C
j

�N
ji

T
j

} (20)

with N
ji

=
j
Di+Dj�Cj

Tj

k
.

To better understand the schedulability test over PSF of Theorem 2, we
illustrate it graphically in Fig. 16. In this example we consider a task set T
composed by n = 3 tasks. Each task ⌧

i

has an amount of interference W
i

,
properly determined according to the local scheduling algorithm. For each
task ⌧

i

, we draw a dashed vertical line at t = D
i

. Along this line we represent
the quantity W

i

denoted as a white dot, and the quantities W
i

+ k
i

C
i

, with
k
i

2 {1, 2, 3}, denoted as black dots. These dots represent the LHS of (17).
Then we draw the PSF functions Y1(t), Y2(t), Y3(t) as bold continuous lines.
In accordance to condition (17), task ⌧

i

is schedulable if the k-th dot is not
above the Y

k

, for some k.
Now consider the case depicted in Fig. 16(b). In that case T is schedulable

as the condition (17) turns valid for k1 2 {3}, k2 2 {2, 3}, and k3 2 {1}. In
Fig. 16(c), instead, we show a case when ⌧1 cannot be guaranteed by the test
of Theorem 2.

Later we exploit such a schedulability condition to compute the GMPR
parameters ⇥1, . . . ,⇥m

for a given task set.

4.1 Simplification of the schedulability condition

The schedulability condition of Theorem 2 has the complexity of O(nm) since
it requires to check if for each task ⌧

i

2 T exists any value k
i

2 {1, . . . ,m}
satisfying the inequality (17). However, we can shrink the set of values of k

i

to

Compositional Multiprocessor Scheduling: the GMPR interface 21

be tested without making any pessimistic assumption, by exploiting the linear
upper bounds of the PSF functions.

The PSF function Y
k

(t) can be bounded from above by

Y
k

(t)  k t. (21)

Substituting Eq. (21) into the condition (17), we get k
i

C
i

+ W
i

 k
i

D
i

and
thus

k
i

� W
i

D
i

� C
i

. (22)

Considering that k
i

is integer and by defining k
i

as

k
i

=

⇠
W

i

D
i

� C
i

⇡
, (23)

the schedulability condition (17) turns into

^

i=1,...,n

_

ki=ki,...,m

k
i

C
i

+W
i

 Y
ki(Di

). (24)

5 Determining the GMPR interface of an application

When an application T = {⌧1, . . . , ⌧n} is given, it is of key importance to select
an interface that can guarantee the timing constraints of the application and,
at the same time, requires the minimal amount of resource. In (Burmyakov
et al, 2012) we proposed an algorithm to generate a GMPR interface for T
assuming integer resource parameters. However, this assumption made the
problem hardly tractable even for a task set with a low utilization. If instead,
the interface parameters are assumed real-valued, the problem can be attacked
and solved more e�ciently.

Consider a set of sporadic tasks T = {⌧1, . . . , ⌧n} locally scheduled by
the global EDF or the global FP scheduler. In this section we describe a
method to compute a GMPR interface for T : For a specified period ⇧ and a
parallelism m we find the minimal real-valued resources ⇥1, . . . ,⇥m

such that
T is schedulable over the GMPR h⇧, {⇥1, . . . ,⇥m

}i, according to Theorem 2.
Below, in Section 5.1 we compute the minimal necessary parallelism for a

GMPR for a given application. Then, in Section 5.2 we compute the GMPR
resource ⇥

m

, and in Section 5.3 we derive a set of techniques to reduce the
computation time for ⇥

m

. Finally, in Sections 5.4 and 5.5 we generalize our
approach by iteratively computing the resources ⇥1, . . . ,⇥m

for all levels of
parallelism.

22 Artem Burmyakov et al.

5.1 Minimal necessary parallelism for GMPR

No valid GMPR interface may exist for an arbitrary small parallelism. Hence,
in Theorem 3 we propose a necessary and su�cient condition for the paral-
lelism of a GMPR, assuming Theorem 2 as schedulability test.

Theorem 3 Consider a set of sporadic tasks T = {⌧1, . . . , ⌧n} locally sched-
uled by the global EDF or the global FP. Then there always exists a feasible
GMPR interface for T with a parallelism m � max(k1, . . . , kn), with k

i

as
in (23). However, no GMPR can satisfy the schedulability condition (17) if
m < max(k1, . . . , kn).

Proof: To prove the existence of a GMPR with a parallelism at least m =
max(k1, . . . , kn), we show that µ = h⇧, {⇧, 2⇧, . . . ,m⇧}i is a valid GMPR
interface for T . According to Eq. (4), the PSF functions for µ are

Y
k

(t) = k t, k = 1, . . . ,m.

The schedulability condition (24) over µ turns into

^

i=1,...,n

_

ki=ki,...,m

k
i

C
i

+W
i

 k
i

D
i

.

