
elatório
técnico

echnic
report

alt
r

IPP-HURRAY! Research Group

Polytechnic Institute of Porto
School of Engineering (ISEP-IPP)

Distributed Computing for the Factory-
Floor: a Real-Time Approach using

WorldFIP Networks

Eduardo TOVAR
Francisco VASQUES

HURRAY-TR-0020
August 2000



THIS WORK IS PARTIALLY SUPPORTED BY FLAD UNDER PROJECT SISTER (Proj.471/97)

Distributed Computing for the Factory-Floor: a Real-Time
Approach using WorldFIP Networks

Eduardo TOVAR

IPP-HURRAY! Research Group
Polytechnic Institute of Porto (ISEP-IPP)
Rua Dr. António Bernardino de Almeida, 431
4200-072 Porto
Portugal
Tel.: +351.22.8340502, Fax: +351.22.8321159
E-mail: emt@dei.isep.ipp.pt
http://www.hurray.isep.ipp.pt

Francisco VASQUES

University of Porto (FEUP)
Rua dos Bragas
4050-123 Porto
Portugal
Tel.: +351.22.2041774, Fax: +351.22.2074241
E-mail: vasques@fe.up.pt
http://www.fe.up.pt/~vasques

Abstract:

Field communication systems (fieldbuses) are widely used as the communication support for
distributed computer-controlled systems (DCCS) within all sort of process control and
manufacturing applications. There are several advantages in the use of fieldbuses as a
replacement for the traditional point-to-point links between sensors/actuators and computer-
based control systems, within which the most relevant is the decentralisation and distribution
of the processing power over the field. A widely-used fieldbus is the WorldFIP, which is
normalised as European standard EN 50170. Using WorldFIP to support DCCS, an important
issue is "how to guarantee the timing requirements of the real-time traffic"? WorldFIP has very
interesting mechanisms to schedule data transfers, since it explicitly distinguishes periodic
and aperiodic traffic. In this paper we describe how WorldFIP handles these two types of
traffic, and more importantly, we provide a comprehensive analysis on how to guarantee the
timing requirements of the real-time traffic.
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1. Introduction

In the past decade manufacturing schemes have changed dramatically. In particular, the Computer Integrated
Manufacturing [1] concept has been stressed as a means to achieve greater production competitiveness [2]. The driving
forces behind the changes also resulted from the increased development and utilisation of new technologies that make
massive use of microprocessor-based equipment. Integration implies that different subsystems of the manufacturing
environment interact and co-operate with each other. This means transfer, storage and processing of information in a
widespread environment. In other words, integration requires efficient support for data communications.

Nowadays, communication networks are available to virtually every aspect of the manufacturing environment,
ranging from the production planning to the field level [3]. However, the use of communication networks at the field
level is a much more recent trend [4]. Indeed, only more recently network interfaces become cost-effective for the
interconnection of devices such as sensors and actuators, which, in the majority of the cases, are expected to be cheaper
than the equipment typically interconnected at upper control levels of the manufacturing environment (e.g., workstations
and numerically-controlled machines).

The field level includes process-relevant field devices, such as sensors and actuators. The process control level is
hierarchically located above the field level, and directly influences it in the form of control signals. If the control is
computer-based, the process control level uses data received from sensors to compute new commands, which are then
transmitted to the actuators.
A computer-controlled system can have a centralised architecture. By centralised architecture we mean that there is only
one single computer system unit, which has I/O capabilities to support both the instrumentation (sensors/actuators) and
the man-machine interfaces. The sensors and actuators are connected to the computer system via point-to-point links.
Fig. 1a) illustrates such kind of architecture.

There are however several advantages in using a field level communication network as the replacement for the point-
to-point links between the sensors/actuators and the computer system. As it can be depicted from Fig. 1b), a cost
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reduction can be obtained by replacing a significant part of the wiring by a field level communication network.
Naturally, the use of a single wire brings other important advantages, such as easier installation and maintenance, easier
detection and localisation of cable faults, and easier expansion due to the modular nature of the network.
With the increased availability of low cost technology, the decentralised computer-controlled architecture can easily
evolve to a distributed computer-controlled architecture. Basically, the difference relies on the distribution of the control
algorithms. In a centralised computer-controlled architecture, all the control algorithms are implemented in a single
computer system. In a decentralised computer-controlled architecture, the control algorithms are also centralised in a
single computer system (now also a network node), even if some processing tasks (signal conditioning or pre-processing
operations) may be executed in the network nodes that interface to the sensors and actuators. Contrarily, in a distributed
computer-controlled architecture, the tasks of the control algorithms may be distributed throughout several computing
nodes. Fig. 2 depicts the organisation of a distributed computer-controlled architecture.
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Fig. 1. This figure highlights the main advantage of a decentralised computer-controlled architecture (b) when compared to a
centralised computer-controlled architecture (a)

The ability to support distributed control algorithms is another advantage of using a field level network. This eases
the design of computer-controlled systems where decentralisation of control and measurement tasks, as well as the
number of microprocessor-controlled devices is ceaselessly increasing.
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Fig. 2 This figure represents a distributed computer-controlled architecture

Field level networks aimed at the interconnection of sensors, actuators and controllers are commonly known as fieldbus
networks. In the past, the fieldbus scope was dominated by vendor specific solutions, which were mostly restricted to
specific application areas. Moreover, concepts behind each proposed network were highly dependent on the
manufacturer of the automation system, each one with different technical implementations and also claiming to fulfil
different application requirements, or the same requirements with different technical solutions [5]. More recently,
standardised fieldbuses supporting the open system concept, thus vendor independent, started to be commonly used.
Particular relevance must be given to the European Standard EN 50170 [6], which encompasses three widely used
fieldbuses: P-NET [7], PROFIBUS [8] and WorldFIP [9]. All these fieldbus protocols aim at the support of distributed
computer-controlled systems (DCCS).
This paper addresses the ability of WorldFIP to cope with the real-time requirements of DCCS. Typically, DCCS
include process variables that must be transferred between network devices, either in a periodic or in an aperiodic basis.
The WorldFIP protocol is designed to support both types of traffic. A potential large leap towards its use in DCCS relies
on the evaluation of its temporal behaviour. Particularly, an important problem associated with the WorldFIP fieldbus is
its inability to guarantee the timing requirements associated to the aperiodic traffic. As it will be seen, real-time
requirements for the periodic traffic can be easily guaranteed by the WorldFIP protocol. However, for the aperiodic
traffic more complex analysis must be made to evaluate the message’s response time. The main focus of this paper will
be in the analysis of the aperiodic message’s response time.
The remainder of this paper is organised as follows. Section 2 describes the most important concepts of the WorldFIP
networks. In Section 3 we evaluate the worst-case response time for the aperiodic traffic as a function of the periodic
traffic schedule, thus performing an integrated analysis of both types of traffic. In Section 4 we present a numerical
example, which highlights the relevance of the proposed methodology. Finally, in Section 5 some conclusions are
drawn.

