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Abstract

In Unmanned Aerial Vehicle (UAV)-assistedWireless Powered Internet of Things (leTYAK isemployed to charge

the 10T nodes remotely viaWireless PowerTransfer (WPT) and collect their dat&eyA challenge ofresource
management for WPT and data collection is preventingbattery drainage and buffer overflowth&f ground
loTnodes in the presence of highly dynamic airborne channels. Inthis paper, we consider thsource
management problem inpractical scenarios, where the UAV has no a-prior informationortdsgitlevels and data
gueue lengths of the nodes. Weformulate the resource management of UAV-assisted WPTand data collection as
Markov Decision Process (MDP), wherethe states consist of battery levels and data quengths ofthe 10T nodes,
channel qualities, and positions of the UAV.A deep Q-learning based resource managemermniréposedto
minimize the overall data packet loss of the IoT nodes,by optimally deciding the I0T nodedfaa collection
andpower transfer, and the associated modulation scheme of theloT node.
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AbstracfNin  Unmanned Aerial Vehicle (UAV)-assisted given highly dynamic airborne channels in UAV-assisted
Wireless Powered Internet of Things (loT), the UAV is ireless powered loT networks.

employed to charge the 10T nodes remotely via Wireless Power ;

Transfer (WPT) and collect their data. A key challenge of In this paper, we brst formulate the resource management
resource management for WPT and data collection is prevent- Of UAV-assisted WPT and data collection as a Markov
ing battery drainage and buffer overRow of the ground loT ~Decision Process (MDP). Each MDP state contains battery
nodes in the presence of highly dynamic airborne channels. In levels and queue lengths of the 10T node, channel qualities,
this paper, we consider the resource management problem in and waypoints of the UAV along the Right trajectory. Then,

practical scenarios, where the UAV has no a-prior information a new _learning based re rce management (DOL-
on battery levels and data queue lengths of the nodes. We ew deep Q-learning d resource ge (©Q

formulate the resource management of UAV-assisted WPT RM) scheme is developed, which derives the optimal r_e-
and data collection as Markov Decision Process (MDP), where SOUrce management strategy based on network state, actions

the states consist of battery levels and data queue lengths ofof the UAV and a corresponding Q value. DQL-RM learns
the 10T nodes, _channel qualities, and positions Of the UAV. the optima| Q value asymptotica”y through training a deep
A deep Q-leaming based resource management is proposedgy_network on the UAV, where the selection of the 10T node
to minimize the overall data packet loss of the 10T nodes, . -
by optimally deciding the 10T node for data collection and and the a.SS.OC'atEd.deUIatlon scheme of the selected loT
power transfer, and the associated modulation scheme of the Node are jointly optimized based on the Q values.
loT node. N This paper is structured as follows. Related work on
_Index Term&NUnmanned Aerial Vehicle, Internet of Things,  resource management in wireless powered sensor networks
‘I’;gfr']‘?ss power transfer, resource management, deep Q-jg nresented in Section Il. Network model and communica-
9 tion protocol design are investigated in Section Ill. DQL-
RM is proposed in Section IV to address the resource
management problem. In Section V, we show numerical
Recent advances in scalable Internet of Things (loT) amesults and performance evaluation. This paper is concluded
Wireless Power Transfer (WPT) are developed for sustaiim- Section VI.
able sensing of urban weather, environmental pollutions, or
trafbc and road conditions in smart cities [1]D[3]. A large Il. LITERATURE REVIEW
number of wireless powered I0T nodes are deployed in theA UAV-assisted wireless powered communication net-
network, and the 10T nodes with random data arrivals buffevork is considered in [7], where the ground nodes are
the data to be collected in the data queue [4]. Moreoveharged by a UAV with constant power supply and the
Unmanned Aerial Vehicles (UAVs) are employed to colledAV collects data from the nodes by time-division multiple
data of the loT nodes in the area of interest, thank&cess. The UAV position and time allocation are studied to
to UAVsO excellent mobility and maneuverability [5], asnprove the transmission rate for the ground nodes. In [8],
shown in Figure 1. The UAV moves sufpciently close t&JAVs are utilized in mobile edge computing architectures,
each loT node, exploiting short-distance line-of-sight (LoSyhere the ground nodes off3oad some of their computation
communication links, for recharging batteries remoteltasks to the UAV. The ground nodes can harvest energy
while collecting their data [6]. from the UAV by using WPT that is integrated into the
WPT and data transmission could be severely affectetbbile edge computing architecture. Transmit power of the
by time-varying channels due to movements of the UAground nodes, task ofoading time, and the UAV trajectory
while the UAV has no up-to-date knowledge about battegre scheduled to enhance the computation capability of
levels and data queue lengths of the 10T nodes. Therefotlee ground nodes. A UAV-assisted WPT system is studied
the resource management of WPT and data collection for[9], where the UAV is dispatched to charge two ground
preventing battery drainage and buffer overf3ow is criticahodes. The resource allocation algorithms are developed to

