
  

 

 

 

 

Dynamic contracts  for v erif ication a nd 
enfo rceme nt of  real -time systems pro per ties  

 

 
 

 

PhD Thesis 

CISTER-TR-180413 

 

2018/04/10  

André Pedro  
 



PhD Thesis CISTER-TR-180413  Dynamic contracts for verification and enforcement of  ... 

© CISTER Research Center 
www.cister.isep.ipp.pt   

1 
 

Dynamic contracts for verification and enforcement of real-time systems 
properties 

André Pedro 

*CISTER Research Centre 

Polytechnic Institute of Porto (ISEP-IPP) 

Rua Dr. António Bernardino de Almeida, 431 

4200-072 Porto 

Portugal 

Tel.: +351.22.8340509, Fax: +351.22.8321159 

E-mail: anmap@isep.ipp.pt 

http://www.cister.isep.ipp.pt 

 

Abstract 
Runtime verification is an emerging discipline that investigates methods and tools to enable the verification of 
program properties during the execution of the application. The goal is to complement static analysis approaches, 
in particular when static verification leads to the explosion of states. Non-functional properties, such as the ones 
present in real-time systems are an ideal target for this kind of verification methodology, as are usually out of the 
range of the power and expressiveness of classic static analyses. Current real-time embedded systems 
development frameworks lack support for the verification of properties using explicit time where counting time 
(i.e., durations) may play an important role in the development process. Temporal logics targeting real-time 
systems are traditionally undecidable. Based on a restricted fragment of Metric temporal logic with durations 
(MTL-f), we will present the synthesis mechanisms 1) for target systemsas runtime monitors and 2) for SMT 
solvers as a way to get, respectively, a verdict at runtime and a schedulability problem to be solved before 
execution. The later is able to solve partially the schedulability analysis for periodic resource models and fixed 
priority scheduler algorithms.A domain specific language is also proposed in order to describe such schedulability 
analysis problems in a more high level way. Finally, we validate both approaches, the first using empirical 
scheduling scenarios, and the second using the use case of the lightweight autopilot system Px4/Ardupilot. 
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Abstract

Runtime veri�cation is an emerging discipline that investigates methods and tools to enable

the veri�cation of program properties during the execution of the application. The goal is

to complement static analysis approaches, in particular when static veri�cation leads to

the explosion of states. Non-functional properties, such as the ones present in real-time

systems are an ideal target for this kind of veri�cation methodology, as are usually out of

the range of the power and expressiveness of classic static analyses.

Current real-time embedded systems development frameworks lacksupport for the veri�-

cation of properties using explicit time where counting time (i.e., durations) may play an

important role in the development process. Temporal logics targeting real-time systems

are traditionally undecidable. Based on a restricted fragment ofMetric temporal logic with

durations (MTL-
R

), we present the proposed synthesis mechanisms 1) for target systems

as runtime monitors and 2) for SMT solvers as a way to get, respectively,a verdict at

runtime and a schedulability problem to be solved before execution. The later is able to

solve partially the schedulability analysis for periodic resource models and �xed priority

scheduler algorithms. A domain speci�c language is also proposed in order to describe

such schedulability analysis problems in a more high level way.

Finally, we validate both approaches, the �rst using empirical scheduling scenarios for uni-

multi-processor settings, and the second using the use case of the lightweight autopilot

system Px4/Ardupilot widely used for industrial and entertainment p urposes. The former

also shows that certain classes of real-time scheduling problems canbe solved, even though

without scaling well. The later shows that for the cases where the former cannot be used,

the proposed synthesis technique for monitors is well applicable ina real world scenario

such as an embedded autopilot ight stack.





Resumo

A veri�ca�c~ao do tempo de execu�c~ao �e uma disciplina emergente que investiga m�etodos e

ferramentas para permitir a veri�ca�c~ao de propriedades do programa durante a execu�c~ao

da aplica�c~ao. O objetivo �e complementar abordagens de an�alise est�atica, em particular

quando a veri�ca�c~ao est�atica se traduz em explos~ao de estados. As propriedades n~ao

funcionais, como as que est~ao presentes em sistemas em tempo real, s~ao um alvo ideal

para este tipo de metodologia de veri�ca�c~ao, como geralmente est~ao fora do alcance do

poder e expressividade das an�alises est�aticas cl�assicas.

As atuais estruturas de desenvolvimento de sistemas embebidos para tempo real n~ao

possuem suporte para a veri�ca�c~ao de propriedades usando o tempo expl��cito onde a

contagem de tempo (ou seja, dura�c~oes) pode desempenhar um papel importante no pro-

cesso de desenvolvimento. As l�ogicas temporais que visam sistemas de tempo real s~ao

tradicionalmente indecid��veis. Com base num fragmento restrito de MTL-
R

(metric tem-

poral logic with durations), apresentaremos os mecanismos de s��ntese 1) para sistemas

alvo como monitores de tempo de execu�c~ao e 2) para solvers SMT como forma de obter,

respectivamente, um veredicto em tempo de execu�c~ao e um problema de escalonamento

para ser resolvido antes da execu�c~ao. O �ultimo �e capaz de resolverparcialmente a

an�alise de escalonamento para modelos de recursos peri�odicos e ainda para algoritmos

de escalonamento de prioridade �xa. Propomos tamb�em uma linguagem espec���ca de

dom��nio para descrever esses mesmos problemas de an�alise de escalonamento de forma

mais geral e sucinta.

Finalmente, validamos ambas as abordagens, a primeira usando cen�arios de escalonamento

emp��rico para sistemas uni- multi-processador e a segunda usandoo caso de uso do sistema

de piloto autom�atico leve Px4/Ardupilot amplamente utilizado para �ns i ndustriais e de

entretenimento. O primeiro mostra que certas classes de problemasde escalonamento em

tempo real podem ser solucionadas, embora n~ao seja escal�avel. O �ultimo mostra que, para

os casos em que a primeira op�c~ao n~ao possa ser usada, a t�ecnica de s��ntese proposta para

monitores aplica-se num cen�ario real, como uma pilha de vôo de um piloto autom�atico

embebido.
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Chapter 1

Introduction

This thesis considers the �eld of real-time embedded systems, in which it is crucial to

guarantee a correct behavior in the temporal domain [Stankovic, 1988]. These systems

range from simple, isolated components to large, highly complex and inherently concurrent

systems. They act upon a variety of environments which are frequently very dynamic and

hard to capture during design time. Therefore, developing anreal-time system (RTS) can

easily become a very di�cult task to complete. Even though RTSs present potentially

complex requirements, their design and development processes are mostly limited to

model-driven techniques and intensive testing and fault-injection, which are known to

allow the existence of human-introduced errors. At later stages of the development cycle

such errors can become highly expensive and very hard to tackle, evenwith the number

of static analysis tools available. As the technology evolves, real-time embedded systems

are becoming more and more pervasive in our daily routines. Notorious examples of the

pervasiveness of real-time embedded systems in our daily lives range from airplane and

car control systems to medical devices such as pacemakers. A relevantexample which

is spurring much interest and that we use in the thesis is the largevariety of exciting

new models of commercial lightweight multi-copters available in themarket and which

are currently being intensively used for aerial photography and cinematography, cargo

inspection and transportation, and for family entertainment. For safety reasons, some of

these multi-copters are being subject to restricted usage rulesin several countries to limit

their excessively fast spreading in commercial applications. The traditionally adopted

mechanisms to treat the failures that can arise during multi-copteractivity are commonly

applied only for hardware malfunctions. However, in the case of software,the adopted

applications/control systems are considerably open for users to modify, which in turn

increases the risk for these multi-copters to potentially crash inpublic areas, namely when

several developers spread over the world make changes on these systems. On the more

1



CHAPTER 1. INTRODUCTION 2

rigorous side of RTS development, formal methods have been introduced progressively

in the development cycle, most of which are based on temporal logic. While standard

temporal logics yield a natural and abstract framework for the analysis of safety and

liveness properties [Pnueli, 1977], these logics fail to capture the speci�c timing properties

of RTSs [Koymans, 1990]. This limitation is tackled by a set of timed temporal logics

[Alur and Henzinger, 1992a], and many of these logics have already been used to develop

model checking tools [Behrmann et al., 2006]. However, model checking has its own

pitfalls, namely when the size of the state space of the model that captures theRTS under

consideration is too large to be mechanically analyzed by a tool implementing a model

checking algorithm. Moreover, it might be the case that the properties to be checked

cannot be captured rigorously at the abstract level of the model of the system.

When we talk about Runtime Veri�cation (RV) of real-time embedded systems, we are

increasing the dependability of these systems by drawing verdicts at runtime that may

be used to trigger recovery actions. RV is a major complement to static methods as

it can be used to check errors for which it is possible to conclude some property of

interest based exclusively in knowledge that can be gathered only at execution time.

Contrary to ad hocinstrumentation of runtime behavior, RV based approaches use formal

speci�cations and synthesize them intomonitors, that is, pieces of code that take partial

traces of execution of the system and match them against the referred speci�cations

and make a verdict. Moreover, monitors can be used both to verify and enforce the

properties which are provided by components, even when the components assume the

form of a black-box, as long as each component is coupled with a formal speci�cation. A

simple example of the power ofRV is the case when the response to a property violation

detection consists in shutting down a complex component and give control to a simpler,

yet formally veri�ed component. By adopting RV techniques, developers can decrease

the usual intensive testing e�orts, and if used in collaboration with static veri�cation

methods, this can increase the overall coverage of the system by ensuring execution time

correctness in those parts of the development where heavy-weight static approaches like

model checking and deductive veri�cation fail due to well-knownproblems (e.g., the state-

space explosion problem inherent to model checking and the lack of proof automation in

deductive veri�cation).

1.1 Problem Statement

In this thesis, we consider the problem of runtime checking hard real-time systems by

generating correct-by-construction monitors from a formal language and their correct

integration in target applications/systems. The outcome of a monitor checking is a \yes",
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\no" or \unknown" answer. In the case of a gas burner, for example, we may check

that the solenoid never leak for more than 4 time units in a period of at most 30 time

units. For the case of the system integration, we want to ensure that the monitoring

interference is predictable and bounded before the system beginsits execution in order to

avoid unpredictable behaviors.

RV has receiving increasing attention in the real-time community in the past decade,

with clear focus on relaxing the burden of the veri�cation intensive tasks using deductive

veri�cation and model-checking. Deductive veri�cation tends to get undecidable results

when reasoning about time (the \undecidable satis�ability problem" f or certain logic

fragments), and systems tend to scale poorly when the model size grows (the \state space

explosion problem").

Design of a decidable veri�cation method to reason with explicit time properties (i.e.,

duration properties) at runtime is the main problem. It should be capable to describe

polynomial inequalities mixed with temporal order of propositions using a formal logic

in order to deal with hard real-time systems at the design phase. Moreover, it requires

a separation of which properties classic model-checking is unfeasible to treat, due to the

need of total coverage of the model, and what properties could be addressed statically

using deductive approaches.RV only deals with one execution trace, hence it amounts to

the \word acceptance" problem rather than the \emptiness check" problem as in model-

checking.

Embedded real-time systems could be rather complex if control routines are consid-

ered and di�erent numeric methods such asproportional{integral{derivative (PID ) con-

trollers [�Astr•om and H•agglund , 2006], extended Kalman �lter (EKF ) [Julier and Uhlmann,

2004] are involved. For the majority of these cases, we cannot assume that fully describing

the behaviors with polynomial inequalities is enough. A potential solution is to deal with

well behaved fragments and if possible put on top of it other theories. This means that

output of tools to discretize control models can be veri�ed at the level of the discretization

instead of at the design phase, feature that is addressed by dynamic logic[Platzer,

2008, Harel et al., 2000], temporal interval logic [Chaochen et al., 1993] and/or hybrid

logic [Platzer, 2007, Blackburn and Tzakova, 1999, Blackburn and Seligman, 1995].

1.2 Summary of Research Contribution

Considering the potential solution identi�ed in the end of the prev ious section, we believe

that the polynomial description can be enough for the majority of the cases, rendering

them veri�able. More precisely, we set out to provide evidence for the following statement:
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Thesis. Runtime veri�cation of duration properties for hard real-time s ystems can be

made through the use of the synthesization of a fragment ofMetric temporal logic with

durations (MTL-
R

).

We will support this statement by a set of techniques and tools for synthesization of

monitors from a fragment of MTL-
R

and by a correct-by-construction implementation of

the monitor integration on the target system. We developed a three-valued semantics for

a fragment of MTL-
R

to deal with incomplete trace evaluation [De Matos Pedro et al.,

2017, 2015a]. For that formal language, we introduce two synthesis algorithms: one for

monitoring synthesis based on the theory of lists; and other for synthesis of satisfability

problems forsatis�ability modulo theories (SMT) solvers based on non interpreted functions

with equality, arrays and non-linear arithmetic, including the use of quanti�er elimination

tactic. In case of monitoring synthesis, we proceed before synthesis by applying a sim-

plifcation algorithm in order to remove and partially solve the quanti�e rs from formulas

in the proposed fragment of MTL-
R

[De Matos Pedro et al., 2014b]. After that, the

new monitoring algorithm will be ready to be executed. We also provided a mechanism

to generate the monitor architecture according to the desired settings in order to be

embedded in the target system [De Matos Pedro et al., 2014a]. The synthesis algorithm

for SMT solvers is also presented as a �rst step to solve fundamental problems of hard

real-time systems [De Matos Pedro et al., 2016, 2015b]. In this thesis we also provide the

validation of the proposed techniques using an empirical use case about the schedulability

analysis of hard real-time systems, and a set of use cases for the autopilotstack Px4 [Meier

et al., 2015].

In addition, we have implemented a tool and a library that have come outof our research

e�orts and both are now available to the public. They are rmtld3synth [ De Matos Pe-

dro, 2018], a tool for synthesization of monitors and their respective safe inclusion, and

RTMLib [ De Matos Pedro, 2016] the library to aid the monitor execution.

1.3 Overview of Thesis

This thesis is organized into six chapters, corresponding the three core sections to theRV

technique, the RV framework, and the practical evaluation of the technique. To accommo-

date readers, we provide a comprehensive introduction in Chapter2 of the terminologies,

notations, and techniques that are used extensively throughout the remainder of the thesis.

The context for our research contribution with a discussion of relatedwork in hard real-

time embedded systems, languages andRV is also presented.

Chapter 3 describes a new mechanism forRV of hard real-time systems regarding duration
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properties, based on a decidable fragment ofMTL-
R

and a three-valued abstraction of this

fragment. The fragment allows for expressing quanti�ed formulae, and is adequate for

quanti�er elimination: we give an algorithm for the simpli�cation of formu las containing

quanti�ers and free logic variables. Intuitively, we abstract our fragment into �rst order

logic of real numbers(FOLR ) to obtain quanti�er-free formulas.

Chapter 4 provides a compositional framework that allows us to make assumptions about

the time isolation between components as well as the response times of the monitors. We

apply this notion to components with di�erent criticality assurance s, and whose speci�c

requirements shall be guaranteed statically and dynamically through schedulability analy-

sis and runtime monitoring, respectively. To guarantee these frameworks' assumptions we

use the proposed fragment to analyze the schedulability of thecompositional monitoring

framework (CMF ), and to statically check the maximum response times of each of the

generated monitors.

Chapter 5 describes the practical evaluation of the proposed technique at levelof both

static and dynamic veri�cation. By static we mean a formalization of a set of rules of a

system resource usage as well as the claim of the resolution of the schedulability decision

problem for periodic resource models using a formal language. As dynamicwe consider

the uncertainty monitoring and the practical case study of an autopilot. Considering

that the adopted formalism supports an explicit notion of time by means of inequalities,

durations and quanti�cation over these formulas, it increases the expressiveness of classic

temporal logic to deal with explicit timing settings as we point out here using practical

evaluation experiments. Given the evaluation procedure that drawsverdicts, we show the

importance of such existence in the context of hard real-time systems by ensuring that a

monitor always terminates and gives a result.

Finally, Chapter 6 discusses direction for future work inRV , including di�erent synthesis

mechanisms targeting embedded systems which have so restricted resources as well as

di�erent simpli�cation techniques that may be adopted to use before submitting the

problem for SMT solvers.
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Chapter 2

Background and Related Work

The identi�cation and formal description of the inherent behavior of h ard real-time sys-

tems are two fundamental steps for establishing the veri�cation process of these systems.

Concerning identi�cation, we characterize those systems and classify their schedulability

problems. Regarding the formal description, we justify the necessity, and present the

languages, to formally describe them.

Although speci�cation languages and models for those systems are scarce, they are crucial

to address the design of new veri�cation approaches, particularly whenit comes toRuntime

Veri�cation (RV). RV may be able to draw verdicts from more expressive formalisms than

static formal veri�cation may currently perform, even though RV deals exclusively with

past executions and ideally reduces the burden for the software designer.

In this chapter, we give an overview of the properties of hard real-time systems, the formal

description of available languages for these systems, and we then describe the collection

of the state of the art in RV as well as the related work.

2.1 Real-Time Systems

RTS are those systems that are subject to timing constraints as well as resource constraints.

Consequently, the correctness of such systems depends on both time and functional aspects

where resource constraints may be included. According to [Burns and Wellings, 2009], real-

time systems can be distinguished from other systems, in general, when failure to respond

(or to react to a stimuli) can be considered non problematic. In [Mall , 2009], the author

describes theresponse time as a distinctive feature of real-time systems { although for

other authors this may be important, it is not crucial.

7
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Real-time systems are typically divided into soft real-time systems and hard real-time

systems. In soft real-time systems, missing a deadline degrades the performance (in

average). For instance, dropping video frames while streaming a video conference may

be inconvenient for the remote viewers, but no permanent harm is done. In hard real-time

systems, deadlines cannot be missed. For instance, an orbital satellite controller is a hard

real-time system since missing a deadline may cause the satellite to fail its orbit (wherever

it occurs). In such systems, deadlines must be kept even underworst-case scenarios.

There are many interpretations of the exact nature of a real-time system since each

author proposes a new one [Davis and Burns, 2011, Sha et al., 2004]. Nevertheless an

important one is � in real-time computing the correctness of the systems depends notonly

on the logical result of the computation but also on the time at which the results are

produced.� ([Stankovic, 1988]).

Real-time systems span a considerable range of application domains such asprocess control

systems (e.g., a bottle �lling assembly line), manufacturing systems (e.g., a production

control system), embedded systems (e.g., an onboard satellite computer), and multimedia

systems in general (e.g., a video streaming system), among many others. A few key

characteristics distinguish them from the more general-purpose systems.

� Time constraints : crucial to ensure deadlines, execution times (or durations), and

delays. For instance, deadlines restrict the time instant at which a process needs to

be concluded;

� Correctness criterion: this notion applies to both non real-time systems and real-

time systems. For real-time systems, this criterion di�ers from the one used in the

context of traditional systems, since correctness here implies functional and temporal

correctness. A functionally correct result produced after the deadline is considered

as incorrect;

� Support for numerical computation: the notion required for hybrid systems support

(e.g., control activities; a power plant management system). Real-time systems are

often dynamic systems where at discrete points in time some timingconstraints are

required, but their behavior is a mix between discrete and dynamic systems;

� Safety-Criticality : denotes a mix between safety and reliability of systems. In

traditional systems, safety and reliability are not combined. A system is considered

safe when it does not cause any damage or injury even when it fails; reliability on

the other hand, states that a system can operate for a long time without exhibiting

any failure; and
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� Large and complex: refers to the size and complexity of a system. While a small

program may not have signi�cant problems since it is simple in its essence, the same

does not occur when developing a larger one.

Other characteristics are also applicable. However, they are not directly related to real-

time systems but may be considered asextension features. For instance, time constraints

characterize real-time systems directly, but a real-time system may, or may not, be

distributed. Such new features or extensions are described as follows:

� Reactive: describes the capacity of the system to react to external stimuli, producing

a feedback to the environment whenever the system evolves;

� Concurrent : consists of many parallel/concurrent interaction activities that should

be handled at the same time, i.e., several coexisting external elements with which

the computer program must interact simultaneously;

� Distributed : a notion of di�erent components of the system being naturally dis-

tributed across spread physical locations;

� Embedded: represents the notion of custom-made independent systems whichim-

plement speci�c control functions. Usually, these are known as real-time embedded

systems.1;

� Component criticality : represents the cost of a component failure. Real-time systems

may have components (or processes) of di�erent criticalities. This introduces an

analysis of how critical are the results produced by each component related to the

proper functioning of the system;

� Stability : states that a system, even under overload conditions, complies to the

timing constraints for the high criticality components; and

� Fault-Tolerant : characterizes the ability to avoid a system entering a faulty state.

Under catastrophic scenarios, the system shall detect those states andcontinue

operating normally (or even in degraded mode) rather than shutting o� abruptly.

Note that any real-time system can exhibit one or more of these features, asthey provide

a coherent and congruent mix of characteristics.

One of the central issues in real-time systems is the mechanism tohandle multiple interact-

ing activities (e.g., tasks), guaranteeing their timing constraints. This is called real-time

1Note that embedded systems are becoming more and more complex and generic (e.g. a mobile phone;

IoT home devices), therefore this distinction is starting to be fu zzy.
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scheduling and it is a very active area of research. Tasks can be seen as abstract types

which are used to denote components of code to be executed over certain constraints.

They are triggered when an event occurs (e.g., pressing a power o� button, or even when

a kitchen robot see some stairs and avoid a faulty situation). These timing constraints

can be seen as a time restriction of code execution. In the followingparagraphs, tasks and

timing constraints are classi�ed.

Tasks. Real-time tasks can be classi�ed ashard, �rm or soft. These terms characterize

their dependence on and consequences of a deadline miss. It is not necessary that all

tasks of a real-time system belong to the same class. A hard real-time task is one that

is constrained to produce its results within certain prede�ned time bounds. A �rm real-

time task, unlike hard real-time tasks, does do not fail when a timing constraint is not

satis�ed (e.g., video conferencing), but there is no value in delivering the result after the

deadline. In a soft real-time task, timing constraints can be expressed in terms of the

average response time, and results have some value, although limited,after the deadline.

Moreover, real-time tasks can be characterized as beingperiodic, sporadic or aperiodic. A

periodic task is one that repeats within a �xed inter-arrival time; a sporadic task is one that

recurs at random instants (it has a dynamic inter-arrival time with a m inimum interval);

and an aperiodic task is one that is similar to a sporadic task but has no minimum or

maximum inter-arrival time.

Timing Constraints. Timing constraints may be described by events (e.g., the occur-

rence of an input in a system such as an engine start action). These events characterize

the state changes of a system. Such systems can also be named as Discrete Event

Systems (DES) [Cassandras and Lafortune, 2008]. The events generated by real-time

systems can be classi�ed asstimulus events or response events: the stimulus events are

generated by the environment where a system run and acts on it; the response events are

usually produced by the system in response to some stimulus of theenvironment (i.e.,

stimulus events). The timing constraints can be formulated through these type of events

and classi�ed by three constraints: delay, deadline, and duration. As the name suggests

a delay d is the measure given by the time di�erence of two eventse1; e2 greater or equal

to the value d, t(e2) � t(e1) � d; a deadline is the bound of timeb between two events

such ast(e2) � t(e1) � b; and a duration dr corresponds to the inter-arrival time between

two consecutive events,t(e2) � t(e1) = dr . Timing constraints are in their essence timing

behaviors of real-time systems.

A task is instantiated multiple times and each instantiation is commonly denoted as a
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job. The deadlines of real-time jobs can berelative to one time instant (e.g., the arrival

of a stimulus event) or absolute(from when the system started executing). The response

time is de�ned by the time duration between the job release and the instant that the task

�nalizes its execution.

Scheduling algorithms normally target uniprocessor, multiprocessor, and distributed sys-

tems. Several major abstractions can be applied between uni/multi-processor systems and

distributed systems. They have in their essence major delaysand spatial positions.

Although the main focus of this thesis is not on real-time scheduling, we have to provide

the classic schedulability analysis ofperiodic resource modelsin order to introduce the

meaning of resources in the context of the next chapters.

2.1.1 Periodic Resource Models

Let us assume atasks set� = f � 1; � 2; :::; � ng; such that n 2 N+ is the identi�er of periodic

tasks, and � i = ( pi ; ei ) with pi and ei being, respectively, the period and the worst-

case execution time of the periodic task� i ; and a set of periodic resource models
 =

f ! 1; ! 2; :::; ! m g with

! j = (T ; �; �; rm );

where T � � , � is the replenishment period, � is the server budget, and rm is the rate

monotonic scheduling policy.

The schedulability analysis for periodic resource models was �rstprovided by Shin and

Lee [Shin and Lee, 2003, 2008]. The authors formulate an analysis based onresource model

supply. The supply bound functionsbf! (t) is de�ned to calculate the minimum resource

supply for every interval of length t as follows:

sbf! (t) =

8
<

:

t � (k + 1)( � � � ) if t 2 I ;

(k � 1)� otherwise,

where I = [( k + 1) � � 2�; (k + 1) � � � ]. The value k is given by

k =

8
<

:

x if x > 1

1 otherwise
;

where x =
l

t � (� � � )
�

m
.

For an arbitrary set of tasks � and a rate monotonic scheduling policy, Lehoczky et al.

[Lehoczky et al., 1989] proposed a demand-bound functiondbfrm (�; t; i ) that computes
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the worst-case cumulative response demand of a task� i 2 � for any interval of length t.

It is de�ned by

dbfrm (�; t; i ) = ei +
X

� k 2  � (i )

�
t

pk

�
: ek ;

where  � (i ) = f � 1; :::; � i g is a function that returns a set of tasks with higher-priority than

(and including) task � i , and � is a periodic task set. The demand-bound function for

resource models is the same since the set of tasks is schedulable using the rate monotonic

policy. This means that the supply of a resource model must be greaterthan the demand

of the set of tasks that a resource model contains.

The tasks set T of a resource model is said to be schedulable accordingto a rate monotonic

policy if, and only if,

8� i 2 T; 9t i 2 [0; pi ] s.t. dbfrm (T ; t i ; i ) � sbf! (t i ):

2.2 Languages and Logics

Although any property of a system may be expressed in natural language, it is hard to

ensure that someone else will understand exactly what it means. Naturallanguages are

very expressive but, at the same time, imprecise. On the other hand, formal languages are

not very expressive but they are very precise, and do not allow for multiple interpretations

of the same concept.

Temporal logic is known as a language that is adequate for expressing temporalproperties

such aslivenessand safety. Safety properties ensure that a program does not do something

bad. Liveness properties ensure that the program does eventually something good.2 Tem-

poral logics have been used as a formalism for specifying qualitative ordering constraints on

the observable traces. The best-known logic islinear temporal logic (LTL ) [Pnueli, 1977].

A formula in this logic is built from atomic propositions, standard boolean operators, and

modal operators. Nevertheless,LTL is not adequate for real-time systems speci�cation. A

run of a real-time system needs to be modeled withtimed interval sequencesor as ows

with domain in R � 0.

The most widely known extension of LTL for dealing with real-time is metric temporal

logic (MTL ) in which the modalities of LTL are augmented with timing constraints [Alur

and Henzinger, 1992b]. A common modality is called until and is denoted by U. Usually,

temporal operators can be strict (when they do not constrain the current instant) or not,

and matching (when they require their two arguments to hold together) or not. Intuitively,

2There are other properties, but they are out of the scope of this the sis.
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b

a

m

a

b m

a

b m
�

Figure 2.1: Evaluation of propositions m, a, b over the trace � .

' 1 U< t ' 2 is interpreted by true if along the execution trace (from 0 to t, excluding t),

there exists a point where' 2 holds, and such that all intermediate points satisfy ' 1. In

case' 2 is true then the formula is evaluated to true. Intuitively, we are describing the

point-wise semantics of the until operator, that is strict and non-matching.

Common shorthands for metric operators arealways (� or A) and eventually ( � or E).

Example 1. Let us assume that the symbolm is periodically released at each20 time

units, the trace � begins att = 0 , and that the until operator is strict and non-matching.

In Figure 2.1, we can observe thata U< 16 b and a U< 20 b are evaluated to false. However,

if we specify the formula

� <u m ! � < 2 a U< 16 b;

for u = 40, the evaluation is true. Intuitively, we are describing that for each occurrence

of the eventm in the interval [0; 40[, in at least 2 time units the event a occurs, and that

the eventa holds until the eventb holds in at least 16 time units. Note that if we replace

u by 41, the formula is evaluated to false. The third occurrence of them symbol does not

hold, neither do the symbolsa and b occur further ahead.