2. Basic Analysis of the WorldFIP protocol

A WorldFIP network interconnects stations with two types of functionality: bus arbitration and production/consumption
functions. At any given instant, only one station can perform the function of active bus arbitration. Hence, in WorldFIP,
the medium access control (MAC) is centralised, and performed by the active bus arbitrator (BA).
WorldFIP supports two basic types of transmission services: exchange of identified variables and exchange of messages.
In this paper we address WorldFIP networks supporting only the exchange of identified variables, since they are the
basis of WorldFIP real-time services. The exchange of messages, which is used to support manufacturing message
services (MMS) [10], is out of the scope of this paper.

2.1. Producer/Distributor/Consumer Concept
In WorldFIP, the exchange of identified variables is based on a producer/distributor/consumer (PDC) model, which
relates producers and consumers within the distributed system. In this model, for each process variable there is one, and
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only one producer, and one or more consumers. For instance, consider the variable associated with a process sensor. The
station that provides the value of the variable will act as producer and its value will be provided to all the consumers of
the variable (e.g., the station that acts as process controller for that variable or the station that is responsible for building
an historical data base).
In order to manage transactions associated to a single variable, a unique identifier is associated to each variable. The
WorldFIP data link layer (DLL) is made up of a set of produced and consumed buffers, which can be locally accessed
(through application layer (AL) services) or remotely accessed (through network services).
The AL provides two basic services to access the DLL buffers: L_PUT.req, to write a value in a local produced buffer,
and L_GET.req to obtain a value from the local consumed buffer. None of these AL services generate activity on the
bus.
Produced and consumed buffers can be also remotely accessed through a network transfer (service also known as buffer
transfer). The bus arbitrator broadcasts a question frame ID_DAT, which includes the identifier of a specific variable.
The DLL of the station that has the corresponding produced buffer, responds with the value of the variable, using a
response frame RP_DAT. The DLL of the station that contains the produced buffer then sends an indication of
transmission to the AL (L_SENT.ind). The DLL of the station(s) that has the consumed buffers accepts the value
contained in the RP_DAT, overwriting the previous value and notifying the local AL with a L_RECEIVED.ind.

2.2. Buffer Transfer Timings
A buffer transfer implies the transmission of a pair of frames: ID_DAT, followed by RP_DAT. We denote this sequence
as an elementary transaction. The duration of this transaction equals the time needed to transmit the ID_DAT frame,
added to the time needed to transmit the RP_DAT frame, and finally added to twice the turnaround time (tr). The
turnaround time is the time elapsed between any two consecutive frames.
Every transmitted frame is encapsulated with control information from the physical layer (PL). Specifically, an ID_DAT
frame has always 8 bytes (corresponding to a 2-bytes identifier plus 6 bytes of control information), whereas a RP_DAT
frame has also 6 bytes of control information plus up to 128 bytes of useful data. The duration of a message transaction
is:

( ) ( )
rt

bps

lenlen
C ×+

+
= 2

rp_datid_dat (1)

where bps stands for the network data rate and len(<frame>) is the length, in bits, of frame <frame>.
For instance, assuming a variable with a 4-bytes data field, if tr = 20µs1 and the network data rate is 2.5Mbps then, the
duration of an elementary transaction will be (64+80)/2.5+2×20=97.6µs (equation (1)).

2.3. Bus Arbitrator Table
In WorldFIP networks, the bus arbitrator table (BAT) regulates the scheduling of all buffer transfers. The BAT imposes
the timings of the periodic buffer transfers, and also regulates the aperiodic buffer transfers, as it will be explained in
Section 2.4.
Assume a distributed system within which 6 variables are to be periodically scanned, with scan rates as shown in Table
1. The WorldFIP BAT must cope with these real-time requirements.

Table 1: Example set of periodic buffer transfers

Identifier A B C D E F
Periodicity (ms) 1 2 3 4 4 6

Two important parameters are associated with a WorldFIP BAT: the micro-cycle (elementary cycle) and the macro-
cycle. The micro-cycle imposes the maximum rate at which the BA performs a set of scans. Usually, the micro-cycle is
set equal to highest common factor (HCF) of the required scan periodicities. Using this HCF rule, and for the example of
Table 1, the value for the micro-cycle is set to 1ms. A possible schedule for all the periodic scans is illustrated in Fig. 3,
where we consider C=97.6µs (1) for each elementary transaction.

                                                       
1 The turnaround time (tr) is imposed [9] to be within the interval 10×(1/bps) ≤ tr ≤ 70×(1/bps).
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Fig. 3 This figure illustrates a possible schedule for the periodic buffer transfers of Table 1

It is easy to depict that, for this example, the sequence of micro-cycles is repeated after each 12 micro-cycles. This
sequence of micro-cycles is said to be a macro-cycle, and its length is given by the lowest common multiple (LCM) of
the scan periodicities. The HCF/LCM approach for building the WorldFIP BAT has the following properties:

1. The scanning periods of the variables are multiples of the micro-cycle;
2. The variables are not scanned at exactly regular intervals. For the given example, only variables A and B are

scanned exactly in the same "slot" within the micro-cycle. All other variables suffer from a slight communication
jitter. For instance, concerning variable F, the interval between micro-cycles 1 and 7 is (1-
5×0.098)+5+(3×0.098)=5.80ms, whereas the interval between micro-cycles 7 and 13 is (1-
3×0.098)+5+(5×0.098)=6.20ms.