. INTRODUCTION



gﬂ Ore A. Network model
EQQ ﬁ m\ . Let I denote the total number of wireless powered loT
ﬁ Of| B oo - --C w’\ﬁl nodes on the ground. The UAV that acts as a data collection
- AN node Ries a predetermined trajectory foiaps. The Right

//%ﬁ !eg ﬁl Eﬁﬁ %? = N\ waypoint of the UAV att in lap z is denoted by ,(t). The
/ \
DE S % UAV uses WPT to remotely charge the IoT nodes. The IoT
1 *, \
! mm R |"(70)(.# 5 g nodei (! [1,1]) harvests energy from the UAV to power
\ g %ﬂﬁ: its operations, e.g., sensing, computing and communication.
N £ mm The rechargeable battery of the loT node is Pnite with
\\(14 | R the capacity ofE Joules, and the battery overBows if
N I S overcharged.
T T A - We denote! (§ as the Gamma function [16]. The re-
EED 1"&&8$14%.$58. ’b quired BER of 10T nodeOs data transmission is denoted by
me "&"%67$7$ ) ;énA%(:)\;éjmg to the Nakagamm channel model [17], we
Fig, L WP and data collcton in Unvassised 10T wifh - 02 m.., ' (MbAGSHO),
. F(m) % (B zgy)™
L(m, by 2y % ($7 (1) + 1)) 1)
extend the WPT efbciency by adjusting the trajectory, Right (bzy)m '
altitude, and transmit beamwidth of the UAV. In [10], the m 3

)

techniques for extending the UAVOs Right range and mission B2y = 2+ s ooz (1) ,
. . ; . . % 2027V #1)
duration are reviewed. The UAV is equipped with a solar _

cell array capable of receiving energy from an infrare@here# ($f(t)) is the SNR between nodeand the UAV

laser via a laser beaming. The ground charging statioW§ing $7(t), and the average SNR of the channel#s
are deployed to provide energy to the UAV via WPT$ (t) denotes the modulation scheme of nadst t in lap
An energy-efbcient cooperative UAV relaying scheme & Moreover, we havé; ($7(t)) = thi PP where%
developed in [11], which guarantees the successful traris-noise power of the channel, aer(tO) is the transmit
mission rate of the UAV. The schedule of the data relgyower ofi [18]. h?(t) is the complex channel coefbcient,
is formulated to reduce energy consumption of the UAM&hich can be known by channel reciprocity .

under guaranteed bit error rates. In [12], the authors focusFor illustration convenience, we consider= 1 in (1)
on energy efpciency of the legitimate surveillance in UAAs an example in this paper [19]. Note that other Nakagami
communications. The resource allocation of the legitimafading channel model with any values can also be applied
UAV is formulated to eavesdrop the communication ofo the proposed DQL-RM scheme. Given a specipthe
the suspicious UAVs with uncertain channel dynamicstansmit power of the 10T node can be given by [20]

However, most of the existing literature only study the & it

energy efbciency of the UAV without considering the data PZ(t) " 227532(2! O 1), (3)
loss of the ground nodes due to buffer overRows and poor $hf ()%

channels. where&; and&, denote the two channel constants.