For each ⌧
i

we set k
i

= k
i

, and check that the schedulability of T over µ holds:

⇠
W

i

D
i

� C
i

⇡
D

i

�
⇠

W
i

D
i

� C
i

⇡
C

i

+W
i

⇠
W

i

D
i

� C
i

⇡
(D

i

� C
i

) � W
i

⇠
W

i

D
i

� C
i

⇡
� W

i

D
i

� C
i

.

Thus, µ = h⇧, {⇧, 2⇧, . . . ,m⇧}i is a valid GMPR for T .
To prove the other direction of the implication, let us denote, without loss

of generality, by k = max(k1, . . . , kn) and by ` the task index such that k = k
`

.
If m < k, then the task ⌧

`

can never be guaranteed by (24).
According to Theorem 3, we can only compute a GMPR interface for T

with a parallelism m � max(k1, . . . , kn).

5.2 Minimization of the overall resource

When designing an interface of a given application, our primary target is the
minimization of the overall resource consumption ⇥

m

. Before formulating the
interface design as an optimization problem, let us denote D

⇥

all feasible

Compositional Multiprocessor Scheduling: the GMPR interface 23

resources ⇥1, . . . ,⇥m

satisfying the constraints in Definition (3) of GMPR, so
that:

(⇥1, . . . ,⇥m

) 2 D
⇥

()

8
><

>:

0  ⇥
k+1 �⇥

k

 ⇧

⇥
k+1 �⇥

k

 ⇥
k

�⇥
k�1

⇥
k

= 0, k  0.

(25)

Then we compute ⇥
m

subject to the schedulability test (24):

minimize ⇥
m

subject to

(⇥1, . . . ,⇥m

) 2 D
⇥

8i = 1, . . . , n, 9k
i

2
�
k
i

, . . . ,m

: Y

ki(Di

,⇥1, . . . ,⇥k1) � k
i

C
i

+W
i

.
(26)

To solve the optimization problem (26), we first have to exclude the 9-
quantifiers from it. Therefore, we propose to solve (26) for each possible com-
bination (k1, . . . , kn), with k

i

2 {k
i

, . . . ,m}, and then to choose the minimal
⇥

m

over all cases. Below we provide a detailed description of this approach.
Let us denote possible combinations (k1, . . . , kn) as Km

so that

K
m

=
�
(k1, . . . , kn)| ki = k

i

, . . . ,m

.

For a specific choice of (k1, . . . , kn) 2 K
m

the optimization problem (26) turns
into

minimize ⇥
m

subject to

(⇥1, . . . ,⇥m

) 2 D
⇥

8i = 1, . . . , n Y
ki(Di

,⇥1, . . . ,⇥ki) � k
i

C
i

+W
i

(27)

To solve (27), we employ the Matlab optimization toolbox. Let us denote
the solution of (27) as ⇥

m

(k1, . . . , kn), if any exists. Then we choose the
minimal ⇥

m

over K
m

as

⇥
m

= min
(k1,...,kn)2Km

⇥
m

(k1, . . . , kn) . (28)

For some combination (k1, . . . , kn) the optimization problem (27) may have
no feasible solution. However, from Theorem 3, there exists at least one case
(k1, . . . , kn) 2 K

m

such that (26) becomes feasible. Hence, the minimum of (28)
is well defined.

Next, in Section 5.3 we propose a method to reduce the run-time of the
optimization problem (28) by reducing the search space for the resources
⇥1, . . . ,⇥m

and shrinking the enumeration space K
m

.

24 Artem Burmyakov et al.

5.3 Search space for the GMPR resources

To reduce the search space for the GMPR resources ⇥1, . . . ,⇥m

, we first for-
mulate a set of preliminary constraints in Lemma 2.

Lemma 2 All feasible GMPR resources (⇥1, . . . ,⇥m

) 2 D
⇥

defined by (25)
satisfy the following constraints:

j < k) ⇥
k

 k

j
⇥

j

(29)

Proof: Let us decompose ⇥
k

as

⇥
k

=
k�1X

`=1

(⇥
`

�⇥
`�1) + (⇥

k

�⇥
k�1) . (30)

From (25), each feasible case (⇥1, . . . ,⇥m

) 2 D
⇥

satisfies the constraint

⇥
`

�⇥
`�1 � ⇥

k

�⇥
k�1 ` < k. (31)

Substituting (31) into (30) gives us

⇥
k

 k

k � 1
⇥

k�1. (32)

Applying mathematical induction to the expression above, we get (29):

⇥
k

 k

k � 1
⇥

k�1  k

k � 1

✓
k � 1

k � 2
⇥

k�2

◆


k

k � 1

k � 1

k � 2
. . .