3. The length of the macro-cycle can induce a memory size problem, since the table parameters must be stored in
the BA. For instance, if scanning periodicities of variables E and F were, respectively, 5ms and 7ms, the length
of the macro-cycle would be 420 micro-cycles instead of only 12.

Both the communication jitter and memory size problems have been addressed in the literature. In [11] the authors
discuss different methodologies for reducing the BAT size, without penalising the communication jitter. The idea is very
simple, and it basically consists on reducing some of the scan periodicities in order to obtain a harmonic pattern. The
problem of table size has also been addressed in [12,13], however in a different perspective. In the referred work, the
authors discuss an online scheduler (instead of storing the schedule in the BA's memory), which is not directly
applicable to the WorldFIP case.
It is also worth mentioning that the schedule shown in Fig. 3 represents a macro-cycle composed of synchronous micro-
cycles, that is, for the specific example, each micro-cycle starts exactly 1ms after the previous one. Within a micro-
cycle, the spare time between the end of the last scan for a periodic variable and the end of the micro-cycle can be used
by the BA to process aperiodic requests for buffer transfers (see Section 2.4), message transfers and padding identifiers.
A WorldFIP BA can also manage asynchronous micro-cycles, not transmitting padding identifiers at the end of the
micro-cycle. In such case, a new micro-cycle starts as soon as the periodic traffic is performed and there are no pending
aperiodic buffer transfers or message transfers. Initial periodicities are not respected, since identifiers may be more
frequently scanned.

2.4. Aperiodic Buffer Transfers
In a WorldFIP system, not all the variables are to be included in the BAT. Some may only be occasionally exchanged,
and thus do not need to be periodically scanned. Typically such exchanges will concern application events or alarms,
which by their own nature do not occur with a periodic pattern. Therefore, it is preferable to map these variables into
aperiodic buffer transfers, in order to reduce the network load. In the context of this paper, we consider that aperiodic
requests use the Urgent priority level.The BA handles the aperiodic buffer transfers after processing the periodic
traffic in a micro-cycle. The portion of the micro-cycle reserved for the periodic buffer exchanges is denoted as the
periodic window, whereas the time left after the periodic window is denoted as the aperiodic window. The aperiodic
buffer transfers take place in three stages (Fig. 4):

1. A station with a pending aperiodic request must wait for its next periodic buffer transfer (say periodic variable X)
to notify the BA, setting an aperiodic request bit in the RP_DAT frame. The bus arbitrator stores the indication of
a yet not identified aperiodic request in a queue of requests for variable transfers. At the end of this interval, the
BA is aware of a pending request in the station that produces periodic variable X.
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2. In a subsequent aperiodic window, the BA asks the producer of the variable X (ID_RQ frame) to transmit the list
of its pending aperiodic requests. The producer of X responds with a RP_RQ (list of identifiers) frame. This list is
placed in another BA's queue, the ongoing aperiodic queue. At the end of this interval the BA knows which are
the requested identifiers.

3. Finally, the BA processes requests for aperiodic transfers that are stored in its ongoing aperiodic queue. For each
transfer, the BA uses the same mechanism as that used for the periodic buffer transfers (ID_DAT followed by
RP_DAT).

Request for an aperiodic
buffer exchange in station k

time
≈

ID_DAT + RP_DAT concerning a
periodic variable of station k

≈

ID_RQ + RP_RQ
(BA asking for a list of

pending requests)

≈

ID_DAT + RP_DAT concerning
the aperiodic variable

Response Time for the Aperiodic Transfer

Fig. 4. Timings for transactions associated with the processing of one aperiodic variable

It is important to note that a station can only request aperiodic transfers using responses to periodic variables that it
produces and which are configured in the BAT. Finally, it is important to stress that the urgent queue in the BA is only
processed if, and only if, the BA's ongoing aperiodic queue is empty. As it can be depicted from Fig. 5, traffic
concerning the aperiodic buffer transfers (transactions ID_RQ / RP_RQ or ID_DAT /RP_DAT) can only be carried out if
there is time left in a specific micro-cycle to completely process them.

Yes

Enough time left to
process exchange?

?

No

RP_DAT(Aperiodic) ←

ID_DAT(Aperiodic) →

Requests in the
urgent queue?

Aperiodic ongoing
queue empty ?

No

Yes

No

Yes

Yes

Enough time left to
process exchange?

No

RP_RQ ←

ID_RQ →

Start of aperiodic
window

Enough time left to
process padding frame?

Yes

PAD →

No

End of aperiodic
window

Fig. 5. This figure illustrates the (urgent) aperiodic buffer transfer mechanisms of the WorldFIP protocol

3. Response Time Analysis of WorldFIP Traffic

3.1. Model for the WorldFIP Buffer Transfers
Consider the following model for the WorldFIP buffer transfers (periodic and aperiodic). Assume a system with np
periodic variables (Vpi, i = 1, ..., np) and na aperiodic variables (Vaj, j = 1, …, na). Each periodic variable is
characterised as:
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( )iii CpTpVp ,= (2)

where Tpi corresponds to the periodicity of Vpi and Cpi is the length of the transaction corresponding to the buffer
transfer of Vpi (as given by equation (1)). Each aperiodic variable Vaj is characterised as:

( )jj TaVa = (3)

where Taj corresponds to the minimum inter-arrival time between two consecutive requests of Vaj.

3.2. Building the WorldFIP BAT
The real-time requirements of the WorldFIP periodic traffic can be easily guaranteed since the BAT implements a static
schedule for the periodic buffer transfers. In this section we present three different algorithms to build the BAT
schedule: two adapted algorithms from the well-known Rate Monotonic (RM) and Earliest Deadline First (EDF)
algorithms [14], respectively, and also a third algorithm which we denote as the Deferred Release (DR) algorithm.
Building the BAT schedule with either the RM or the EDF algorithms has several advantages, since it allows for the use
of well-known schedulability analysis theory.
Considering the RM scheduling algorithm, variables are scheduled according to their periodicity: the variable with the
smallest periodicity will have the highest priority. If several variables have the same periodicity (priority tie), the higher
priority is given to the variable with the smaller identifier. In appendix A.1, a detailed algorithm for building the BAT
using the RM algorithm is presented. The algorithm indicates whether all traffic is schedulable or not (line 22). In the
algorithm, the vector load[ ] is used to store the load in each micro-cycle as the traffic is scheduled. It also assumes that
the array Vp[ , ] is ordered from the variable with the shortest period (Vp[1, ]) to the variable with the longest period
(Vp[np, ]). The RM approach for building the WorldFIP BAT has some aspects that are worthwhile to be addressed. The
following example highlights some of these aspects.
Consider the set of periodic buffer transfers presented in Table 1, where the network data rate is 1Mbps instead of
2.5Mbps, which results in longer messages: Cpi=(64+80)/1+2×20=184µs (Table 2). Note that each micro-cycle is able to
schedule up to 5 periodic buffer transfers (Fig. 6). As a consequence, there is the insertion of idle time in the resulting
schedule, since the remaining time in the first micro-cycle (1ms - 5×184µs = 80µs) is not enough to process a sixth
transaction.