MTL formulas can be interpreted over a variety of temporal models such as discrete (e.g.,

N, Z ) [Emerson, 1990, Alur and Henzinger, 1993] and dense (e.g.,R) [Hirshfeld and

Rabinovich, 2004, Bouyer et al., 2010, Souza and Prabhakar, 2007, Furia and Rossi, 2007]

time domains. Metric operators de�ned over discrete time can be regarded as simple

syntactic sugar, since they are a succinct way of expressing metric constraints that can

be encoded using the LTL'snext modality. Dense-time MTL operators are commonly

classi�ed in terms of pointwise and continuous semantics. The pointwise semantics is

evaluated along possibly in�nite sequences of timed words, i.e., sequences of pairs

(e0; t0)(e1; t1) : : : ;

where the ei are events/propositions belonging to an alphabet � and t i 2 R � 0 are the

occurrence time instants of the eventsei . The continuous semantics is evaluated over

possibly in�nite signals. Given a set of propositionsP, a signal is a functionf : R � 0 ! 2P

mapping t 2 R � 0 to the set f (t) of propositions holding at time t. A restriction of the
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continuous semantics for evaluating timed interval sequences is also known as aninterval-

based semantics, or in other words, a continuous semanticswith �nite variability. Timed

interval sequences are sequences of pairs

(e0; l0)(e1; l1) : : : ;

where thel i are contiguous, non-overlapping intervals with real or rational bounds, forming

a sequence of intervals ofR � 0.

The majority of real-time systems operate in a dense time domain and states are always

changing at any time instant. Even if it may be possible to get in�nite ly many changes

over a �xed interval of time as the case of control systems, this will give us undecidable

results. As explained by Henzinger and colleagues [Henzinger et al., 1992] many veri�cation

methods are based on the assumption that states are only observed at integer points (also

called digitization ). Here, we are talking about digital systems, where such in�nitely many

changes cannot occur.Metric temporal logic with durations (MTL-
R

) is thus appropriate

for reasoning about such systems. However, the veri�cation of digital systems does not

require the expressive power of continuous (R) semantics. Instead, it may be su�cient to

restrict the input model to timed interval sequences.

MTL-
R

extend expressiveness ofMTL with fragments of classic logic, including�rst order

logic of real numbers (FOLR ). Nevertheless, we do not have a hybridization [Blackburn

and Tzakova, 1999], since we have terms and formulas separated, and quanti�cation only

occurs over relation < (a predicate in FOLR ) containing terms as argument. MTL-
R

is

more expressive thanFOLR . Moreover, lambda calculus can encode fragments of temporal

logic without making use of a proper lambda calculus temporal extension asproposed

in [Davies, 2017]. Lambda expressions will be described after introducingMTL-
R

and

FOLR .

2.2.1 Metric temporal logic with durations (MTL-
R

)

MTL-
R

is more expressive thanduration calculus (DC) [Lakhnech and Hooman, 1995,

Chaochen et al., 1993], but is undecidable since the relation over terms or the term function

may itself be undecidable. DC is based on interval logic and includes the chop modality

instead of the until modality as in temporal logic. This constructing operator allows us

to �nd a point in time where an interval can be split into two sub-in tervals. Implicitly,

this express a temporal bound over liveness properties. AlthoughDC is able to deal with

liveness properties as inMTL , the inverse chop modality shall be considered. Let us begin

by briey reviewing MTL-
R

.

De�nition 1. Let P be a set of propositions andV a set of logic variables. The syntax
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of MTL-
R

terms � and formulas ' is de�ned inductively by

� ::= � j x j f (� 1; : : : ; � n ) j
Z �

'

' ::= true j p j R(� 1; : : : ; � n ) j ' 1 _ ' 2 j : ' j ' 1 U�  ' 2 j ' 1 S�  ' 2 j 9x '

where � 2 R, x 2 V is a logic variable, f a function symbol of arity n,
R� ' is the duration

of the formula ' in an interval, p 2 P is an atomic proposition, U and S are temporal

operators with � 2 f <; = g,  2 R � 0, and R(� 1; : : : ; � n ); ' 1 _ ' 2; : '; and 9x ' are de�ned

as usual.

Furthermore, we will use the following abbreviations: ' ^  for : (: ' _ :  ), ' !  for

: ' _  , � �  ' for true U�  ' , and � �  ' for : (true U�  : ' ).

An observation function � of length � 2 (R � 0 [ f1g ) over P is a function from P into

the set of functions from the interval [0; � ) into f tt ; � g. The length of � is denoted by #� .

A logical environment is any function � : V ! R � 0. For any � , x 2 V and r 2 R, we will

denote by � [x 7! r ] the logical environment that maps x to r and every other variabley to

� (y). The following auxiliary de�nition will be used in the interpre tation of the duration

of a formula.

De�nition 2 (MTL-
R

semantics). The truth value of a formula ' will be de�ned relative

to a model (�; �; t ) consisting of an observation� , a logical environment � , and a time

instant t 2 R � 0. We will write ( �; �; t ) j= ' when ' is interpreted as true in the model

(�; �; t ). Terms and formulas will be interpreted in a mutually recursive way. First of

all, for each formula ' , observation � and logical environment � , the auxiliary indicator

function 1' ( �;� ) : R � 0 ! R � 0 is de�ned as follows, making use of the satisfaction relation:

1' ( �;� ) (t) =

8
<

:

1 if (�; �; t ) j= ';

0 otherwise.

The value T J� K(�;� ) t of a term � relative to a model can then be de�ned. A Riemann

integral [Gordon, 1994] of 1' ( �;� ) is used for the case of a duration
R� ' :

T J� K(�; � ) t = �

T JxK(�; � ) t = � (x)

T Jf (� 1; : : : ; � n )K(�; � ) t = f (T J� 1K(�; � ) t; : : : ; T J� nK(�; � ) t)

T
sZ �

'
{

(�; � ) t =

8
<

:

Rt+ T J� K(�;� ) t
t 1' ( �;� ) (t0) dt0 if ( � )

0 otherwise
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where (� ) means that 1' ( �;� ) satis�es the Dirichlet condition [ Lakhnech and Hooman,
1995, p.7]3 and the sub-term T J� K(�; � ) t is non-negative, otherwise the function is non
Riemann integrable. The satisfaction relation in turn is de�ned as:

(�; �; t ) j= p i� � (p)( t) = tt and t < # �

(�; �; t ) j= R(� 1; : : : ; � n ) i� R(T J� 1K(�; � ) t; : : : ; T J� n K(�; � ) t)

(�; �; t ) j= ' 1 _ ' 2 i� ( �; �; t ) j= ' 1 or (�; �; t ) j= ' 2

(�; �; t ) j= : ' i� ( �; �; t ) 6j= '

(�; �; t ) j= ' 1 U�  ' 2 i� there exists t0 such that t � t0 � t + ; (�; �; t 0) j= ' 2;

and for all t00; t < t 00< t 0; (�; �; t 00) j= ' 1

(�; �; t ) j= ' 1 S�  ' 2 i� there exists t0 such that t �  � t0 � t; (�; �; t 0) j= ' 2;

and for all t00; t0 < t 00< t; (�; �; t 00) j= ' 1

(�; �; t ) j= 9x ' i� there exists an r 2 R such that (�; � [x 7! r ]; t) j= '

Note that the semantics of the until operator is strict and non-matching [Bouyer et al.,

2010].

Figure 2.2a intuitively illustrates the use of the MTL-
R

language. From Figure 2.2b we

can conclude that the formula 8x
Rx (� � ) �

Rx � � _ � � < x in the �nite interval [0 ; 64) is

interpreted as true. Note that 8x � is a shorthand for :9: � .

2.2.2 �rst order logic of real numbers (FOL R )

FOLR commonly denotes the �rst order logic de�ned over the structure (R; <; + ; � ; 1; 0) [Jo-

vanovi�c and de Moura, 2013]. FOLR formulas, also known as Tarski formulas [Tarski, 1995],

are boolean combinations of polynomial equalities and inequalities. We de�ne Z[x] by
S

Pn

as a ring of polynomials with one variablex, where P0 = Z, and Pn = xPn� 1 + Pn� 1.

De�nition 3 (FOLR ). A polynomial f 2 Z[y; x] is of the form

f (y; x) = am � xdm + am� 1 � xdm � 1 + � � � + a1 � xd1 + a0;

where 0< d 1 < � � � < d m , and the coe�cients ai are in Z[y] with am 6= 0. A polynomial

constraint F is of the form f Og where f; g are polynomials andO 2 f <; � ; = ; 6= ; � ; > g.

We denote the polynomial constraint that represents the negation of a constraint F by

: F . A clauseof polynomial constraints is a disjunction F1 _ � � � _ Fn of n 2 N polynomial

constraints. Note that in this de�nition we do not consider roots of polynomials.

3A function is said to satisfy the Dirichlet condition if and only i f for any bounded interval I , it is

bounded in I and has a �nite number of discontinuity points in I .



CHAPTER 2. BACKGROUND AND RELATED WORK 17

� �

� �

� idle

�
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� � U � � false

true

� 2

false� 1

(a) A diagram containing: a path � ; three event releases� � , � � , and � idle ; and the respective truth

value of the logic formulas� � U � � , � 1 :=
R30 � � _ � � � 10, and � 2 :=

R30 � � � 10.
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0

20

40

60

� (x)

x

Undef:

� := true

� :=
Rx � � _ � �

� :=
Rx � �� �
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� �
� �
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� �

(b) The graph depicts the formula
Rx � � and

Rx � � _ � � which allows us to visually check the

formula 8x
Rx � � �

Rx � � _ � � < x in the �nite interval [0 ; 64).

Figure 2.2: Diagram of a path (a) and respective duration computation (b)

Example 2. Let us now consider the polynomial inequality50 � x2 � y < 10. It can be

expressed using the pattern of the De�nition3 by

50 < (1 � y + 0) � x2 + 0 � x1 + 10;

where coe�cient a2 is replaced by the monomialy. Considering a2 equals to1�y2+1 �y1+0 ,

we get50 < a 2 � x2 + 0 � x1 + 10 that is equivalent to 50 < x 2 � (y2 + y) + 10 .

2.2.3 Lambda expressions ( � -expressions)

The lambda calculus, commonly denoted by� -calculus, was introduced in the 1930s by

Alonzo Church [Church, 1941]. It consists of a notation for describing mathematical

functions and programs, and a functional abstraction that captures some of the essential
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common features of a wide variety of programming languages [League, 2000]. It is com-

monly described as the smallest universal programming language, since it is equivalent to

Turing machines. However, � -calculus is focused on the transformation rules and single

function de�nition scheme, instead of the shape of the actual machine implementing them.

As such it is an approach more related to software than to hardware.

A � -term is either a variable x 2 V ar, whereV ar is a countably in�nite set of variables; an

application of a function e0 applied to an argument e1, usually written e0 e1; or a lambda

abstraction, �x:e representing a function with input parameter x and body e. Formally,

lambda expressions are inductively de�ned by

e ::= x j � x:e j e0 e1

where the metavariablee represents a� -calculus term.

An expression can be surrounded with parenthesis for clarity, and we use the notation

with \."s to avoid the proliferation of multiple lambdas, each one with one argument. For

instance, �x 1; : : : xn :M is equivalent to (�x 1(: : : (�x nM ) : : : )), where M is the body of the

abstraction. We assume that lambda abstractions associate to the right, and applications

to the left, i.e., MN 1 : : : Nn is equivalent to (: : : (MN 1) : : : Nn ). Note that � acts as

a variable binder in a similar way to the quanti�ers 9 and 8 in predicate calculus and
R

: : : dx in integral calculus.

We begin by describing the meaning of the� reduction (�! � )

(�x:M )N �! � M [N=x];

whereM [N=x] can be read \replace free occurrences of x in M by N". The� -rule is de�ned

by

�x:M = �y:M [y=x] and y is not a free variable ofM .

This rule captures the fact that a bound variable can be replaced by any other free variable.

The reduction denoted by �! �
� is the transitive and reexive clousure of �! � .

Substitution su�ers from the problem of \variable capture". It can be sol ved using di�erent

approaches. A simple one is to replace the bounded variables in certaincircumstances as

in [League, 2000, Hindley and Seldin, 2008]. For instance, to evaluate�y: (�x:yx )(xz), we

have that (�x:yx )[y=xz]. Here, using the modern approach, we need to use the� -reduction

to rename x and reduce (�w:yw )[y=xz] into �w:xzw .

The concept of equality in � -calculus is not the same as in most of mathematics where it

is called extensional equality. Instead of including the assumption that for funtions f 1; f 2

with the same domain, for all x , f 1(x) = f 2(x) implies that f 1 = f 2; we have that two
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Combinator � -calculus term

I �x:x

K �xy:x

S �xyz:xz (yz)

B �xyz:x (yz)

C �xyz:xzy

Combinator � -calculus term

T �xy: K xy

F �xy:y

N (NOT) �p:p FT

O (OR) �pq:ppq

E (ITE) �pab:pab

Table 2.1: Standard and Boolean Combinators

terms are equal if they encode the same algorithm in some way. This does not means

that if two programs compute the same mathematical function then they are the same

program. Note that one of them may be more e�cient than the other. The � -calculus is

then said to haveintensional equality. Di�erent extensions exist but they converge in the

same results.

There are a diverse set of combinators. Combinators are lambda terms with no free

variables. Informally, combinators are completely speci�ed operations. Some of the special

combinators are the substitute-and-apply operatorS, the identity operator I , the constant

operator K , the swap operatorC, and the compose operatorB . Church Booleans are other

special combinators: the truth value true T , the truth value false F, the if-then-else (as

know as ite) E, the or operator O, and the not operator N . All of them can be found in

Table 2.1.

Example 3. Let us now see an example using Boolean combinators and the if-then-else

operator. Consider the term \if a then T elseF". Case whena = T , we haveE T T F

equals to

(�pab:pab)( �xy:x )( �xy:x )( �xy:y ) = ( �xy:x )( �xy:x )( �xy:y ) = ( �xy:x ) = T :

For a = F, we haveE F T F equals to

(�pab:pab)( �xy:y )( �xy:x )( �xy:y ) = ( �xy:y )( �xy:x )( �xy:y ) = ( �xy:y ) = F:

To sum up, � -calculus, more properly the typed� -calculus, is the basis of the well-known

functional programming languages such as ML and OCAML [R�emy , 2002]. As such it may

be an elegant theory to synthesize/encoding temporal logics for di�erent purposes such as

monitors and/or SMT solvers.

2.2.4 Related Work

At the beginning of the 1990s, real-time constraints have been added to temporal logics

[Koymans, 1990, Alur et al. , 1993], in order to extend this vocabulary with the speci�cation
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of quantitative timing constraints. A bewildering diversity of ope rators are used in timed

temporal logics that introduce considerable variations on the decidability and expressive-

ness of properties. There are two well-established families of timed logics with linear time.

The �rst one is characterized by modalities decorated with quantitative constraints and is

namedtimed propositional temporal logic (TPTL ). TPTL [Bouyer et al., 2010] makes use of

quanti�cation together with untimed temporal modalities and explici t constraints on time

values. The second one that is characterized by thefreeze-quanti�cation is metric temporal

logic (MTL ). MTL uses the time interval constrained modalities \until" and \since".

Alur and Henzinger [Alur and Henzinger, 1994] investigated the expressiveness and decid-

ability properties of timed logics MTL and TPTL . They showed that MTL can be easily

translated into TPTL . Furthermore, they conjectured, giving an intuitive example, that

TPTL is more expressive thanMTL . In [Maler and Nickovic, 2004] a fragment of MTL

for continuous signals is considered, which is intrinsically di�erent from observing discrete

signals in a continuous time domain.

Nevertheless,MTL and TPTL are both undecidable even for �nite timed words. Thus,

several restrictions have been proposed to obtain decidable sub-logics such as Bounded-

MTL [ Bouyer et al., 2008b] which has \bounded" intervals (its satis�ability EXPSPACE-

complete), andmetric interval temporal logic (MITL ) [Alur et al. , 1996] which is decidable

in EXPSPACE. Subsets ofTPTL are less studied; one of such logics, the constrainedTPTL ,

can be found in [Pandya and Shah, 2010, Parys and Walukiewicz, 2009].

Logics suitable for expressing linear-time temporal properties of event timed sequences or

timed resources aretimed linear-time temporal logic (TLTL ) [Bouyer, 2009] and weighted

metric temporal logic (WMTL ) [Bouyer et al., 2008a]. Moreover, the well-known branching-

time temporal logic for timed words TCTL (UPPAAL's [ Behrmann et al., 2006] underlying

logic). Such logics are well suited for expressing simple time-bounded response properties

in linear and branching time. For instance, several simple properties can be de�ned by

these logics such as: an eventa occurs in three time units, or even an eventa consumes

at least three energy units.

The temporal logic MITL is one of the most popular real-time extensions of LTL. The

main modality of MITL is the timed until U I where I is some non-punctual interval

with integer or rational endpoints. The original version of MITL contained only future

temporal operators, although past and future versions ofMITL were proposed in [Alur

and Henzinger, 1992b].

Nevertheless, none of these related logics deals with explicit time, i.e., when counting time

is required. MTL-
R

and DC are the languages that better �t the requirement of embedded

hard real-time systems. DC is an interval logic making use of achop operator instead of
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the common temporal modalities, andMTL-
R

is more expressive thanDC. The excessive

expressiveness of such languages makes them intractable. NeitherDC or MTL-
R

is more

convenient to describe embedded real-time systems. They are simply di�erent languages

within the same roots on temporal logic. However, we believe that intrinsic temporal

modalities such asuntil and since inside the logic are more convenient and intuitive for

dealing with RV .

2.3 Runtime Veri�cation

The increasing pervasiveness of critical applications in the context of safety-critical sys-

tems leads us to state, according to [Baier and Katoen, 2008], the following sentence:

"The reliability of safety-critical systems is a key issue in the system design process".

The magnitude of real-time systems, as well as their complexity, grows apace, meaning

that there are no longer small and standalone applications. Typically, such systems are

embedded in a larger context where several other components and systems connect and

interact. These systems become much more vulnerable to errors { the number of defects

grows exponentially with the number of interacting system components. In particular,

phenomena such as concurrency and non-determinism that are central to modeling real-

time systems turn out to be very hard to handle with standard known techniques.

Formal veri�cation have an inherent separation in two kinds of approaches: deductive

reasoning [Makinson, 2012, Almeida et al., 2011], where techniques by logic deduction

are applied (e.g., iterative theorem proving, automated theorem proving [Harrison, 2009]);

and model-based veri�cation where properties are checked for all execution traces (e.g.,

classical model checking [Clarke et al., 1999], probabilistic model checking [Baier and

Katoen, 2008]). The latter will be the focus of this chapter since timed temporal logics,

a known formalism for checking timed systems, are well suited for modeling real-time

systems, and also because theRV concept is close to model checking techniques (i.e., a

trace model instead of an automaton).

Real-time systems are systems whereRV may play an important role, not only due to

their high complexity, which makes several static approaches practically unfeasible in a

foreseeable future [Zhu et al., 2009, Leucker and Schallhart, 2009, Falcone, 2010], but

also due to their high dependence on temporal constraints (e.g., reachability becomes

undecidable due to the time clock operations: addition, subtractionby a constant, etc.)

[Norstr•om et al. , 1999, Fersman et al., 2007, Krcal et al. , 2007, Burns and Wellings, 2009].

The research on techniques for these systems has been growing progressively along the

recent years, due to a high need for reliable and safe development alternatives to static
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approaches. Nonetheless, the trend towards new dynamic approaches has been higher for

soft real-time systems rather than for hard real-time systems (by focusing essentially on

the functional aspects).

The Runtime Veri�cation (RV) technique monitors the behavior of a system to check

its conformance to a set of desirable logical properties. Note that theRV literature

mostly focuses on event-triggered solutions. Nonetheless, this monotonic event invocation

introduces two major defects to the system under scrutiny, namely signi�cant overhead,

and unpredictability. These e�ects can however be eliminated by using more recent

techniques such as event-based monitoring with predictive analysis [Zhu et al., 2009],

and sample-based monitoring with predictive analysis as introducedby [Fischmeister and

Ba, 2010, Bonakdarpour et al., 2011].

Runtime monitoring (or monitoring upon execution time) is based on the synthesis of

monitors (dedicated blocks of source-code) in an automatic way from formal speci�cations.

It can be deployed o�ine for debugging, or online for dynamically checking properties

during execution. O�ine monitoring is currently a slightly inact ive research topic; it

consists in collecting a program trace (i.e., an execution trace) which is afterwards analyzed

to verify if the execution is in compliance with the speci�cation or not. For the purposes

of replay and analysis of the scheduling process o�ine monitoring maybe used to capture

from a system implementation some operations such as: system calls, interrupts, context

switches, and state variables. Online monitoring, on the other hand, may for instance

ensure, by checking upon execution, that when a plug-in is loaded dynamically by one

application, its consumed resources shall not exceed the resources allowed by the host

application. This can be performed viainline monitoring, where the monitoring is inserted

into execution code as annotations (e.g., assertions), or else byoutline monitoring, where

the monitor executes as a separate concurrent process. In addition, outline monitors

may be implemented by hardware, synthesized from high level formalspeci�cations and

executed on FPGAs, resulting in zero runtime overhead on the system's CPU [Goodloe

and Pike, 2010]. Typically, RV involves a signi�cant time penalty when a system is under

execution, thereby some authors [Sankar and Mandal, 1993, Pellizzoni et al., 2008] propose

that it is crucial to use multi-processor systems when a hardware monitoring approach

is not used. Using a multi-processor allows the monitoring processto be performed

concurrently on a di�erent processor, without delays for the system under monitoring.

Predictive analysis of runtime monitors refers to the ability of ensuring that real-time con-

current systems under scrutiny aresound. Soundness means that the predictive analysis is

able to detect, correctly, functional (or even concurrency) errorsfrom observing execution

traces.
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In the last decades, severalRV approaches have emerged, mainly for concurrent systems.

These approaches are an alternative or a complement to the conventional methods (e.g.,

model checking [Clarke et al., 1999], theorem proving [Fitting , 1996], and testing [Hamlet,

2010]), and, as such, a lightweight manner to check the behavior of systems, even if only

partially. Let us now give a formal de�nition of RV .

De�nition 4. (Runtime Veri�cation) RV is a veri�cation technique that allows checking

whether a run of a system under scrutiny satis�es or violates a given correctness property.

RV deals with the observation problem, it detects violations (or satisfactions) of speci�ed

properties that can (or cannot) be mitigated. A violation occurs when a system under

scrutiny deviates from the required behavior of the system.

Runtime Monitoring. Runtime monitoring is a process that is able to enforce property

checking for systems during execution time. Bysystem under monitoring (SUM), we

consider a system under observation(SUO) where its evolving execution is observed at

selected points (along the execution time) and those observations are checked against the

given speci�cations [Goodloe and Pike, 2010]. In a more general perspective, runtime

monitoring can be viewed as a technique that allows to checkpast �nite execution trace

(PFET ) of a system. As such, runtime monitoring may only observe�nite executions (past

observations), contrary to classical veri�cation techniques (e.g., model checking) where the

focus is only onin�nite executions . Thus, an execution of a system may be viewed as a

�nite pre�x of a possibly in�nite execution, and is therefore consi dered a PFET . The

notion of runtime monitor is established in a slightly more general form in De�nition 5.

De�nition 5. (Runtime Monitor) A runtime monitor is a process that reads a PFET and

yields a certain verdict at execution time.

By verdict we mean, in abstract, a truth value from some truth domain. This domain can

be commonly-valuedtrue and false, three-valued true, false and unknown, or even yielding

a probabilistic interval in [0 ; 1].

The problem of RV , in its mathematical essence, can be reduced to answering theword

problem, i.e., the problem of whether a given word is included in some language.Let J' K

denote the set of valid executions satisfying the property' . The word inclusion problem

consists in checking whether the executionw is an element ofJ' K. On the other hand,

the language inclusionproblem is more complex and undecidable in general (e.g., classical

timed automata) [Alur and Dill , 1994, Alur et al. , 1999].

Runtime monitoring has been applied to concurrent (or even soft real-time) systems in

order to detect functional violations at runtime, and trigger system recovery actions when
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a catastrophic error occurs. However, runtime monitoring can be applied to nonfunctional

aspects of a system through constraints, such as: performance, time, costs/weights or

even resources utilization. Currently, as far as we are aware, there are no monitoring

frameworks for such constraints.

Let us now overview logic-based monitoring. In spite of the fact that runtime monitors

typically only have �nite execution traces available at some point in execution, this does

not imply that logics for in�nite traces such as LTL , computation tree logic (CTL ), or

even the superset of CTL (CTL * ) cannot be adopted to (or restricted only to) analyze

�nite execution traces. LTL [Pnueli, 1977] is a well-accepted and established logic used for

specifying properties of in�nite traces, however, as referred,in RV , the goal is to checkLTL

properties given �nite pre�xes of in�nite traces. As such, we will now give a description

of two LTL -based speci�cations for �nite traces.

ptLTL [Laroussinie et al., 2002] was proposed to extend theLTL with past operators.

The principle of this logic is rather intuitive: something in the p resent implies that

something happened in the past.ptLTL is a temporal logic where future-time modalities

{ F (\sometime in the future"), G (\always in the future"), U (\until") , and X (\next") {

are complemented with their past-time counterparts { P or F� 1 (\once in the past"), H or

G� 1 (\always in the past"), S or U � 1 (\since"), and X � 1 (\previous") { respectively. There

is a duality between Past-time and Future-time logics, however, Gabbay [Gabbay, 1987]

has proved that any linear-time temporal property expressed using past-time modalities

can be translated into an equivalent (when evaluated at the beginning ofthe path), pure

future formula. Actually, ptLTL is not more expressive thanLTL , but it is more succinct

than LTL . Gabbay also argues that this result also extends to other temporal logics, such

as CTL * with past, � -calculus with past, etc.

LTL 3, introduced by Bauer et al. [Bauer et al., 2011] is a logic which shares the syntax

with LTL but deviates in its semantics for �nite traces. The idea was to implement three

truth values { > (true), ? (false), ? (inconclusive) { for the logic formulas. More precisely,

given a �nite word u and an LTL 3 formula ' , the interpretation of u is de�ned, according

to [Bauer et al., 2011], as follows:

� if there is no continuation of u satisfying ' , the value of ' is false;

� if every continuation of u satis�es ' , the value of ' is true; and

� if true or false values cannot be determined, the value of' is inconclusive.

Havelund and Rosu [Havelund and Rosu, 2002] propose a monitor synthesis algorithm

for ptLTL formulas. The generated monitor tests whether theptLTL formula is satis�ed

by a �nite trace of events given as input and executed in linear time { depending on the
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ptLTL formula size as well as the memory consumption. The synthesis process is basically a

pretty-print, which is a direct conversion from the logic formula t o the target programming

language Java. The authors also suggest optimizations for the synthesis algorithm, which

is part of PaX, and argue that it generates e�cient monitors.

Bauer et al. [Bauer et al., 2011] have developed an algorithm for generating e�cient

monitors for discrete-time properties. Their approach only considers monitoring properties

that are speci�ed in LTL 3 or in TLTL with three truth values. They describe how �nite

state machines (FSMs) with three output symbols are generated fromLTL 3 formulas. The

generated automaton reads �nite traces and yields their three-valued semantics. Thus,

monitors for three-valued formulas classify pre�xes as being good (> ), bad (? ), or neither

good nor bad (?). Standard minimization techniques forFSMs can be applied to obtain

a unique FSM that is optimal with respect to its number of states. The authors designed

LTL 3 to speci�cally match the needs arising in RV .

Comparing both previous solutions, there are two important di�erences to note:

1. Bauer et al.'s solution usesLTL with three truth values instead of Havelund and

Rosu's solution that usesptLTL , and

2. Bauer et al.'s solution generatesFSMs from LTL 3 formulas instead of Havelund and

Rosu's solution that applies a direct conversion fromptLTL semantics to the program

code (in this case, the Java programming language).

Two techniques that are less used but are related to the topic of thisthesis. The Anna

(ANNotated Ada) speci�cation language was introduced in [Sankar and Mandal, 1993],

including the synthesis monitor algorithm named Anna consistency checking system (Anna

CCS). This outdated approach consists in the construction of a high-level speci�cation

language for concurrency monitoring. It is suitable to monitor the critical aspects of the

system's behavior continuously along its execution. Anna is based on �rst order logic

and its syntax is an extension of the Ada syntax. Anna CCS provides the capability

to distribute the monitoring of speci�cations on multi-processor hardware platforms to

meet practical time constraints. However, this approach assumes that the program under

monitoring is sequentially executed. LOLA [D'Angelo et al., 2005] is also a speci�cation

language and an algorithm for the online and o�ine monitoring of synchronous systems,

which include circuits and embedded systems. Even being a functional language over

�nite streams, the initial proposal does not contemplate support for runtime monitoring

of synchronous systems using more than one clock, neither asynchronous systems. Due to

that several streams acquired with di�erent clocks cannot be used.
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2.3.1 Runtime Monitoring of RTS

So far, not many approaches forRV of real-time properties have been proposed. In the

following, three real-time monitoring approaches are described.