✓
k � i+ 1

k � i
⇥

k�i

◆
=

k

k � i
⇥

k�i

(33)

with i = 1, . . . , k � 1.
Let T be a schedulable task set over a GMPR interface h⇧, {⇥1, . . . ,⇥m

}i
according to condition (24). For each task ⌧

i

, let us denote by k⇤
i

the smallest
k
i

, in {k
i

, . . . ,m}, for which the condition (24) is true. Below, we compute a
reduced search space for the GMPR resources ⇥1, . . . ,⇥m

by exploiting the
lower and the upper bounds for Y

k

(t) derived in Section 3.3:

Y
k

(t) � Y
k

(t) =
⇥

k

⇧
t� 2

⇥
k

⇧

✓
⇧ � ⇥

k

k

◆
(34)

Y
k

(t)  Y
k

(t) =
⇥

k

⇧
t. (35)

Consider a task ⌧
i

. The test (24) is false for any k
i

< k⇤
i

:

Y
ki(Di

) < k
i

C
i

+W
i

.

Compositional Multiprocessor Scheduling: the GMPR interface 25

Substituting the lower bound (34) for Y
k

(t) into the condition above, we get
the quadratic inequality

✓
2

k⇧

◆
⇥

k

2 +

✓
D

i

⇧
� 2

◆
⇥

k

� (k C
i

+W
i

) < 0

with a solution

⇥
k

⇤
=

k⇧

4

0

@
s✓

D
i

⇧
� 2

◆2

+
8

k⇧
(k C

i

+W
i

)�
✓
D

i

⇧
� 2

◆1

A ,

⇥
k

< ⇥
k

⇤
.

(36)

By applying Lemma 2, the constraint above yields the following upper
bound for the resource ⇥

k

denoted as ⇥
k

:

⇥
k

=

8
>>>>>>>><

>>>>>>>>:

⇧, k = k⇤
i

= 1,

min
⇣
⇥

k

⇤
,⇧

⌘
, k < k⇤

i

, k = 1,

min

✓
⇥

k

⇤
,

k

k � 1
⇥

k�1

◆
, k < k⇤

i

, k 6= 1,

k

k � 1
⇥

k�1, k � k⇤
i

, k 6= 1.

(37)

with ⇥
k

⇤
defined by (36).

The test (24) is true for k = k⇤
i

. Applying the upper bound (35) for Y
k

(t)
in (24), we get

⇥
k

⇤
i
� ⇧

D
i

(k⇤
i

C
i

+W
i

) , (38)

that, together with Lemma 2, yields the following lower bound for the resource
⇥

k

denoted as ⇥
k

:

⇥
k

=

8
>><

>>:

k

k⇤
i

⇥
k

⇤
i
, if k < k⇤

i

,

⇧

D
i

(k⇤
i

C
i

+W
i

) , otherwise.

(39)

Let us denote the search space for task ⌧
i

as S
⇥

(⌧
i

, k⇤
i

) so that

S
⇥

(⌧
i

, k⇤
i

) =
�
(⇥1, . . . ,⇥m

)| ⇥
k

 ⇥
k

 ⇥
k

,

where ⇥
k

, ⇥
k

are computed according to (39), (37). The resulting search space
for a task set T is then defined as

S
⇥

(T , k⇤1 , . . . , k
⇤
n

) = D
⇥

\

i=1,...,n

S
⇥

(⌧
i

, k⇤
i

), (40)

where D
⇥

denotes all feasible GMPR resources ⇥1, . . . ,⇥m

satisfying the con-
straint (25).

26 Artem Burmyakov et al.

Consequently, a case (k1, . . . , kn) 2 K
m

is feasible if it results in a non-
empty search space

S
⇥

(T , k1, . . . , kn) 6= ;, (41)

otherwise it can be excluded from K
m

. According to our experiments, this
approach drastically reduces the size of K

m

: the reduction is by more than
99,99% in an average case.

5.4 Iterative computation of the supply at lower parallelism

In Section 5.2 we computed the GMPR overall resource ⇥
m

, only. To complete
the GMPR specification, we now need to compute the remaining resources
⇥

m�1, . . . ,⇥1, which should be provided at lower concurrencies.
We propose to compute the resource ⇥

k

recursively, after computing the
resources ⇥

m

, . . . ,⇥
k+1. To do so, we simply update the optimization prob-

lem (26) by setting the objective function to minimize ⇥
k

, and by placing the
previously found values for ⇥

m

, . . . ,⇥
k+1 into the optimization constraints.

In this case, rather than repeating the enumeration of K
m

to solve the
optimization problem (26) for ⇥

k

, we can further shrink the enumeration space
by considering among the feasible cases (k1, . . . , kn) only those ones, which
yield the minimal value for ⇥

k+1. Hence the reduced enumeration space K
k

for ⇥
k

is given by the equation

K
k

✓ K
k+1 :

8(k1, . . . , kn) 2 K
k+1 : ⇥

k+1(k1, . . . , kn) = ⇥⇤
k+1 ! (k1, . . . , kn) 2 K

k

,

(42)

where ⇥⇤
k+1 denotes the found minimal value for ⇥

k+1.
The computation time for ⇥

k

is significantly lower compared to ⇥
k+1, what

is due to a shrunk enumeration space K
k

, and a lower number of optimization
variables.