Table 2: BAT (using RM) for example of Table 1, considering Cpi = 184µs

Micro-cycle
1 2 3 4 5 6 7 8 9 10 11 12
1 1 1 1 1 1 1 1 1 1 1 1
1 0 1 0 1 0 1 0 1 0 1 0
1 0 0 1 0 0 1 0 0 1 0 0
1 0 0 0 1 0 0 0 1 0 0 0
1 0 0 0 1 0 0 0 1 0 0 0

bat[A,cycle]
bat[B,cycle]
bat[C,cycle]
bat[D,cycle]
bat[E,cycle]
bat[F,cycle] 0 1 0 0 0 0 1 0 0 0 0 0

Not enough time to process the sixth
transaction (inserted idle-time)

A

B

C

D

E

F

...

time (ms)1 2 3 4 5 6 7 8 9 10 11 12 13

micro-cycle

macro-cycle

Fig. 6. Schedule (RM approach) for the set example of Table 2

An alternative to the use of the RM algorithm to build the BAT schedule is the EDF algorithm. When compared to the
RM scheduling, one of the known advantages of the EDF scheduling is that it allows a better utilisation [14].
Considering the EDF algorithm, variables are scheduled according to the earliest deadline (we assume deadlines equal to
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periods and thus the variable with the earliest deadline is the one with the earliest end of period). If several variables
have the same deadline (priority tie), the higher priority is given to the variable with the earliest request.
In appendix A.2, a detailed algorithm for building the BAT with the EDF algorithm is presented. In the algorithm, the
array disp[ , ] is used to store in disp[i,1] whether there is any pending request for variable i, in disp[i,2] the related
deadline (multiple of the micro-cycle), and in disp[i,3] the micro-cycle at which the request is made.
The increased utilisation allowed by the EDF scheduling algorithm is emphasised, considering the set of periodic buffer
transfers shown in Table 3 (utilisation equal to 90%).

Table 3: Example set of periodic buffer transfers (Cp=0.30ms)

Identifier A B C D E F
Periodicity (ms) 1 2 2 3 3 3

Considering the RM algorithm, the first request for VpF would miss its deadline (Table 4). In fact, there is no empty slot
for variable VpF in the first 3 micro-cycles, since each micro-cycle is only able to schedule up to 3 buffer transfers.

Table 4: BAT (using RM) for example of Table 3

Micro-cycle
1 2 3 4 5 6
1 1 1 1 1 1
1 0 1 0 1 0
1 0 1 0 1 0
0 1 0 1 0 0
0 1 0 1 0 0

bat[A,cycle]
bat[B,cycle]
bat[C,cycle]
bat[D,cycle]
bat[E,cycle]
bat[F,cycle] X 0 0 0 0 1

Considering the EDF algorithm, the first request for VpF does not miss its deadline (Table 5), since the second request of
variable VpC is scheduled only in the fourth micro-cycle. Thus, by increasing the communication jitter, the set of
periodic buffer transfers shown in Table 3 is now schedulable.

Table 5: BAT (using EDF) for example of Table 3

Micro-cycle
1 2 3 4 5 6
1 1 1 1 1 1
1 0 1 0 1 0
1 0 0 1 1 0
0 1 0 1 0 0
0 1 0 0 0 1

bat[A,cycle]
bat[B,cycle]
bat[C,cycle]
bat[D,cycle]
bat[E,cycle]
bat[F,cycle] 0 0 1 0 0 1

An particular characteristic of using EDF to build the WorldFIP BAT is that, in spite of having an utilisation smaller
than 100%, there is not any available time left on the BAT to schedule another aperiodic buffer transfer. This is due to
the inserted idle-time in each micro-cycle, which has the length 1000-3×300=100µs.
With RM and EDF algorithms, besides the inserted idle time aspect, variables that are scheduled in subsequent micro-
cycles will suffer from an increased communication jitter. For instance, the reduction of the jitter associated to the
transfer of the low priority variables can be easily achieved by manipulation of the release time of such variables.
In appendix A.3, a detailed algorithm for building the BAT using a Deferred Release (DR) approach is presented. In this
algorithm, each variable is scheduled according to its exact periodicity (in terms of number of micro-cycles). That is,
either the variable is scheduled in the correct micro-cycle, or it is not scheduled (line 25). The release time of each
periodic variable is chosen in order to minimise the maximum length of the periodic windows in the resulting BAT
schedule (line 18).
For instance, the resulting schedule for the example of Table 1 (Cpi = 184µs) would be as presented in Table 6 and Fig.
7 (compared to Table 2 and Fig. 6 for the RM case, results in a clear reduction of the communication jitter):
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Table 6: BAT (using DR) for example of Table 1 (Cpi = 184µs)

Micro-cycle
1 2 3 4 5 6 7 8 9 10 11 12
1 1 1 1 1 1 1 1 1 1 1 1
1 0 1 0 1 0 1 0 1 0 1 0
1 0 0 1 0 0 1 0 0 1 0 0
0 1 0 0 0 1 0 0 0 1 0 0
0 0 0 1 0 0 0 1 0 0 0 1

bat[A,cycle]
bat[B,cycle]
bat[C,cycle]
bat[D,cycle]
bat[E,cycle]
bat[F,cycle] 0 1 0 0 0 0 0 1 0 0 0 0

A

B

C

D

E

F

...