Temporal Rover [Drusinsky, 2000] is appropriate for monitoring of hard real-time systems

due to the temporal constraints being speci�ed inMTL in spite of the monitoring software

being closed, therefore we are not able to undertansd how it is designed. Temporal Rover

is a commercialRV tool based on future time metric temporal logic. It allows program-

mers to insert formal speci�cation in programs via annotations, from which monitors are

generated. An Automatic Test Generation (ATG ) component is also provided to generate

test sequences from logic speci�cations. Temporal Rover and its successor, DB Rover,

support both inline and o�ine monitoring. However, they also have thei r speci�cation

formalisms hardwired and are tightly bound to Java. [Alves et al., 2011] presents the

results of a formal computer-aided validation and veri�cation of critical time-constrained

requirements of the Brazilian Satellite Launcher ight software basedon Temporal Rover.

In [Auguston and Trakhtenbrot , 2008] the authors present an approach for the dynamic

analysis of reactive systems viaRV of code generated from Statechart [Harel and Naamad,

1996] models and veri�ed by the Statemate approach [Auguston and Trakhtenbrot , 2008].

The approach is based on the automatic synthesis of monitoring statechartsfrom formu-

las that specify the system's temporal and real-time properties in aproposed assertion

language. The promising advantage of this approach is in its ability to analyzereal-world

models (with attributes reecting the various design decisions) in the system's realistic

environment. This capability is beyond the scope of model checkingtools.

Bauer et al. have developed an algorithm for generating e�cient monitors from TLTL for

real-time systems [Bauer et al., 2011]. The authors introduce the notion of TLTL with

three truth values, denoted TLTL 3. This basic notion is interesting and adequate forRV ,

since the complete set of traces is not available and theRV requires that the speci�cation

is evaluated increasingly. This approach employs so-calledevent-clock automata(ECA)

for monitoring of TLTL 3 formulas. Moreover, Bauer et al. introduce thesymbolic timed

runs and show their bene�ts for checking speci�cations e�ciently, av oiding a possible but

generally expensive translation ofECA to predicting-free timed automata. Yet, without

considering counting time explicitly.

2.3.2 Related Work

The last two decades have witnessed an immense increase in research activities in the
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area of static analysis [Nielson et al., 1999, Almeida et al., 2011, Tschannen et al., 2011],

where numerous theories and methods have been developed to verify both sequential and

concurrent programs [Apt et al. , 2009]. However, techniques such as model checking [Baier

and Katoen, 2008, Clarke et al., 1999] and theorem proving [Harrison, 2009] proved to be

hard, expensive and non intuitive for the common programmer (i.e., manytimes unusable

[Tschannen et al., 2011]). Moreover, the trend towards increasing size and complexity of

software in real-time systems promises to make their static veri�cation very challenging

in the foreseeable future [Zhu et al., 2009]. The exploration of other techniques, such as

dynamic veri�cation, is necessary in order to decrease the burden ofprogram veri�cation,

either in alternative or as complement to static methods [Leucker and Schallhart, 2009,

Falcone, 2010]. A recent trend in program veri�cation is the use of runtime checking to

complement the property veri�cation of sequential and concurrent systems [Tschannen

et al., 2011, Zee et al., 2007].

In this section, we will review some approaches to monitoring based on aspect-oriented

programming, rule-based languages, and hardware monitoring.

Aspect-Oriented Programming Languages. Aspect-oriented programming is a re-

cent paradigm to organize the entities according to aspects, which has proved to be

adequate/useful for monitoring calls instrumentation. Aspect-oriented programming has

been increasingly adopted in di�erent programming languages, e.g., AspectJ (an aspect-

oriented extension of Java language), AspectC++ (an aspect-oriented extension of C

and C++ languages), and recently Ada 2012 [Barnes, 2012]. Building on these AOP

languages, numerous extensions have been proposed to provide domain-speci�c features

for AOP. Among these extensions, Tracematches [Allan et al. , 2005] and J-LO [Bodden,

2004] support history(trace)-based aspects for Java.

Tracematches enables the programmer to trigger the execution of certainblock of code by

specifying a parametric regular pattern of events in a computation trace, where the events

are de�ned over entry/exit of AspectJ pointcuts. When the pattern i s matched during the

execution, the associated code will be executed.

J-LO is a tool for runtime-checking temporal assertions. These temporal assertions are

speci�ed using parametric linear temporal logic (LTL) and the syntax adopted in J-LO is

similar to Tracematches except that the properties are speci�ed ina di�erent formalism.

J-LO also uses the same parametricity semantics as Tracematches. J-LO mainly focuses

on checking properties at runtime rather than providing programming support. In J-LO,

the temporal assertions are inserted into Java �les as annotations that are then compiled

into runtime checks. Both Tracematches and J-LO support parametric events, i.e., free
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variables can be used in the speci�ed properties and will be bound tospeci�c values at

runtime for matching events.

Rule-based Languages. Eagle [Barringer et al., 2004a], RuleR [Barringer et al., 2007],

and PQL [Martin et al. , 2005] are general speci�cation languages which encompass moni-

toring algorithms. Such speci�cation formalisms allow for complex property speci�cation

with parameter bindings. Eagle and RuleR are based on �xed-point logics andrewrite

rules, while PQL is based on SQL relational queries. PQL allows programmers to express

design rules that deal with sequences of events associated with a set of related objects.

These schemes tackle the de�nition of speci�cation language with the support of data

binding among many other features, which makes the languages somewhat confusing and

probably ine�cient for monitor generation.

Program Trace Query Language (PTQL ) [Goldsmith et al., 2005] is a language based on

SQL-like relational queries over program traces. The currentPTQL compiler, Partiqle,

instruments Java programs to execute the relational queries on the y. PTQL events

are timestamped, and the timestamps can be explicitly used in queries. PTQL can be

arbitrarily complex in the worst cases but, in average, it has an acceptable overhead.

PTQL properties are globally scoped and their running mode is inline, as the predecessor

PQL. PTQL provides no support for recovery, its main use being to detect errors. PTQL

has static and dynamic tools. The static analysis conservatively looks for potential matches

for queries and is useful to reduce the number of dynamic checks. The dynamic analyzer

checks the runtime behavior and can perform user-de�ned actions when matches are found.

Attempts at monitoring hardware. BusMOP [Pellizzoni et al., 2008] is an outline

hardware monitoring solution proposed to plug a monitor into a peripheral bus. The pe-

ripheral behavior is monitored by hardware, within which the read and write transactions

are examined on the bus without runtime overhead on the system.

The PSL to Verilog compiler, P2V [Lu and Forin, 2008], is an attempt to perform runtime

monitoring of formal properties in hardware. P2V is similar to BusMOP in that monitors

are implemented in hardware rather than software, and that both approachesthus have no

runtime overhead on the CPU. P2V, however, is more similar to the aboveapproaches in

that it is designed for monitoring actual programs rather than peripheral devices. Also it

requires a dynamically extensible soft-core processor implemented on an FPGA, while the

BusMOP approach can potentially be applied to any COTS communication architecture.

Furthermore, P2V uses hardwired logic (PSL) while BusMOP allows for the use of di�erent

formalisms.
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2.3.2.1 Frameworks

MOP [Meredith et al., 2011], RV [Meredith and Ro�su, 2010], MaC [Kim et al. , 2004],

PathExplorer (PaX) [ Havelund and Rosu, 2001], Eagle [Barringer et al., 2004b], RuleR

[Barringer et al., 2010], and RMOR [Havelund, 2008] are RV frameworks for logic, extended

regular expressions(ERE), context-free grammar (CFG), assertion-based monitoring, within

which speci�c tools for Java (and C) { Java-MOP [ Jin et al., 2012], RV-Monitor/RV-

Predict, Java-MaC, Java PathExplorer, Hawk [d'Amorim and Havelund, 2005], and RMOR,

respectively { are implemented. The summary of the speci�cation languages of such

platforms, which support outline monitoring, is the following

- MOP supports extended regular expressionss (EREs), Java modeling language(JML ),

and several variants ofLTL ;

- RV uses �ve di�erent speci�cation formalisms, namely FSMs, EREs, CFGs, past-time

linear temporal logic (ptLTL ), and future-time linear temporal logic (FTLTL );

- MaC uses a specialized language based on interval temporal logic;

- JPaX just supports LTL ;

- Eagle adopts a �rst order �xed-point LTL with a chop operator;

- RuleR solves some performance issues of Eagle and adopts a �xed-pointpropositional

temporal logic (PTL ); and

- RMOR supports LTL and a graphical state machine language RCAT.

MOP, a monitor oriented programming framework, can be seen as having evolved from

JPaX with the idea that the speci�cation and implementation together f orm a system.

The MOP approach supports inline, outline, and o�ine monitoring; it allo ws to de�ne

new formalisms to extend the MOP framework; it generates monitors fromannotated code

as plain Java code; and it adapts easily to new languages (as the authors argue). MTL

currently is not supported by MOP, neither is any other real-time logic. The RV system

[Meredith and Ro�su, 2010], a commercial-grade successor of MOP, is based on the success

of the MOP system and on a vastly expanded version of the jPredictor System [Chen et al.,

2008]. MaC [Sokolsky et al., 2006, Sammapun et al., 2007] and JPaX integrate monitors

via Java bytecode instrumentation, making them di�cult to port t o other languages.

MaC also supports statistical runtime checking. Eagle attempts to build a logic that is

powerful enough to subsume most existing speci�cation logics. The Eagle logic with a

chop operator allows to model sequential composition. Although quite expressive, it does

not yield e�cient monitors, so RuleR attempts to address those ine� ciencies [Goodloe and

Pike, 2010]. A monitor is expressed as a collection of logic rules speci�ed in propositional



CHAPTER 2. BACKGROUND AND RELATED WORK 30

temporal logic, as aFSM, or CFG. The RMOR platform monitors C programs specifying

both safety and bounded liveness properties that can be expressed asFSMs, and observes

events recorded in an execution trace.

These platforms are only suited for runtime monitoring or evenRV of concurrent systems.

As such, they cannot be used for real-time systems since only temporalconstraints are

ensured, and as it is well known that real-time systems are mainly characterized by their

dependence on timing (or timed) constraints.

2.3.2.2 RV vs. static veri�cation and testing techniques

Due to the increasing importance of contextualizing veri�cation techniques in the sense

of knowing their potential and fragilities, a comparison betweenRV and three well-known

techniques (deductive reasoning, model checking and testing) ismade in the following

paragraphs. These techniques can be characterized in terms ofscalability, types of prop-

erties and coverage.

Model Checking. RV shares many similarities with model checking and, roughly speak-

ing, this technique can be seen as complementary to model checking(i.e., runtime veri�-

cation reduces veri�cation issues, which are undecidable, but alsoreduces the coverage).

Nevertheless, and according to [Leucker and Schallhart, 2009], there are important di�er-

ences to consider:

1. In RV , only one execution of a given system is checked to answer, in execution time or

after the execution (inline monitoring and outline monitoring, respectively), whether

it satis�es a given correctness property ' . This corresponds to knowing whether

the execution trace satis�es the property ' , i.e., the word acceptance problem. In

contrast, model checking deals with the language inclusion problem. Asis well-

known, the word problem is of far lower complexity than the inclusion problem

[Alur and Dill , 1994].

2. RV considers �nite traces, since all executions are necessarily �nite, whereas model

checking deals with in�nite traces.

3. RV , especially when dealing with online monitoring, considers �nite executions of

increasing size. For this, a monitor should be designed to consider executions in an

incremental fashion. In contrast, model checking deals with a complete model which

allows considering arbitrary positions of a trace.
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From an application point of view, there are also important di�erences between RV and

model checking: RV deals only with observed executions. Thus it is applicable to black-

box systems for which no system model is at hand. In model checking, however, a precise

description of the system to check is mandatory as, before actually running the system, all

possible executions must be checked. Furthermore, model checking su�ers from the well-

known state explosion problem, which refers to the fact that analyzing all executions of a

system is typically carried out by generating the whole state space, which often becomes

unfeasibly huge. Considering a simple run, on the other hand, most applications of RV

are not practically limited by their memory requirements, since the necessary history

information, although potentially unbounded, is usually fairly small.

Model checking is characterized by a lower scalability (due to the state explosion problem),

a lower properties coverage (several properties cannot be checked,e.g., explicit time

properties, especially when dealing withTPTL and MTL ), and higher coverage of the

model (e.g., a property ' holds for all possible paths of the model). However, veri�cation

using model checking is only as good as the model of the system.

Deductive Reasoning. Logical deduction is clearly one of the most used techniques in

software veri�cation; however, it is also one of the most di�cult to app ly. Deductive proof

construction and RV are two distinct techniques, clearly without similarities. They di�er

in the following points:

1. Deductive proofs are much more time-consuming than a push button operation such

as RV in the sense of utilization perspective. Deductive reasoning requires that well

known deductive techniques and tactics are used. Moreover, allRV tools works in

an automatic fashion.

2. RV has lower coverage than deductive proofs. The latter technique is general and

comprehensive. In contrast,RV only veri�es concrete past executions which cannot

be extended or generalized.

3. Deductive proofs are exact and rigorous, no more veri�cation e�orts are required

after a �nite set of steps are found.

Testing. RV has similarities with testing since neither of the techniques considers each

possible execution of a system, but just a single or a �nite subset,indicating that their

coverage is usually incomplete.

There are two testing schemes, namelysuite-basedtesting and oracle-basedtesting, that

can be used [Hamlet, 2010]. Typically, a test suite is formed by a �nite set of �nite input-
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output sequences. Test-case execution is then the act of checkingwhether the output of a

system agrees with the predicted one, after giving the input sequence to the system under

test. However, oracle-based testing, a closer approach toRV , composes a test suite which

is only formed by input sequences. To anticipate the output results for testing, a so-called

test oracle has to be designed and coupled to the system under test. This oracle observes

the system under test and checks a number of properties (e.g., by unit tests 4) in an

automatic way. In contrast, RV is identical in the sense that the monitor is coupled to the

system and instead of testing it, monitors whether the properties are satis�ed or violated.

An alternative way to compare both techniques, according to [Bauer et al., 2011], is:

1. RV generates monitors from high-level speci�cations rather than a handmadecon-

struction of a test oracle.

2. RV does not consider the supply of a suitable set of input sequences toexhaustively

test a system.

This technique is the most widely used in industry due mainly to its greater scalability,

in spite of lower coverage and the uncertainty in test oracle development.

Summary

Indispensable topics and respective related works have been summarized and merged

in this chapter as the background required to read this thesis. We have recapped the

importance of duration properties for proving correct real-time systems' behavior with the

conclusion that there is a huge gap ofRV frameworks ready to deal with explicit real-time

systems properties. Proper languages for describing hard real-time systems properties have

been surveyed as well, including a diverse number of properties. One important language

is MTL-
R

, which, being more expressive than duration calculus, may originatefurther

issues that need to be dealt statically (we will continue exploringit in the next chapter).

We have also introduced lambda calculus as basic and elegant theory for constructing new

synthesis algorithms.

4Consists of testing certain areas of the source-code by providing di�erent inputs for such blocks of code

(e.g., functions) and comparing it with the desired outcome.



Chapter 3

RV with RMTL-
R

RV is concerned with the problem of generating monitors from formal speci�cations, and

adding these monitors into the target code as a safety-net that is able to detect abnormal

behaviors and, possibly, respond to them via the release of counter-measures. Providing

an expressive formal language that �ts the timing requirements of real-time systems is the

main objective of this chapter.

A fragment of MTL-
R

is presented as an intuitive tool to carry out RV of hard real-

time systems. We begin by thespeci�cation language and then introduce the notions

of inequality translation using FOLR in order to simplify restricted metric temporal logic

with durations (RMTL-
R

) formulas. In the remaining part of the chapter, we present the

correctness result of the inequality translation algorithm, and we conclude by describing

the synthesis algorithms for static and dynamic veri�cation purposes.

3.1 The speci�cation Language RMTL-
R

To overcome the undecidability results of MTL-
R

, we will apply restrictions on its def-

inition. RMTL-
R

is a syntactically and semantically restricted fragment of MTL-
R

; the

syntactic restrictions over MTL-
R

include the use ofbounded formulas, of a single relation

< over the real numbers, the restriction of the n-ary function terms to use one of the

+ or � operators, and a restriction of � constants to the set of rationals Q. Tarski's

theorem [Tarski, 1995] states that the �rst-order theory of reals with +, � , and < allows

for quanti�ers to be eliminated. Algorithmic quanti�er elimination l eads to decidability,

assuming that the truth values of formulas involving only constants (without free variables

and bound variables) can be computed.

33
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The semantic restrictions on the other hand include the conversion ofthe continuous

semantics of MTL-
R

into an interval-based semantics, where models aretimed interval

sequencesand formulas are evaluated in a given logical environment at a timet 2 R � 0.

De�nition 6 (RMTL-
R

formulae). Let P be a set of propositions andV a set of logical
variables. The syntax ofRMTL-

R
terms � and formulas ' is de�ned inductively as follows:

� ::= � j x j � 1 � � 2 j
Z �

'

' ::= true j p j � 1 < � 2 j ' 1 _ ' 2 j : ' j ' 1 U�  ' 2 j ' 1 S�  ' 2 j 9x '

where: � 2 R, x 2 V is a logical variable, the operators� 2 f + ; �g are used for the sum

and multiplication of terms,
R� ' is the duration of the formula ' in the interval [0 ; � ];

p 2 P is an atomic proposition, < is the relation less thanon terms, U and S are temporal

operators, with � 2 f <; = g and  2 R � 0.

We will use the following classic shorthands:' ^  for : (: ' _ :  ), ' !  for : ' _  ,

� �  ' for true U�  ' , and � �  ' for : (true U�  : ' ). We will denote by � the set of

RMTL-
R

formulas. Furthermore, we will use � 2 f + ; �g and � 2 f <; = g to range over

operators.

A timed state sequence� is an in�nite sequence of the form

(p0; [i 0; i 0
0[); (p1; [i 1; i 0

1[) : : : ;

where pj 2 P , i 0
j = i j +1 and i j ; i 0

j 2 R � 0 such that i j < i 0
j and j � 0. Let � (t) be de�ned

as f pj g if there exists a tuple (pj ; [i j ; i 0
j [) such that t 2 [i j ; i 0

j [, and as ; otherwise. Note

that there exists at most one such tuple.

A logical environment is any function � : V ! R � 0. For any x 2 V , r 2 R, and logical

environment � , we will denote by � [x 7! r ] the logical environment that maps x to r and

every other variable y to � (y).

De�nition 7 (RMTL-
R

semantics). The truth value of a formula ' will be de�ned relative

to a model (�; �; t ) consisting of a timed state sequencek, a logical environment � , and

a time instant t 2 R � 0. We will write ( �; �; t ) j= ' when ' is interpreted as true in the

model (�; �; t ). Terms and formulas will be interpreted in a mutually recursive way.

First of all, for each formula ' , timed state sequencek and logical environment � , the

auxiliary indicator function 1' ( �;� ) : R � 0 ! R � 0 is de�ned as follows, making use of the

satisfaction relation:

1' ( �;� ) (t) =

8
<

:

1 if (�; �; t ) j= ';

0 otherwise.
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The value T J� K(�;� ) t of a term � relative to a model can then be de�ned. A Riemann
integral [Gordon, 1994] of the function 1' ( �;� ) is used for the case of a duration

R� ' .

T J� K( �;� ) t = �

T JxK( �;� ) t = � (x)

T J� 1 � � 2K( �;� ) t = T J� 1K( �;� ) t � T J� 2K( �;� ) t

T

sZ �

'
{

( �;� ) t =

8
<

:

Rt + T J� K( �;� ) t
t 1' ( �;� ) (t � ) dt� if T J� K( �;� ) t � 0

0 otherwise

The satisfaction relation is de�ned inductively as follows:

(�; �; t ) j= true

(�; �; t ) j= p i� p 2 � (t)

(�; �; t ) j= � 1 < � 2 i� T J� 1K( �;� ) t < T J� 2K( �;� ) t

(�; �; t ) j= ' 1 _ ' 2 i� ( �; �; t ) j= ' 1 or (�; �; t ) j= ' 2

(�; �; t ) j= : ' i� ( �; �; t ) 6j= '

(�; �; t ) j= ' 1 U�  ' 2 i� there exists t0 such that t � t0 � t +  and (�; �; t 0) j= ' 2;

and for all t00such that t < t 00< t 0; (�; �; t 00) j= ' 1

(�; �; t ) j= ' 1 S�  ' 2 i� there exists t0 such that t �  � t0 � t and (�; �; t 0) j= ' 2;

and for all t00such that t0 < t 00< t; (�; �; t 00) j= ' 1

(�; �; t ) j= 9x ' i� there exists a value r 2 R such that (�; � [x 7! r ]; t) j= '

We will write ( �; � ) j= ' as shorthand for (�; �; 0) j= ' . Note that the semantics of the

until operator is strict and non-matching. This implies that, in order to satisfy ' 1 U�  ' 2,

the model is not required to satisfy ' 1.

An important property of our restriction is that RMTL-
R

satis�es by construction the

Dirichlet condition implying the Riemann property [ Lakhnech and Hooman, 1995, p.7]:

Lemma 1. For any RMTL-
R

formula ' , timed state sequence� , and logical environment

� , the indicator function 1' ( �;� ) is Riemann integrable.

Proof of Lemma 1. We proceed by contradiction on the claim that the function 1' ( �;� ) has

�nitely many discontinuities. Let us consider the model (�; �; t ) and a proposition prop

such that prop 2 � (t) for t 2 [0; 1).

We consider the case when� is equal to
R1 prop = 1 � a: from the semantic interpretation

of the duration term, we have T
r R1 prop

z
(�;� ) t = 1 � t. Applying the substitution

property of equality, we get a +
R1 prop = 1. Since t is directly related to the variable a,

when the timed state sequence� has �nite length, from the semantic rules we can see that
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if a has in�nitely many discontinuities along t then 1� (�;� ) also contains in�nitely many

discontinuities. Considering the above relation betweent and the logic variable a (t = a),

introducing in�nitely many discontinuities in t means that we can extend the formula

� to introduce �nitely many discontinuities in a. Now, from a close examination of the

semantics of the logic, we have thata can be constrained only by polynomial inequalities.

In�nite discontinuities on polynomial inequalities are not obtainable .

We also need to consider the case when Boolean operators are applied to polynomial

inequalities. In order to obtain an in�nite number of discontinuiti es we would need an

in�nite number of Boolean operators and then an in�nite formula. Since any formula

needs to be �nite to be satis�able, then this contradicts the claim.

We skip the proof for the remaining cases, since no more relations between t and logic

variables can be allowed semantically, other than those originating in duration terms in

certain circumstances. To conclude the proof, we have that no in�nitely many discon-

tinuities exist, and then the Dirichlet condition holds, which i mplies that the indicator

function 1' ( �;� ) is Riemann integrable. �

Example 4 (Application of Durations) . Let us now consider an example using a duration

term concerning the evolution of a real-time system formed by tasks depending entirely on

the occurrence of events, the evaluation of the propositions is performed over these events,

and all the tasks have an associated �xed set of events. Let� m be a formula that speci�es

the periodic release of a renewal event for a timed resource in the system, and let  m be

a formula specifying every event triggered by tasks belonging to that resource. To monitor

utilization and the release of timed resources, we employ the formula,

� <v � m !
Z t

 m � �;

wherev is arbitrarily large, t is the budget renewal period, and� is the allowed budget (i.e.

the execution time of tasks belonging to the timed resource). Let us consider two �nite

sequences� 1 and � 2, such that � 1 is a subsequence of� 2, and an arbitrary formula � .

In the two-valued setting, incremental evaluation overt is inconsistent with respect to the

sequence, since we could have(� 1; �; 0) 6j= � and (� 2; �; 10) j= � due to lack of sequence

symbols in � 1.

A di�erent solution will be presented in the next section where the unknown truth-value

is an option.
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3.2 Three-valued Extension of RMTL-
R

The three-valued logic extension ofRMTL-
R

, which we will call three-valued restricted

metric temporal logic with durations (RMTL-
R

3), is syntactically de�ned as before, but

contains two new terms. These terms allow for variables to be maximized and minimized in

certain intervals, subject to a constraint given as a formula. The terms must be introduced

here due to the situation in which no minimum or maximum exists (the formula is not

satis�ed in the interval), since we need to de�ne an infeasible value instead of assigning a

real number to these terms. The language of terms ofRMTL-
R

3 is de�ned as follows:

� ::= � j x j min
x

' j max
x

' j � 1 � � 2 j
Z �

'

where min
x

' and max
x

' , are respectively, the minimum and maximum of a formula with

respect to the logical variablex. All other formulas and terms are as inRMTL-
R

. We will

denote by � 3 the set of RMTL-
R

3 formulas, and by � the set of RMTL-
R

3 terms.

De�nition 8 (RMTL-
R

3 Semantics). The truth value of a formula ' will again be de�ned

relative to a model (�; �; t ) consisting of a timed state sequencek, a logical environment �

and a time instant t 2 R � 0, and will now be one of the 3-valuesf tt ; � ; ?g . We will write

J' K3(�;�;t ) = tt when ' is interpreted as true in the model (�; �; t ), J' K3(�;�;t ) = � when '

is interpreted as false in the model (�; �; t ), and J' K3(�;�;t ) = ? otherwise. The auxiliary

indicator function 1 ' ( �;� ) : R � 0 ! f� 1; 0; 1g is de�ned as follows:

1' ( �;� ) (t) =

8
>>><

>>>:

1 if J' K3( �;�;t ) = tt ;

0 if J' K3( �;�;t ) = � ;

� 1 if J' K3( �;�;t ) = ?

The interpretation of the term � will be given by T J� K3(�;� ) t 2 R [ f? R g, as de�ned by

the following rules. WheneverT J� K3(�;� ) t = ? R , this means that the term � is infeasible.

Rigid terms:

- T J� 1K3(�;� ) t is de�ned as � if � 1 = � , and as� (x) if � 1 = x

Minimum and Maximum terms:

- If � 1 = min
x

' , then T J� 1K3(�;� ) t is de�ned as:
8
<

:
min m if m 6= ; and for all y such that y < min m; J' K3( �;� [x 7! y ];t ) 6= ?

? R otherwise

where m = f r j J' K3(�;� [x7! r ];t ) = tt g.
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- If � 1 = max
x

' , then T J� 1K3(�;� ) t is de�ned as:
8
<

:
maxn if n 6= ; and for all y such that maxn < y; J' K3( �;� [x 7! y ];t ) 6= ?

? R otherwise

where n = f r j J' K3(�;� [x7! r ];t ) = tt g.

Duration term :

- If � 1 =
R� 2 � , then T J� 1K3(�;� ) t is de�ned as:

8
>><

>>:

Rt + T J� 2 K3 ( �;� ) t

t 1� ( �;� ) (t0) dt0 if
T J� 2K3( �;� ) t � 0 and for all t002 [t; t +T J� 2K3( �;� ) t ];

1� ( �;� ) (t
00) 2 f 0; 1g

? R otherwise

Binary terms:

- If � 1 = � 2 + � 3, then T J� 1K3(�;� ) t is de�ned as:
8
<

:
T J� 2K3(�;� ) t + T J� 3K3(�;� ) t if T J� 2K3(�;� ) t; T J� 3K3(�;� ) t 2 R

? R otherwise

- If � 1 = � 2 � � 3, then T J� 1K3(�;� ) t is de�ned as:
8
<

:
T J� 2K3(�;� ) t � T J� 3K3(�;� ) t if T J� 2K3(�;� ) t; T J� 3K3(�;� ) t 2 R

? R otherwise

Turning to the interpretation of formulas, we de�ne J' K3(�;�;t ) to be one of the three values

in f tt ; � ; ?g , according to the following rules.

Basic formulae:

- If � is p, then J� K3(�;�;t ) is tt if p 2 � (t), � if p 62 � (t) and � (t) 6= ; , and

? if � (t) = ; .