5.5 Algorithm to compute GMPR

Finally, we conclude by proposing an algorithm that assigns the minimal
GMPR resources ⇥1, . . . ,⇥m

such that a given task set T is schedulable over
an interface. As a schedulability condition, we choose the one in (24). We recall
that the period ⇧ and the parallelism m for a searching GMPR are given.

Step 1: For each task ⌧
i

compute k
i

as defined in (23).
Step 2: Check whether the necessary condition for m (Theorem 3) is met:

m � max(k1, . . . , kn).

If the condition above is violated, report the nonexistence of a valid GMPR
interface for T with a specified m, and terminate the algorithm.

Compositional Multiprocessor Scheduling: the GMPR interface 27

Step 3: Generate the enumeration space K
m

such that

K
m

= {(k1, . . . , kn)| k
i

= k
i

, . . . ,m}

satisfying the condition (41).
Step 4: Compute ⇥

m

: for each case (k1, . . . , kn) 2 K
m

determine the search
space according to (40), solve the optimization problem (26), and then
choose the minimal ⇥

m

over K
m

.
Step 5: Compute ⇥

k

recursively after computing ⇥
m

, . . . ,⇥
k+1:

(a) Define K
k

from Eq. (42) so that any (k1, . . . , kn) 2 K
k+1 resulted in

the optimal ⇥
k+1 is included into K

k

.
(b) Substitute the computed values for ⇥

m

, . . . ,⇥
k+1 into the optimiza-

tion constraints of (26), and minimize ⇥
k

subject to these constraints.
Solve the resulting optimization problem over K

k

, and then choose the
minimal ⇥

k

.
Step 6: Follow the Step 5 to compute all the resources ⇥

m�1, . . . ,⇥1. In the
end, h⇧, {⇥1, . . . ,⇥m

}i is the sought-for interface for T having the mini-
mized resources ⇥1, . . . ,⇥m

.

Algorithm complexity. The complexity of the algorithm to compute a GMPR
interface depends on the complexity of the optimization problem (27). Due to
the presence of the PSF function Y

k

(t), which is non-convex, the optimiza-
tion problem (27) is non-convex. Although the complexity of such problems
remains to be an open problem in the literature, it is generally considered
as exponential, until the opposite is proved (Ausiello et al, 2008). Thus, the
resulting complexity of the proposed algorithm is exponential.

Customized computation of GMPR. We proposed an algorithm to compute
a GMPR interface having the minimized resources ⇥1, . . . ,⇥m

. At the same
time, our approach is easily extendable for computing a customized GMPR
interface, which meets specific user requirements (e.g. a constraint on the maxi-
mum resource fraction to be provided at each concurrency), rather than simply
having the minimized consumed resources. In this case the custom constraints
should be incorporated in the optimization problem (27).

6 Scheduling GMPR interfaces

Once the resource demand of each component is abstracted by an interface,
these interfaces should be scheduled upon a hardware platform. To sched-
ule GMPR interfaces, we now introduce a notion of interface tasks. A set of
interface tasks for a GMPR interface h⇧, {⇥1, . . . ,⇥m

}i is comprised of m
implicit-deadline (D = T) periodic tasks such that:

T 0 = {⌧ 01 = (C 0
1,⇧), . . . , ⌧

m

= (C 0
m

,⇧)}, (43)

where the execution time equals to

C 0
k

= (⇥
k

�⇥
k�1).

28 Artem Burmyakov et al.

(We set ⇥0 = 0 for convenience.)
The interface tasks in T 0 have an identical period T equal to the period of

a GMPR interface ⇧. Clearly, the overall resource demand of T 0 over a period
⇧ is

P
m

k=1 C
0
k

= ⇥
m

.
To schedule GMPR interfaces, we first transform each one into interface

tasks following (43), and then we employ any suitable policy to schedule the
resulting periodic tasks.

The notion of interface tasks supports another important property for hier-
archical systems, which is called composability: by the given GMPR interfaces
of child components we can compute a GMPR interface of a parent component.

7 Evaluation of GMPR

In this section, we compare the amount of resource used by GMPR and MPR
to feasibly schedule randomly generated task sets. For each experiment set-
ting, we compute the minimal GMPR and MPR interfaces by employing the
algorithm described in Section 5.5.

The algorithm to compute interfaces and the scenarios of the experiments
have been implemented in Matlab, and they are publicly available at https:
//sites.google.com/site/artemburmyakov/home/papers.