time (ms)1 2 3 4 5 6 7 8 9 10 11 12

micro-cycle

macro-cycle

Fig. 7. Schedule (DR approach) for the set example of Table 6

3.3. Response Time Characterisation of an Aperiodic Buffer Transfer
The response time of an aperiodic buffer transfer is a function of the periodic traffic pattern, since the length of each
aperiodic window is a function of the generated BAT schedule. Thus, the exact characterisation of the periodic traffic
pattern (as defined in the BAT schedule) is fundamental for the response time analysis of the aperiodic traffic.
We define the response time of an aperiodic buffer transfer as the time interval between placing, at time instant t0, the
request in the local urgent queue and the completion of the buffer transfer concerning the aperiodic variable Vaj in a
BA's aperiodic window (Fig. 4). This response time includes the following three components:

1. the time elapsed between t0 and the time instant when the requesting station (station k) is able to indicate the BA
(via an RP_DAT frame, with the request bit set) that there is a pending aperiodic request. We define this time
interval as the dead interval of a producer station (at the end of this interval, the BA is aware of a pending request
in station k, without being able to identify it);

2. the time interval during which the request indication stays in the BA's urgent queue till the related ID_RQ /
RP_RQ pair of frames is processed in an aperiodic window (at the end of this interval, the BA knows which is the
pending request in station k);

3. the time interval during which the request for variable Vaj stays in the BA's ongoing aperiodic queue till the
related ID_DAT_Ap / RP_DAT pair of frames is processed in an aperiodic window.

These two last components (2 and 3) can be grouped as the BA’s processing interval of an aperiodic buffer transfer. All
these components must be upper bounded, in order to have a bounded response time for an aperiodic buffer transfer.

3.4. Upper Bound for the Dead Interval
The upper bound for the dead interval in a station k is related to the smallest scanning period of a periodic variable,

produced in that station. It is important to note that a periodic variable (Vpi) is not polled at regular intervals due to the

communication jitter inherent to the BAT schedule. Therefore, the upper bound for the dead interval in a station k is:

{ }i
kVp

jjjVpj
k TpTpVpCpJTp

i
j in  produced 

min:  with , =++=σ (4)

where JVpj is the maximum communication jitter of that Vpj. We consider that a local aperiodic request is processed
(setting the request bit in the RP_DAT frame) only if it arrives before the start of the related ID_DAT. Hence, the term
Cpj is included in equation (4).
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For instance, concerning the set of periodic variables of Table 1, if variable F is the only produced variable at station k,
then σk = 6+0.20+0.098 = 6.30ms (see Section 2.3 for the evaluation of the jitter).
In appendix A.4 we describe a detailed algorithm for the evaluation of the communication jitter associated to a periodic
variable, which performs the analysis of the generated BAT schedule. This algorithm is the basis for the evaluation of
the dead interval in a specific station k.

3.5. Upper Bound for the Processing Interval
We assume that all the aperiodic traffic has a minimum inter-arrival time between requests, which is greater than its
worst-case response time. Therefore, no aperiodic request appears before the completion of a previous one. Hence, the
maximum number of aperiodic requests pending in the BA is na, with na being the number of aperiodic variables in the
network (Section 3.1).
The upper bound for the BA’s processing interval occurs when both the periodic and aperiodic traffic are simultaneously
at their maximum load.
We consider that for each aperiodic variable a request for identification must be made, and thus the network load for the
aperiodic traffic is maximised. As a consequence, to process the maximum number of aperiodic variables, the aperiodic
windows will perform alternately sequences of (ID_RQ / RP_RQ) and (ID_DAT / RP_DAT), as the BA gives priority to
the ongoing aperiodic queue (see Fig. 5). That is, the number of transactions to be processed is 2×na.
If all the aperiodic variables have a similar length, the length of the longest transaction in an aperiodic window may be
defined as:
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We define the BA’s processing interval of na consecutive aperiodic requests, as an aperiodic busy interval (ABI), since
all aperiodic windows within this interval are used to process aperiodic traffic. We denote NABI (j) as the number of
micro-cycles during an ABI starting at micro-cycle j and len_abi (j) as the length of such ABI.
The upper bound for the length of the ABI occurs when the ABI is starting at the critical micro-cycle, which is defined
as the micro-cycle that leads to the longest ABI.
It is obvious that using either the RM or the EDF scheduling policies to build the BAT, the critical micro-cycle is the
first one of the macro-cycle. However, for the case of different approaches to build the BAT schedule (e.g. the presented
DR algorithm), the critical micro-cycle may not be the first one. For these other scheduling algorithms, it is necessary to
determine which is the critical micro-cycle, in order to evaluate the length of the longest aperiodic busy interval.
The length of the longest ABI is evaluated as follows. Firstly, we determine recursively the value for each NABI (j). After,
we evaluate the length of each ABI (len_abi (j)), considering that during one ABI there are only (NABI (j)-1) micro-cycles
which are completely utilised.
The length of the aperiodic window in the lth cycle (l = 1, .., N, N + 1, ..) is:
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where bat[i,l*] is a matrix representing the schedule of the periodic traffic and l*=[(l-1) mod N]+1. The use of variable
l* stresses that cycle l = 1 is equivalent to cycle l = N + 1, as a macro-cycle has only N micro-cycles. Therefore, the
number of aperiodic transactions that fit in the lth aperiodic window is:
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The number of micro-cycles during an ABI starting at micro-cycle j (NABI (j)) is then:
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This value must be recursively evaluated for each micro-cycle j, since the number of aperiodic transactions that fit in an
aperiodic window depends on the micro-cycle that is being considered. The recursion stops when the number of
available "slots" (each "slot" with the length of Ca*) is at least 2×na.
Knowing the number of micro-cycles during an ABI, the length of each aperiodic busy interval (len_abi(j)) may be
evaluated as follows:

( )( ) ( ) ( )( )[ ]( ) ( )
( ) ( )

∑ ∑
=

−+−

=

×







−×+×+−+×−=

np

i

jNj

jl
iABIABI CalnapnaCpjNjibatµCyjNjabilen

ABI

1

*
11

*2*1,1)(_ (9)



- 11 -

where (NABI(j)-1)×µCy indicates the length of the completely utilised micro-cycles, ∑i=1,..,np(bat[i, (j-1+NABI(j))*]×Cpi)
indicates the length of the periodic window in the last micro-cycle of the ABI, with ((j-1)+NABI(j))*=[ (j-1)+NABI(j)-
1)modN]+1 and (2×na-∑l=1,..,j+N(j)-2nap(l*))×Ca* indicates how many aperiodic transactions are still pending to be
processed on the last micro-cycle of the ABI.
The length of the longest ABI is then:

{ }
( ){ }jabilenabilen

Nj
_max_

,..,1∈
= (10)

In appendix A.5 a detailed algorithm for evaluating the length of the longest ABI is provided.