Relation operator:

- If � is � 1 < � 2, then J� K3(�;�;t ) is de�ned as:
8
>><

>>:

tt if T J� 1K3( �;� ) t ; T J� 2K3( �;� ) t 2 R, and T J� 1K3( �;� ) t < T J� 2K3( �;� ) t

� if T J� 1K3( �;� ) t ; T J� 2K3( �;� ) t 2 R, and T J� 1K3( �;� ) t � T J� 2K3( �;� ) t

? if T J� 1K3( �;� ) t = ? R or T J� 2K3( �;� ) t = ? R

Boolean operators:

- If � is : ' , then J� K3(�;�;t ) is tt if J' K3(�;�;t ) = � , � if J' K3(�;�;t ) = tt , and ? otherwise.
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- If � is ' 1 _ ' 2, then J� K3(�;�;t ) is tt if J' 1K3(�;�;t ) = tt or J' 2K3(�;�;t ) = tt ,

� if J' 1K3(�;�;t ) = � and J' 2K3(�;�;t ) = � , and ? otherwise.

Temporal Operators:

- If � is ' 1 U�  ' 2, then J� K3(�;�;t ) is de�ned as:
8
>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>:

tt if there exists t0 such that t � t0 � t + ; J' 2K3( �;�;t 0) = tt and

for all t00; t < t 00< t 0; J' 1K3( �;�;t 00) = tt

� if for all t0; t � t0 � t + ;

J' 2K3( �;�;t 0) 6= � implies that

there exists t00such that t < t 00< t 0; J' 1K3( �;�;t 00) = � and

J' 2K3( �;�;t 0) = � implies that there exists no t00such that t < t 00< t 0 or

there exists t00such that t < t 00< t 0; J' 1K3( �;�;t 00) = �

? otherwise

- If � is ' 1 S�  ' 2, then J� K3(�;�;t ) is de�ned as:
8
>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>:

tt if there exists t0 such that t �  � t0 � t; J' 2K3( �;�;t 0) = tt and

for all t00; t0 < t 00< t; J' 1K3( �;�;t 00) = tt

� if for all t0; t �  � t0 � t;

J' 2K3( �;�;t 0) 6= � implies that

there exists t00such that t0 < t 00< t; J' 1K3( �;�;t 00) = � and

J' 2K3( �;�;t 0) = � implies that there exists no t00such that t0 < t 00< t or

there exists t00such that t0 < t 00< t; J' 1K3( �;�;t 00) = �

? otherwise

Existential operator:

- If � is 9x ' , then J� K3(�;�;t ) is de�ned as:
8
>>>>><

>>>>>:

tt if there exists a valuer 2 R such that J' K3( �;� [x 7! r ];t ) = tt

� if for all r 2 R; J' K3( �;� [x 7! r ];t ) = �

? there exits r 2 R such that J' K3( �;� [x 7! r ];t ) = ? and

there exists nor 2 R such that J' K3( �;� [x 7! r ];t ) = tt

We will write ( �; �; t ) j= 3 ' when J' K3(�;�;t ) = tt , and (�; �; t ) 6j= 3 ' when J' K3(�;�;t ) = � .

In what follows we will often write � 1 = � 2 for : (� 1 < � 2) ^ : (� 2 < � 1).

Preservation of RMTL-
R

Semantics. An immediate motivation for (the choice of)

de�ning a three-valued semantics for our logic fragment comes from the nature of runtime

veri�cation, which evaluates timed sequences where it is not possible to determine a de�ni-

tive true or false value without analyzing the complete trace. For instance, considering a
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pre�x { p of a timed sequence{ , we have that the evaluation of the same formula in the

models ({ ; �; t ) and ({ p; �; t ) produces di�erent truth values. Classic semantics cannot

provide a common truth value to make consistent incremental evaluations of the model,

which is an important feature for RV .

The semantic preservation of both truth and falsity for the three-valued logic is de�ned

using the following two relations: a partial relation � � f tt ; � ; ?g � f tt ; � g de�ned by

tt � tt , � � � , and ? � � ; and a partial relation / � R [ f? R g � R de�ned by ? R / 0,

and m/m , for all m 2 R, which gives a distinct treatment to duration terms that evaluate

to 0 in the 2-valued semantics.

We will now formulate two auxiliary results required to prove the semantic preservation

of RMTL-
R

in RMTL-
R

3. From a close examination of the minimum and maximum

term semantics, we have that these terms are indeed quanti�ed formulas, interpreted

as a minimum or a maximum value that satis�es the quanti�cation, or as ? R when

this minimum or maximum is nonexistent. First of all we observe that the following

axioms [Tarski, 1995, p. 205], where� does not contain minimum and maximum terms,

extend to our present setting:

A 1. � 1 � min
x

� < � 2 () (8y y < x ! : � [y=x]) ^ � 1 � x < � 2 ^ � .

A 2. � 1 � max
x

� < � 2 () (8y y > x ! : � [y=x]) ^ � 1 � x < � 2 ^ � .

A 3.
R� 3 � 1 � � 1 � � 2 () x = � 3 ^

Rx � 1 � � 1 � � 2

Axioms A1 and A2 indicate that a formula containing a minimum/maximum term is indeed

a quanti�ed formula constrained by the mim/max of the variable x. Axiom A 3 replaces a

formula containing a duration constrained in an interval by a duration term constrained

by a logic variable. The meaning of� ()  is that ( �; �; t ) j= 3 � i� ( �; �; t ) j= 3  , for

a model (�; �; t ).

Lemma 2. Let � be a RMTL-
R

3 formula such that minimum and maximum terms only

occur outside of the duration terms. Then, there exists an equivalentRMTL-
R

3 formula

containing no occurrences of minimum and maximum terms.

Proof. The proof follows by induction on the structure of the formula � . We only present

the case when� is � 1 < � 2. We have to prove that there exists an equivalent form for the

minimum and maximum terms for RMTL-
R

3 formulas. In particular, for all � 3 and � 4 and

for any x and � 1, the following holds

� 3 + � 4 � min
x

� 1 < z () (8y y < x ! : � 1[y=x]) ^ � 3 + � 4 � x < z ^ � 1:



CHAPTER 3. RV WITH RMTL-
R

41

Suppose� 1 is � 3 + � 4 � min
x

� 1 and � 2 is � 5 + � 6 � min
x

� 2. Assuming that � 1 6= z and

� 2 6= z, by the fourth axiom of the second axiomatization of Tarski [Tarski, 1995], we have

that � 1 < z ^ z < � 2, i.e.

� 3 + � 4 � min
x

� 1 < z ^ :
�

� 5 + � 6 � min
x

� 2 � z
�

:

Now, we have both inequalities in the same shape and we can consider the�rst one for

continuing the proof (since the proof for the other inequality is similar). By axiom A 1, we

have (8a a < x ! : � 1[a=x]) ^ � 3 + � 4 � x < z ^ � 1. By induction hypothesis we have

(8a a < x ! : � 1[a=x]) ^ (� 6 + � 7 � min
y

� 2) + ( � 8 + � 9 � min
w

� 3) � x < z ^ � 1:

Re-applying Axiom 1, we have that

(8a a < x ! : � 1[a=x]) ^

(8b b < y ! : � 2[b=y]) ^

(8c c < w ! : � 3[c=w]) ^

� 1 ^ � 2 ^ � 3^

(� 6 + � 7 � y) + ( � 8 + � 9 � w) � x < z:

Hence, the minimum terms vanish. We skip the case when� 1 = z, � 2 6= z and � 1 6= z,

� 2 = z; and also when the maximum term is employed (which makes use of axiom A2),

since the proof is similar. �

From Lemma 2, we conclude that the minimum and maximum terms do not increase the

RMTL-
R

3 expressiveness as they are indeedsyntatic sugar that can be eliminated. We

have not considered the situation when minimum and maximum terms occur in the scope

of duration terms. For that we need to apply axiom A3 to replace the bound term of the

duration, allowing for Lemma 2 to be further applied.

Now, given the result of Lemma 2, we will add the minimum and maximum terms to

the syntax and semantics ofRMTL-
R

, since there is no di�erence from the expressiveness

standpoint. Then, we will prove by mutual structural induction on t he formula that the

semantics is preserved. Let us de�nem = f r j J' K(�;� [x7! r ];t ) = tt g. The minimum term

min
x

' is semantically interpreted as anRMTL-
R

term as:

T
r

min
x

'
z

(�;� ) t =

8
<

:
min m if m 6= ;

0 otherwise
:

The maximum term max
x

' is semantically de�ned as:

T
r

max
x

'
z

(�;� ) t =

8
<

:
maxm if m 6= ;

0 otherwise
:
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Lemma 3. If � 1 is an RMTL-
R

3 formula then J� 1K3(�;�;t ) � J� 1K(�;�;t ).

Proof. We will prove by mutual structural induction that J� 1K3(�;�;t ) � J� 1K(�;�;t ) for any

RMTL-
R

3 formula � 1, and T J� 1K3(�;� ) t / T J� 1K(�;� ) t for any term � 1. For terms we have

to prove that the following cases hold.

1. (Base Case� ) If T J� K3(�;� ) t = T J� K(�;� ) t then T J� K3(�;� ) t / T J� K(�;� ) t

2. (Base Casex) If T JxK3(�;� ) t = T JxK(�;� ) t then T JxK3(�;� ) t / T JxK(�;� ) t

3. (Step Case
R� 1 � 1) If J� 1K3(�;�;t ) � J� 1K(�;�;t ), T J� 1K3(�;� ) t / T J� 1K(�;� ) t, and

T J� 1K(�;� ) t < 0 i� T J� 1K3(�;� ) t = ? R _ T J� 1K3(�;� ) t < 0 then T
qR� 1 � 1

y
3(�;� ) t /

T
qR� 1 � 1

y
(�;� ) t

4. (Step Case� 1 � � 2) If T J� 1K3(�;� ) t / T J� 1K(�;� ) t and T J� 2K3(�;� ) t / T J� 2K(�;� ) t

then T J� 1 � � 2K3(�;� ) t / T J� 1 � � 2K(�;� ) t

Base cases 1 and 2 are trivially solved since by de�nition the semanticrules are exactly

the same, and then for any modelT J� K3(�;� ) t = T J� K(�;� ) t and T JxK3(�;� ) t = T JxK(�;� ) t

hold. Step case
R

. Assuming that J� 1K3(�;�;t ) � J� 1K(�;�;t ) and that T J� 1K3(�;� ) t /

T J� 1K(�;� ) t, we need to consider when the evaluation of term� 1 is less than zero. From

the semantic nature of the term
R� 1 � 1 we have that for any model T

qR� 1 � 1
y

3(�;� ) t =

? R if T J� 1K3(�;� ) t = ? R and that T
qR� 1 � 1

y
(�;� ) t = 0 if T J� 1K(�;� ) t < 0. Then from

T
qR� 1 � 1

y
(�;� ) t = 0 i� T

qR� 1 � 1
y

3(�;� ) t = ? R _ T
qR� 1 � 1

y
3(�;� ) t = 0, we concude that

T J� 1K(�;� ) t < 0 i� T J� 1K3(�;� ) t = ? R _ T J� 1K3(�;� ) t < 0 holds for any model (�; � )t. The

step case 4 is direct.

Now, we continue the proof for formulas. We need to consider the cases:

1. (Base Casetrue) If JtrueK3(�;�;t ) = JtrueK(�;�;t ) then JtrueK3(�;�;t ) � JtrueK(�;�;t )

2. (Base Casep) If JpK3(�;�;t ) = tt i� JpK(�;�;t ) = tt then JpK3(�;�;t ) � JpK(�;�;t )

3. (Step Case< ) If T J� 1K3(�;� ) t / T J� 1K(�;� ) t, T J� 2K3(�;� ) t / T J� 2K(�;� ) t, T J� 1K(�;� ) t =

� i� T J� 1K3(�;� ) t = ? R _ T J� 1K3(�;� ) t = � , and T J� 2K(�;� ) t = � i� T J� 2K3(�;� ) t =

? R _ T J� 2K3(�;� ) t = � then J� 1 < � 2K3(�;�;t ) � J� 1 < � 2K(�;�;t )

4. (Step Case: ) If J� 1K3(�;�;t ) � J� 1K(�;�;t ) and J� 1K3(�;�;t ) = tt i� J: � 1K3(�;�;t ) = �

and J� 1K(�;�;t ) = tt i� J: � 1K(�;�;t ) = � then J: � 1K3(�;�;t ) � J: � 1K(�;�;t )

5. (Step Case_) If J� 1K3(�;�;t ) � J� 1K(�;�;t ), J� 2K3(�;�;t ) � J� 2K(�;�;t ), J� 1K3(�;�;t ) =

tt _ J� 2K3(�;�;t ) = tt i� J� 1 _ � 2K3(�;�;t ) = tt and J� 1K(�;�;t ) = tt _ J� 2K(�;�;t ) = tt i�

J� 1 _ � 2K(�;�;t ) = tt then J� 1 _ � 2K3(�;�;t ) � J� 1 _ � 2K(�;�;t )
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6. (Step Case U�  ) If J� 1K3(�;�;t ) � J� 1K(�;�;t ), J� 2K3(�;�;t ) � J� 2K(�;�;t ), and

J� 1 U�  � 2K3(�;�;t ) = tt i� J� 1 U�  � 2K(�;�;t ) = tt , then

J� 1 U�  � 2K3(�;�;t ) � J� 1 U�  � 2K(�;�;t )

7. (Step Case9 x) If there exists a model (�; �; t ) such that J� 1K3(�;�;t ) � J� 1K(�;�;t ),

J9 x � 1K3(�;�;t ) = tt i� J9 x � 1K(�;�;t ) = tt , then J9 x � 1K3(�;�;t ) � J9 x � 1K(�;�;t )

We trivially prove that JtrueK3(�;�;t ) = JtrueK(�;�;t ), since the semantic de�nition of true

in both logics is the same. Base casep. From the semantic nature of p, we prove that

JpK3(�;�;t ) = tt i� JpK(�;�;t ) = tt holds, sinceJpK3(�;�;t ) = tt i� p 2 � (t) and JpK(�;�;t ) = tt

i� p 2 � (t). Step case< . Assuming T J� 1K3(�;� ) t / T J� 1K(�;� ) t and T J� 2K3(�;� ) t /

T J� 2K(�;� ) t, we need to prove thatT J� 1K(�;� ) t = � i� T J� 1K3(�;� ) t = ? R _ T J� 1K3(�;� ) t =

� and T J� 2K(�;� ) t = � i� T J� 2K3(�;� ) t = ? R _ T J� 2K3(�;� ) t = � hold. For simplicity, we

consider the proposition T J� 1K3(�;� ) t = tt i� T J� 1K(�;� ) t = tt and T J� 2K3(�;� ) t = tt i�

T J� 2K(�;� ) t = tt . For these cases the semantic rules are the same, and then the proposition

holds. Proofs for step cases: , _ , U, and 9 are skipped since they are direct. �

Before concluding this section, we de�ne a function to translate formulas containing

minimum and maximum terms into formulas without occurrences of these operators.

De�nition 9 (erasure of min/max terms). Let f � and f � be two mutually recursive

functions responsible for erasing minimum and maximum terms from formulas and terms,

respectively. In the case when� 1 (the recursive argument of f � ) is of the form

� 3 + � 4 � min
x

� 1 < � 5

then the function returns

(8y y < x ! : f � (� 1[y=x])) ^ f � (f � (� 3 + � 4 � x) < f � (� 5)) :

Otherwise, the function f � proceeds recursively over its sub-formulas andf � over its sub-

terms until no more occurrences of min/max terms exists.

Note that due to verbosity in the above de�nition, the formula � 3 + � 4 � min
x

� 1 < � 5 does

not extent with the : and _ operators, since any inequality in a formula will reduce to this

pattern using the connectives properties. For terms, any term will reduce to the pattern

� 3 + � 4 � x using commutative and distributive properties of addition and multi plication.

Lemma 4. The function f t is partially correct.

Proof Sketch. The proof follows by mutual structural induction on the formulas and terms

containing min/max terms, and using axioms A1 and A2. �
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3.3 Polynomial Inequality Translation

A close examination of the semantics ofRMTL-
R

3 reveals that the timed state sequence

� and the logic environment � are not directly related as parameters for evaluating the

truth value of formulas. This property allows us to de�ne a mechanism for introducing

isolation by splitting formulas and/or translating them into polynomial i nequality condi-

tions. Several conditions can be discarded prior to execution, and theresulting simpli�ed

formula is then suitable for runtime monitoring and/or checking with SMT solvers.

The axiom system for the arithmetic of real numbers provided by Tarski [Tarski, 1995]

can be used to encode polynomial inequalities as inRMTL-
R

3. Several properties provided

by this well-known fragment will be used to facilitate the removal of quanti�ers, when

properties expressed as quanti�ed formulas are monitored at executiontime. From the

Tarski{Seidenberg theorem [Tarski, 1995] we have that for any formula in FOLR , there

exists an equivalent one not containing any existential quanti�ers. Thus it is possible

to de�ne a decision procedure for quanti�er elimination over FOLR . One of the most

e�cient algorithms, with complexity 2-EXPTIME, is cylindrical algebraic decomposition

(CAD ), later proposed by Collins [Collins, 1976, Basu et al., 2006]. To use it we require

a set of axioms for isolation of temporal operators and duration terms, and an automatic

mechanism to apply them.

Let us now describe the constraint required for anRMTL-
R

3 formula to be interpreted as

a formula of FOLR ; and the notion of rigid term and rigid formula.

De�nition 10 (Inequality Translation Constraint) . Let � 3 be a formula in RMTL-
R

3. � 3

is a formula in FOLR if it is free of duration terms, minimum/maximum terms, temporal

operators, and propositions.

De�nition 11 (Rigid Formula) . A term r is said to be rigid if its evaluation does not

depend on the model parametert. A rigid formula � r is a formula where every term is a

rigid term.

In what follows, let � < be a formula containing a conjunction of polynomial inequalities

of the form T1 < T 2 ^ T3 < T 4 ^ � � � ^ Tn� 1 < T n with T a term and n
2 the number of

inequalities; � 6< a formula free of polynomial inequalities; and� i a formula of RMTL-
R

3

with index i 2 N.

De�nition 12 (DNF3 Formula). A formula � i 2 � 3 is in DNF3 if the subformulas of the

until operators and the duration terms are in DNF3, or it is a formula not containing

occurrences of until operators and duration terms, indisjunctive normal form (DNF ).
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Axioms A4 and A5 below describe how rigid formulas� r can be isolated outside the scope

of the temporal operator. Axiom A6 isolates polynomial inequalities inside duration terms.

Axiom A 7 isolates inequalities inside duration terms.

A 4. � 1 _ (� r ^ � 2) U �  � 3 () (� r ! � 1 _ � 2 U�  � 3) ^ (: � r ! � 1 U�  � 3)

A 5. � 1 U�  (� r ^ � 2) _ � 3 () (� r ! � 1 U�  � 2 _ � 3) ^ (: � r ! � 1 U�  � 3)

A 6.
Rr � r ^ � � � ()

�
� r ^

Rr � � �
�

_ (: � r ^ 0 � � )

A 7. �
R� � 1 _ � 2 =

R� � 1 +
R� � 2 �

R� � 1 ^ � 2

Soundness proofs for axioms A4, A5, A6, A7 can be found in Appendix D. These axioms

are used to provide isolation of formulas for certain patterns, but an automated method

is required to apply them. Due to the changing nature of temporal operators and the

duration terms over the model parametert, this method is not straightforward and several

details should be considered. First, we need to consider that duration terms inside until

operators cannot be isolated but can be simpli�ed. The nature of these operators does

not allow for splitting a conjunction/disjunction of two di�erent for mulas as is thew case

for rigid terms inside until operators. They can however be split using axiom A4 and/or

A5. Terms occurring inside duration terms can be split by axiom A6, A3 and/or A 7.

De�nition 13 (Isolated Formula). A formula � i is said to be isolated if every term and

temporal operator depending on the parametert does not contain other terms or temporal

operators depending on the model parametert.

De�nition 14 (Simpli�ed formula) . A formula is said to be simpli�ed if the quanti�ed

polynomial inequalities have been decomposed and all variables are bounded. A simpli�ed

formula is a formula where operators and terms depending on the parameter model t only

contain equalities of the form x =
R� ':

The resulting formula of our process shall be a simpli�ed formula. Second, any formula

produced by our automated method cannot contain logic variables that are free. The

presence of free variables would mean that the monitor should solve a satis�ability problem

on the y, which is not admissible for our purpose. We should solve as manyformulas as

possible o�ine, and avoid formulas containing free variables (these arecorner cases that

will receive a di�erent treatment). Lastly, we need to consider that temporal operators

shall be mapped to propositions, and duration terms to free variables. Propositions shall

be mapped tox = 1 for an arbitrary logic variable x.

We also prove, in Lemmas5 and 6, that any formula of the form � 1 U�  � 2 or � �
R� x �

can be simpli�ed. Proofs are also given in AppendixD. Some de�nitions and intermediate

lemmas are included in AppendixD as well.
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Figure 3.1: Graphical proof sketch

Lemma 5. Let � 1; � 2 be two formulas in RMTL-
R

3 and consider the formula� 1 U�  � 2.

Then, there exists an equivalent formula where every until operator is free of inequalities

or only contains equalities of the formx =
R� ' .

Lemma 6. Let � be a formula in RMTL-
R

3, and � x ; � two terms, and consider the formula

� �
R� x � . Then, there exists an equivalent formula where any duration term is free of

inequalities, or only contains equalities of the formx =
R� � .

Theorem 1. Let � be aRMTL-
R

3 formula. For any formula � , there exists an equivalent

simpli�ed formula.

Before presenting the proof of Theorem1, let us give an intuitive proof sketch for it. The

proof idea is to ensure that the existential quanti�ers of a RMTL-
R

3 formula are removed,

and the remaining inequalities are isolated to give us a simpli�ed formula. Figure 3.1

shows the relations/dependences of Lemma5 and Lemma 6 that are used in parts of the

proof of Theorem 1. The �gure shows that two main inductive hypotheses are applied for

both branches, based on Property1 and Property 2 that are introduced next. They refer

to formulas and terms which are mutually recursive. Before introducing those properties,

let us introduce some required de�nitions.

De�nition 15. Let f � (X; Y; Z ) be a shorthand for (X ! Y ) ^ (: X ! Z ), where X , Y

and Z are formulas in RMTL-
R

3.

Let f6< be a map function from a formula � in RMTL-
R

3 to a formula free of inequalities,

or at most containing equalities of the form x =
R� � 2, where � 2 is a sub-formula of � .

Let f< be a map function from a formula � in RMTL-
R

3 to a formula � < with arbitrary

length n. We denote by f6<
i and f<

i map functions for arbitrary identi�ers i 2 N. Note that



CHAPTER 3. RV WITH RMTL-
R

47

de�ning the translation in a sequence of small mappings will ease the proof structure of

the Lemma 5. We also denotef �
i with � 2 f <; 6< g.

De�nition 16. Let S�
(� n

k ) be a set of formulas containing a combination ofn disjunctions

f f �
1 (� ) ; � � � ; f �

n (� )g taken k � n at a time without repetition, and s�
(� n

k ) an element of the

set S�
(� n

k ) .

De�nition 17. Let f �
s( � n

k )
: N ! S�

(� n
k ) a function such that f �

s( � n
k )

(i ) is the i th element of

the set S�
(� n

k ) .

De�nition 18. The intermediate function f d( n )
: Vn !

�
N ! S�

(� n
k )

�
! N2 ! � is

de�ned by

f �

�
f <

s( � n
r )

(1) ; y1;i =
Z � x

f �
s( � n

r )
(1) ; y1;i = 0

�
^ � � � ^

f �

�
f <

s( � n
r )

(m) ; ym;i =
Z � x

f �
s( � n

r )
(m) ; ym;i = 0

�
;

where ym;i 2 V n , and (m; i ) 2 N2.

The following properties will allow us to simplify/transform term s and formulas by iso-

lating inequalities from them. The isolation property for the sub-terms of the duration

terms is presented as well.

Property 1 (Until Formula Isolation) .

� U�   () X m

where X i is de�ned as

�
f <
i ( ) ^ f <

i (� ) ^
�

f 6<
i (� ) U �  f 6<

i ( )
��

_ X i � 1;

and 0 < i � m, m 2 N.

Property 2 (Duration Term Isolation) .

� �
Z � x

� () Yn � � ^ Dn ;

where Yi is inductively de�ned by

(y1;i + � � � + ym;i ) � (Yi � 1) ;

D i is inductively de�ned by

f d( n )

�
(y1;i ; : : : ; ym;i; ); f �

s( � n
r )

; (m; i )
�

^ D i � 1;

0 < i � n, m = n!
r ! (n� r )! , and r = n � (i � 1).
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Proof Sketch of Theorem1. The proof follows by mutual structural induction on the for-

mula � and the term � . The case when� is � 1 U�  � 2 or � is
R� 1 � 1 is directly proved

by applying Lemmas 5 and 6, respectively. For the reamining casestrue; p; : ; _ ; 9 and for

term cases�; x; � , we have to prove that no relation exists between these rules and the

model parameter t, i.e, the parameter t is always constant with respect to the evaluation

of these formulas and terms.

The proofs for base formulastrue and p are trivial since t is �xed by the semantic rule. Let

us now consider the case when� is : � 1. From the semantic interpretation of RMTL-
R

3,

we have that J: � 1K3(�;�;t ) and J� 1K3(�;�;t ) are evaluated at the same time instantt. In the

case when� is � 1 _ � 2, we also have� 1 and � 2 evaluating at the same time t.

Finally, for the case when � is 9x � 1 we have to prove that if the formula � 1 does not

contain operators and terms depending on the parameter modelt or only contain equalities

of the form x =
R� ' then from CAD we have a simpli�ed formula. This comes from

straightfoward induction on � 1 and from the assumption that CAD is sound. �

3.3.1 Simpli�cation Algorithm

Based on Theorem1, we know that there exists a decision procedure for simplifying

formulas. To translate any formula in RMTL-
R

3 into a formula in FOLR compliant with

De�nition 10, we require an algorithm for generating simpli�ed monitoring conditions.

Algorithm 1 can be used to replace duration terms by new free variables constrained

by the nature of those terms, with propositions being replaced by �xed-valued logic

variables (e.g.,p = 1 means that the proposition P is required for evaluation in a certain

formula). The algorithm begins by testing if a formula contains free logic variables and

existential quanti�ers. If the formula can be simpli�ed we proceed, otherwise we return

the input formula � 1 (Line 3). Next, the duration terms are recursively replaced by

new fresh variables in� , minimum and maximum terms are transformed into quanti�ed

inequalities, and inequality conditions are generated (Line5). The function reduce fm

applies min/max term substitutions as provided by axioms A1, A2, and A3; replace fm

and replace tm are functions that replace temporal operators and duration terms with

new free variables and propositions (Line4) and construct a set of subformulas and

subterms to be mapped; and the auxiliary mutually recursive functions mapand solve

translate formulas in RMTL-
R

3 into FOLR formulas ready to be decomposed usingcylindri-

cal algebraic decomposition(CAD ) (Line 6). The function mapgenerates the polynomial

inequality conditions for temporal operators and duration terms using axioms A4, A5, A6,

and A7. Before submitting the resulting conditions to decomposition, all propositions are

replaced by equalities of the formp = 1. Let us now see four example applications of the
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Require: a formula � 1

Ensure : a simpli�ed formula � 2

1 Function simplify (� 1) is
begin

2 let � 3 = reduce fm(� 1) in

3 if is var free (� 3) then � 3 else

4 let u set = replace fm(� 3) in

5 let s set = map(u set; ; ) in

6 let � 4 = CAD(select (s set)) in

7 reduce((s setnf select (s set)g) [ f � 4g)
end

8 Function map(u set,s set) is
begin

9 if u set = ; then s set else

10 let x = select (u set) in

11 case x of
begin

12 x =
R� 1 � 6 :

13 solve (sD(� 1,� 6), u set, s set)

14 � 7 Uv � 8 :

15 solve (sU(v,� 7,� 8), u set, s set)

16 � 9 :

17 solve (sF(� 9), u set, s set)
end

end

18 Function solve (S,u set,s set) is
begin

19 if (let (y,v) = S in v) then

20 let u n = u setnf xg in

21 map(u n; s set [ y)

else

22 let u n = u setnf xg in

23 map(u n [ y; s set)
end

24 Function sU(a,� 1,� 2) is
begin

25 let (ln ; lw) = isol disj (dnf fm(� 1)) in

26 if lw 6= [] then

27 apply axiom(a4 prim , a,

lst to dnf (ln ), lw, � 2)

else

28 let (ln2 ; lw2) = isol disj (dnf fm(� 2)) in

29 if lw2 6= [] then

30 apply axiom(a5 prim , a,

lst to dnf (ln2 ), lw2, � 1)

31 else

(� 1 U<a � 2; true )
end

32 Function sD(� 1, � 1) is
begin

33 let (ln ; lw) = isol disj (dnf fm(� 1)) in

if len (lw) > 1 then

34 apply axiom(a7 prim, � 1,

lst to dnf (ln ), lw, � 1)

else

35 let (ln ; lw) = isol cnj (dnf fm(� 1)) in

if lw 6= [] then

36 apply axiom(a6 prim, � 1,

lst to dnf (ln ), lw, � 1)

else

(
R� 1 � 1; true )

end

37 Function sF(� 1) is
begin

38 if isIsolated (� 1) then (� 1; true ) else

(� 1; false )
end

Algorithm 1: Simpli�cation of RMTL-
R

3 Inequalities

algorithm.