7.1 Task set generation

Synthetic task sets T = {⌧
i

= (C
i

, T
i

)} are randomly generated by specifying
the total task set utilization UT , the maximum individual task utilization U

max

,
and the ratio between the maximum and the minimum periods T

max/T
min

. In our
random generation method, the number of tasks in T is not fixed. Instead,
it is implicitly determined as the total utilization of T reaches the specified
value UT .

The minimum period T
min

is set to 20 and all task periods are randomly
generated so that the specified ratio T

max/T
min

is not violated.

7.2 Experiments: the resource gain

We evaluate the resource gain of GMPR over MPR for the parameters listed
in Table 3. In each experiment, we compare the interfaces utilization as one
parameter varies, while the rest are left equal to the default values reported
in Table 3.

In each experiment, we randomly generate at least 200 task sets, and then
we plot the average interface utilizations ⇥m

⇧

among these task sets, as well as
the relative GMPR gain.

For each generated task set, the interface parallelism is set to

m = m
min

+�m,

Compositional Multiprocessor Scheduling: the GMPR interface 29

Table 3 Key parameters: default values

Parameter Default value

Task set utilization, UT 2.5

Maximum individual task utilization, U
max

0.3

Minimum task period, T
min

20

Ratio between the maximum and the minimum
task periods, T

max/T
min

10

Interface period, ⇧ 20

Parallelism increment, �m 3

wherem
min

is the minimal parallelism defined by Theorem 3, and the increment
�m is varied through the experiments.

The gain of GMPR over MPR is computed as

gain
GMPR

=
U
MPR

� U
GMPR

U
GMPR

,

where U
MPR

denotes the MPR utilization ⇥

⇧

, and U
GMPR

is the GMPR utiliza-

tion ⇥m
⇧

.

Varying interface period ⇧

First, we analyze the GMPR gain for a varying interface period ⇧. The result-
ing utilizations of both GMPR and MPR interfaces are plotted in Fig. 17(a).
For such settings the average GMPR gain is in the order of 5–10%, and it
increases for the increasing ⇧.

The observed trend for gain increase is justified by an expanding search
space for the GMPR resources together with ⇧, which results in a higher
degree of freedom for GMPR over MPR.

In Fig. 17(b) we also illustrate the gain variability using a boxplot diagram
(McGill et al, 1979). In this diagram, the central horizontal mark on each box
is the median for the observed gain, the horizontal edges of the box are the
25th and the 75th percentiles, the dashed lines extend to the most extreme
gains covering 99.3% observed cases, and the outliers are depicted individually
as crosses.

30 Artem Burmyakov et al.

0 1 3 5 7 9 11 13 15 17 19 21
10

10.5

11

11.5

Interface period, Π

In
te

rfa
ce

 u
til

iz
at

io
n,

Θ

m
 /
Π

GMPR
MPR

(a) Interface utilizations

0

5

10

15

20

Interface period, Π

G
ai

n
of

 G
M

PR
 o

ve
r M

PR
,

 %

 21 19 17 15 13 11 9 7 5 3 10.01

(b) GMPR gain over MPR

Fig. 17 Case: UT = 2.5, U
max

= 0.3, T
max

T
min

= 10, �m = 3.

Varying maximum task utilization U
max

In the next experiment, we explore the dependency of the interface utilization
on the weight of individual tasks, by varying the maximum task utilization
U
max

. The results are reported in Fig. 18. The interface utilization is minimal
for U

max

closer to 0.5–0.6, and it drastically increases for U
max

tending to 0 or
1. We believe that this behavior is influenced by our choice of schedulability
test (Lipari and Bini, 2010) used to compute interfaces.

The GMPR gain itself is maximized for lower U
max

, reaching up to 10–15%,
and the gain vanishes as U

max

tends to 1.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
10

11

12

13

14

15

Maximum task utilization, Umax

In
te

rfa
ce

 u
til

iz
at

io
n,

Θ

m
 /
Π

GMPR
MPR

(a) Interface utilizations

0

5

10

15

20

25

30

35

Maximum task utilization, Umax

G
ai

n
of

 G
M

PR
 o

ve
r M

PR
,

 %

0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1

(b) GMPR gain over MPR

Fig. 18 Case: UT = 2.5, T
max

T
min

= 10, �m = 3, ⇧ = 20.

Varying ratio T

max

T

min

In Fig. 19 we provide the experimental results for a varying ratio T

max/T
min

. The
interface utilization significantly increases together with the ratio T

max/T
min

, but
the GMPR gain is maximized for lower T

max/T
min

, reaching up to 15–25%.