Scheduling strategies in [13]D[15] are studied to reduceThe distance between the UAV and nddett in lap z
packet loss of wireless powered static sensors accordingda?(t). The WPT transceiver alignment between the UAV
their battery and buffer status. Due to the low-dimensionahd the 10T node is7(t). Based on [21], [22], we have the
channel and sensor state spaces, the resource man&geT efbciency factor, which is(d?(t),"' Z(t)). The power
ment problem can be solved by reinforcement learnirtgansferred from the UAV to the 10T node via WPT can be
or dynamic programming. However, in the UAV-assistediven by
WPT and data collection, the mobility of the UAV with . ,
the varying patrolling velocity causes rapidly changing PP = (A (), FO) PGy $hf (S, “)
wireless channels, which leads to the exceedingly large st@fBere the transmit power of WPT at the UAV By
space and action space. This prevents conventional resoyfg$ 4$ denotes norm.
management approaches, such as [13], [14] and [15], from

scaling to the high-dimensional input spaces. B. Data collection protocol
Figure 2 presents the data collection protocol for the

Il. NETWORK MODEL UAV-assisted wireless powered loT network. Specibcally,

This section studies the network model of UAV-assistedQL-RM (will be illustrated in Section V) is carried out
wireless powered 10T networks. The communication pr@n the UAV to take the action of scheduling one of the
tocol is also designed for the UAV and ground 10T node$oT nodes for WPT and data transmission at each time
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Fig. 2: Data communication protocol for the UAV-assisted wire-

less powered loT network. #

modulation of the selected loT node, i.A.! (i, $$Z(t)) :

i=1,2..,1;2=1,2,..,Z;$@t) ! {1,2,..."} . The
slot while allocating the modulation scheme (or transméictions of the UAV are optimized to minimize packet loss
power) of the IoT node. Then, the UAV transfers poweffom queue overRows and unsuccessful data transmissions
to the selected loT node via WPT, followed by the datef the |oT nodes. Note that the optimization needs to be
transmission from the loT node to the UAV. In particularachieved in the long term over the entire stochastic control
a control segment of the 10T nodeOs data packet contairscess (rather than myopically at an individual time slot).
G (t) ande; (). Additionally, the updated state informa- To illustrate the proposed MDP model, Figure 3 presents
tion of the selected IoT node is known by the UAV basegdn example of transition diagram with 24 MDP states in
on the received data. one lap of the UAVOs Right. We det1,Z =1,K =1,

In each communication frame, only one loT node cap =1, H =2 (e.g.,# 10dB, 30dB), andV = 4, whereH
be scheduled to transmit data in case of packet collisicindV denote the total channel states and waypoints of the
The UAV can process the received data packets online, apglv, respectively. The vertices stand for all possible states
respond to the 10T nodeOs requests by using ACK pagk-MDP, i.e., {(q (t),e (1), h?(t),!,(t))}. The edges
ets. Meanwhile, DQL-RM is conducted with the updateghow the tggnsitgpn from each state to other states according
channel state information to schedule the other 0T node#p pr s,98,, k . The state transition depends on the

transmit data in the next communication frame. change of{(q (t), & (t), hZ(t)} of the IoT node and
IV. DQL-RM FOR THE UAV !z(tz a:l(ing ;r(le trgje;ctory(to; tﬂf(tU,)A\/'. I(r; c)J)t;ler wck))rds, the