Example 5. Consider the duration formula

0 <
Z 10

a _ � < :

The result of applying the function replace fm to this formula is the set containing the

formulas 0 < x and x =
R10 a _ � < . Applying axiom A7 over the second formula results
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in

x +
Z 10

a ^ � < =
Z 10

a +
Z 10

� < :

Getting decomposed the or operator inner the duration term, we are able to generate the

inequality conditions using the axiom A6. They are

� < ! x =
Z 10

a +
Z 10

true �
Z 10

(a ^ true )

that simpli�es to

� < ! x =
Z 10

true

and

: � < ! x =
Z 10

a:

Finally, the output formula is

0 < x ^
�

� < ! x =
Z 10

true
�

^
�

: � < ! x =
Z 10

a
�

:

Note that when we have a temporal operator a similar generation of the inequality

conditions is performed, but this time using axioms A4 and A5.

Example 6. Let us now see an example using a formula containing a temporal operator.

Consider the formula

x > 0 ^ a U< 10 (b^ x < 10):

We �rst note that a U< 10 (b ^ x < 10) can be converted to an equivalent formula of the

form

((x < 10) ! a U< 10 b) ^ : (x < 10) ! a U< 10 � :

This result comes from the application of axiom A5. In DNF3, we have

(x > 0 ^ x < 10^ a U< 10 b) _ x > 0 ^ : (x < 10) ^ a U< 10 � ;

which simpli�es to 0 < x < 10^ a U< 10 b:

After this step we have the inequality conditions ready to be simpli�ed using the CAD

technique (Line 6). The decomposed formula can then be reduced, or else the terms

initially found in the original formula can be replaced back (Line 7).

Example 7. Let us now see a complete application of the algorithm for a simple formula.

Consider the formula

x <
Z x+1

(a ^ x < 10) ;

with a a proposition whose truth value depends on the model parametert. Since the logic

variable x is used both at the level of the relation operator of the formula andin the
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duration term, �nding a valuation of x that satis�es the formula is not trivial; we can use

our algorithm to generate inequality conditions, and reduce the latter conditions into an

RMTL-
R

3 formula. We begin by replacing the term
Rx+1 (a ^ x < 10) by y and apply axiom

A3 on the same term. We get the formula

x < y ^ w = x + 1 ^ y =
Z w

(a ^ x < 10) :

Applying axiom A6 on the duration term, we have
�

x < 10 ! y =
Z w

a
�

^ (: (x < 10) ! y = 0) :

Replacing y =
Rw a with the constraint 0 � y < w , we have the �nal formula, ready for

simpli�cation,

x < y ^ w = x + 1 ^ (x < 10 ! 0 � y < w ) ^ (: (x < 10) ! y = 0) :

After simpli�cation of the formula using CAD we get

true if x 2] � 1; 0[; and x <
Z 1+ x

a if x 2 [0; 10[:

After applying the function reduce, the free logic variables are recursively substituted

following the structure of the formula, with the exception ofx that remains unchanged.

In the case that x is substituted by a duration term, then we have a decision procedure

to compute the truth value of the term based on the outcome of theprocedure; if x has

not been replaced by a duration term andx is not quanti�ed, then we need to universally

or existentially quantify it explicitly, otherwise the formula cannot be synthesized into a

monitor.

The functions sU, sD, sF are responsible for applying axioms A4-A7, and will play a major

role in the proof of correctness of the algorithm. isol disj , isol cnj , isIsolated and

dnf fm will be described later in this thesis.

Example 8. Let us now see a �nal example, but now with emphasis on duration of

durations. Consider the quanti�ed formula

9y
Z R10 � 1+ y+1

� 2 < y:

We can apply Axiom 3 since the scope of the duration term
R10 � 1 is immutable, and we

get

9y z =
Z 10

� 1 + y + 1 ^
Z z

� 2 < y:

Continuing the process as in the previous example, we have

9y z = h + y + 1 ^ m < y ^ 0 � h < 10^ 0 � m < z
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and after applying CAD we get

Z z

� 2 < 10^ 1 +
Z 10

� 1 +
Z z

� 2 < z < 11 +
Z 10

� 1:

A way to compute this formula is decomposing it byz; h; m order as follows:

(1 < z < 11^ 0 �
Z 10

� 1 < � 1 + z ^ 0 �
Z z

� 2 < � 1 �
Z 10

� 1 + z) _

(11 � z < 21^ � 11 + z <
Z 10

� 1 < 10^ 0 �
Z z

� 2 < � 1 �
Z 10

� 1 + z):

Note the that this example cannot be submitted for monitoring purposes until the formula

has no free variables and quanti�ers. However, for solving it using anSMT solver it is

possible as we will see in the next section.

3.3.2 Functional Correctness

To ensure that the above algorithm correctly does what it is supposed to do, we begin by

stating the functional correctness criteria, lemmas and theorems. Every lemma is guided

by the required statements to conclude the proof of the functional correctness theorem.

Some de�nitions and lemmas appear in AppendixD, due to their considerable length.

Lemma 7. The function sU is partially correct.

Proof. The proof follows by case analysis on the structure of functionsU. We have three

cases. The �rst one is when� 1 contains inequalities. We have to prove that if lw is not

empty then the application of the Axiom 4 is sound. The result came from the soundness

of the Axiom 4 as the function apply axiom (Line 27) applies explicitly the axiom. The

second case is when� 1 is free of inequalities, and� 2 contains inequalities. We have to

proof that if lw2 is not empty then the application of the Axiom 5 is sound. The proof

cames from the soundness of this axiom as stated in AppendixD. The third case is when

� 1 and � 2 do not contain formulas with inequalities. We have to prove that if lw and lw2

is empty then true is returned meaning that no changes have been performed in� 1 neither

in � 2. The proof is trivial. We conclude the proof that for a given input set there is an

output formula which is equal to the input formula, or totally/partially simpli�ed. �

Lemma 8. The function sD is partially correct.

Proof. The proof is similar to the proof of the Lemma 7. �

Lemma 9. The function mapis partially correct.
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Proof. The proof follows by case analysis onS (Line 19).

The function maptakes as input a set u set of formulas and a set s set of simpli�ed

formulas, and calls one of the functionssU, sD, or sF, as appropriate, to process one of

the formulas of u set. Recall that the atomic simpli�cation functions sD/ sU/ sF may need

to be applied more than once to a given formula; for this reason the functions return a

pair consisting of a simpli�ed formula and a boolean indicating whether the formula has

been fully simpli�ed (in which case no further calls are required). Depending on whether

the selected formula has been fully simpli�ed or not, it will be moved (or not) to the set

s set of simpli�ed formulas. The auxiliary function solve takes a formula returned by

sD/ sU/ sF and recursively callsmapmodifying u set and s set as appropriate.

- CaseS always return v equals true:

As the unsolved set (u set) decreases and the solved set (sset) increases untilu set

is empty, we have that all formulas are solved. The functional correctness depends

then on the partially correctness of the functionssU, sD, and sF given by Lemmas7

and 8, respectively.

- CaseS does not always returnsv equals false:

From the assumption that the function S is partially correct, we have that there is

no other path for terminating the recursive calls than at some point in the execution

of the function solve , the function S returns a solved formula several enough times

to solve all the subformulas. From that, we have to prove that if the function

mapreturns then the solved set has increased with correct solved formulas and the

unsolved set has decreased in the same ratio. Then, the correctness ofthe resulting

formula depends on the partially correctness of the functionssUand sDthat is given

by Lemmas 7 and 8, and also on the correctness of the functionsF. The partially

correctness of this function is straightforward since it only returns a solved formula

if the formula contains every subformula in the solved set. Finally, we have that "if

the function mapreturns then it returns a tuple containing a formula processed by

applying sound axioms and a true value" holds.

Hence, the correctness proof ends since themapfunction holds both cases. �

Let us now introduce the theorem to state that the Algorithm 1 simplify RMTL-
R

3 formulas

as expected, i.e., for each input the algorithm produces the expected output.

Theorem 2 (Functional Correctness). For all input formulas of the Algorithm 1, if the

Algorithm 1 returns a formula then this formula is simpli�ed.
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Proof of Theorem 2. Let us denote the pre condition p meaning the algorithm returns,

and the post condition q meaning that the output is a simpli�ed formula. We have to

prove that p implies q. We proceed by directly prove that the sequential statements

of the simplify function are partially correct. We begin by proving that the function

reduce fm is partially correct, which result came from Lemma 4. Case whenis var free

return true then the function returns the formula � 1 without minimum and maximum

terms. Otherwise, we have to prove that if the function replace fm returns then the

output is a tuple containing two sets of formulasu set and s set. We skip this proof step.

Next, we prove that mapis partially correct as stated by Lemma 9. We skip the proof step

for Colin's CAD since it is well know and established algorithm. We also omit the proof

step for reduce since it makes the reverse of the functionreplace fm. Hence, Algorithm 1

returns simpli�ed formulas. �

Theorem 3 (Termination) . For all input formulas, the Algorithm 1 terminates.

Proof of Theorem 3. We only consider the termination proof step for the function map,

and skip the remaining direct proof steps. As the proof for the Lemma9, this proof has

the same shape for the case analysis.

- CaseS always return v equals true:

As the unsolved set decreases (uset) and the solved set (sset) increases until it is

empty, we have that the mapfunction is primitive recursive if S is also a primitive

recursive function.

- CaseS does not always returnsv equals false: From that, we have to prove that

if the function mapreturns then the solved set is eventually increasing with solved

formulas and the unsolved set is decreasing. We also have to prove thatsuccessive

calls of sU, sD and sF are upper bounded by the number of the inequalities in a

formula and that these functions terminate.

Let us now consider three inductive steps, one for each function application, and

skip the base cases since they are trivial. From Lemma11, successive calls ofsUare

upper bounded by 2n � 1, where n is the number of inequalities. Sincen is �nite,

we have to apply those axioms �nitely. For successive call ofsD, we follow from

Lemma 12 that give us also an upper bound. Finally, function sF only returns a

formula if every sub-formula is solved. We have to prove that if nomore successive

calls of sD and sU can happen then the input formula of sF is a solved formula.

This is a result stated in Theorem 1 that indirectly states that for any formula in

RMTL-
R

3 there is an equivalent simpli�ed formula by successive application of the

axioms A3, A4, A5, A6, A7, which is chosen as the required pattern. Given the
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shape of these axioms, we also have that the application order of the axioms do not

impact the �nal formula and then no backtracking algorithm is required .

We conclude the proof with the statement that the function mapterminates. Assuming

that CAD,reduce fm, replace fm and reduce terminate then Algorithm 3 terminates. �

To conclude, we guarantee that if the algorithm terminates then we havea simpli�ed

formula, and at same time that the algorithm is bounded and thus terminates for any

formula, assuming that CAD terminates.

3.4 SMT Synthesis for RMTL-
R

3 Formulae

The synthesis algorithm for RMTL-
R

3 presented here is suitable for solve the satis�ability

problem of our fragment using dyadic rationals (real numbers of the formm
2n for n; m 2 Z).

This means that our formalization is adjusted as an input model for SMT solvers in SMT-

LIBv2 speci�cation language. At this point formulas shall be in simpli�e d form. In the

next section we will present an alternative algorithm that generates executable monitors.

SMT provers have been progressively adding smart tactics for solving problems that until

now could only be solved using human creativity. Of course several issues such as inductive

proofs and quanti�ed fragments are really di�cult or even impossible t o check by such

general approaches.

Due to being the target of several optimizations, such as conit-driven clause learning,

and also due to their e�ciency handling a mix of non-quanti�ed logic fr agments, including

non-interpreted functions and decidable logic fragments for arithmetic, these solvers are

suited for several classic problems in the real-time community. This fact has not been

suitably explored until now; we give here just steps in this direction.

E�cient synthesis algorithms can give modular advantages for di�erent p roblem formula-

tions such as schedulability analysis. In order to give a feasibletime model for synthesis

of RMTL-
R

3, we have to assume that intervals have exactly size one and symbols canbe

consecutively repeated in the input timed sequence, in order toformulate the new synthesis

algorithm. This is a restriction over the time model used in interval-based semantics. We

take this choice to avoid a more complex problem formulation and utilization of the solver's

features that may induce the problem to be unfeasible at the �rst place due to make use of a

more detailed timed model. We will now describe a new algorithm for synthesis ofRMTL-
R

with this restricted model over interval-based semantics using lambda expressions, that

will be converted to the SMT-LIBv2 [ Barrett et al. , 2010] language with small e�ort.
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The set of theories that we use arequanti�ed uninterpreted functions with equality, arrays,

and non-quanti�ed non-linear arithmetic . For arrays we use theselect word that given

a trace and a time t returns a proposition. f irst and second constructs are used for

pairs, and ite is the if-then-else construct. In what follows we de�ne the combinators

evalP , evalU , evalD , that will evaluate respectively propositions, less-until operator, and

duration terms, based on the standard rewriting semantics of� -expressions (� -reduction).

The other operators available in RMTL-
R

3 are directly converted. These include the

common : and _ operators and the arithmetic operators + and � . The proposition

formulation is encoded by the lambda expression

evalP := � p t : ite (select � t = p) tt � ;

where select word selects a given element of the array� for some index and returns a

proposition. � is not propagated along the de�nitions in order to avoid being verbose. We

encode the trace as an array and the timet as an index, meaning that time is discrete.

The word eval should be replaced by one of the evaluation functions as appropriate.

Evaluation of the less until is de�ned by the following set of lambda expressions

map4 := � b : ite (b = tt ) tt (ite (b = � ) � ? );

evali := � b 1 b2 : ite (b2 6= � ) (map4 b2) (ite (b1 6= tt ) (map4 b1) r)) ;

evalb := � t v : ite (v = r) (evali (eval t) (eval t)) v;

evalf0 := �f: �x i : (x � 0) ! ite (i � 0 ^ x > i )

(evalb x (( f f ) (x � 1) i ) = ( f f ) x i )

(evalb x r = ( f f ) x i );

evalf := evalf0 evalf0;

map3 := �x : ite (( f irst x = true ) ^ (second x= r)) ?

(ite (( f irst x = false ) ^ (second x= r)) � (ite (second x= � 4) � tt )) ;

evalc := �t t 0 : mkpair (trc size � 10) (evalf (t � 1) t0); and

evalU := �t 0 t : map3 (evalc t t0):

Evaluation of the duration term is de�ned by

ind := � � t : ite (eval t = tt ) 1 0

evale0 := �f : �x i : (x � 0) ! ite (( i � 0) ^ (x > i ))

((( f f ) (x � 1) i ) + ( ind � x ) = ( f f ) x i )

(ind � x = ( f f ) x i )

evale := evale0 evale0

evalD := �t 0 t : evale (t � 1) t0
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Note that we need to remove the recurrence among the lambda expressions by unfolding.

To avoid us or the SMT solver unfolding so many times, a bound over quanti�cation for the

temporal and duration operators is applied, based on the temporal nature of the operator.

For
R d � , we assume that the duration is in the interval [t; t +  d[ for all t 2 N+

0 , and for

the case� 1 U< � 2 we assume the interval [t; t +  [ for all t 2 N+
0 . These assumptions help

us to reduce the search space in order to generate at least one �nite model. The following

Example 9 illustrates this for a simple case.

Example 9. The expressionevale 2 1 will be evaluated as follows:

evale 2 1 �! �

(�xi: (x � 0) ! ite (i � 0 ^ x > i )

((evale0 evale0) x i = (( evale0 evale0)(x � 1)i ) + ( ind k x ))

((evale0evale0) x i = ind k x )) 2 1 �! �
�

(2 � 0 ! ite (1 � 0 ^ 2 > 1)

(evale0 2 1 = (1 � 0 ! ite (1 � 0 ^ 1 > 1)

(evale0 1 1 = (evale0 1 1 = ind � 1) + ( ind � 1))

(evale0 1 1 = ind � 1)) + ( ind � 2))

(evale0 2 1 = ind � 2))

where after simplifying we get

evale0 2 1 �! �
� (evale0 1 1 = ind � 1) + ( ind � 2):

One trick that can be used to encode such notations inSMT solvers logically consists of

encoding such de�nitions by using uninterpreted functions and universal quanti�cation.

The uninterpreted function f evale can be speci�ed by writing the following axiom:

8x i; (x � 0) ! ite (( i � 0) ^ (x > i ))

(f evale x i = ( f evale (x � 1) i ) + ( ind � x ))

(f evale x i = ind � x ):

In this section we have presented a synthesis algorithm for the interval-based semantics of

RMTL-
R

3 with a restricted model. We have adopted this restriction due to the simplicity

and feasibility of the approach using array theory. Other alternatives may be used such

as the codi�cation of the interval-based semantics without such restrictions, but this may

increase the burden for solving the same problem using a more re�nedtimed model. As

a last remark, we should note that the duration term can be bounded by all terms, not

only for � and x. In what follows we will discuss a computable approach.
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3.5 Computation of RMTL-
R

3 Formulae

This algorithm is able to generate monitors that can be directly executed on the target

platform and draw a three-valued verdict, instead of deciding if there is a model that

satis�es a given formula. Monitors are generated for functional programminglanguages

but can be further converted to imperative languages such as C++11 withsmall e�ort, as

we further describe in AppendixA. This algorithm encodes reals as oating point numbers.

Given the de�nition of RMTL-
R

3, we can derive an evaluation algorithm for monitor

synthesis. In what follows we will present the algorithm and study the time complexity of

the computation with respect to both trace and formula size.

We begin with a set of preliminary de�nitions. The set of timed sequences is denoted

by K , the duration of the timed state sequence� 2 K is denoted by d(� ) , and the set

of logic environments is denoted by �. Let B 4 be the set f tt 4; � 4; ? 4g [ f rg where r is

a new symbol that will be used only for purposes of formulae evaluation, andD the set

R � 0 [ f? R g. The function subK : (K � � � R � 0) ! R � 0 ! K de�nes a timed sub-

sequence constrained by the interval ]t; t +  ], where t and  are real numbers to be used

as parameters insubK . The function mapB 4 : B3 ! B 4 maps tt to tt 4, � to � 4 and ?

to ? 4; mapB 3 : B � B 4 ! B3 maps (tt ; r), ( tt ; ? 4), and (� ; ? 4) to ? ; (� ; r), ( � ; � 4), and

(tt ; � 4) to � ; and (� ; tt 4) and (tt ; tt 4) to tt . We will employ a left fold function de�ned in

the usual way.

From a close examination of the operators, the corresponding Compute(: ) and Compute(_ )

evaluation functions have time complexity constant in the number of timed sequence

symbols, linear in the depth of the formula for Compute(: ) , and exponential in the depth

of the formula for Compute(_ ) . Let us consider the functions Compute(� ) :: (K � �) !

R ! � ! D and Compute( ' ) :: (K � � � R � 0) ! � 3 ! B3 for the evaluation of U< and

< , and the term
R

.

Operator U< . Given formulas � 1, � 2 and  2 R � 0, the formula � 1 U< � 2 is evaluated in

a model (�; �; t ) by the function Compute (U< ) : (K � � � R � 0) ! R � 0 ! � 3 ! � 3 ! B3,

de�ned in Figure 3.2. We report here only on the computation function Compute(U< ) ;

the remaining functions are Compute(U= ) for punctual until, Compute (S< ) for the non-

punctual dual operator, and Compute(S= ) for the punctual dual operator. These operators

have at most two new branches. Given an input� with size n� , and a measurem ' of the

depth of a formula ' , we obtain from the structure of the computation the upper bound

of time complexity
� n � + m '

m '

�
� 2n � . For instance, we understand by a formula with depth

one asa U b, a formula with depth two as (a U b) U (a U b) and so on.
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evi
al :: B3 ! B3 ! B 4

evi
al b1 b2 ,

8
>>><

>>>:

mapB 4 b2 if b2 6= �

mapB 4 b1 if b1 6= tt and b2 = �

r otherwise

evb
al :: (K � � � R � 0) ! � 3 ! � 3 ! B 4 ! B 4

evb
al m � 1 � 2 v ,

8
<

:

evi
al

�
Compute( ' ) m � 1

� �
Compute( ' ) m � 2

�
if v = r

v otherwise

evfold
al :: (K � � � R � 0) ! � 3 ! � 3 ! K ! B 4

evfold
al (�; �; t ) � 1 � 2 { , fold

�
�v (p; (i; t 0)) ! evb

al (�; �; t 0� � ) � 1 � 2 v
�

r {

evC
al :: (K � � � R � 0) ! R � 0 ! � 3 ! � 3 ! K ! (B � B 4)

evC
al (�; �; t )  � 1 � 2 { ,

�
d(� ) � t + ; evfold

al (�; �; t ) � 1 � 2 {
�

Compute ( U < ) m  � 1 � 2 ,

8
<

:

mapB 3
�
evC

al m  � 1 � 2 (subK m  )
�

if  � 0

� otherwise

ev<
al :: R ! R ! R

ev<
al val1 val2 ,

8
<

:

val1 < val 2 if val1 2 R and val2 2 R

? otherwise

Compute ( < ) m h1 h2 , ev<
al

�
Compute(� ) m h1

� �
Compute(� ) m h2

�

1' ( �;� ) :: (K � �) ! R � 0 ! � 3 ! f 0; 1g

1' ( �;� ) (�; � ) t � ,

8
<

:

1 if Compute( ' ) (�; �; t ) � = tt

0 otherwise

ev�
al :: (K � �) ! � 3 ! K ! R � 0

ev�
al (�; � ) � { , fold

�
�s; (p; (i; t 0)) ! t0�

�
1' ( �;� ) (�; � ) t0 �

�
+ s

�
0 {

Compute (
R

) (�; � ) t a � ,

8
<

:

ev�
al (�; � ) � (subK (�; �; t ) a) if a � 0

? R otherwise

Figure 3.2: Evaluation of the operatorsU< and < , and of duration terms
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Function Compute( � ) (�; � ) t h :: (K � �) ! R ! � ! D is
case h of

� : eval� �

h1 + h2 :
�

Compute( � ) m h1

�
+

�
Compute( � ) m h2

�

h1 � h2 :
�

Compute( � ) m h1

�
�

�
Compute( � ) m h2

�

Z h1

� : Compute(
R

) (�; � ) t
�

Compute( � ) (�; � ) t h1

�
�

end

end

Function Compute( ' ) m � :: (K � � � R � 0) ! � 3 ! B3 is
case � of

p : evalp m p { base case

: � : Compute( : ) m � { Boolean operators
� 1 _ � 2 : Compute(_ ) m � 1 � 2

� 1 U<  � 2 : Compute(U< ) m  � 1 � 2 { temporal operators
� 1 S<  � 2 : Compute(S< ) m  � 1 � 2

� 1 < � 2 : Compute(< ) m � 1 � 2 { relational operator

end

end
Algorithm 2: Computation of RMTL-

R
3 terms (Compute(� ) ) and formulas

(Compute( ' ) )

Operator < . Given two terms � 1; � 2 2 �, the formula � 1 < � 2 is evaluated relative to

a model (�; �; t ) by the function Compute (< ) : (K � � � R � 0) ! � ! � ! B3, also

shown in Figure 3.2. The time complexity of this computation function depends on the

time complexity of Compute(� ) since any formula containing only the relation operator<

cannot have size greater than one, or consume any input symbols. For instance, a formula

with depth two is
R1 � 1 <

R1 � 1, and with four is
R1(

R1 � 1 <
R1 � 1) <

R1(
R1 � 1 <

R1 � 1).

Term
R

. The evaluation of a duration term
R� � in the model (�; �; t ) is performed by

the function Compute(
R

) : (K � �) ! R � 0 ! R ! � 3 ! D , again de�ned in Figure 3.2. It

has linear time complexity in the size of the timed sequence, and constant time complexity

in the formula size assuming that Compute(� ) has constant complexity. + and � terms are

directly mapped into their respective computational operations. The complexity of those

operations is directly related to the number of terms. Given a formula ' and a measure

m� describing the number of operators + and� occurring in a formula ' , we have a linear

lower bound of time complexity in O(2m � ) again assuming that Compute(� ) has constant

complexity.
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Compute 
 Big-O

(� ) 
(1) O(1)

(
R

) 
( n� � 1) O(n� )

(+) ; (� ) 
(2 m � � 1) O(2m � � 1)

(p) 
(1) O(1)

(: ) 
( m: ) O(m: )

(_) 
(2 m_ � 1) O(2m_ )

(< ) 
(1) O(1)

( U< ); ( S< ) 
(1) O(2 � nk )

(' ); (� ) 
(2( n� )2 � (2m ' � 1) � 4(n� )2 + n� � (2m ' � 1) � 2(n� )) O(
� k+ m '

m '

�
� 2k )

Table 3.1: Complexity results of the Algorithm 2

Time complexity of the evaluation algorithm. We are now in a position to present

a straightforward recursive top-level evaluation Algorithm 2 excluding punctual temporal

operators, using the previous de�nitions for auxiliary computations. Let m ' be a measure

for _, < , temporal operators, and non-rigid terms. Given the complexity of these formulas

and term operators, and knowing that all temporal operators have the same complexity

as the until operator, we have by semantic de�nition that any combination of formulas

has higher complexity. As such, the complexity of Algorithm 2 is exponential in the input

size of the formula and the timed state sequence, as given by the upper bound identi�ed

above.

Table 3.1 summarizes the complexity for each individual evaluation function. For each

function ( � ), Compute(
R

) , (+), ( � ), (p), Compute(: ) , Compute(_ ) , Compute(< ) ,

Compute(U< ) and Compute(S= ) , we assume that the function Compute( ' ) executes in

constant time in order to identify the source of complexity for each case. This happens in

the evaluation of < ,
R

, + and � . We also have asymptotically identi�ed a lower bound

for the complexity of the evaluation algorithm for each case, including Compute(� ) and

Compute( ' ) . Although the complexity is exponential, we have that in average the behavior

may be much closer to the lower bound, as we will see in Chapter5.

In order to analyze the space complexity of the synthesized monitors we �rst note that the

synthesis algorithm produces monitors written using pure lambda functions. Following

our approach, each formula in RMTL-
R

3 to be synthesized, of lengthm , will originate

a set of � -expressions whose global size is inO(m ), and whose mutual recursion pattern

(or call graph) is free of cycles, since the invocations follow the structure of the formula

 . Execution of these� -expressions relies on a functional, stack-based mechanism, and it

follows that the number of push/pop operations performed will be inO(m ). The required
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stack size will thus be linear in m , and constant in the input trace size. Therefore, the

generated monitoring algorithms haveconstant space complexityregarding the trace size,

as our experimental results will con�rm in Chapter 5.

Summary

In this chapter we have presented two distinct synthesis approaches for the well-behaved

fragment of MTL-
R

. The approach based onSMT solvers is essential to prove some safety

properties about the basis of the monitoring architectures, and the other approach can be

an appropriate extension for checking more expressive and complex duration properties.

This combination is essential to cover the nature of the duration properties since the

majority of such properties are practically impossible to check statically. In this way,

synthesis of monitors acts as a complement to cover unchecked properties and draw verdicts

about the past executions. A three-valued extension of theRMTL-
R

formalism is also

de�ned which allows us to carry out coherent sequential evaluation of traces.

As a �nal note, this work will be used as basis for the next chapter, where we address the

problem of determining which properties can be discarded statically and which parts can

be addressed at runtime in the context of real-time systems scenario.



Chapter 4

RV -RMTL-
R

Framework

RV methods can be applied to systems where the source code is not available , or in those

cases where we have access to the code but the complexity of the system's requirements is

too high to be addressed via any of the most commonly used static veri�cation approaches.

For RV , only a monitoring model needs be considered beforehand as well as themonitor

synthesis mechanisms.

In this chapter, we introduce a component-based framework that helps us to manage

the composition of the runtime monitors with the target system in order to support

external observations of the system at execution time. It also ensures properties such

as the maximum detection delayof the monitors, as well as the encoding of the scheduler

behavior, which are features that are of paramount importance for hard real-time systems.