Compositional Multiprocessor Scheduling: the GMPR interface 31

2 5 10 15 20
6

7

8

9

10

11

12

13

Ratio, Tmax/Tmin

In
te

rfa
ce

 u
til

iz
at

io
n,

 Θ
m

 /
Π

GMPR
MPR

(a) Interface utilizations

0

10

20

30

40

Ratio Tmax/Tmin

G
ai

n
of

 G
M

PR
 o

ve
r M

PR
, %

20 18 16 14 12 10 8 6 4 2

(b) GMPR gain over MPR

Fig. 19 Case: UT = 2.5, U
max

= 0.3, �m = 3, ⇧ = 20.

The observed utilization increase for both GMPR and MPR interfaces with
respect to T

max

is justified by the nature of the chosen schedulability test, de-
scribed in Theorem 2. In fact, for fixed parameters U and U

max

, increasing task
periods result in a higher interference of jobs accross the deadline window (so
called “carry-in”, defined by equation (18)), increasing the overall utilization
of an interface.

Varying task set utilization UT

We also analyze the gain of GMPR over MPR as the task set utilization UT
varies. The results are depicted in Fig. 20. In this case the gain decreases
for increasing UT . A reason for such behavior is that, although the absolute
parallelism increment �m remains constant, its relative proportion �m/m

min

decreases (see Fig. 20(a)), due to m
min

increasing with UT , resulting in a
reduced scope for parallelism.

1.5 2 2.5 3 3.5 4 4.5 50

5

10

15

20

25

In
te

rfa
ce

 u
til

iz
at

io
n,

Θ

m
 /
Π

Task set utilization, U

0

0.2

0.4

0.6

0.8

R
el

at
iv

e
in

cr
em

en
t,

 Δ
m

 /
m

m
in

Ratio, Δm/mmin

GMPR utilization
MPR utilization

(a) Interface utilizations

0

10

20

30

40

50

Task set utilization, U

G
ai

n
of

 G
M

PR
 o

ve
r M

PR
,

 %

 54.5 43.5 32.5 21.5

(b) GMPR gain over MPR

Fig. 20 Case: U
max

= 0.3, T
max

T
min

= 10, �m = 3, ⇧ = 20

32 Artem Burmyakov et al.

Varying parallelism increment �m

In the last experiment we analyze the relation between an average utilization
of a virtual processor, ⇥m

m⇧

, and the parallelism increment �m. The results are
provided in Fig. 21. As expected, an average utilization of a virtual processor
reduces for increasing parallelism of an interface.

0 1 2 3 4 5

0.75

0.8

0.85

0.9

0.95

Parallelism increment, Δm

VP
 u

til
iz

at
io

n,

Θ

m
 /

(m
 Π

)

GMPR
MPR

(a) Average utilization of a virtual processor

0

5

10

15

20

25

30

35

Parallelism increment, Δm

G
ai

n
of

 G
M

PR
 o

ve
r M

PR
,

 %

543210

(b) GMPR gain over MPR

Fig. 21 Case: UT = 2.5, U
max

= 0.3, T
max

T
min

= 10, ⇧ = 20.

The GMPR gain itself increases together with �m. Such a dependency
is expectable since an increased �m leads to a higher degree of freedom for
GMPR over MPR, allowing a larger margin to minimize the consumed re-
source.

We also notice that the utilization of both GMPR and MPR is minimal for
�m = 0, and it increases with�m. This observation confirms the result of Shin
et al (2008) regarding the minimum utilization of a multiprocessor interface,
and moreover, this result looks to be independent of the schedulability test
used to compute an interface.

7.3 Analysis of the run-time for the interface generation

In this experiment we analyze a set of performance metrics for the algorithm to
compute a GMPR interface, based on the solution of the resource minimization
problem, as described in Section 5. The algorithm has been implemented in the
Matlab 2010 environment. The experiment has been performed on a hardware
platform with the following specifications:

– Processor: Intel(R) Core(TM) i7-3630QM CPU @ 2.40 GHz
– Operating memory (RAM): 8,00 GB
– System type: 64-bit

In Tables 4, 5 and in Fig. 22 we report the measured run-time for the
GMPR computation, for a varying number of tasks n and the parallelism m.

Compositional Multiprocessor Scheduling: the GMPR interface 33

0

50

100

150

Number of tasks, n

G
M

PR
 c

om
pu

ta
tio

n
tim

e,

(s
ec

)

36 32 28 24 20 16 12 8 4

(a) GMPR

0
10
20
30

50

100

150

Number of tasks, n

M
PR

 c
om

pu
ta

tio
n

tim
e,

(s

ec
)

36 32 28 24 20 16 12 8 4

(b) MPR

Fig. 22 Computation time for GMPR and MPR. �m = 3, the percentiles are 25% and
75%.

Although the proposed algorithm to compute GMPR is considered to have
an exponential complexity, the results show a linear increase of the algorithm
run-time over n and m. This result confirms the e↵ectiveness of the search
space reduction mechanism derived in Section 5.3.

The computation time for MPR is 2–5 times lower compared to GMPR,
what is due to a simpler PSF function in the optimization constraints of (27).

