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Abstract 
In Unmanned Aerial Vehicle (UAV)-assistedWireless Powered Internet of Things (IoT), the UAV isemployed to charge 
the IoT nodes remotely viaWireless PowerTransfer (WPT) and collect their data. A key challenge ofresource 
management for WPT and data collection is preventingbattery drainage and buffer overflow of the ground 
IoTnodes in the presence of highly dynamic airborne channels. Inthis paper, we consider the resource 
management problem inpractical scenarios, where the UAV has no a-prior informationon battery levels and data 
queue lengths of the nodes. Weformulate the resource management of UAV-assisted WPTand data collection as 
Markov Decision Process (MDP), wherethe states consist of battery levels and data queue lengths ofthe IoT nodes, 
channel qualities, and positions of the UAV.A deep Q-learning based resource management is proposedto 
minimize the overall data packet loss of the IoT nodes,by optimally deciding the IoT node for data collection 
andpower transfer, and the associated modulation scheme of theIoT node. 
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AbstractÑIn Unmanned Aerial Vehicle (UAV)-assisted
Wireless Powered Internet of Things (IoT), the UAV is
employed to charge the IoT nodes remotely via Wireless Power
Transfer (WPT) and collect their data. A key challenge of
resource management for WPT and data collection is prevent-
ing battery drainage and buffer overßow of the ground IoT
nodes in the presence of highly dynamic airborne channels. In
this paper, we consider the resource management problem in
practical scenarios, where the UAV has no a-prior information
on battery levels and data queue lengths of the nodes. We
formulate the resource management of UAV-assisted WPT
and data collection as Markov Decision Process (MDP), where
the states consist of battery levels and data queue lengths of
the IoT nodes, channel qualities, and positions of the UAV.
A deep Q-learning based resource management is proposed
to minimize the overall data packet loss of the IoT nodes,
by optimally deciding the IoT node for data collection and
power transfer, and the associated modulation scheme of the
IoT node.

Index TermsÑUnmanned Aerial Vehicle, Internet of Things,
wireless power transfer, resource management, deep Q-
learning

I. I NTRODUCTION

Recent advances in scalable Internet of Things (IoT) and
Wireless Power Transfer (WPT) are developed for sustain-
able sensing of urban weather, environmental pollutions, or
trafÞc and road conditions in smart cities [1]Ð[3]. A large
number of wireless powered IoT nodes are deployed in the
network, and the IoT nodes with random data arrivals buffer
the data to be collected in the data queue [4]. Moreover,
Unmanned Aerial Vehicles (UAVs) are employed to collect
data of the IoT nodes in the area of interest, thanks
to UAVsÕ excellent mobility and maneuverability [5], as
shown in Figure 1. The UAV moves sufÞciently close to
each IoT node, exploiting short-distance line-of-sight (LoS)
communication links, for recharging batteries remotely
while collecting their data [6].

WPT and data transmission could be severely affected
by time-varying channels due to movements of the UAV,
while the UAV has no up-to-date knowledge about battery
levels and data queue lengths of the IoT nodes. Therefore,
the resource management of WPT and data collection for
preventing battery drainage and buffer overßow is critical,

given highly dynamic airborne channels in UAV-assisted
wireless powered IoT networks.

In this paper, we Þrst formulate the resource management
of UAV-assisted WPT and data collection as a Markov
Decision Process (MDP). Each MDP state contains battery
levels and queue lengths of the IoT node, channel qualities,
and waypoints of the UAV along the ßight trajectory. Then,
a new deep Q-learning based resource management (DQL-
RM) scheme is developed, which derives the optimal re-
source management strategy based on network state, actions
of the UAV and a corresponding Q value. DQL-RM learns
the optimal Q value asymptotically through training a deep
Q-network on the UAV, where the selection of the IoT node
and the associated modulation scheme of the selected IoT
node are jointly optimized based on the Q values.

This paper is structured as follows. Related work on
resource management in wireless powered sensor networks
is presented in Section II. Network model and communica-
tion protocol design are investigated in Section III. DQL-
RM is proposed in Section IV to address the resource
management problem. In Section V, we show numerical
results and performance evaluation. This paper is concluded
in Section VI.