In the remaining part of the chapter, we introduce the notion of safe monitor and describe a

domain speci�c language(DSL) that supports the construction of di�erent safe components

and monitoring sketches.

4.1 Components

Before introducing components' types and the framework model itself, we will recall the

preliminary de�nitions of a real-time task set, a periodic resource model, and an event

sequence.

We will assume task sets� = f � 1; � 2; :::; � ng, such that n 2 N+ is the number of tasks

� i = ( pi ; ei ) where pi and ei are, respectively, the period and the worst-case execution

time of � i . Each task � i 2 T is implicitly periodic and has implicit deadline. A periodic

resource model! is a tuple (T ; �; �; rm ), where T � � , � is the replenishment period, � is

the server budget, and rm is the rate monotonic scheduling algorithm. The set of periodic

63
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Figure 4.1: Component-based sketch with one hypervisor and quasi-omniscient monitors.

resource models is denoted by 
 = f ! 1; ! 2; : : : ; ! m g for an arbitrary m 2 N+ . We denote

the index i of a task by � i and the index j of a resource by! j , where 0 < i � n and

0 < j � m holds, respectively. The outputs of a resource model! are sequences of events.

Let us now consider the alphabet of eventsE. Each element can be of one of the following

types: a task release eventRE; a task start event ST; a task sleep eventSL; a task resume

event RS; a task stop eventSO; a resource budget release eventRN; or a general purpose

event identi�er tuple EV. We also consider that general purpose events are special since

they include a certain event identi�er. Events can also have inheritance over other events

as denoted bye1(e2 ) , for any e1; e2 2 E. For short, we adopt the notation e1(! j ;� i ) that

means that the event e1 inherits from EV with event identi�er tuple ( ! j ; � i ), for any

i; j 2 N, ! j 2 
, and � i 2 T .

Event sequencesare a formalism that allows us to describe the scheduler behavior, creating

a generic event language that a system can produce. If a system produces unexpected

event words, we shall consider it a faulty system. Similar meaning is also established for

temporal logic observations [Lakhnech and Hooman, 1995]. A sequence of events, also

known as execution trace, is an in�nite sequence

� = ( e1; t1)(e2; t2) � � �

of time-stamped events (ei ; t i ) with ei 2 E and t i 2 R+ . The sequence satis�es monotonic-

ity and progresses,i.e., t i � t i +1 for all i 2 N+ , and for all t 2 R+ there is somei > 0 such

that t i > t , respectively.

After having introduced these preliminary de�nitions, we are able to start describing the

compositional monitoring framework (CMF ). This framework is composed from a set of

components of one of the following types:
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- (Timing Constraint) A timing constraint 	 is a set of constrained te mporal formulas

in RMTL-
R

3.

- (Task) A task tsk is a pair (� 1; 	) such that � 1 2 � and 	 are constrained formulas

encoding several task behaviors to be checked at runtime.

- (Resource) A resourceres is a tuple of the form (!; 	), where ! 2 
 is a resource

model, and 	 is a set of constrained formulas to be checked at runtime.

We assume the existence of a relation for the composition of resources, tasks and con-

straints. This relation is restricted by the way that components are composed with other

components of the same type. Let us now introduce a small practical example of a two-level

hierarchy system to be used along this chapter.

Example 10. Consider the Figure 4.1 as a component-based graphical model where each

link connecting point A to point B means "A relates with B ". Solid boxes are resources,

dashed boxes are tasks, and squared solid boxes are formulas inRMTL-
R

3. These formulas

will be automatically synthesized with respect to a given monitoring model and some

properties such as if the maximum detection delay of the monitors will be ensured by

the framework.

In this sketch, we also have distinct resourcesM h , M m and M l which encapsulate monitors

by priority based on di�erent criticality levels. This allows us to identify until what point

this framework can deal with elastic executions. By elastic execution we mean a system

composed by several resources that can use di�erent budgets over di�erent time instants (a

feature that we will describe in the use case presented in the next chapter). A hypervisor is

no more than a component that only exists in this sketch for encapsulation purposes. This

component contains a set of quasi-omniscient monitors (resp. hypervisor monitors) that

reach verdicts about the assumptions of the monitoring architecture (a notion of monitors'

hierarchy as described in the end of this chapter).

Intuitively, we have presented the purpose ofCMF through this example, i.e., as a frame-

work to deal with description of the monitoring sketches and also to split the properties

to be checked statically and dynamically. Note that task and resource components are

simple encodings of task and resource model behaviors coupled withtiming constraints

that are encoded asRMTL-
R

3 formulas to be safely monitored. Our major goal is to ensure

that every monitor complies with the expectedmaximum detection delay, sinceworst case

execution time (WCET ) violations of one or more tasks may interfere with each other and

also other non monitoring tasks, resulting in an undesirable environment.

In addition, the predictability of our framework with respect to the event sequences can be

established by identifying the relevant or critical events, and preserving the partial order
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Figure 4.2: Example of patterns and the global trace generated by the composition of

resource models de�ned in the Example11

of events arrival for monitor processes. We need to save this order due the possibility of

using more than one trace/bu�er in the same sketch of this framework. Wealso identify

the event SO as the critical event for schedulability analysis, since it is the event triggered

when a task job �nishes its execution. We denote the critical events by the subsetEcr � E ,

the pre�x-tree which preserves the partial order of events for all possible executions bypt,

and the maximum duration of a pre�x trace by s. Given these predictable tracespt, we

are able to evaluate the response time of the monitorm for each trace � 2 pt using the

formula

� <s

^

e2Ecr

e ! � �  SO(e;m) ; (4.1)

whereSO(e;m) is the triggered event that the monitor m generates at the end of its complete

execution for monitoring the task/resource that has been triggered the event e, and s is

the time window to be considered.

Example 11. Let us assume two resource models! A with parameters(� = 10; � = 8) and

! C with (� = 5 ; � = 1) described in Figure 4.2 containing three tasks� 1(p = 14; e = 3) ,

� 2(p = 20; e = 5) , and � 3(p = 27; e = 7) , and one task� 1(p = 33; e = 4) , respectively. We

could see that to guarantee the maximum detection delay of the monitor task � 1 in ! C , the

trace depicted in the Figure4.2 needs to be generated. For the generation of this trace, we

assume the well knowncritical instant theorem to �nd the worst execution trace as well
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as the hyper-period of the resource model to de�ne the maximum lengthof the trace [Liu

and Layland, 1973]. Replacing the eventSO(e;m) with SO(! C ;� 1 ) in Formulae 4.1, we are

able to check the maximum detection delay of our trace, which corresponds to a value

greater than 26 time units depending on the desiredWCET , and where the instantst29

and t39 exemplify the allowed periods. In this case, the maximum detectiondelay may

increase depending on the monitor period when greater than42 time units. Note that

this example only works for the assumption of the critical instant theorem and/or the

consequent enumeration of the possible traces, and therefore is not general enough.

In the remaining part of this chapter, we illustrate how to overcome this issue in an

elegant way without the assumption of pre�x trees or the critical inst ant theorem by

reformulating the time constraints check into a satis�ability problem . Without enumerating

every possible trace or selecting the worst trace, which is impossible in a multi-processor

setting due essentially toanomalies [Andersson and Jonsson, 2002], we are able to specify

and analyze schedulability of multi-processor systems, notably theones with dependent

tasks.

4.2 Formal Speci�cation of Periodic Resources

To simplify the expressions' encoding of the safeCMF model, we �rst introduce some

syntactical notations and formula abbreviations.

The set of tasks with higher-priority (and including) than � i for ! j is denoted by � i
! j

. We

also useh as the hyper-period, and the operatorT , true as T de�ning a shorthand for

true . For events, we adopt the following notations: EV(! j ; �) denotes the set of events

that can be generated by the resource model! ; EV(! j ; � i ) denotes the set of events that

can be generated by the task� i in the resource model! j ; evs+ (! j ; � i ) is de�ned by

evs(! j ; � i ) _ SO(! j ;� i ) _ EV(! j ; � i ) _ RE(! j ;� i ) ;

with evs(! j ; � i ) de�ned by

ST(! j ;� i ) _ RS(! j ;� i ) _ RN(! j ) ;

which speci�es all events that a task � i in the resource model! j can trigger; evs� (! j ; � i )

denotes the formula resulting from the removal of theRE(! j ;� i ) and SO(! j ;� i ) events from

evs+ (! j ; � i ); �nally, evs� (! j ; � i ) denotes the formula resulting from the removal of the

ST(! j ;� i ) and SO(! j ;� i ) events from evs+ (! j ; � i ).

A resource component (! j ; f  1;  2; :::g) is made of the set of formulasf  1;  2; :::g � � 3

that will be automatically synthesized as a collection of online monitors, and a resource
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model ! j that captures the semantic nature of the resource with a formula containing

properties such as the resource model budget supply, the schedulability policy, the task

set durations and period, and other intrinsic settings for complete speci�cation of the

component. � 3 is a set of three valued formulas as de�ned before, and the binary operator

' 1 • ' 2, meaning next implies, is a shorthand for ' 1 ! (' 1 U<b ' 2), where b is a �xed

and su�ciently large number.

The resource model budget supply is speci�ed by the formula

� � h RN(! j ) •
�

� = � RN(! j )

�
^

Z � _

� i 2 �

evs+ (! j ; � i ) � �; (4.2)

where ! j is one resource model,� and � are their renewal period and budget, andRN(! j )

is the budget renewal event. This formula states that for each occurrence of the event

RN(! j ) in the resource model! j , the duration of the other events until � time units does

not overpasses the budget� per period � .

For the partial order of the task releases, as de�ned by the scheduler policy rm , we

introduce the RMTL-
R

3 formula

� � h

^

� i 2T

�
RE(! j ;� i ) •

�
ev(! j ; � i ) U � pi SO(! j ;� i )

��
; (4.3)

where

ev(! j ; � i ) ,

0

B
B
@

_

� k 2 
( � i � 1 )
! j

evs+ (! j ; � k )

1

C
C
A _ evs� (! j ; � i )

and  (� i � 1 )
! j denotes the set of higher-priority tasks, excluding events triggered by the task

� i . This formula means that for every event RE(! j ;� i ) there is always an eventSO(! j ;� i ) ,

and that the events occuring beforeSO(! j ;� i ) should be any event from� i 's higher-priority

tasks.

The duration of tasks allocated to one resource model is speci�ed by the formula

� � h

^

� i 2T

RE(! j ;� i ) •
Z pi _

� k 2 
( � i )
! j

evs+ (! j ; � k ) � ei : (4.4)

Note that the � operator should be changed to� in order to specify the absoluteWCET

of the task set.

We also specify other properties such as the precedence of the event SO(! j ;� i ) (i.e., each

event ST(! j ;� i ) may be followed by an eventSO(! j ;� i ) , but the event SO(! j ;� i ) occurs since

ST(! j ;� i ) occurs). The precedence of the eventSO(! j ;� i ) is speci�ed by the formula

� � h

^

� i 2T

SO(! j ;� i ) •
�

es(! j ; � i ) S� pi ST(! j ;� i )

�
; (4.5)
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where

es(! j ; � i ) ,

0

B
B
@

_

� k 2 
( � i � 1 )
! j

evs+ (! j ; � k )

1

C
C
A _ evs� (! j ; � i ):

The complete encoding of the component is given by the conjunction of the formulas4.2,

4.3, 4.4 and 4.5. For the remaining part of the chapter, we de�ne it by PRM(! j ), where

! j is indexed according to certain workload parameters, allowing us to unroll the sub-

formulas in the correct way. This partially concludes the formalization of the periodic

resource model's behavior usingRMTL-
R

3.

Note that in the Section 4.3 we will return to the hierarchical composition of the presented

resource speci�cation, but only after extending the formalization to dependent tasks.

4.2.1 Extension for dependent tasks

Adding dependence task checking is as easy as adding more timing constraint formulas.

Properties such as \the dependent task (B) cannot begin until the task(A) completes"

can be ensured as result of A being a pre condition for the result of B. Note that this

is necessarily a more expressive model of dependent tasks than theones presented in the

literature [ Goossens et al., 2016, Pu�tsch et al. , 2015, Baro et al., 2012]. Assuming that

tasks are divided into several sections according to their ow graphs, we could specify

that a section of a task has a dependence relatively to other tasks' sections. And, other

constraints written in RMTL-
R

3 restricting other resources such as memory and network

message passing can be asserted as well. It turns out that extending the model is modular,

unlike the classical schedulability analysis tests where we may have to redo everything from

scratch.

Example 12. Let us take � 1 as a system task and� 2 a monitoring task, where each one

executes in isolation in the resources! 1 and ! 2. Consider the resources with the event

control graph described in the Figure4.3. The monitoring task has an arbitrary period

and may contain two sub-events such asEV1 and EV2, or even execute arbitrarily. For

the former case, these points are when the monitor contains enough/required symbols to

consume, identi�ed by the formula's morphology. Then, executing before these points does

not make sense since it is wasting time and increasing pessimism in the schedulability

analysis. EV1 shall execute afterEV(E ) , and EV(H ) and EV1 shall execute afterEV(H )

and EV(C) . For the latter case, arbitrary execution incurs in executing the monitor before

and after task � 1 terminates, which in the worst case indicates that we need to execute the

monitor after SO! 1 ;� 1 occurs. Executing along the system task is not safe, context-switches
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EV( A )

EV( B )
EV( C )

EV( D )

EV( E )

ST! 1 ;� 1

EV( F )

EV( G )

EV( H )

EV( I )
SO! 1 ;� 1

ST! 2 ;� 2 EV(1) EV(2) SO! 2 ;� 2

ST! 2 ;� 2 / SL! 2 ;� 2 RS! 2 ;� 2 / SL! 2 ;� 2 SO! 2 ;� 2

Overhead

txt0 ty tz tw

Figure 4.3: Flow graph of the scenario considered in Example12 and 18

for resuming and entering the sleep state are unnecessarily required, and the overhead is

tw � tz.

Indeed,this is a generalization for elasticity of budgets and periodsalong execution time of

resources. O�sets can also be applied for starting monitor execution, avoiding ST(! 2; � 2) at

time tx , and only the hyper period among di�erent cores is required to encodeschedulability

of multi-core systems in a satis�ability problem.

Our approach is modular in the sense that it can be extended with minore�orts. It also

allows us to manage sets of polynomial inequalities as in common real-time approaches and

an hybrid between both formalizations may be an option. However, the drawback of the

approach is that solving the generated problems in a practicable way maybe challenging, a

discussion that will take place in the next chapter. Note also thatSMT solvers have been

the target of signi�cant advances in the last years, and heuristic approaches proposed

in hard real-time systems literature fail to deal with this type of extension since they

behave badly with non local properties [Pu�tsch et al. , 2015]. Currently, only linear

programming and constraint programming techniques are successfully applied to solve

parts of this problem for a high number of tasks and several working cores without any

proof generation. When usingSMT solvers the same does not happen.

To the best of our knowledge, there are presently no published works in the RV literature

that, instead of considering a unique period for a monitor, consider multiple periods

for the same monitor, each one activated at certain time instants. This isa pattern of

periods which we will call monitoring with elastic execution. Periods and execution times

are not �xed. We know that event-driven approaches are not so feasible for embedded

systems and even less feasible for hard real-time systems where predictability and timing

correctness are required [Medhat et al., 2015, Bonakdarpour et al., 2013]. Commonly,
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core 0 core 1 memory chunk 0

txt0 ty tz

(a)

core 0 core 1 memory chunk 0

txt0 ty tz

(b)

7

Figure 4.4: Encoding of processor mapping and memory mapping

such approaches propose �nding new parameters for existing scheduling algorithms. Time-

triggered approaches are too generic but predictable in comparison withthe event-driven

ones. Moreover, the classical schedulability analysis can be readilyapplied but they are

in general too pessimistic forRV of hard real-time systems. This is the novelty of our

approach, that instead of being too generic allows us to de�ne more constraints about the

execution of the monitors, including the extension for multi-core systems. Proofs are also

generated for each sketch and we only need to assume the synthesis steps.

Example 13. Consider that we have to get a scheduler for dependent tasks executing

in a multi-core system. Given our approach we can deal with it by simply extending the

formulas as easily as constructing a formula of the form

^

! 2 

� = lcm (! ) PRM (! );

where lcm is a function returning the least common multiple for a resource! . We are

assuming that each resource! executes in di�erent cores.

In Figure 4.4, we have a graphical representation of this encoding, including the way we

reserve memory. lcm will give us 0 or tx . ty is used to �nd that

� = ty

Z tz

EV(!; usage) < 10;

which means that the memory usage should be less than 10 space units. Note that we

reason about both space and time in the same trace. In case of trace (b), the overlapping

of the same execution unit when migrating to di�erent cores is not allowed. From these,

we know where the task allocates its stack ensuring that it is allowed by the speci�cation.

We specify it by the formula

� <t x

�
ST(!; �) _ RS(!; �)

�
! : � = tx ST(!; �) _ RS(!; �) ;

for any resource ! 2 
 . We see a task only making use of a local stack, indicating that

the memory allocation is predictable. By stack we mean a portion ofmemory allocated

continuously and dedicated only to a task.
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Another feature that we have is the position at which the local stacks are allocated. Instead

of providing an inequality such as
P

� i 2 � size(� i ) < L , where we do not know anything

about the allocation as in [Pu�tsch et al. , 2015], we ensure that there is enough space and

the order of the allocation. Knowing the portion where we allocate memory can help us to

speedup the execution of the system since we may have non homogeneous memories in the

system, which means di�erent speed accesses.

This example has illustrated how multi-processor scheduling canbe encoded by simply

extending the presented formalization, including dependent tasks.

Another feature that we might refer here is how contention accessing a shared memory

resource can a�ect the schedulability analysis, as has been exempli�ed in the Figure 4.4.

Instead of getting worst-case bound on the contention, we can formulate this constraint in

a di�erent way. The presented approach avoids considering a possible pessimistic worst-

case scenario of contention a priory. For instance, if two cores access the same region

of memory then this will cause contention somehow. However, if we enforce these cores

to use the memory in a di�erent time instant or during better circ umstances then the

contention is relaxed, and the worst case will not be worth applying. In this way, this

approach using temporal formulas describing temporal patterns may be more appropriate

in terms of access patterns to reduce contention, improving on the techniques that can be

found in the literature.

Scrutinizing the importance of WCET and dependent constraints in monitor-

ing. Let us now see an important case that is often neglected in theRV literature. WCET

has been commonly assumed for constructing schedulability analysis ofdi�erent schedu-

lability algorithms. However, this introduces some issues regarding the pessimism and the

practical application of these approaches for analysis of runtime monitors. WCET is a

general assumption that is su�cient for cases where there are no dependency constraints

on tasks or resources, i.e., they are independent or partially independent.

Consider a system with a taskset containing a task whereWCET depends on the execution

of the other tasks as in the running Example11. It turns out that the schedulability of

the taskset is infeasible according to [Shin and Lee, 2008], since the WCET may tend to

be unachievable and/or too pessimistic to be considered, and even due to this test only

working with independent tasks (i.e., unsafe for our purpose). By assuming a simple

dependency constraint, we may �nd a lower WCET and a schedulable taskset using

our logic fragment. This is how monitors can behave if they are depending on timing

constraints, and properties such as maximum detection delay are necessary for ensuring

it.
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Figure 4.5: Diagram with evidences of infeasibility

The Figure 4.5 provides evidences of di�erent traces� 1, � 2, and � 3, where using periodic

resource models can introduce such infeasibility.� 2 and � 3 are traces where the maximum

detection delay is lower, but they have more context-switches,and portions of execution

where the task may be wasting time. � 1 is an acceptable trace, however,� 2 and � 3 may

not work due to discharging 2 and 1 time units before executing� 1. This time may be

crucial for executing a monitor for � 1 under the assumption of theWCET of the task. More

precisely, a monitor task will execute as the system provides symbols for consumption and

the �rst block of both traces will not be considered in these traces.

To provide a real WCET for this application without requiring to largely estimate it,

we only need to �nd the exact WCET of a job with the assumption that each entry of

this job will be executed when events are ready to be consumed, using a time triggered

approach. For that, we need to statically assert the formula4.1 and a formula encoding

their precedences at the level of the internal events of a task or a set of tasks.

RV of explicit time is inherently dependent of past execution and as such we need to adopt
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models such as the ones containing dependent tasks with exact schedulability to avoid

pessimism. Monitoring and pessimism do not combine, since the goal of amonitor is to

interfere as low as possible in the system but increase as high as possible the reliability of

the system.

4.3 Safe Components and Monitors

In this section, we will continue extending the scheduling formalization of resource models

in order to support construction of safe components and monitors usingRMTL-
R

3. We

consider mdl as the function transforming a formula to be monitored into one formula

including the maximum detection delayassertion.

Let us recall that { i is a pre�x of a timed sequence� at i , and � i is a su�x of � at i . We

write � j= P when the time sequence� satis�es the property P.

Let us start by de�ning what is meant by a safety property [ Alpern and Schneider, 1987].

De�nition 19. Let K be the set of in�nite timed sequences, andP a property. P is a

safety property i� for all � 2 K such that � 6j= P there exists ani; i � 0 such that for all

� b 2 K , { i � b 6j= P.

Since monitoring a property does not ensure anything by itself, weneed to establish the

following propositions.

Proposition 1. Let � be a monitoring formula in RMTL-
R

3. The monitor formula � is

safe i� the formula mdl(� ) is satis�able.

Proof (sketch). Consider that � is a safety property, andmdl constructs the setE of sub-

formulas from � . Then, we have to prove that the formula � <a
V

e2 E

�
e ! � �  SO(m)

�
is

safe. Since for alle 2 E , e is a safe formula, it remains to prove that� <a
�
(: e1) _ � �  SO(m)

�
^

�
(: e2) _ � �  SO(m)

�
: : : is a safe formula. The proof follows by De�nition 19 for the cases

: e; e1 _ e2, and e1 U< e2, which we omit here for simplicity. Hence, if it is satis�able then

we have a safe monitor. �

Proposition 2. Let C be a component of the form(� ; !; #; � sub), and � sub is equal to

� 1; � 2; : : : ; � n for an arbitrary length n. The component C is safe i� the formula PRM(! )^
V n

i =1 mdl(� i ) is satis�able.

Proof (sketch). Assuming that PRM(! ) is a safe formula, the proof follows directly from

Proposition 1. �
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Lemma 10. Let C1 and C2 be two components of the form(� 1; ! 1; #1; � 1) and (� 2; ! 2; #2; � 2)

where � sub is equal to � 1 [ � 2 and of the form � 1; � 2; : : : ; � n for an arbitrary length n.

Arbitrary execution of C1 and C2 is safe i� the formula PRM(! 1)^ PRM(! 2)^
V n

i =1 mdl(� i )

is satis�able.

Proof (sketch). The proof follows directly from Proposition 2 for C1 and C2. �

Let us now go back to the Example10 containing an hierarchy of monitors. A hierarchy

of components as described in Figure4.1 can be speci�ed based on arbitrary execution of

components.

The composition for the case of the hypervisor of the form (
; � p; � m ; � h), where 
 is

a set of resource models,� p a set of processors, and� m a set of memories, is indeed a

composition of the components inside 
 and
V

� 2 � h
mdl(� ).

Ensuring the safety property for each monitoring formula is of extreme importance in

order to ensure that nothing bad happens when other monitors and system' tasks are

combined. To facilitate the description of monitoring schemes using a more natural

language for program developers, we will introduce next a micro resource DSL. Note

that every construction of this DSL is on top of the presented formalization of the last

sections.

4.4 DSL for components

Regarding resources, tasks, and other abstractions for task jobs and execution units of RTS,

there are noDSLs appropriate to reason about resource availability and schedulability. In

this section we introduce the� DSL language that have been designed to appropriately deal

with resources and tasks among other constraints such as describing functional properties,

including safety and liveness properties. Let us now introduce the syntax and establish

how this language is synthesized toRMTL-
R

3 by the respective operational semantics.

De�nition 20 (Syntax) . Let optk denote one of the operators� or ./ , where � means

the relation of the priority of tasks, and ./ means that two tasks can be executed with the

same priority, or execute arbitrarily. The operator for resources isoprs 2 fk ; �g , where

k means that the resources execute in parallel, and� means that the resources have a

priority relation. We introduce a mapping operator m7! for constraining the resources to

memory regions. For instance, the expressionres(tsk(10; 3); 5; 10) m7! chk(1) means that

the resourceres(tsk(10; 3); 5; 10) is mapped to the �rst chunk of memory. In a similar

way, we use the operator c7! for mapping resources to cores. For instance, the expression
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res(tsk(10; 3); 5; 10) c7! cre(1) means that the resource will be executed in core one. We

also de�ne chk as intervals (e.g, [a; b[, a; b 2 N+ ) mapped to memory chunks, andcre

as a map of core indexes to Booleans. Finally, we de�nect as a shallow translation of

RMTL-
R

3 to express the same timing constraints. The� DSL is inductively de�ned by

task expressionstk and resource expressionsrs, as follows:

tm ::= vl j [ct]v

ct ::= ev j : ct j ct1 _ ct2 j ct1 ^ ct2 j ct1 ! ct2 j ct1 _ ct2 j [[ct]]tm j tm 1 < tm 2

tk ::= tsk(p; e) j tk1 optk tk2

rs ::= res(tk; �; ! ) j rs1 oprs rs2 j rs m7! chk j rs c7! cre j rs / ct

where tsk(p; e) is a task identi�ed by a period e 2 N+ and an execution time e 2 N+ , and

res(tk; �; � ) is a resource with period� 2 N+ and budget � 2 N+ .

De�nition 21 (Operational semantics). The semantics of our � DSL will be given by a

set of rules having as premises and conclusion judgments of the formha; � i ) h b;� 0i with

the meaning that a reduces tob and the current formula � being synthesized is updated

to � 0. Note that this is a small step semantics.

The compositional semantic rules as well as the complementary rules arede�ned in the

Figure 4.6. The semantic rules for expressions using7! and / operators are also included.

Note also that the remaining rules for reducingct are a shallow translation of RMTL-
R

3,

and no modi�cations in the syntax of the logic occurs. [ct]v is the same as
Rv ct, ct1 _ ct2

is the same asct1 U� b ct2 with b su�ciently large, and [[ ct]]tm is the same asct ^ [ct]tm .

Let us now consider the events de�ned above in this chapter, and theidenti�er " 0 "

for labeling sub-formulas. Remark also that terminal rulescpl2 and cpl3 make changes

according to the formal speci�cation introduced in Section 4.2 for resources and tasks,

respectively. chk, cre and ct rules are used for mere labeling.

We exemplify now two options that can be adopted. The �rst option is de� ning one formula

generated by unfolding the temporal formula until a desired time bound. For instance,

considering the punctual formula, which may be impractical for larger bounds. For the

second option we need the de�nition of an invariant with a built-in imp lication, since we

do not require to be constantly evaluating the until operator for each time instant, but

only at certain time instants. In this case, the drawback is the de�nition of an auxiliary

sub-formula, describing that an event is triggered once at each desired period.

Example 14. Let us assume the expressiontsk(9; 3) and the formula  equals to

�
ST(� 1 ) _ RS(� 1 ) _ SL(� 1 ) U< 9 SO(� 1 )

�
^

Z 9

ST(� 1 ) _ RS(� 1 ) _ SL(� 1 ) _ SO(� 1 ) < 3:
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Composition rules
cmp1 : htsk ( a; b ) ; � i ) h :; � 00i h tk; � 00i ) h tk 0; � 0i

htsk ( a; b ) � tk; � i ) h tk 0; � 0i

cmp21 : htsk ( a; b ) ; � i ) h :; � 00i h tk; � 00i ) h tk 0; � 0i

htsk ( a; b ) ./ tk; � i ) h tk 0; � 0i
cmp22 : htsk ( a; b ) ; � i ) h :; � 00i h tk; � 00i ) h tk 0; � 0i

htk ./ tsk ( a; b ) ; � i ) h tk 0; � 0i

cmp3 : hres ( a; b; c ) ; � i ) h :; � 00i h rs; � 00i ) h rs 0; � 0i

hres ( a; b; c ) � rs; � i ) h rs 0; � 0i

cmp41 : hres ( a; b; c ) ; � i ) h :; � 00i h rs; � 00i ) h rs 0; � 0i

hres ( a; b; c ) k rs; � i ) h rs 0; � 0i
cmp42 : hres ( a; b; c ) ; � i ) h :; � 00i h rs; � 00i ) h rs 0; � 0i

hrs k res ( a; b; c ) ; � i ) h rs 0; � 0i

Complementary rules
rsct: hrs; � i ) h :; � 00i h ct; � i ) h :; � 0i

hrs / ct; � i ) h :; � 0 [ � 00i

rschk: hrs; � i ) h :; � 00i h chk; � 00i ) h :; � 0i

hrs
m
7! chk; � i ) h :; � 0i

rscre: hrs; � i ) h :; � 00i h cre; � 00i ) h :; � 0i

hrs
c

7! cre; � i ) h :; � 0i

chk:
hchk; � i ) h :; � 0i

cre:
hcre; � i ) h :; � 0i

ct:
hct; � i ) h :; � 0i

cpl1 : htk; � i ) h :; � 00i h res ( :; a; b ) ; � 00i ) h :; � 0i

hres ( tk; a; b ) ; � i ) h :; � 0i

cpl2 :
htsk ( a; b ) ; � i ) h :; � 0i

cpl3 :
hres ( :; a; b ) ; � 00i ) h :; � 0i

Figure 4.6: Composition and complementary rules for� DSL

We can unfold the meaning of the expressiontsk(9; 3) by

 ^ � =9  ^ � =18  ^ � = b  ; (4.6)

which is as big as the required bound, which in this case isb = 27.