) ) i next state of (g (t1), ez (t1), h#(t1),!2(t1))} can be one

In this section, we Prst present MDP formulation of ¢ i atzz(tz), !zz(ta), or !Z(t4).ZFor example, for
the resource management of UAV-assisted WPT and drﬁa the next state of (G, (t1) = 1,6, (t1) = 1,h?(t;) =
. . . ’ 4 = 4,58z = 4,10 -
collection. Then, DQL-RM is proposed to optimize the, 10dB,1,(t1))} can be {(q, (t2) = 2,e|z(lt2) —
node selection for WPT and data collection, while thg hZ(ty) = #10dB,!,(t))} if 10T nodei is selected

i = v+ Z ’ ’

modulation scheme of the selected loT node is optimalb}ut the data collection is not successful; {di, (t) =
allocated to maximize the harvested energy. P

Le,(t) = 2,h*(ty) = #10dB,!,(t2))}, if the data

A. Markov Decision Process of the resource managemeﬁ?"ecnon is successful. Note that Figure 3 gives a small-

‘ | h . . scale example of the transition of one of the states, i.e.,
We formulate the resource management in UAV-aSSIStEEiq,z (t)=1,e,(t)=1,h?(t) = #10dB,!,(1))}.

wireless powered. IoT networks as a discrete-time MD Furthermore, we debne the expectgd ggst afigris
Each MDP state is composed of battery levels and queug ?

lengths of the 10T node, channel qualities, and Waypoin?gserVEd while actiok is conducted aQ Sg%w k . We
of the UAV along the Right trajectory. Thus, we have'dV€ 0 0

Sw = {(Gz (1), &2 (),hf(t),!-(1),i = 1,2,..,1;z = Q#S&ﬁ/é%, s :3(,1 # ))Q#s&éﬁ/ k$+

1,2,...,Z}, whereg (1), &, (t), h#(t), and!,(t) denote T ? #»n$

the battery level, queue length, channel quality, and the ) C Se%Bwk + *mincsa Q Se %e, k®
location of the UAV at timet in lap z, respectively. (5)
In the proposed MDP formulation, actioh ! A to where),* ! (0,1] (two small positive fractions) indicate
be taken is to schedule one IoT node to harvest energgarning rate and discount factor, respectively.
from the UAV and transmit data, while allocating the Classical approaches in MDP, e.g., value iteration, can be



applied to solve the optimal policy, by assuming that the By using the prst-order necessary condition of the opti-
UAV has the a-prior knowledge on the transition probabilitynal solution, we have

and the cost of all MDP states. According to the Bellman 4 B

optimality equation with the value iteration method, the d*(('ig.‘z(t)# $W)( (dF (1), 7(1)) PGy Sh7(t)$#
estimate of the optimal action-value function is repeatedly

"1 # *
updated. When the Bellman optimality equation converges, B& In(¢ ))2! #1)=0, (9)
the cost function is minimized. The MDP model can be $hi (W

stabilized. However, the transition probability and the cost

of the states have to be known in prior, hence the action- , ,B . ) B&, 'In(#)
value function of MDP can only be evaluated offine. In $ “( (dF(1)," (1) Poav S (D)$° # m
contrast, this paper considers a practical scenario where B&. Lin(* '

the UAV has no a-priori knowledge on the transition ($" 12 In2# $" 22 ) # 24n(@$" 2=0. (10)
probability and the cost of the states. The proposed DQL- $h7 (1) W

RM scheme is designed to learn the transition provabilities The $ values are then given as follows:

and the costs, while evaluating the action-value function . .

online. The proposed DQL-RM scheme converges afte$2 In2# 2 =

several episodes when the learning results and action-valug . $hZ (1) $PW
function stablize o (0, FO)PE S22 D w1 1)
: , - In(7)
B. Optimizing$?(t) Since the left-hand side (LHS) of (11) monotonically

inimi ; . ._increases with$, the optimal value$' can be obtained
- mln;m|ze the packet loss stemmmg from mSUﬂDC'e'Hy applying a bisection search method, and evaluating the
energy, S (t) of the selected node is to be chosen to .m/o closest integers about the bxed point of the bisection
ethod [24]. Specibcally$- = 1 and $,. = " are

maximize the energy harvested during a contact time wi
. - ) .
the UAV, with a length of % (t). The optimal modulation jiiajizeq Each iteration of the bisection method contains
4 steps applied over the range $E[1," ], as follows.