II. L ITERATURE REVIEW

A UAV-assisted wireless powered communication net-
work is considered in [7], where the ground nodes are
charged by a UAV with constant power supply and the
UAV collects data from the nodes by time-division multiple
access. The UAV position and time allocation are studied to
improve the transmission rate for the ground nodes. In [8],
UAVs are utilized in mobile edge computing architectures,
where the ground nodes ofßoad some of their computation
tasks to the UAV. The ground nodes can harvest energy
from the UAV by using WPT that is integrated into the
mobile edge computing architecture. Transmit power of the
ground nodes, task ofßoading time, and the UAV trajectory
are scheduled to enhance the computation capability of
the ground nodes. A UAV-assisted WPT system is studied
in [9], where the UAV is dispatched to charge two ground
nodes. The resource allocation algorithms are developed to
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Fig. 1: WPT and data collection in UAV-assisted IoT with
wireless powered ground nodes.

extend the WPT efÞciency by adjusting the trajectory, ßight
altitude, and transmit beamwidth of the UAV. In [10], the
techniques for extending the UAVÕs ßight range and mission
duration are reviewed. The UAV is equipped with a solar
cell array capable of receiving energy from an infrared
laser via a laser beaming. The ground charging stations
are deployed to provide energy to the UAV via WPT.
An energy-efÞcient cooperative UAV relaying scheme is
developed in [11], which guarantees the successful trans-
mission rate of the UAV. The schedule of the data relay
is formulated to reduce energy consumption of the UAVs
under guaranteed bit error rates. In [12], the authors focus
on energy efÞciency of the legitimate surveillance in UAV
communications. The resource allocation of the legitimate
UAV is formulated to eavesdrop the communication of
the suspicious UAVs with uncertain channel dynamics.
However, most of the existing literature only study the
energy efÞciency of the UAV without considering the data
loss of the ground nodes due to buffer overßows and poor
channels.

Scheduling strategies in [13]Ð[15] are studied to reduce
packet loss of wireless powered static sensors according to
their battery and buffer status. Due to the low-dimensional
channel and sensor state spaces, the resource manage-
ment problem can be solved by reinforcement learning
or dynamic programming. However, in the UAV-assisted
WPT and data collection, the mobility of the UAV with
the varying patrolling velocity causes rapidly changing
wireless channels, which leads to the exceedingly large state
space and action space. This prevents conventional resource
management approaches, such as [13], [14] and [15], from
scaling to the high-dimensional input spaces.

III. N ETWORK MODEL

This section studies the network model of UAV-assisted
wireless powered IoT networks. The communication pro-
tocol is also designed for the UAV and ground IoT nodes.

A. Network model

Let I denote the total number of wireless powered IoT
nodes on the ground. The UAV that acts as a data collection
node ßies a predetermined trajectory forZ laps. The ßight
waypoint of the UAV att in lap z is denoted by! z (t). The
UAV uses WPT to remotely charge the IoT nodes. The IoT
node i (! [1, I ]) harvests energy from the UAV to power
its operations, e.g., sensing, computing and communication.
The rechargeable battery of the IoT node is Þnite with
the capacity ofE Joules, and the battery overßows if
overcharged.

We denote! (á) as the Gamma function [16]. The re-
quired BER of IoT nodeÕs data transmission is denoted by
" . According to the Nakagami-m channel model [17], we
can have

" "
0.2

! (m)
(
m
ø#i

)m
! ! (m, b! z

i ( t ) #i ($z
i (t)))

(b! z
i ( t ) )m #

! (m, b! z
i ( t ) #i ($z

i (t) + 1))

(b! z
i ( t ) )m

"
, (1)

b! z
i ( t ) =

m
ø#i

+
3

2(2! z
i ( t ) # 1)

, (2)

where#i ($z
i (t)) is the SNR between nodei and the UAV

using $z
i (t), and the average SNR of the channel isø#i .