For the second alternative making use of the always operator, we de�ne it by the formula

RE(� 1 ) ^ � <b RE(� 1 ) !
�

� = p RE(� 1 )
�

^  ; (4.7)

whereb is the upper bound, equal to27 + 9, and p = 9 is the task period, which means the

starting point of the execution of a task.

We decided to adopt the second option for� DSL, since in terms of synthesis the result

will be more succinct.
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cmp1 :
cpl2 :

htsk (9 ; 3) ; � i ) h :; � 000i
cpl2 :

htsk (11 ; 5) ; � 000i ) h :; � 00i

htsk (9 ; 3) � tsk (11 ; 5) ; � i ) h :; � 00i

Figure 4.7: Inference tree for the Example15

cpl1 :
cmp1 : Example 15

htsk (9 ; 3) � tsk (11 ; 5) ; � i ) h :; � 00i
cpl3

hres ( :; 10; 5) ; � 00i ) h :; � 0i

hres ( tsk (9 ; 3) � tsk (11 ; 5) ; 10; 5) ; � i ) h :; � 0i

Figure 4.8: Inference tree for the Example16

Example 15. Let us begin by a simple example using the expressiontsk(9; 3) � tsk(11; 5),

and identify tsk(9; 3) by � 1 and tsk(11; 5) by � 2. Applying the rules cpl2 and cmp1, we can

construct the inference tree depicted in the Figure4.7. We get � 00equal to

�
RE(� 2 ) !

��
� =11 RE(� 2 )

�
•

�
ST(� 2 ) _ RS(� 2 ) _ SL(� 2 ) _ F l (� 00) U< 11 SO(� 2 )

���
^

�
RE(� 2 ) !

Z 11

ST(� 2 ) _ SL(� 2 ) _ RS(� 2 ) _ SO(� 2 ) = 5
�

^ � 000;

where � 000is equal to
�

RE(� 1 ) !
� �

� =9 RE(� 1 )
�

•
�
ST(� 1 ) _ RS(� 1 ) _ SL(� 1 ) U< 9 SO(� 1 )

� 0label1
�� 0

unt 1^
�

RE(� 1 ) !
Z 9

ST(� 1 ) _ SL(� 1 ) _ RS(� 1 ) _ SO(� 1 ) = 3
� 0

dur1 ^ � ;

and the �lter function F l (� 000) returns the formula

RE(� 1 ) _ ST(� 1 ) _ RS(� 1 ) _ SL(� 1 ) _ SO(� 1 ) :

Note that the �lter F l makes use of labels. For the next example, let us denote� 00by 	 1.

Example 16. Let us assume the expressionres(u0; 10; 4), where u0 is equal to tsk(9; 3) �

tsk(11; 5) as in the Example15. Applying the rules cpl1, cmp1, cpl2, and cpl3, we get the

inference tree depicted in Figure4.8. We get � 0 equal to

( � =10 RN) ^
�

RN !
Z 10

F l (� 00) < 4
�

:

Note that in this case� 0^ 	 1 is false, since� 0 conicts with 	 1 due to the execution time

of the tasks that exceed 4 time units. Let us now denote� 0^ 	 1 by 	 2 for simplicity.

Finally, we get the �nal formula

�
RN•

�
RE(� 1 ) • RE(� 2 )

��
^ � <b 	 2;

where b is the least common multiple of the expression.
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4.5 Timing guarantees by hierarchy of monitors

Timing correctness regarding the execution of explicit time monitor s. Knowl-

edge of the length of the traces is required before execution, and for that we de�ne a bound

over temporal formulas, allowing us to determine a map from time to event size. The

calculation of temporal bounds for formulas ofRMTL-
R

3 is then achieved by a recursive

algorithm that traverses the inductive structure of the formulas by summing the time

window required for each formula. We now give two examples of the calculation of an

upper bound for a given formula, and the construction of a ow graph for a given time

window.

Example 17. Let us consider a trace and the formulaa U< 10 (b U< 10 c), containing

propositions a; b; c evaluated at timet = 0 . Based on the semantics of temporal operators

we achieve the timing boundst 2 ]0; 10[ and t 2 ]0; 20[, for the inner and outer until

operators. These time bounds are intervals where the truth values resulting from the

evaluation of formulas may change. By the semantic nature of temporaloperators, we

know that for any t 62]0; 10[[ ]0; 20[ the truth value is maintained constant, which gives

us the desired bound for changes of the evaluation value.

Example 18. In order to estimate the amount of time required from the system under

observation to couple monitors in a safe manner, we can use a pessimistic approach based

on the assumption of a maximum inter-arrival time of events in the system, or we can

pre-compute the ow graph of the application. Based on these, we are able to infer how

many events will be triggered in a certain time interval. To exemplify thespeci�c case of

the latter, we de�ne a time window given by a certain formula using theprevious approach.

Then, we create a ow graph of the entire system and �x the starting point of the system

as depicted in the partial ow pattern of the events under monitoringin the Figure 4.3.

From label ST! 1 ;� 1 to SO! 1 ;� 1 , where ST corresponds to the beginning of the execution and

SO corresponds to the end of the execution, we have the ow of the main task composed by

three paths , and from labelST! 2 ;� 2 to SO! 2 ;� 2 , we have the optional task, which includes

EV(1) and EV(2) . In summary, we have at most four events betweenST and SO and the

optional task two events. The �gure also depicts the dependencies of events,and allows

us to estimate the required relative time for some events.

Altogether, these examples combine temporal settings of the monitors andthe system

itself: the �rst one give us the amount of time that we need to wait for a verdict (minimum

time granularity); the second one helps us to �nd the period for a monitor based on the

time behavior of the system under monitoring as well as to estimate the WCET of the

monitor (i.e, the time complexity times a constant).
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Timing guarantees of the hard real-time systems are commonly pessimistic [Shin and

Lee, 2003]. Given that, it is not good to have monitors always executing in constant

time since they may consume more time than required in average. In order to produce

coherent timing verdicts of monitors without assuming any speci�c scheduler, a hierarchy

of monitors should be employed. The main monitor requires to executein constant time

to supervise the other monitors that can be executing without any restriction of time.

Given that, as the time elapses the main monitor is ensuring the timing guarantees of the

other monitors and then these monitors are supervising the main application. Now, we

are able to use our framework to settle on any real-time scheduler.

The idea behind a hierarchy of supervising monitors is to obtain a monitor that is correct-

by-construction and executes in constant-time and constant-space. This allows us for

adaptability of new monitors, as well as to incorporate new system functions. In order

to give constant-time implementation of a monitor, we need to �x the sample size for the

trace that the supervisor monitor uses to incrementally evaluate, anduse the symbol-based

execution for arbitrary n steps. However, we do not have guarantees that the maximum

delay detection will be ensured. For that we need to consider the rate of the events

that scheduler and monitors trigger. It is relatively simple since monitors are time/event

triggered or both. Since counting events is constant time, we have a monitor that will

count the events in order to verify if they are greater than the amount of events allowed

by the system. Note that this is safe by itself since the assumption is also monitored.

Note that none of the related works have focus on an hierarchy of trusted monitors. At

most, they assume that the monitors execute as fast as possible and when there is no

real-time operating system(RTOS), the scheduling is employed by the hardware interrupt

routines [Pike et al., 2010].

Summary

In this chapter, we have presented the formalization of periodic resource models extended

with dependent tasks. Based on that we have constructed the analysisfor the presented

framework in order to discharge properties statically by means of an o�ine analysis,

and at execution time employing runtime monitors. For constructing the skeleton of

the monitoring sketch, we have introduced the � DSL language, which we believe has the

potential to become an important artifact for the real-time community, e mbedding the

same language as the one we have introduced in Chapter3 to synthesize monitors.

This is the novelty of our approach. Instead of being too generic, it allows us to de�ne more

concrete/speci�c constraints about the execution of the system under observation, and at
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the same time specifying runtime monitors. For the cases where there are less constraints,

the output of the o�ine analysis will be successful as well, including the extension for

multi-core systems where cores and memory regions are automatically assigned. Moreover,

proofs are generated for each sketch giving us a great con�dence over theanalysis just by

assuming the synthesis mechanisms. The practicability of our approach depends on both

synthesis steps, which are of major importance.

In terms of the practical implementation of the framework proposed and described in the

chapter, we follow an approach that consists in: 1) synthesis mechanismfor functional

language (and then extended to imperative languages such as C++ ); 2) synthesis mecha-

nism for SMT solvers such as Z3 , and 3) the framework including a proper language and

tools to combine both o�ine and online mechanisms. When mixing thesetechniques we

are able to carry out safeRV of hard real-time systems.
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Chapter 5

Evaluation

Over the past decades several approaches for schedulability analysis have been proposed

for both uni-processor and multi-processor real-time systems [Davis and Burns, 2011].

Although di�erent techniques are employed, very little has been put forward in using

formal speci�cations, with the consequent possibility for mis-interpretations or ambiguities

in the problem statement [Cerqueira et al., 2016].

Moreover, the major e�ort in the research community working on controller design for

real-time embedded systems is the design ofphysical modelsrather than model synthe-

sis techniques and associated formal veri�cation approaches [Ranjbaran and Khorasani,

2010]. Even when formal synthesis and veri�cation methods are used, thetechniques

for enforcing time isolation are generally discarded and delegated to thecapabilities of

non-formally/partially veri�ed RTOSs [Andronick et al. , 2016, Meier et al., 2015].

In this chapter, we describe the application of the techniques and the framework pre-

sented in the preceding chapters, and evaluate their usability regarding the safe inclusion

of monitors in a working environment as well as the monitor synthesis from RMTL-
R

3

language. We will begin by describing the usefulness of our approach in the context

of o�ine schedulability analysis, and later on showing evidence of the e�ectiveness for

schedulability analysis of uni- and multi-processor systems without runtime monitors.

Then, we introduce the case study forRV of lightweight avionic systems making use of

the RV-RMTL-
R

framework for monitoring control systems. Finally, we discuss the kind

of properties we are able to deal with, as well as the results achieved in verifying them.

83
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5.1 Application of � DSL for o�ine schedulability analysis

Along almost forty years, a bewildering diversity of schedulability tests for hard real-

time systems has been proposed to address the constrains imposed by the required timing

predictability. These tests vary considerably in their complexity, expressivity, and target

scheduling policies (e.g., �xed task or job priority, preemptive or non-preemptive). The

literature [ Audsley et al., 1995, Fidge, 1998] reveals that generally schedulability testing

works by assuming a worst-case scenario and checking that each of the involved tasks gets

a su�cient allocation of shared resources or jobs complete before theirdeadlines. Although

in multi-core the same does not naturally happen, cases that are not "the worst" will also

succeed.

The reasons for adopting a logic-based paradigm for schedulability analysisare: it becomes

more comprehensive and expressive; it rules out potential speci�cation incoherences typical

of informal speci�cations; and it has some bene�ts relatively to the available analysis, not

in terms of e�ciency but in terms of being easily extendable for monitoring approaches

such as the acquisition of the maximum detection delay of a task as in [Zhu et al., 2009].

As further context on o�ine scheduling using temporal logic, we note that:

1. the outcome of a classical schedulability analysis is typically a verdict for a certain

set of tasks, but no counter-examples are shown if the set of tasks is not schedulable;

2. the behavior of the scheduler isassumedrather than being explicitly included in the

schedulability test;

3. the timing description of the tasks is the unique data provided by classical analysis

methods (i.e., o�sets, jitters, periods, deadlines);

4. standard approaches are not possible to extend with other useful properties such

as monitoring and enforcement of real-time properties [Pinisetty et al. , 2013, Pike

et al., 2010], due to the restricted de�nition of their sets of tasks (e.g., de�ning a

bound for two consecutive instructions, the inter-arrival time of an event);

5. some real-time systems literature [Zhu et al., 2010, 2009] commonly considers the

estimation of an arrival rate, which implies minimization and produces signi�cant

issues (e.g., under and over estimations, local minimums and maximums, etc.).

This work integrates the description of the scheduling behavior with the schedulability

analysis, which enables the generation of counter-examples when the system is not schedu-

lable. These counter-examples are fundamental for the system designer to understand and

adapt the design accordingly. Although giving an unsatis�able answer is, ingeneral, faster,
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it is not straightforward to draw a readable counterexample as theSMT solver normally

relies on getting the minimal unsatis�able core.

The present schedulability analysis consists in the evaluation of a formula over a trace

(or a set of traces) produced by a periodic resource model where tasks execute along a

�xed priority scheduling. In order to decrease the state space search we might assume for

uni-core scheduling the critical instant theorem [Liu and Layland, 1973]. This assumption

would reduce our problem to just one trace acceptance for a set of logic properties and

would allow us to identify the relevant traces and combine our approach with the foun-

dational real-time systems theory. However, this does not work for multi-core scheduling

and is thus not su�ciently generic for our purposes.

Our schedulability decision problem is indeed a satis�ability problem over a trace regarding

a RMTL-
R

formula. The general schedulability problem for tasks/resources is described

in the following de�nitions.

De�nition 22. Let f � 1; � 1; : : : ; � ng � T � � be a set of tasks with arbitrary size n. The

set of tasks are schedulable according to a �xed priority if and only if there exists an event

sequence such thatPRM(! 1) holds for some! 1 equal to (T ; l; l; fp ) with l a su�cient large

number, and fp the �xed priority policy.

De�nition 23. Let f ! 1; ! 2; : : : ; ! m g � 
 be resource models with arbitrary size m. The

resource models are said to beschedulableif and only if, there exists an event sequence

such that PRM(! 1) ^ PRM(! 2) ^ � � � ^ PRM(! m ) is satis�ed, and the duration of the found

event sequence is greater than or equal to hyper period among resources.

Informally, these de�nitions lead us to state that there exists in the past su�cient resources

to meet the deadlines of all tasks in the periodic resource model ifthis resource model

acts as speci�ed (i.e., behaves accordingly).

Our schedulability analysis for several period resource models relaxes the truth notion of

the WCET . This means that the WCET of a task (or set of tasks) can be erroneously

estimated, and ensures that the remaining resource models are also schedulable, which is

a property of great interest for multi-core scheduling where anomalies can happen.

Next, we will consider a simple �xed priority schedulability tes t with implicit deadlines,

and then move forward to a more elaborated example based on multi-core scheduling. For

both we will use � DSL (introduced in Chapter 4 as part of the RV-RMTL-
R

framework) to

encode simple expressions, since it is more succinct.
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prop fm , RU( c0;� 1 ) _ SO( c0;� 1 ) _ RU( c0;� 2 ) _ SO( c0;� 2 ) _ RU( c0;� 3 ) _ SO( c0;� 3 )

init , RN( c0) U < 2 ( RE( c0;� 1 ) U < 2 ( RE( c0;� 2 ) U < 2 RE( c0;� 3 )))

� < 60 RN( c0) !
�

� =60 RN( ! )
�

^
R60 prop fm < 50

� < 60 RE( c0;� 1 ) !
�

� =20 RE( c0;� 1 )
�

^ (RE( c0;� 1 ) U < 2 (RU( c0;� 1 ) _ RU( c0;� 3 ) _ SO( c0;� 3 ) U � 20 SO( c0;� 1 ) ))

� < 60 RE( c0;� 2 ) !
�

� =15 RE( c0;� 2 )
�

^ (RE( c0;� 2 ) U < 2 (RU( c0;� 2 ) _ RU( c0;� 1 ) _ SO( c0;� 1 ) _ RU( c0;� 3 ) _ SO( c0;� 3 ) U � 15 SO( c0;� 2 ) ))

� < 60 RE( c0;� 3 ) !
�

� =10 RE( c0;� 3 )
�

^ (RE( c0;� 3 ) U < 2 (RU( c0;� 3 ) _ RU( c0;� 2 ) _ RU( c0;� 1 ) _ SO( c0;� 1 ) _ SO( c0;� 2 ) U � 10 SO( c0;� 3 ) ))

� < 60 RE( c0;� 1 ) !
R20 RU( c0;� 1 ) _ SO( c0;� 1 )=9

� < 60 RE( c0;� 2 ) !
R15 RU( c0;� 2 ) _ SO( c0;� 2 )=8

� < 60 RE( c0;� 3 ) !
R10 RU( c0;� 3 ) _ SO( c0;� 3 )=3

init

Table 5.1: Expansion of thePRM(c0) where c0 meanscore0

5.1.1 Two settings for schedulability analysis

� DSL in uni-core setting. To demonstrate the e�ectiveness of the schedulability anal-

ysis using � DSL, we introduce a synthetic workload. Consider as example the workload

composed by one component (60; 50), which executes at each hyper period three tasks with

parameter pairs (20; 9), (15; 8) and (10; 3), with available 50/60 time units for executing.

The �rst element of the tuple is the period and the second the deadline/budget. In � DSL,

the expression describing the example is

server0

h�
tsk (20;9)

ts1 � tsk (15;8)
ts2

�
./ tsk (10;3)

ts3

i

(60;50)
; (5.1)

which speci�es that ts1 has higher priority than ts2, and ts3 executes arbitrarily with ts1

and ts2.

Usage of events as speci�ed in theRV-RMTL-
R

framework is more adequate for runtime

monitoring purposes. Due to the overhead that resume and sleep events may cause when

using SMT solvers and the ability to infer when a task sleeps/stops occurs based on non

consecutive events, we will adopt only three events per task,RE; RU (meaning ST, RS

or SL) and SO. Based on that, we have automatically formulated the set of formulas

described in Table 5.1 from Expression 5.1 using the proposed synthesis algorithm for

SMT solvers. The same table also includes a trace that satis�es the given speci�cation.

Note also that other events can be further considered as required. Thereader is referred

to Appendix B for a more detailed example of a complete synthesis.
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( define -fun i n d i c a t o r ( (mt Time) ) In t

( i t e (= (computep trace mt pa ) TVTRUE) 1 0)

)

( declare -fun eva ln ( ( Time) ) In t )

( assert (= 0 ( eva ln 0) ) )

( assert ( f o r a l l ( ( x In t ) ) ( => (> x 0) (= ( eva ln x ) (+ ( eva ln (- x 1) )

( i n d i c a t o r x ) ) ) ) ) )

( assert (< ( eva ln 10) 9 ) )

Listing 5.1: Example of a RMTL-
R

duration term encoding using SMT-Libv2

� DSL in multi-core setting. A speci�cation for a multi-core setting, making use of

the previous expression, can be expressed as

server0

h�
tsk (10;8)

ts1 � tsk (20;5)
ts2

�
./ tsk (27;7)

ts3

i

(1;1)

c7! core0 k

server1

h
tsk (33;4)

ts4 � tsk (6;2)
ts5

i

(1;1)

c7! core1; (5.2)

where instead of specifying the amount of execution time allowed for each resource the

expression assigns forserver0 and server1 the pair (1; 1). This means that all available

resources in theserver0 are executing in isolation in the core0 as well as the resources of

server1 in core1.

For both settings, the next step of the approach (introduced in Chapter 4) consists in the

transformation of a speci�cation written in � DSL into an equivalent RMTL-
R

speci�cation.

We can then check the satis�ability of a scheduling property over the generated set of

formulas like for instance checking if taskts1 can execute more than 9 time units. Next,

we convert this formula into the SMT-LIBv2 [ Barrett et al. , 2015] language using our tool

(described in Appendix B) and delegate the reasoning to the Z3 solver [de Moura and

Bj�rner , 2008].

To better exemplify how the process is done, let us consider theListing 5.1 that shows an

incomplete candidate encoding of the interval-based semantics for the RMTL-
R

duration

term. The uninterpreted function computep evaluates a proposition at the instant mt, and

pa is a proposition representing an event. It is true from the beginning of the event's

occurrence until the next event is triggered in the system. Ourgoal is to �nd a trace

(or set of traces) that satis�es these constraints, henceforth if theanswer we obtain is

unsat then the system cannot be scheduled (the constraints are somehow inconsistent);

otherwise, we have a ow of the system for which these constraints result in a schedulable

behaviour.
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ID Formula Checked Performance

(a) p ^ � <b 1 p ! � =2 p X . . . . . . . . .

(b) (p _ q) U<b 1 r X . . . . . . . . .

(c)
Rb1 p < 3 X . . . . . . . . .

(d) ((p _ q) U<b 1 r ) ^
R9 r < 2 X . . . . . . . . .

(e) ((p _ q) U<b 1 r ) ^ 10 <
R9 r unsat . . . . . . . . .

(f) � <b 1 p ^ � <b 2 : p unsat . . . . . . . . .

(g) � <b 2 (a _ b) U<b 1 r X . . . . . . . . .

Table 5.2: Heat maps for performance comparison using the rmtld3synth tool for

synthesization and the Z3 solver for checking satis�ability

Comparatively to classic approaches, it is clear that this type of reasoning allows us to

construct and extend our constraints easily, without the need to reformulate every step of

the analysis (it is a constructive approach). Note also that the expressiveness to deal with

temporal order is of extreme importance when dealing with systems depending on time,

which sets of inequalities and equalities alone cannot provide. It istherefore important to

reuse such sets of (in-)equalities and combine them with logic connectives to get a �ne-

grained description of the system. Furthermore, the recent developments of SMT solvers

positively impact our approach, namely due to the e�ciency of the underlying reasoning

methods that increase the chances of constructing the proofs we need in a fully automatic

way.

5.1.2 Experimental results

The setup employed in our experimental evaluation was based on an IntelCore i3-3110M

at 2.40GHz CPU with 8 GB of RAM memory, and running Windows 10 Embedded x86

in a virtual machine running on a Fedora 23 X86'64 host.

For RMTL-
R

3 formulas. Currently, it is not possible to devise a fair evaluation compar-

ison for our approach since there are no available tools that consider duration terms in the

way we consider in this work. In order to provide some insight about the feasibility of our

technique, we have measured the times taken by the Z3SMT solver to prove satis�ability

of a set of speci�cations, as shown in Table5.2. We have considered di�erent structures

for the presented formulae. The goal is to show indicators of the feasibility of the approach

on sets of formulae with heterogeneous structural schemes, as we would expect to occur

in a real-life example.
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The time required to solve formulas is not directly related with a formula's complexity

or length, as formula (a) indicates when compared to (c). Note that formulascontaining

durations are slower in average to solve than formulas containing only temporal operators,

as con�rmed by the time it took to solve the satis�ability of formula (b ) when compared

to formula (c). Furthermore, a mix of both temporal operators and durations does not

mean slower times as exhibited in the case of formula (d). We also notethat showing

that a formula is unsatis�able is in general faster than proving satis� ability. The formula

(e) from Table 5.2 is an example of this phenomenon. Finally, formula (g) show that

nested temporal operators could grow exponentially. Note thatb1 and b2 are sampled at

increments of 5 from 5 to 50, < 1s and = 100s, and black cells mean a timeout (more

than 150s).

More complex examples can be seen in the tool's repository [De Matos Pedro, 2018]. Our

experimental results indicate that this method can indeed be feasible for small sets of tasks

and resource models.

For � DSL expressions. Experiments using� DSL are described in Table5.3. The results

indicate that this approach does not scale. However, it is very impressive that it was

possible to obtain in a few hours results for such highly nested formulas as shown in the

table. Note also that jUj means the number of until operators in the formula, andj
R

j the

number of duration terms. The experiments also show that the results are not dependent

of the number of constraints, but on the size of the required input sequence. As the

case ofcore0

h
tsk (9;8)

ts1 � tsk (3;1)
ts2

i

(20;8)
getting an unsatis�able result is faster than getting

a satis�able result when using only one task (i.e, the formulacore0

h
tsk (5 ;2)

ts 1

i

(10 ;10)
). We use

the operators< , > to give an upper and lower bound to the time that we require to satisfy

the formula.

5.2 Lightweight Autopilot Systems: the case study

In fact, the most common models in the market { excluding the military-grade ones

{ are not required to follow the rigorous software development processes that are used

in commercial avionic systems, mostly because they are small, cheap,and appear to

be ino�ensive. Furthermore, multi-copters do not have any special inherent stability

mechanism, and are very dependent on their control software [M•uller and D'Andrea ,

2014]. Paradoxically, they are simpler than helicopters but also unsafer, since the latter

provide auto-rotation maneuvers that allow them to glide to the ground and still land

vertically [ Ho�mann et al. , 2007].



CHAPTER 5. EVALUATION 90

ID Expression jUj j
R

j t(s) sat

(a) server 0

h
tsk (5 ;2)

ts 1

i

(10 ;10)
5 3 13.55 X

(b) server 0

h
tsk (9 ;6)

ts 1 � tsk (3 ;1)
ts 2

i

(9 ;8)
10 5 3.05 X

(c) server 0

h
tsk (10 ;2)

ts 1 � tsk (10 ;2)
ts 2 � tsk (10 ;3)

ts 3

i

(10 ;10)
13 7 < 10800 X

(d) server 0

h�
tsk (20 ;9)

ts 1 � tsk (15 ;8)
ts 2

�
./ tsk (10 ;3)

ts 3

i

(60 ;50)
13 7 timeout 7

(e) srv 0

h�
tsk (10 ;2)

ts 1 � tsk (5 ;1)
ts 2

�
./ tsk (5 ;2)

ts 3

i

(10 ;8)
k srv 1

h
tsk (5 ;1)

ts 4

i

(10 ;5)
18 10 < 16800 X

(f)
server 0

h�
tsk (10 ;2)

ts 1 � tsk (5 ;1)
ts 2

�
./ tsk (5 ;2)

ts 3

i

(1 ;1)

c7! core0 k

server 1

h
tsk (9 ;6)

ts 4 � tsk (3 ;1)
ts 5

i

(1 ;1)

c
7! core1

20 10 < 14400 X

(g) server 0

h
tsk (9 ;8)

ts 1 � tsk (3 ;1)
ts 2

i

(20 ;12)
/ (RU( server 0 ;ts 1) _ RU( server 0 ;ts 2) ) 12 5 < 11000 X

Table 5.3: � DSL experimental results

We will now show an example that illustrates the usage of an autopilot instrumented with

runtime monitors capable to observe the execution of multiple resource models in order

to increase the timing con�dence of the autopilot's control loop. Our approach uses an

o�ine algorithm for formula simpli�cation, and an online evaluation proced ure that can

be directly applied for the synthesis of runtime monitors. We will begin by presenting an

example of application of Algorithm 1 (already introduced in Chapter 3) for monitoring the

budget of a set ofResource modelss (RMs); then we will present the empirical validation

of the complexity results for Algorithm 2 (also presented in Chapter3). In the remaining

part of this chapter, we will introduce two use cases followed by the strong evidence of the

feasibility of the runtime monitoring approach.

Let us now recall the concept of resource model (RM). RMs are servers capable to ensure

timed resource isolation between tasks. If they are constrained periodically, we de�ne

them using a replenishment period and a budged supply. The budget supply is available

as time elapses, and is renewed at each period by the resource model.Elastic periodic

RMs are resource models containingelastic coe�cients (similar to spring coe�cients in

physics) to describe how a task can be compressed when the systemis overloaded, and

manage imprecise computation. Naturally, the coe�cients need to be constrained (linearly

or non-linearly) before execution. Intuitively, the idea is to check the coe�cients according

to the polynomial constraints using our static phase, and provide the simpli�ed formulas

for the further runtime evaluation phase.

Let us now extend Example4 for multiple RMs, considering without loss of generality the

case of twoRMs. We will use indexed formulas� m i ,  m i with 0 � i < n , n = 2, and let
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Figure 5.1: Linear, concave and convex restriction forc0 and c1

� i ; � i be indexed constants. For measuring the budgets of two resource models we could

use the following invariant:

n� 1^

i =0

0

@� <v � m i !