of the 10T node$?(t)', is independent of the battery level
and the queue length. This is becagé¢t)’ is selected to . L . .
maximize the increase of the battery level at nodender ¥ The midpoint of the modul§t|(!)“r1+|!n+terv¢$-- 8. is
the bit error rate requirement for the packet transmitted. calcul_ated, Wh'?h giveSmig = .2 .
As a result$7(t) can be decoupled from, and optimized ¥ Substitute$ig into (11) to obtain the function value
in prior by [23] f (Smia )- i i ) i

. ( ¥ If the convergence is attained (that is, the modulation

B B interval or|f ($mig )| cannot be further reduced), return
z — Z z z

$i(1) =arg lﬂ%)éeu (R (0 # W)Pi (t) # $Wpi ®) $mia and stop the iteration.
(6) ¥ Replace either($ ,f($)) or ($:+,f($+)) with

s f (Smia))-
the right-hand side (RHS) of which, by substituting (4) and (Bmia T ($mia )
(3), can be rewritten as C. Deep Q-network on the UAV

, B oy o Y e The proposed DQL-RM builds a deep Q-network on the
max (B () # g (@D, F(O)Pyay $h7(D$#  UAV to optimize the resource management by approximat-

=1,

FEE] B&, (1)) L ( ing the optimal Q value. Figure 4 depicts the proposed deep
224L 2 #1 , (7) Q-network, where the Q value in (5) is derived according to
$hi ()W the network state and the action of the UAV. The learning

whereW is the bandwidth of the uplink data transmissiorf{"e_'ght values, | n the deepQ-netwgrk are iteratively

& is the duration of an uplink symbol, ang.- is the adjusted to approximat® Sg%e k;, | , wherel % #

duration of uplink data transmissioi2 (t) # B is the alapl#? the togal number of iterations. The approximated

rest of the time slots used for downlink WPT, afd(t) Q@ Se B K 1 which is the outputs of the deep Q-
is the contact time between the 10T node and the UAV ietwork, can be minimized by optimizing the weights
the time slot, which is affected by the patrolling velocity The weight, | at iterationl is adjugtedofor traingng the

of the UAV vZ(t). Thus, we have deep Q-network, while miniryizi?{@ Se ;%im,k;, LAt
Z 2+ W each iteration of minimizing Sg /ﬁ%, k;, , the weight
fe(t) = I0) ' ®) ., from iteratiop (I ¢, 1) is Bxed. Thus, the subprob-

lem of learni /@on,k;, at jteragion!l (I % #
wherel? is the altitude of the UAV at lag. We assume that 3 h9Q g& 4 _ ! # E’?? (1% $)
the UAV maintains the same altitude and the same headidgPnesC Sg®o k + *minwsa Q Se%Be, kS, 11 .
in each lap. For deriving the weight | at iterationl, gradient descent
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—GreedyRM
||-=-DQL-RM

is applied to iteratively compute the gradient value, ar

update the neural networkOs weights to reach the glo

minimum (refer to [25] for details). o % I o o 50
The proposed DQL-RM scheme optimizes the actior Number of IoT nodes

based on the deep Q-network to solve the resourEelgl 6: Network cost with regards to different number of nodes.

management problem. The propgse«!/ deep $£-networ

mgint%/ins two seé)arate Q-networls Sg%o, k;, | and

Network cost (packets)