$z
i (t) denotes the modulation scheme of nodei at t in lap

z. Moreover, we have#i ($z
i (t)) = ! h z

i ( t ) ! 2 P z
i ( t )

" 2
0

, where%2
0

is noise power of the channel, andP z
i (t) is the transmit

power of i [18]. hz
i (t) is the complex channel coefÞcient,

which can be known by channel reciprocity .
For illustration convenience, we considerm = 1 in (1)

as an example in this paper [19]. Note that other Nakagami
fading channel model with anym values can also be applied
to the proposed DQL-RM scheme. Given a speciÞc" , the
transmit power of the IoT node can be given by [20]

P z
i (t) "

&" 1
2 ln #1

$

$hz
i (t)$2 (2! z

i ( t ) # 1), (3)

where&1 and&2 denote the two channel constants.
The distance between the UAV and nodei at t in lap z

is dz
i (t). The WPT transceiver alignment between the UAV

and the IoT node is' z
i (t). Based on [21], [22], we have the

WPT efÞciency factor, which is( (dz
i (t), ' z

i (t)) . The power
transferred from the UAV to the IoT node via WPT can be
given by

÷P z
i (t) = ( (dz

i (t), ' z
i (t))P tx

UAV $hz
i (t)$2, (4)

where the transmit power of WPT at the UAV isP tx
UAV ,

and$ á$ denotes norm.

B. Data collection protocol

Figure 2 presents the data collection protocol for the
UAV-assisted wireless powered IoT network. SpeciÞcally,
DQL-RM (will be illustrated in Section IV) is carried out
on the UAV to take the action of scheduling one of the
IoT nodes for WPT and data transmission at each time
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Fig. 2: Data communication protocol for the UAV-assisted wire-
less powered IoT network.

slot while allocating the modulation scheme (or transmit
power) of the IoT node. Then, the UAV transfers power
to the selected IoT node via WPT, followed by the data
transmission from the IoT node to the UAV. In particular,
a control segment of the IoT nodeÕs data packet contains
qi,z (t) andei,z (t). Additionally, the updated state informa-
tion of the selected IoT node is known by the UAV based
on the received data.

In each communication frame, only one IoT node can
be scheduled to transmit data in case of packet collision.
The UAV can process the received data packets online, and
respond to the IoT nodeÕs requests by using ACK pack-
ets. Meanwhile, DQL-RM is conducted with the updated
channel state information to schedule the other IoT node to
transmit data in the next communication frame.

IV. DQL-RM FOR THE UAV

In this section, we Þrst present MDP formulation of
the resource management of UAV-assisted WPT and data
collection. Then, DQL-RM is proposed to optimize the
node selection for WPT and data collection, while the
modulation scheme of the selected IoT node is optimally
allocated to maximize the harvested energy.

A. Markov Decision Process of the resource management

We formulate the resource management in UAV-assisted
wireless powered IoT networks as a discrete-time MDP.
Each MDP state is composed of battery levels and queue
lengths of the IoT node, channel qualities, and waypoints
of the UAV along the ßight trajectory. Thus, we have
S% = { (qi,z (t), ei,z (t), hz

i (t), ! z (t)) , i = 1 , 2, ..., I ; z =
1, 2, ..., Z } , whereqi,z (t), ei,z (t), hz

i (t), and! z (t) denote
the battery level, queue length, channel quality, and the
location of the UAV at timet in lap z, respectively.

In the proposed MDP formulation, actionk ! A to
be taken is to schedule one IoT node to harvest energy
from the UAV and transmit data, while allocating the
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Fig. 3: An example of a transition diagram of 24 MDP states,
which has 4 waypoints on the UAVÕs trajectory.

modulation of the selected IoT node, i.e.,A !
#

(i, $z
i (t)) :

i = 1 , 2, ..., I ; z = 1 , 2, ..., Z ; $z
i (t) ! { 1, 2, ..., " }

$
. The

actions of the UAV are optimized to minimize packet loss
from queue overßows and unsuccessful data transmissions
of the IoT nodes. Note that the optimization needs to be
achieved in the long term over the entire stochastic control
process (rather than myopically at an individual time slot).