3.6. Worst-Case Response Time for the Aperiodic Requests
The worst-case response time of an aperiodic buffer transfer at station k is equal to the length of the dead interval of that
station plus the length of the longest ABI:

abilenRa kk _+= σ (11)

Thus, the minimum inter-arrival time between any two consecutive aperiodic requests of the same aperiodic variable in a
station k is:

abilenRaTa kk
j _+=≥ σ (12)

Inequality (12) presents a pre-run-time schedulability test, which can be used to validate the real-time requirements of
WorldFIP applications.

4. Numerical Example

Consider that a WorldFIP network with 6 periodic variables (as defined in Table 7) must also support 7 aperiodic buffer
exchanges. Assume that the length of the each Vpi, ∀i is Cpi=Cp= 200µs, and that the length of an aperiodic buffer
transfer is Ca* = 100µs. The value of the micro-cycle is 1ms.

Table 7: Example Set of Periodic Buffer Transfers

Identifier A B C D E F
Periodicity (ms) 1 2 2 3 3 6

If the BAT is implemented as shown in Table 8 (enforcing micro-cycles 4 and 6 to be the most loaded ones), the longest
ABI will not be at the beginning of the macro-cycle. Thus, the worst-case response time for an aperiodic transfer will
occur when the request arrives to the BA at the beginning of the longest ABI and not at the beginning of the macro-
cycle.

Table 8: BAT for the numerical example

Micro-cycle
1 2 3 4 5 6
1 1 1 1 1 1
0 1 0 1 0 1
0 1 0 1 0 1
1 0 0 1 0 0
0 0 1 0 0 1

bat[A,cycle]
bat[B,cycle]
bat[C,cycle]
bat[D,cycle]
bat[E,cycle]
bat[F,cycle] 0 0 1 0 0 0

To evaluate the worst-case response time of an aperiodic transfer, we will proceed as defined in Section 3.5. The length
of each aperiodic window during the macro-cycle (6) and the number of aperiodic transactions that fit in each aperiodic
window (7) are, respectively (Table 9):

Table 9: Aperiodic windows for example of Table 8

Micro-cycles 1 2 3 4 5 6

)(law  (µs) 600 400 400 200 800 200

)(lnap 6 4 4 2 8 2
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Using the recurrence relationship given by equation (8), we may now evaluate the number of micro-cycles during an
ABI, for each micro-cycle j. For the case of an ABI starting at the second micro-cycle (j=2), NABI(2) is evaluated as
follows:
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ABI lnapN , and then iteration stops. Thus, NABI(2) = 4.

For the case of ABIs starting in the other micro-cycles, the values for NABI(j) are presented in Table 10. We may now
evaluate the length of each ABI. For the case of an ABI starting at the second micro-cycle (j=2), len_abi(2), the three
components of equation (9) are evaluated as follows:
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Thus, for the ABI starting at the second micro-cycle sabilen µ36004002003000)2(_ =++= . For the case of the

ABIs starting at the other micro-cycles, the values for len_abi(j) are also presented in Table 10.

Table 10: Characterisation of the aperiodic busy interval for each micro-cycle j

Micro-cycle j 1 2 3 4 5 6
NABI(j) 3 4 3 4 3 4

len_abi (j)  (ms) 3.0 3.6 3.0 3.6 2.8 3.8

Thus, the length of the longest ABI is 3.8 ms and the critical micro-cycle is the sixth one. In Fig. 8, we illustrate the
timing behaviour of an aperiodic buffer transfer for both the longest and the smallest ABIs, (AP_1) and (AP_2),
respectively.

A

B

C

D

E

F

...

time (ms)1 2 3 4 5 6 7 8 9 10 11 12

micro-cycle

macro-cycle

Periodic Elementary Transaction Length, periodic traffic

ID_RQ-RP_RQ, ID_DAT- RP_DAT Transaction Length, aperiodic

 AP_1

longest ABI

1 2 3 4 5 6 7

AP_2

smallest ABI

1 2 3 4 5 6 7

Fig. 8. This figure illustrates the timing behaviour of an aperiodic buffer transfer for the example of Table 10

Finally, to evaluate the worst-case response time of an aperiodic buffer transfer (11), we must consider the value of the
dead interval. As an example, for a request made at a station k, which produces the periodic variable F (assume that F is
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the only periodic variable produced in station k), the dead interval (4) is 6.30ms. Therefore, the worst-case response time
of an aperiodic variable requested in that station is Rak=6.30+3.80=10.10ms.

5. Conclusions

The use of WorldFIP networks to support distributed computer-controlled systems (DCCS), requires a thorough analysis
of the communication timing behaviour.
In this paper, we addressed the ability of the WorldFIP to cope with the real-time requirements of DCCS. The WorldFIP
protocol is designed to support both periodic and aperiodic traffic. The real-time requirements for the periodic traffic can
be easily guaranteed by an adequate setting of the WorldFIP BAT. However, for the aperiodic traffic more complex
analysis must be made to evaluate the message’s response time, which has been the main focus of this paper.
To our best knowledge, few work has been done on the analysis of the message’s response time in WorldFIP networks.
Both [15] and [16] address the issue of finding worst-case response times for aperiodic requests in WorldFIP networks.
However, those works are based on some restrictive assumptions:

1. In [15] the authors consider that the aperiodic traffic is transferred only after all the periodic traffic in a macro-
cycle, which leads to a very pessimistic result;

2. In [16] the authors consider equal lengths for the periodic windows, since they do not discuss the BAT
construction and thus they cannot evaluate the length of the periodic window in each micro-cycle. Thus, the
overall results are also very pessimistic.