Q Se%y k;, -1 with the weights, | at iterationl and or greedy policies (GreedyRM). RRM randomly schedules
the weights, |- 1 at iteration| # 1, respectively. DQL- one IoT node at each time slot to transfer power and collect
RM updates, | with multiple times per time-step, anddata, while GreedyRM gives the highest priority of WPT
.1 is copied into, |- ;. DQL-RM trains the deep Q- and data collection to the lIoT node with the longest buffer.
network to minimize a set of loss functions at every Figure 6 shows the packet loss of DQL-RM, where the
update iteration [26], hence, minimizing the mean-square@dmber of 10T nodes increases from 50 to 200. The data
Bellman error. Therefore, the optimality can be asymptotijueue length of the 10T node is set to 10. Generally, the
cally achieved by DQL-RM. For maximizing the harvestedetwork cost of the proposed DQL-RM is much lower
energy, DQL-RM also determines the optimal modulatiothan RRM and GreedyRM. When the number of IoT
scheme$?(t) of the IoT node once the optimal loT nodenodes is 200, DQL-RM achieves 82.8% and 69.2% lower

is selected from the deep Q-network. network cost than RRM and GreedyRM, respectively. The
performance gains keep growing with the number of loT
V. PERFORMANCEEVALUATION nodes in the network. This is because DQL-RM schedules

DQL-RM is implemented in Python 3.5 based on Googl#/PT and data communications to minimize the data packet
TensorFlow, and we assess the performance when the nldss of the entire network, by learning the loT nodes®
ber of 10T nodes enlarges from 50 to 200. Figure 5 shovimttery levels and queue lengths.
the network cost (i.e., data packet loss) at each episodeWe debne the packet loss rate as the ratio of the packet
given | = 180. In particular, OepisodesO are a sequeness and the total number of data packets. Figure 7 studies
of training epochs, where the deep Q-network is traingtle packet loss rate with regards to different number of
to Pnd the optimal actions. According to Figure 4, thé&oT nodes. When = 50, the packet loss rate of DQL-RM
proposed deep Q-network executes actions, obtains the risxsimilar to GreedyRM. When the number of 10T nodes
states, and updates the learning weights at each episodeinkseases from 80 to 200, DQL-RM achieves lower packet
observed in Figure 5, the packet loss (i.e., network costss rate than RRM and GreedyRM. Moreover, when the
with DQL-RM drops around 58.3% at the Prst 50 episodesumber of 0T nodes increases from 50 to 200, the packet
From episode 50 to episode 500, the packet loss drops frémes rate of DQL-RM only slightly grows about 2%. This
2 x 10* to about 140. Moreover, the performance reach@wdicates that the performance of DQL-RM is not effected
a relatively stable value after episode 400, which conbrrbg the number of 10T nodes in the network. The reason
the convergence of the proposed deep Q-network. is that DQL-RM efbciently adapts the IoT node selection

We compared DQL-RM with two resource managemeraind WPT duration to minimize the data packet loss in the
scheme based on either randomized MDP states (RRMjesence of the channel dynamics.
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VI. CONCLUSION AND FUTURE WORK
This paper investigates the resource management

"of

UAV-assisted WPT and data collection for preventing bat-

tery drainage and buffer over3ow of the ground IoT nod

Vel

in the presence of highly dynamic airborne channels. DQL-
RM is proposed to minimize the overall data packet loss of

the 10T nodes, by jointly optimizing the 10T node for WPT

and data collection, and the associated modulation scheps

of the 10T node. DQL-RM builds and trains a deep Q-

network to determine the optimal actions of the UAV wit
the MDP states of battery levels and data queue lengths

)

the 10T nodes, channel conditions, and the waypoints given

the trajectory of the UAV.

. , [15
For future work, the IoT networks will consider hetero-

geneous ground nodes with dynamic battery capacity and

data queue size. The proposed DQL-RM will be furth

8ie)

evaluated in multiple application scenarios, e.g., intelligent

transportation and 5G networks.
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