To illustrate the proposed MDP model, Figure 3 presents
an example of transition diagram with 24 MDP states in
one lap of the UAVÕs ßight. We setI = 1 , Z = 1 , K = 1 ,
D = 1 , H = 2 (e.g.,# 10dB, 30dB), andV = 4 , whereH
andV denote the total channel states and waypoints of the
UAV, respectively. The vertices stand for all possible states
in MDP, i.e., { (qi,z (t), ei,z (t), hz

i (t), ! z (t)) } . The edges
show the transition from each state to other states according
to Pr

#
S&

%
%
%S%, k

$
. The state transition depends on the

change of{ (qi,z (t), ei,z (t), hz
i (t)} of the IoT node and

! z (t) along the trajectory of the UAV. In other words, the
next state of{ (qi,z (t1), ei,z (t1), hz

i (t1), ! z (t1)) } can be one
of the states at! z (t2), ! z (t3), or ! z (t4). For example, for
t1, the next state of{ (qi,z (t1) = 1 , ei,z (t1) = 1 , hz

i (t1) =
# 10dB, ! z (t1)) } can be { (qi,z (t2) = 2 , ei,z (t2) =
2, hz

i (t2) = # 10dB, ! z (t2)) } , if IoT node i is selected,
but the data collection is not successful; or{ (qi,z (t2) =
1, ei,z (t2) = 2 , hz

i (t2) = # 10dB, ! z (t2)) } , if the data
collection is successful. Note that Figure 3 gives a small-
scale example of the transition of one of the states, i.e.,
{ (qi,z (t) = 1 , ei,z (t) = 1 , hz

i (t) = # 10dB, ! z (t)) } .
Furthermore, we deÞne the expected cost afterS% is

observed while actionk is conducted asQ
#

S&

%
%
%S%, k

$
. We

have

Q
#

S&

%
%
%S%, k

$
= (1 # ) )Q

#
S&

%
%
%S%, k

$
+

)
!
C

#
S&

%
%
%S%, k

$
+ * mink ! # A Q

#
S&!

%
%
%S&, k$

$"
.
(5)

where ) , * ! (0, 1] (two small positive fractions) indicate
learning rate and discount factor, respectively.

Classical approaches in MDP, e.g., value iteration, can be



applied to solve the optimal policy, by assuming that the
UAV has the a-prior knowledge on the transition probability
and the cost of all MDP states. According to the Bellman
optimality equation with the value iteration method, the
estimate of the optimal action-value function is repeatedly
updated. When the Bellman optimality equation converges,
the cost function is minimized. The MDP model can be
stabilized. However, the transition probability and the cost
of the states have to be known in prior, hence the action-
value function of MDP can only be evaluated ofßine. In
contrast, this paper considers a practical scenario where
the UAV has no a-priori knowledge on the transition
probability and the cost of the states. The proposed DQL-
RM scheme is designed to learn the transition provabilities
and the costs, while evaluating the action-value function
online. The proposed DQL-RM scheme converges after
several episodes when the learning results and action-value
function stabilize.

B. Optimizing$z
i (t)

To minimize the packet loss stemming from insufÞcient
energy,$z

i (t) of the selected nodei is to be chosen to
maximize the energy harvested during a contact time with
the UAV, with a length of&T z

i (t). The optimal modulation
of the IoT node,$z

i (t) ' , is independent of the battery level
and the queue length. This is because$z

i (t) ' is selected to
maximize the increase of the battery level at nodei , under
the bit error rate requirement+i for the packet transmitted.
As a result,$z

i (t) can be decoupled fromA, and optimized
in prior by [23]

$z
i (t) = arg max

! =1 ,ááá,!

'
( &T z

i (t) #
B

$W
)P z

i (t) #
B

$W
P z

i ($)
(

,

(6)

the right-hand side (RHS) of which, by substituting (4) and
(3), can be rewritten as

max
! =1 ,ááá,!