More importantly, none of the analyses considered that at the end of each micro-cycle some transactions would
simply not fit. They did also not take into account the communication jitter in the evaluation of the dead interval.
We significantly improved those results by approaching the analysis for the aperiodic traffic in an integrated manner
with the methodologies used to build the BAT. Thus, we reduced the pessimism considering the actual length of the
periodic window in each micro-cycle. We also considered the effect of both the communication jitter and the inserted
idle time.
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Appendix

A.1. Rate Monotonic (RM) Algorithm for Building the BAT
--------------------------------------------------------------------------
- Rate Monotonic for Building the BAT
--------------------------------------------------------------------------
function rm_bat;
input: np /* number of periodic variables */

Vp[i,j] /* array containing the periodicity and length of the */
/* variables ORDERED by periodicities, with */
/* Vp[i,1]=Tpi, Vp[i,2]=Cpi, */
/* i ranging from 1 to np and j ranging from 1 to 2 */

µCy /* value of the micro-cycle */
N /* number of micro-cycles in the macro-cycle */

output:
bat[i,cycle] /* i ranging from 1 to np */

/* cycle ranging from 1 to N */
begin

1: for i = 1 to np do
2: cycle = 1;
3: repeat
4: if load[cycle] + Vp[i,2] <= µCy then
5: bat[i,cycle] = 1;
6: load[cycle] = load[cycle] + 1;
7: cycle = cycle + (Vp[i,1] div µCy)
8: else;
9: cycle1 = cycle1 + 1;
10: ctrl = FALSE;
11: repeat
12: if load[cycle1] + Vp[i,2] <= µCy then
13: ctrl = TRUE
14: end if;
15: until (ctrl = TRUE) or (cycle1 >= (cycle + (Vp[i,1]
16: div µCy)));
17: if cycle1 >= (cycle + (Vp[i,1] div µCy)) then
18: bat[i,cycle1] = 1;
19: load[cycle1] = load[cycle1] + 1;
20: cycle = cycle + (Vp[i,1] div µCy)
21: else
22: /* MARK Vpi NOT SCHEDULABLE with RM Algorithm */
23: cycle = cycle + (Vp[i,1] div µCy)
24: end if
25: end if
26: until cycle > N
27: end for

return bat;
--------------------------------------------------------------------------
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A.2. Earliest Deadline (EDF) Algorithm for Building the BAT
------------------------------------------------------------------------
- Earliest Deadline First for Building the BAT
------------------------------------------------------------------------
function edf_bat;
input: np /* number of periodic variables */

Vp[i,j] /* array containing the periodicity and length of the */
/* variables, with Vp[i,1]=Tpi, Vp[i,2]=Cpi,*/
/* i ranging from 1 to np and j ranging from 1 to 2 */

µCy /* value of the micro-cycle */
N /* number of micro-cycles in the macro-cycle */

output:
bat[i,cycle] /* i ranging from 1 to np */

/* cycle ranging from 1 to N */
begin

1: cycle = 0;
2: repeat
3: /* determine request generated in each micro-cycle */
4: for i = 1 to np do
5: if cycle mod Vp[i,1] = 0 then
6: disp[i,1] = 1;
7: disp[i,2] = Vp[i,1] + cycle;
8: disp[i,3] = cycle
9: else
10: /* MARK variable Vpi NOT SCHEDULABLE */
11: end if
12: end for;
13:
14: /* Schedule Variables in Current Micro-cycle */
15: load_full = FALSE;
16: repeat
17: no_rq = TRUE;
18: earliest = MAXINT;
19: var_chosen = 0; /* no variable chosen */
20:
21: /* Chose Earliest Deadline from Pending Requests */
22: for i = 1 to np do
23: if disp[i,1] = 1 then /* if there is request */
24: no_rq = FALSE;
25: if disp[i,2] <= earliest then
26: if var_chosen = 0 then
27: earliest = disp[i,2];
28: var_chosen = i
29: else
30: /* decide earliest request from two */
31: /* with equal deadlines */
32: if disp[i,3] < disp[var_chosen,3] then
33: earliest = disp[i,2];
34: var_chosen = i
35: end if
36: end if
37: end if
38: end if
39: end for;
40:
41: /* Verify the Load in the Current Micro-cycle */
42: if load[cycle + 1] + Vp[i,2] <= µCy then
43: bat[var_chosen, cycle + 1] = 1
44: load[cycle + 1] = load[cycle + 1] + Vp[var_chosen,2];
45: disp[var_chosen,1] = 0;
46: disp[var_chosen,2] = 0;
47: disp[var_chosen,3] = 0;
48: else
49: load_full = TRUE
50: end if;
51: until (load_full = TRUE) or (no_rq = TRUE)
52:
53: cycle = cycle + 1;
54: until cycle = N;

return bat;
------------------------------------------------------------------------
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A.3. Deferred Release (DR) Algorithm for Building the BAT
------------------------------------------------------------------------
- Deferred Release (DR) for Building the BAT
------------------------------------------------------------------------
function dr_bat;
input: np /* number of periodic variables */

Vp[i,j] /* array containing the periodicity and length of the */
/* variables ORDERED by periodicities, with */
/* Vp[i,1]=Tpi, Vp[i,2]=Cpi, */
/* i ranging from 1 to np and j ranging from 1 to 2 */

µCy /* value of the micro-cycle */
N /* number of micro-cycles in the macro-cycle */

output:
bat[i,cycle] /* i ranging from 1 to np */

/* cycle ranging from 1 to N */
begin

1: for i = 1 to np do

2: min_load = np × max(Vp[i,2]);
3: for cycle = 1 to (Vp[i,1] div µCy) do
4: cycle1 = cycle;
5: max_load = 0;
6: repeat
7: if load[cycle1] > max_load then
8: max_load = load[cycle1]
9: end if;
10: cycle1 = cycle1 + (Vp[i,1] div µCy)
11: until cycle1 > N;
12: if max_load < min_load then
13: cycle_min = cycle;
14: min_load = max_load;
15: end if;
16: end for;
17:
18: cycle = cycle_min;
19: repeat
20: if (load[cycle] + Vp[i,2]) < µCy then
21: load[cycle] = load[cycle] + Vp[i,2];
22: bat[i,cycle] = 1;
23: cycle = cycle + (Vp[i,1] div µCy)
24: else
25: /* MARK Vpi NOT SCHEDULABLE with DR Algorithm */
26: exit
27: end if;
28: until cycle > N;

return bat;
------------------------------------------------------------------------
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A.4. Algorithm for the Evaluation of the Communication Jitter
--------------------------------------------------------------------------
- evaluation of the maximum communication jitter of a periodic variable
--------------------------------------------------------------------------
function NR;
input: np /* number of periodic variables */