Table 4 The performance metrics for m = 5.

n GMPR time, (sec) MPR time, (sec) size of Km size reduction, (times)
1–10 < 10 < 1 1–25 1–50
11–18 1–20 1–10 10–50 102–104

19–25 10–50 1–15 50–120 103–106

26–30 25–100 5–25 100–200 104–107

31–35 50–150 10–50 100–300 105–1010

Table 5 The performance metrics for m = 10.

n GMPR time, (sec) MPR time, (sec) size of Km size reduction, (times)
1–10 < 10 < 1 5–50 10–1000
11–18 5–100 1–10 10–100 102–106

19–25 50–250 10–50 50-150 105–109

26–30 100–300 20-100 < 400 108–1013

31–35 100–500 25-150 < 400 108–1016

In addition, we have evaluated the performance of several optimization
solvers available in the Matlab, as they significantly a↵ect the overall run-
time of the GMPR computation. Although the interior-point algorithm finds
a more precise solution for (27), we have chosen the active-set algorithm for

34 Artem Burmyakov et al.

its 5-100 times faster performance, and its acceptable error which is at most
0.05%, and the failure ratio of at most 2% (in case the active-set fails, we
employ the interior-point instead).

In Tables 4, 5 we report the size of the reduced search space K
m

defined
by Eq. (41). In each case, this value corresponds to the number of optimiza-
tion problems (27) to be resolved in order to determine the minimal GMPR
interface. To analyze the e�ciency of the search space reduction algorithm,
proposed in Section 5.3, we also indicate the relative size reduction of K

m

compared to the original search space defined by the schedulability test (24).
We observe an exponential size reduction of K

m

over a number of tasks n and
an interface parallelism m.

8 Conclusion

Motivated by the need to save resource, we introduced the Generalized Multi-
processor Periodic Resource model (GMPR), as an interface of a multiproces-
sor virtual platform, and proposed a schedulability test for a set of sporadic
tasks over GMPR.

Since GMPR is a generalization of the previously proposed Multiprocessor
Periodic Resource model (MPR, by Shin et al (2008)), it can consume at
most as much as MPR. Our evaluation confirmed that the resource gain of
GMPR over MPR increases together with the period and the parallelism of
an interface. The GMPR gain is especially noticable for task sets with smaller
individual tasks’ utilizations and a shorter range of tasks’ periods.

We also addressed the problem of computing a GMPR interface for a given
set of sporadic tasks, objecting to minimize the overall amount of resource re-
quired by an interface. This problem was modeled as an optimization problem,
which turned to be e�ciently solvable thanks to the derived tight lower and
upper bounds for the solution search space. Such an approach is easily ex-
tendable to compute a customized GMPR interface, which meets specific user
requirements rather than simply has the minimized consumed resource.

For the future, our primary objective is to explore the flexibility of the
GMPR model in deriving a tighter schedulability analysis, specifically ded-
icated for it. We also consider extending GMPR to a case of asynchronous
virtual processors with di↵erent periods.

Acknowledgements This work was partially supported by National Funds through FCT
(Portuguese Foundation for Science and Technology) and ERDF (European Regional Devel-
opment Fund) through COMPETE (Operational Programme ’Thematic Factors of Compet-
itiveness’), within project Ref. FCOMP-01-0124-FEDER-022701; by FCT and COMPETE
(ERDF), within REHEAT and REGAIN project, ref. FCOMP-01-0124-FEDER-010045 and
FCOMP-01-0124-FEDER-020447 respectively; by FCT and the EU ARTEMIS JU funding,
within RECOMP project - ref. ARTEMIS/0202/2009, JU grant nr. 100202; and by FCT
and ESF (European Social Fund) through POPH (Portuguese Human Potential Operational
Program), under PhD grant SFRH/BD/71368/2010.

Compositional Multiprocessor Scheduling: the GMPR interface 35

The research leading to these results was supported by the Marie Curie Intra Euro-
pean Fellowship within the 7th European Community Framework Programme and by the
Linneaus Center LCCC.

References

Almeida L, Pedreiras P, Fonseca JAG (2002) The FTT-CAN protocol: Why
and how. IEEE Transaction on Industrial Electronics 49(6):1189–1201

Ausiello G, Crescenzi P, Kann V, Gambosi G, Marchetti-Spaccamela A, Pro-
tazi M (2008) Complexity and Approximation: Combinatorial Optimization
Problems and Their Approximability Properties. Springer

Baruah S, Bonifaci V, Marchetti-Spaccamela A, Stiller S (2010) Improved
multiprocessor global schedulability analysis. Real-Time Systems Journal
46:3–24

Bertogna M, Cirinei M, Lipari G (2009) Schedulability analysis of global
scheduling algorithms on multiprocessor platforms. IEEE Transactions on
Parallel and Distributed Systems 20(4):553–566