'
( &T z

i (t) #
B

$W
)( (dz

i (t), ' z
i (t))P tx

UAV $hz
i (t)$2#

B &" 1
2 ln( #1

( )
$hz

i (t)$2$W

)
2! # 1

*
(

, (7)

whereW is the bandwidth of the uplink data transmission,
1

W is the duration of an uplink symbol, andB! W is the

duration of uplink data transmission.( &T z
i (t) # B

! W ) is the

rest of the time slots used for downlink WPT, and&T z
i (t)

is the contact time between the IoT node and the UAV in
the time slot, which is affected by the patrolling velocity
of the UAV vz (t). Thus, we have

&T z
i (t) =

2
+

(dz
i (t))2 # (bz )2

vz (t)
, (8)

wherebz is the altitude of the UAV at lapz. We assume that
the UAV maintains the same altitude and the same heading
in each lap.

By using the Þrst-order necessary condition of the opti-
mal solution, we have

d
d$

(( &T z
i (t) #

B
$W

)( (dz
i (t), ' z

i (t))P tx
UAV $hz

i (t)$2#

B &" 1
2 ln( #1

( )
$hz

i (t)$2$W

)
2! # 1

*
) = 0 , (9)

$" 2 B
W

( (dz
i (t), ' z

i (t))P tx
UAV $hz

i (t)$2 #
B &" 1

2 ln( #1
( )

$hz
i (t)$2W

á

($" 12! In2 # $" 22! ) #
B &" 1

2 ln( #1
( )

$hz
i (t)$2W

$" 2 = 0 . (10)

The $ values are then given as follows:

$2! In2 # 2! =

B
W

( (dz
i (t), ' z

i (t))P tx
UAV $hz

i (t)$2 $hz
i (t)$2W

B &" 1
2 ln( #1

( )
# 1. (11)

Since the left-hand side (LHS) of (11) monotonically
increases with$, the optimal value$' can be obtained
by applying a bisection search method, and evaluating the
two closest integers about the Þxed point of the bisection
method [24]. SpeciÞcally,$" = 1 and $+ = " are
initialized. Each iteration of the bisection method contains
4 steps applied over the range of$ = [1 , " ], as follows.

¥ The midpoint of the modulation interval[$" ; $+ ] is
calculated, which gives$mid = ! " + ! +

2 .
¥ Substitute$mid into (11) to obtain the function value

f ($mid ).
¥ If the convergence is attained (that is, the modulation

interval or|f ($mid )| cannot be further reduced), return
$mid and stop the iteration.

¥ Replace either($" , f ($" )) or ($+ , f ($+ )) with
($mid , f ($mid )) .

C. Deep Q-network on the UAV

The proposed DQL-RM builds a deep Q-network on the
UAV to optimize the resource management by approximat-
ing the optimal Q value. Figure 4 depicts the proposed deep
Q-network, where the Q value in (5) is derived according to
the network state and the action of the UAV. The learning
weight values, l in the deep Q-network are iteratively
adjusted to approximateQ

#
S&

%
%
%S%, k; , l

$
, where l % #

and# is the total number of iterations. The approximated
Q

#
S&

%
%
%S%, k; , l

$
, which is the outputs of the deep Q-

network, can be minimized by optimizing the weights, l .
The weight, l at iterationl is adjusted for training the

deep Q-network, while minimizingQ
#

S&

%
%
%S%, k; , l

$
. At

each iteration of minimizingQ
#

S&

%
%
%S%, k; , l

$
, the weight

, l " 1 from iteration (l # 1) is Þxed. Thus, the subprob-
lem of learningQ

#
S&

%
%
%S%, k; , l

$
at iteration l (l % # )

deÞnesC
#

S&

%
%
%S%, k

$
+ * mink ! # A Q

#
S&!

%
%
%S&, k$; , l " 1

$
.

For deriving the weight, l at iterationl , gradient descent
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Fig. 4: Schematic illustration of the deep Q-network with DQL-
RM on the UAV.

is applied to iteratively compute the gradient value, and
update the neural networkÕs weights to reach the global
minimum (refer to [25] for details).