Vp[i,j] /* array containing the periodicity and length of the */
/* variables, with Vp[i,1]=Tpi, Vp[i,2]=Cpi,*/
/* i ranging from 1 to np and j ranging from 1 to 2 */

µCy /* value of the micro-cycle */
N /* number of micro-cycles in the macro-cycle */
bat[i,cycle] /* i ranging from 1 to np */

/* cycle ranging from 1 to N */
output: J[i] /* maximum polling jitter of variable Vpi */

begin
1: for i = 1 to np do
2:
3: /* Evaluate number of hits of variable Vpi */
4: hits = 0;
5: for cycle = 1 to N do
6: if bat[i,cycle] = 1 then
7: hits = hits + 1;
8: end if
9: end for;
10:
11: /* Find first hit in a macro-cycle */
12: cycle = 0;
13: repeat
14: cycle = cycle + 1
15: until bat[i,cycle] = 1;
16:
17: /* Find last hit in a macro-cycle */
18: cycle1 = N + 1;
19: repeat
20: cycle1 = cycle1 - 1
21: until bat[i,cycle1] = 1;
22:
23: /* Evaluate the time span between the last hit in a */
24: /* macro-cycle and the first hit in a subsequent macro-cycle */

25: span = (N - cycle1 + cycle - 1) × µCy;
26: load_par = 0;
27: for j = 1 to i - 1 do
28: if bat[j,cycle] = 1 then
29: load_par = load_par + Vp[j,2]
30: end if
31: end for;
32: span = span + load_par;
33: load_par = 0;
34: for j = 1 to i - 1 do
35: if bat[j,cycle1] = 1 then
36: load_par = load_par + Vp[j,2]
37: end if
38: end for;
39: span = span + (µCy - load_par);
40:
41: /* Evaluate the time span between each of the hits */
42: /* within a macro-cycle */
43: for k = 1 to hits - 1 do
44: cycle1 = cycle;
45: repeat
46: cycle1 = cycle1 + 1
47: until bat[i,cycle1] = 1;

48: span1 = (cycle1 - cycle - 1) × µCy;
49: load_par = 0;
50: for j = 1 to i - 1 do
51: if bat[j,cycle] = 1 then
52: load_par = load_par + Vp[j,2]
53: end if
54: end for;
55: span1 = span1 + (µCy - load_par);
56: load_par = 0;
57: for j = 1 to i - 1 do
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58: if bat[j,cycle1] = 1 then
59: load_par = load_par + Vp[j,2]
60: end if
61: end for;
62: span1 = span1 + load_par;
63:
64: if span1 > span then
65: span = span1
66: end if;
67: cycle = cycle1;
68: end for;
69: J[i] = span - Vp[i,1];
70: end for

return J;
--------------------------------------------------------------------------
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A.5. Algorithm for the Evaluation of the Length of the ABI
--------------------------------------------------------------
- Length of Aperiodic Busy Interval
--------------------------------------------------------------
function len_apbi;
input: np /* number of periodic variables */

na /* number of aperiodic variables */
µCy /* value of the microcycle */
bat[i,l] /* i ranging from 1 to np */
ca /* length of any aperiodic transaction */
cp /* length of all periodic transactions */

 N /* number of microcycles in the */
/* macrocycle */

ncy_abi /* number of microcycles of the abi */
output: len_abi /* length of the aperiodic busy interval */

begin
1: len_abi_max = 0;
2:
3: for j = 1 to N do /* test all micro-cycles as critical */
4: ncy_abi = function_ncy_abi (j);
5:
6: /* determine number of aperiodic transfers in */
7: /* the ncy_abi - 1 microcycles */
8: for cycle = 1 to ncy_abi - 1 do
9: count_p = 0;
10: for i = 1 to np do
11: if bat[i, ((cycle - 1) mod N) + 1] = 1 then
12: count_p = count_p + 1
13: end if
14: end for;

15: aw = µCy - count_p × cp;
16: na_aux = na_aux + aw div ca
17: end for;
18:
19: /* determine the number of periodic scans */
20: /* in microcycle */
21: /* number ncy_abi */
22: count_p = 0;
23: for i = 1 to np do
24: if bat[i, ((ncy_abi - 1) mod N) + 1] = 1 then
25: count_p = count_p + 1
26: end if
27: end for;

28: len_p = count_p × cp;
29:
30: /* determine length of aperiodic busy window */
31: len_abi = (ncy_abi - 1) × µCy + len_p + (2 × na -
32: na_aux) × ca
33: if len_abi > len_abi_max then
34: len_abi_max = len_abi
35: end if;
36: end for;

return len_abi;
--------------------------------------------------------------

--------------------------------------------------------------
- Number of Cycles of the Aperiodic Busy Interval
--------------------------------------------------------------
function ncy_abi;
input: np /* number of periodic variables */

na /* number of aperiodic variables */
µCy /* value of the microcycle */
bat[i,l] /* i ranging from 1 to np */
ca /* length of any aperiodic transaction */
cp /* length of all periodic transaction */

N /* number of microcycles in the */
/* macrocycle */

output: ncy_abi /* number of cycles of the abi */

begin



- 20 -

1: cycle = j;
2: na_aux = 0;
3: repeat
4: cycle = cycle + 1;
5: count_p = 0;
6: for i = 1 to np do
7: if bat[i,((cycle - 1) mod N) + 1] = 1 then
8: count_p = count_p + 1;
9: end if;
10: end for;

11: aw = µCy - count_p × cp;
12: na_aux = na_aux + aw div ca;

13: until na_aux >= 2 × na;
14: ncy_abi = cycle;

return ncy_abi;
--------------------------------------------------------------