Bini E, Bertogna M, Baruah S (2009) Virtual multiprocessor platforms: Speci-
fication and use. In: Proceedings of the 30th IEEE Real-Time Systems Sym-
posium, Washinghton, DC, USA, pp 437–446

Burmyakov A, Bini E, Tovar E (2012) The generalized multiprocessor periodic
resource interface model for hierarchical multiprocessor scheduling. In: Pro-
ceedings of the 20th International Conference on Real-Time and Network
Systems (RTNS), pp 131–139

Chang Y, Davis R, Wellings A (2008) Schedulability analysis for a real-time
multiprocessor system based on service contracts and resource partitioning.
Tech. Rep. YCS 432, University of York, available at http://www.cs.york.
ac.uk/ftpdir/reports/2008/YCS/432/YCS-2008-432.pdf

Deng Z, Liu Jws (1997) Scheduling real-time applications in Open environ-
ment. In: Proceedings of the 18th IEEE Real-Time Systems Symposium,
San Francisco, CA, U.S.A., pp 308–319

Easwaran A, Anand M, Lee I (2007) Compositional analysis framework using
EDP resource models. In: Proceedings of the 28th IEEE International Real-
Time Systems Symposium, IEEE Computer Society, Tucson, AZ, USA, pp
129–138, DOI http://dx.doi.org/10.1109/RTSS.2007.17

Feng X, Mok AK (2002) A model of hierarchical real-time virtual resources.
In: Proceedings of the 23rd IEEE Real-Time Systems Symposium, Austin,
TX, U.S.A., pp 26–35

Fisher N, Dewan F (2009) Approximate bandwidth allocation for composi-
tional real-time systems. In: Proceedings of the 21st Euromicro Conference
on Real-Time Systems, Dublin, Ireland, pp 87–96

Holman P, Anderson JH (2006) Group-based pfair scheduling. Real-Time Sys-
tems 32(1–2):125–168

Khalilzad NM, Behnam M, Nolte T (2012) Exact and approximate supply
bound function for multiprocessor periodic resource model: Unsynchronized
servers. In: Proceedings of CRTS 2012

36 Artem Burmyakov et al.

Kuo TW, Li CH (1999) Fixed-priority-driven open environment for real-time
applications. In: Proceedings of the 20th IEEE Real-Time Systems Sympo-
sium, Phoenix, AZ, U.S.A., pp 256–267

Kuo TW, Lin K, Wang Y (2000) An open real-time environment for parallel
and distributed systems. In: Proceedings of the 20th International Confer-
ence on Distributed Computing Systems, Taipei, Taiwan, pp 206–213

Leontyev H, Anderson JH (2008) A hierarchical multiprocessor bandwidth
reservation scheme with timing guarantees. In: Proceedings of the 20th Eu-
romicro Conference on Real-Time Systems, Prague, Czech Republic, pp 191–
200

Lipari G, Bini E (2003) Resource partitioning among real-time applications.
In: Proceedings of the 15th Euromicro Conference on Real-Time Systems,
Porto, Portugal, pp 151–158

Lipari G, Bini E (2010) A framework for hierarchical scheduling on multipro-
cessors: from application requirements to run-time allocation. In: Proceed-
ings of the IEEE Real-Time Systems Symposium

McGill R, Tukey JW, Larsen WA (1979) Variations of boxplots. The American
Statistician 32:12–16

Mercer CW, Savage S, Tokuda H (1994) Processor capacity reserves: Oper-
ating system support for multimedia applications. In: Proceedings of IEEE
International Conference on Multimedia Computing and Systems, Boston,
MA, U.S.A., pp 90–99

Moir M, Ramamurthy S (1999) Pfair scheduling of fixed and migrating periodic
tasks on multiple resources. In: Proceedings of the 20th IEEE Real-Time
Systems Symposium, Phoenix, AZ, U.S.A., pp 294–303

Parekh AK, Gallager RG (1993) A generalized processor sharing approach
to flow control in integrated services networks: the single-node case.
IEEE/ACM Transactions on Networking 1(3):344–357

Shin I, Lee I (2003) Periodic resource model for compositional real-time guar-
antees. In: Proceedings of IEEE Real-Time Systems Symposium (RTSS), pp
2–13

Shin I, Easwaran A, Lee I (2008) Hierarchical scheduling framework for virtual
clustering of multiprocessors. Proceedings of the 20th Euromicro Conference
on Real-Time Systems conference (ECRTS’08)

Stoica I, Abdel-Wahab H, Je↵ay K, Baruah SK, Gehrke JE, Plaxton CG (1996)
A proportional share resource allocation algorithm for real-time, time-shared
systems. In: Proceeding of the 17th IEEE Real Time System Symposium,
Washington, DC, U.S.A., pp 288–299