The proposed DQL-RM scheme optimizes the actions
based on the deep Q-network to solve the resource
management problem. The proposed deep Q-network
maintains two separate Q-networksQ

#
S&

%
%
%S%, k; , l

$
and

Q
#

S&

%
%
%S%, k; , l " 1

$
with the weights, l at iterationl and

the weights, l " 1 at iteration l # 1, respectively. DQL-
RM updates, l with multiple times per time-step, and
, l is copied into , l " 1. DQL-RM trains the deep Q-
network to minimize a set of loss functions at every
update iteration [26], hence, minimizing the mean-squared
Bellman error. Therefore, the optimality can be asymptoti-
cally achieved by DQL-RM. For maximizing the harvested
energy, DQL-RM also determines the optimal modulation
scheme$z

i (t) of the IoT node once the optimal IoT node
is selected from the deep Q-network.

V. PERFORMANCEEVALUATION

DQL-RM is implemented in Python 3.5 based on Google
TensorFlow, and we assess the performance when the num-
ber of IoT nodes enlarges from 50 to 200. Figure 5 shows
the network cost (i.e., data packet loss) at each episode,
given I = 180. In particular, ÒepisodesÓ are a sequence
of training epochs, where the deep Q-network is trained
to Þnd the optimal actions. According to Figure 4, the
proposed deep Q-network executes actions, obtains the next
states, and updates the learning weights at each episode. As
observed in Figure 5, the packet loss (i.e., network cost)
with DQL-RM drops around 58.3% at the Þrst 50 episodes.
From episode 50 to episode 500, the packet loss drops from
2 x 104 to about 140. Moreover, the performance reaches
a relatively stable value after episode 400, which conÞrms
the convergence of the proposed deep Q-network.

We compared DQL-RM with two resource management
scheme based on either randomized MDP states (RRM),

Fig. 5: Network cost at the episode givenI = 180.
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or greedy policies (GreedyRM). RRM randomly schedules
one IoT node at each time slot to transfer power and collect
data, while GreedyRM gives the highest priority of WPT
and data collection to the IoT node with the longest buffer.

Figure 6 shows the packet loss of DQL-RM, where the
number of IoT nodes increases from 50 to 200. The data
queue length of the IoT node is set to 10. Generally, the
network cost of the proposed DQL-RM is much lower
than RRM and GreedyRM. When the number of IoT
nodes is 200, DQL-RM achieves 82.8% and 69.2% lower
network cost than RRM and GreedyRM, respectively. The
performance gains keep growing with the number of IoT
nodes in the network. This is because DQL-RM schedules
WPT and data communications to minimize the data packet
loss of the entire network, by learning the IoT nodesÕ
battery levels and queue lengths.

We deÞne the packet loss rate as the ratio of the packet
loss and the total number of data packets. Figure 7 studies
the packet loss rate with regards to different number of
IoT nodes. WhenI = 50, the packet loss rate of DQL-RM
is similar to GreedyRM. When the number of IoT nodes
increases from 80 to 200, DQL-RM achieves lower packet
loss rate than RRM and GreedyRM. Moreover, when the
number of IoT nodes increases from 50 to 200, the packet
loss rate of DQL-RM only slightly grows about 2%. This
indicates that the performance of DQL-RM is not effected
by the number of IoT nodes in the network. The reason
is that DQL-RM efÞciently adapts the IoT node selection
and WPT duration to minimize the data packet loss in the
presence of the channel dynamics.
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VI. CONCLUSION AND FUTURE WORK

This paper investigates the resource management of
UAV-assisted WPT and data collection for preventing bat-
tery drainage and buffer overßow of the ground IoT nodes
in the presence of highly dynamic airborne channels. DQL-
RM is proposed to minimize the overall data packet loss of
the IoT nodes, by jointly optimizing the IoT node for WPT
and data collection, and the associated modulation scheme
of the IoT node. DQL-RM builds and trains a deep Q-
network to determine the optimal actions of the UAV with
the MDP states of battery levels and data queue lengths of
the IoT nodes, channel conditions, and the waypoints given
the trajectory of the UAV.

For future work, the IoT networks will consider hetero-
geneous ground nodes with dynamic battery capacity and
data queue size. The proposed DQL-RM will be further
evaluated in multiple application scenarios, e.g., intelligent
transportation and 5G networks.
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