0

@0 �
n� 1X

j =0

x j < � i ^ x i = cj �
Z � i

 m i

1

A

1

A ^ rm

where v is arbitrarily large, ci is a coe�cient indexed at i that mean di�erent weights for

each RM (two in this setting), and rm is a constraint formula over the free variablesc0

and c1.

The problem is then to �nd values for c0; c1 satisfying the constraints

r1 :=
1

250
(245� 444� c1 + 200 � c1 � c1) = c1;

r2 := 1 � c0 = c1; or

r3 := 1 � c0 � c0 = c1;

as shown in Figure5.1, based on two duration observations over the formulas m0 and

 m1 . Note that rm is replaced by one of these constraints, namelyr2, and 0 � c0, 0 � c1

holds. r1 and r3 are only exempli�cations of other possible constraints.

We will use Algorithm 1 for discarding possible conicts, and decompose the formulas into

sub-formulas that are free of quanti�ers. Let us simplify the previously de�ned invariant

for two resource models where the coe�cientsc0 and c1 are existentially quanti�ed and

constrained by r2. After some transformations on the formula and assuming that both

resource models have the same settings (i.e.,� 0 is equal to � 1 and � 0 is equal to � 1), we

obtain

� 1
6< := � <v

��
� m0 ! � 2

6<

�
^

�
� m1 ! � 2

6<

��
;

such that

� 2
6< := a =

Z � 0

 m0 ^ b =
Z � 1

 m1 ;
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and

� 1
< := 9c0 c1 : 0 � c0 � a + c1 � b < � 0 ^ r3

holds. The duration terms
R� 0  m0 and

R� 1  m1 have been replaced by the logic variables

a and b, and the free logic variablesx0 and x1 have been erased since the duration terms

evaluate at the same time. We will then have an isolated formula, and applyCAD to

determine if � 1
< is satis�ed. If it is, then we directly replace � 2

6< by true , otherwise we

have the bounds that satisfy � 2
6< . For this case, we obtain for� 1

< the decomposition

(a < 0 ^ b � 0) _ 0 � a < 10_ (a � 10^ b < 10):

Intuitively, we may think on the instances c0 = 0 and c1 = 1, and c0 = 1 and c1 = 0.

After this step, the simpli�ed bounds are ready to be evaluated by the online method.

Note that we cannot proceed with the monitoring step without removing all the free

variables since our monitoring algorithm does not support solving inequalities at runtime.

We also have to justify that the usage of runtime solvers is di�cult t o apply on real-time

embedded systems since the demand of computation resources is in the majority of the

cases unavailable.

Let us now discuss the complexity of Algorithm 2 and establish an empirical comparison

with the bounds presented in the Chapter 3. We observe that the generation of nested

durations is more critical on average than the nesting of temporal operators. This result

matches the semantics of both terms and formulas, since the duration terms can integrate

any indicative function provided for any trace, unlike the until operator that requires a

successful trace to maximize its search. Consider Figure5.2c, where the boxesi 1 to i 6 are

respectively the intervals ]10j ; 10j +1 ] for all j 2 [1; 7[. They represent the number of cycles

performed by folding functions. The results con�rm that as the number of until operators

stabilizes and the number of duration operators increases, the computation time also

increases at a higher rate due to the presence of durations. This occurs for generateduni-

form formulas and traces; deep nesting of until operators and nested durations is unlikely

to occur in hand-written speci�cations (it has not been clearly con� rmed whether they

are useful for real-life applications). The experiments con�rm the theoretical complexity

bounds obtained earlier (Figure 5.2d). We have performed the experiments on an Intel

Core i3-3110M at 2.40GHz CPU, and 8 GB RAM running Fedora 21 X86'64.

5.2.1 Use cases with RMTL-
R

3.

The adopted formalism supports an explicit notion of time that is required for the timing

analysis ofRTSs. Support of inequalities, durations and quanti�cation over these, increases

the expressiveness of classic temporal logics to specify explicittiming settings, �lling a gap
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Figure 5.2: Experimental validation of the complexity results

in the common speci�cation languages forRTSs. Increasing the expressiveness of temporal

logics may introduce decidability issues; the interest of decidable fragments, likeRMTL-
R

3,

is that the existence of an e�ective procedure that always evaluatesany formula in any

model as a truth value is guaranteed. In practice, the existence of this procedure implies

that a monitor always terminates drawing a verdict, which is indeed important in runtime

monitoring applications, and even more important in the context of hard real-time systems.

Let a be a coe�cient represented by a logic variable. Duration terms of theform a�
R� 1  1
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can be synthesized if the coe�cient a is constrained by polynomial inequalities, or if the

coe�cient a with distribution Beta or Dirichlet is employed. Under these restrictions,

our tool [De Matos Pedro, 2018] is able to generate monitors that evaluate conditional

probabilities of random actions of RTSs. For instance, these monitors can be used to

monitor the ination and the deation of imprecise tasks, which is requ ired when imprecise

computation models are employed. Moreover, the degradation of the system can also be

speci�ed by de�ning liveness properties such as \a task cannot execute for less that 5 time

units in one interval of 100 time units".

Two use cases for monitoring of the Ardupilot autopilot framework are described in this

section. The �rst is a simple case that exempli�es the quanti�cati on of linearly constrained

duration formulas, to illustrate how to generate monitoring conditions in C++. Use

Case (2) explores how to encode uncertainty by using polynomial inequalities to constrain

quanti�ed duration formulas.

Use Case (1): RM establish amounts of shared resources to be consumed by working

tasks in RTSs. Normally, these mechanisms focus on time consumption and ensuretime

isolation between di�erent tasks or sets of tasks. Periodic RMs are de�ned by their

replenishment period and budget supply. Budgets are dynamically available as the time

elapses and are replenished at certain de�ned periods.Elastic RMs are an extension of

periodic RMs containing elastic coe�cients , similar to spring coe�cients in physics. They

describe how the execution time of a task can be temporally deated or inated by applying

n-D geometric region constraints (polynomial inequalities) over resource budgets. These

restricted coe�cients allow for the system's under-load and over-load to be controlled.

Spring coe�cients, which are seen as logic variables, de�ne the rate(or constraint) of

ination and deation of a resource (in our case, processing time) and canbe changed

during execution. In this use case, these coe�cients are governed by linear inequality

constraints which dictate the under- and over-loading conditions of acertain set of tasks.

Example 19. Consider the formula

0 � a �
Z � 1

 1 + b�
Z � 2

 2 �
1
4

�

that speci�es the resource constraints of twoRMs where coe�cients are managed according

to the linear equation a = 1 � b for a; b � 1
4 , that  1, 2 are two formulas describing the

event releases of two distinct tasks, and that� is the allowed execution time for theRMs.

Informally, the formula speci�es that both resource models have di�erent budgets when

both execute at the same time, which in practice is the case when bothRMs interfere in the

system. To �nd the conditions for monitoring we need to quantify the formula, yielding a

new formula

9f a;bg

�
a = 1 � b^ a >

1
4

^ b >
1
4

^ 0 � a �
Z � 1

 1 + b�
Z � 2

 2 �
�
4

�
:
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Figure 5.3: Regions of decomposed inequalities with durationx; y and � = 10

Later, after applying the simpli�cation algorithm described in the Chapter3, we generate

the monitoring conditions from Example 19, as follows:

(
R� 1  1=0 ^ 0�

R� 2  2<� ) _ (0<
R� 1  1< �

4 ^ 0�
R� 2  2<� � 3

R� 1  1) _

(
R� 1  1= �

4 ^ 0�
R� 2  2 � �

4 ) _
�

�
4 <

R� 1  1< �
3 ^ 0�

R� 2  2< � �
R� 1  1

3

�
_

� R� 1  1= �
3 ^ � � 3

R� 1  1 �
R� 2  2< � �

R� 1  1
3

�
_

�
�
3 <

R� 1  1<� ^ 0�
R� 2  2< � �

R� 1  1
3

�
;

where  1 and  2 are both simpli�ed formulas.

In Figure 5.3 we can see regions where theRMs are able to consume resources or not, as

well as regions where they are not able to do so. For instance, the resource B cannot

consume any resource if resourceA consumes10 units, and the resource A can only

consume more than4 units if the resource B consumes less than2 time units, due to

resource constraints. For the case of both resources consuming2:5 units each, the di�erence

between the sum and the execution time indicates that the interference of both resource

models executing concurrently is at most5 time units (it is identi�ed by the hashed region).

Intuitively, this constraint means that one resource needs to be deated when the other

resource is inated and conversely. Note that di�erent regions can be found by modifying

the constraints of the scale factor1
4 , or any of the � , a or b parameters.

Use Case (2): A conditional probability for a given duration measure for tasks can be

speci�ed using this formalism. We will next evaluate the likelihood of the remaining tasks

in a system to be unscheduled, based on the overload of a certain task.This example

applies in the context of RMs monitoring and also of imprecise computation monitoring.

Let a be de�ned as a coe�cient with uncertainty. Any probability distri bution that can

be described using polynomial inequalities can be encoded using this approach. Here

we will focus on the Beta distribution only, but other interesting distributions, such as

multinomial and Dirichlet distributions, could be equally used.
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Let X and Y behave as two random variables with distribution Beta(ai ; bi ) for i 2 0; 1.
To encode these random variables inRMTL-

R
3, we de�ne the Beta probability density

function (pdf ) as a constraint of the form

f b(1 � x; � � 1) f b(x; � � 1)
C�

;

whereC� is simpli�ed and equal to B (�; � ), and f b is the power function. Power functions

can be encoded inRMTL-
R

3 with the following axiom

y =
a
p

xb , xb = ya _ y = x
b
a ;

for any x; y 2 R� 0, a; b 2 Q> 0. Any function f b may now be encoded inRMTL-
R

3. The

Beta distribution p = f �;� (x) is now fully de�ned by

ya1 = (1 � x)b1 ^ za2 = xb2 ^
y � z
C�

= p;

where ai ; bi 2 N, i 2 f 1; 2g are solutions of the formulasa1
b1

= � � 1 and a2
b2

= � � 1, and p

stands for the probability of the logical variable x in the interval [0 ; 1].

Intuitively, the idea is to specify non-deterministic actions based on the information

provided at execution time. For instance, a system can change itsmodus operandisif for

some reason the probability of a given overload is greater than a certain �xed probability

threshold. Note that these probabilistic inequality constraints wil l be used as monitoring

conditions. The generation of monitoring conditions based on simpli�cation approaches,

as in the Use Case (1), is only required if quanti�ers are applied.

Let us consider without loss of generality the case of two tasks, where the �rst one may

have a chance to overload, and the second one should avoid this by self-deating. The

speci�cation of probabilistic coe�cients that supports elasticity when overload situations

occur is encoded by

a =
Z p1

 1 ^ � <v

�
f �;� (a) <

3
4

! � <p 1+ p2  d

�
;

where v is arbitrarily large,  d is de�ned as

Z p2

 2 < b � d;

a and b are restricted by one polynomial inequality constraint (e.g., a = b+ 1), d is the

maximum allowed execution time for a task, and 1,  2 are the formulas de�ned for each

of the two tasks (e.g., conjunction of propositions for specifying a certain task or RM).

Remark also that p1 and p2 are constants which represent the period of the tasks.
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5.2.2 Experimental Results

Before discussing the experimental results for the presented use cases, we start by compar-

ing the results presented in Figure5.2 with the ones presented next, where we show that

one element takes in average 400ns to be processed using an Intel x86 machine. For that,

we re-use the Ocaml source code used to generate the results provided in the Figure 5.2

in order to compare with our present setting.

For comparing both implementations, we have used the following set ofRMTL-
R

3 formulas:

(a) true U � t � (eventually); (b) � ! � � t  (bounded-invariance); (c) � � t
Rt � � �

(limited-duration); and �nally (d) � !
Rt  � � (bounded-duration).

For each formula we have tested, we have also used di�erent trace sizes ranging from

10 to 103. The traces that we consider are selected as the traces that maximize the

execution time of each formula evaluation. We have run the experiments on two distinct

architectures, namely, the ARM(armv7) and the x86(i686) architectures. The OCaml

experiments were only performed on the x86 architecture, while the C++ implementation

was tested on both of them.

PixHawk [Meier et al., 2015] board is the target platform to execute periodic monitors

that were synthesized fromRMTL-
R

3 formulas into C++. We also have tested the same

implementation using an Intel Core i3-3110M at 2.40GHz CPU with 8 GB of RAM

memory, and running Windows 10 Embedded x86 in a virtual machine running on a

Fedora 23 X86'64 host.

In the case of the PixHawk board, we have only 256kb of memory RAM for the overall

system and we assign at most 90% of the processor usage for these monitoring experiments.

From the experimental results presented in Figure5.4, we can conclude that such monitors

execute in polynomial time as the trace increases, which goes according to the theoretical

results presented in [De Matos Pedro et al., 2015a]. 1 The stack consumption is also

acceptable for PixHawk board. The constant upper dashed line is the maximum stack

consumption of 1:76kb for the formula (c), and the other two lines are the lower bounds

of the remaining three formulas that have a very similar stack usage. Di�erent lines

are depicted in Figure 5.4. They correspond to di�erent execution times and stack

experiments: the lines tagged with "ocaml" refer to the execution ofthe original evaluation

algorithm using ocaml; the ones tagged with "x86" are the execution times of the C++

implementation in the same platform of the Ocaml test; and �nally, the ones tagged with

"arm" refer to the execution time of the C++ implementation in the Pi xHawk board.

1The instructions to generate the C++ code �les that are the outpu t of the use cases experiments are

fully detailed in Appendix C.
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Figure 5.4: Comparison of implementations/architectures

In these experiments, we do not consider more than two nested until operators, which is

indeed a common pattern of formulas for the speci�cation of embedded systems. Therefore,

we do not have any evidence of how deep nested until operators can be used in a real

application scenario.

Experimental results: execution time vs. stack size. Let us �rst begin with the

analysis of the impact in the Ardupilot �rmware. The Use Case (1) is composed of several

disjunctions, meaning that each branch of the formula can take di�erent execution times.

However, the results demonstrate that these formulas are not out of the scope of the

previous experiments. The stack usage is 3.4kb for the Use Case (1), and 4.3kb for the

formula proposed in the Use Case (2). Based on that, the execution times are on average

faster than the worst case considered. Commonly, the monitor increasesits execution time

as more events are triggered. This means that if the set of events selected for a system

is subdivided in di�erent bu�ers (when possible), then the monitoring will generate lower

overheads. However, the impact of the overheads in the Ardupilot isnot negligible. The

overhead generated in the system is 10us/1s for the instrumentation of two sub-tasks, and

is 50ms/1s for the monitor (the sub-tasks have periods of 10ms and 5ms respectively).

We have also an idle time of about 40% percent. Monitor bu�er length is �xed to 100

elements, which is the value obtained according to the pre-calculated time interval required

for the formulas under synthesis, and we consider a maximum inter-arrival time of 1ms.

The monitors execute with a period of 1s.

Unrecoverable actions. In these use cases, a parachute may be released if a wrong

verdict is obtained, or else a safe technique can be deployed, where the multi-copter will

spin in order to compensate for a faulty motor. Parachutes are currentlyused in lightweight

aviation to avoid possible unrecoverable mechanical faults, such as motor and propeller

failures.
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Autopilot Firmware. Ideally, lightweight controller systems should use elastic execu-

tion time for tasks, in order to enable the required adaptability for reducing overload

situations.

Ardupilot 2 supports several platforms such as AVR, ARM (based on

NuttX 3), and X86 (based on the Linux kernel) [Coombes et al., 2012]. Recently, Ardupi-

lot has adopted non-linear Kalman �lters for the attitude and heading reference system

(AHRS). It is a demanding process that can only be executed in the PixHawkboard. For

this ARM architecture, two versions are available to perform the sametasks as in imprecise

computation de�nitions. The faster one adopts direction cosine matrix (DCM ), which is

su�cient for the majority of the cases (but is less accurate). The slower version reveals

that AHRS can be much better for heavy copters. Ardupilot for the AVR architecture

contains several sub-tasks that are scheduled using cyclic scheduling rules. It uses the

Hardware Abstraction Library (HAL ) to communicate with the devices directly, using

interrupt-driven routines. However, Ardupilot for PixHawk uses t he HAL to communicate

with device drivers that are implemented as separate tasks runningin NuttX. The RTOS

runs a single main task as de�ned by the AVR architecture, and, insteadof using interrupt-

driven routines, uses four optional tasks that should be executed at least once each second.

These optional tasks have di�erent purposes such as controlling the IO, the UART, and

managing timing events and storage (system drivers). The main task contains sub-tasks

that execute cyclically in di�erent frequencies ranging from 20hz to 400hz, dictated from

the de�ned cyclic scheduler. The execution rule for sub-tasks is: based on the predicted

WCET , an optional task will execute if there exists available time.

For construction of a safe autopilot, we are required to ensure time-space isolation. This

is crucial for autopilot tasks that have not been formally veri�ed, or are still undergoing

testing. To the best of our knowledge none of the currently available autopilot systems for

radio control copters have been formally veri�ed. They may well generate absurd values

due to hardware failures, and are susceptible tointroduced code attacks, via radio-frequency

telemetry links [Moosbrugger et al., 2017].

Summary

Evaluating the proposed theory is of great importance. Formally proving that a real-

time scheduler acts as desired, i.e., is correct, is extremely di�culty (it is in many case

a combinatorial problem) due to the inherent dependency on time. However, proving

2http://copter.ardupilot.org
3http://nuttx.org/
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it automatically is even more complex and in the majority of the cases it is undecidable

(although there are cases where it may be decidable to say if a given settings is schedulable

or not according to a given algorithm).

In this chapter, it has been demonstrated that certain classes of real-time scheduling

problems can be solved, but not as e�ciently as the real-time community could expect.

Even though this approach may not scale well, as our results have shown,it points

out several issues that would have to be solved in order to increase the applicability

of constructing proofs usingSMT-based techniques. The positive points are: our results

show that it is extremely easy and intuitive to encode scheduling problems in this logic;

the approach uses a push button technique to tell us if the scheduling property holds or

not, at least in an initial phase (normally saying that a system is unschedulable is close

to immediate); and �nally the approach mixes o�ine checking with run time checks.

In the �nal part of this chapter, it was shown that monitoring durations e ven in lightweight

platforms such as small embedded systems is feasible and of great importance, in order to

avoid possible execution overloads. Overheads are signi�cant depending on the formulas to

be monitored. Nevertheless, the push button synthesis allows us to monitor properties in

the system for the cases where an event sequence is adopted to log a running application.

Acting on the results of monitoring is outside the scope of this work.



Chapter 6

Conclusion and Future Work

RV is a promising technique for making real-time systems (and also other types of systems

in general) more reliable and safer. It has been established as a replacement or as

complement to static approaches (e.g., model-checking and deductive approaches).

Although RV approaches targeting speci�cally real-time systems are scarce, theydi�er

from the classic ones. Time bounds and bounded interference are required for explicit

time properties. As such, we have developed a new approach for theRV of hard real-time

systems, where duration properties play an important role, and incremental evaluation

is required. The closest approaches to ours are that of Nickovic and colleagues [Nickovic

and Piterman, 2010], who provide synthesis algorithms for MTL speci�cations, and the

work of Pike and colleagues [Pike et al., 2010], who have developed a framework based on

a formal stream language, together with a synthesis mechanism that generates monitors.

However, none of these previous approaches is su�ciently expressive to allow for reasoning

about duration properties, which is the novelty of our work.

The �rst level of operation of our approach consists of o�ine analysis for the simpli�-

cation of formulas by means of quanti�er removal techniques; the secondis an online

evaluation algorithm for RV purposes. We restrict syntactically and semantically the two-

valued MTL-
R

logic, with a three-valued interpretation. Incremental evaluation allows our

technique to handle millions of samples, with formulas containing hundreds of operators.

Another important point is the expressiveness of the logic that has beenadopted for this

work. Contrary to MTL , which is not su�ciently expressive to deal with explicit durat ions

of propositions/events, our experimental results have revealed thatusing RMTL-
R

3 allows

for properties to be speci�ed at the abstraction level of counting time, and to be e�ciently

synthesized for a platform as small as PixHawk, which is certainly impressive.

101
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Yet, regarding the expressiveness and computing feasibility of timed temporal logics,

the unbounded Since operator was not considered very relevant in this work, because

it requires a full history of a trace. This is not feasible in the context of lightweight real-

time embedded systems where resources are scarce. It is known from [Hunter et al., 2013]

that for each formula containing the Since operator there exists a corresponding formula

making use of its dualUntil operator, which further justi�es our exclusive use of the latter

operator in this work.

The overall conclusion of our work is that software monitoring techniques, which draw

verdicts about timing software faults as well as hardware timing failures, are valid, and

may be extremely useful to complement the fault-tolerant mechanisms [Ranjbaran and

Khorasani, 2010, M•uller and D'Andrea , 2014] that are used for the detection of abnormal

mechanical failures.

Additionally, we have described in this thesis an alternative approach to scheduling anal-

ysis following a formal based speci�cation of the components of a scheduling hierarchy,

and its translation into the SMTLIBv2 language for which we have used theZ3 solver to

obtain valid schedules.

6.1 Future work

In terms of future work related to formal languages, it remains to be seenwhether

extensions ofLTL that are strictly more expressive than MTL , such as TPTL [Bouyer

et al., 2010] could be used as an alternative for dealing with durations.

Regarding simpli�cation techniques for RV , other e�cient mechanisms to reduce the

execution time of the monitors as well as the stack usage are required. The shape of

the formula impacts severely on its execution time.

Other optimization techniques for synthesis ofRMTL-
R

3 into SMT problems may be worth

exploring. An example is the extension of the synthesis algorithm for interval-based

semantics without assuming unit intervals (i.e., intervals of size one), and the consequent

repetition of non interleaved symbols. Instead of two intervals [0; 1[ and [1; 2[ evaluating

the symbol a, we have only one interval [0; 2[ evaluating a. The theory of strings (word

equations) could also be adopted to solve partially the multi-core scheduling problem,

instead of the array theory. However, it remains to be seen whether this can be better to

explore interleaving of tasks.

Hybrid approaches, in the context of multi-core hard real-time schedulability analysis, can

be adopted to treat global scheduling for multi-core systems.
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Regarding the synthesis mechanisms, synthesization ofRMTL-
R

3 into classic timed au-

tomata (TA ) is an option. Although it appears to be unfeasible for RV due to the state

explosion problem, encoding time can only be possible if we make use ofmore expressive

classes of automata, such asTA extended with stopwatches [Cassez and Larsen, 2000].

However, the reachability problem for these classes is undecidable, which may imply that

no gain should be expected from the point of view of either static analysis or of space

complexity for RV purposes.

Regarding the framework, predicting the size of the traces has been considered in this

thesis, but more clever solutions should be investigated, for instance along the lines of the

idea proposed in [Navabpour et al., 2015]. Instead of estimating the best periods, we could

formulate a problem to �nd the execution pattern that is enough for the application and

the monitor. Moreover, we may avoid formulating an optimization problem using linear

programming. For that, we might use SMT solvers that we think would be capable to

extend the presented schedulability analysis approach to dependent sporadic tasks with

monitors.

Regarding the overall thesis, as the rmtld3synth tool is su�cientl y mature, other problems

could be solved using the proposed techniques. One of them is the monitoring of security

threads, throughput, and counting (although not equal, it may be close to MTL with

counting [Krishna et al., 2016]). RMTL-
R

3 will allow us to deal with a great number

of functional properties by adding some syntactic sugar over the duration terms. Even

though the word duration refers to time, RMTL-
R

3 is able to deal with di�erent units such

as space and energy. It is simply a case of meaning.
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Appendix A

RV with RMTL-
R

3 for C++11

In this section we present aRV framework for embeddedRTSs based on the novelRV

monitoring model that will be described in Section A.1. The latter contains the con-

straints/rules from the application side that allow us to synthesize a proper architecture

for monitors. These rules are used to con�gure the target application to be executed in a

multi-processor embedded system or over a classic single-processor from the AVR or ARM-

M families of embedded processors. The support is given by the RTMLib [De Matos Pedro,

2016] library that allows us to execute monitors in a lock-free and wait-free manner, which

is very useful to guarantee deadlock-freeRV operation.

Our toolchain is depicted in Figure A.1. As input, we have a set of formulas that will

be converted to monitors using a one-to-one correspondence. From these formulas, we

generate Ocaml andC++11source code as well as tests forC++11implementation that are

automatically generated from the Ocaml synthesis, which corresponds to the dependence

between both synthesis tools and identi�ed by the dashed arrow. Tests and synthesized

monitors are merged and compiled using the gcc toolchain including thesupport library

RMTLib. This binary will run under NuttX OS. Otherwise, the compi led code from the

synthesis Ocaml tool is executed in a common x86 operating system.

Operationally, each monitor can share resources (e.g., memory and processors) with other

monitors or may execute in isolation (using its own processor and memory partition),

which is part of the speci�cation of the RV monitoring model. The monitors have di�erent

execution rules that may change at execution time, and rules for theiroperation.

- Execution rules are step-based (for iterative/tail recursive monitors; for an arbitrary

number n 2 N of execution steps), symbol-based (for explicit symbol consumption

in automata formalisms), time-based (a timed bound in discrete execution time for

execution of general purpose monitors). Based on this we can change the execution
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RMTL-
R

3 speci�cation

rtml3synth2cpprtml3synth2ocaml
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ocamlc gcc 4.7 with C++ atomics
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.c .h .mk
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RV Mon. Model

Input
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Unit Tests

Figure A.1: Tool-chain overview

of the monitor at runtime in a dynamic way (a feature provided by RTMLi b).

- Operation rules are time-triggered or event-triggered; the idea isto generate runtime

veri�ers depending of the target RTS. The modes of operation/execution are assigned

according to the RV model.

For hard RTS, we use the step-based rule combined with a time-triggered rule.Note that

there is no explicit architecture for monitoring, and di�erent RV rules produce di�erent

monitor architectures, depending on the target systems and the provided RV monitoring

model.

Synthesis Algorithm Re�nement. The evaluation algorithm proposed for RMTL-
R

3

in the Chapter 3 uses functional programming language features such aspattern matching

and higher-order functions, in particular fold operations.

Let K be a set of sequences� , � a set of logic environments � , and R � 0 the domain of a time

instant t (analogous to the model (�; �; t )). Let us �rst consider the lambda functions, as

already de�ned in the Chapter 3, such asCompute(_ ) :: (K � � � R � 0) ! � 3 ! � 3 ! B3,

Compute(: ) :: (K � � � R � 0) ! � 3 ! B3, Compute(U< ) :: (K � � � R � 0) ! R � 0 !

� 3 ! � 3 ! B3, and Compute(
R

) :: (K � � ) ! R � 0 ! R ! � 3 ! D , that evaluate

formula schemes of the form 1 _  2, :  ,  1 U<  2, and
R�  , respectively. Note that

(K � � � R � 0) is a model (consisting of a sequence inK , a logic environment in �, and

a time instant in R � 0), D the set R � 0 [ f? R g, � 3 is a set of three-valued formulas,B3 is

the set of three-valuesf tt ; � ; ?g , and B 4 is a four-valued set de�ned by B3 [ f rg, where

r is the fourth symbol of the four-valued set. Pattern matching features are currently not

included in imperative programming languages such asC++11. Henceforth, and for the

sake of compatibility with C++11, we adapt that algorithm as follows:

{ the pattern matching constructions are statically erased and fully encoded into the

generated monitors;
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{ the fold functions are encoded asiterators over the structure of traces;

{ the remaining functions are encoded asC++11lambda functions.

Pattern matching is simpli�ed over the inductive structure of t he formulas. For instance,

the formula a !
R10 b is implemented without pattern matching by composition over the

structure of the formula. For that, we need to de�ne some newC++11lambda functions

such ascomputep :: P ! (K � � � R � 0) ! B3, compute: :: ((K � � � R � 0) ! B3) !

(K � � � R � 0) ! B3; computeR :: R ! ((K � � � R � 0) ! B3) ! (K � �) ! R � 0 ! D ;

and

compute_ :: ((K � � � R � 0) ! ((K � � � R � 0) ! B3) ! B3) !

((( K � � � R � 0) ! B3) ! (K � �) ! R � 0 ! D ) !

(K � � � R � 0) ! B3:

Note that they encode the pattern matching (all required combinationsfor a given formula)

instead of acceptingRMTL-
R

3 formulas as input arguments. The generated function that

corresponds toa !
R10 b is then the lambda function

�m: compute _ (compute: (computep a))
�

computeR 10 (computep a)
�

m

where m is the model de�ned in C++11 as TraceIterator<int> iter ,

struct Environment env , and timespan t . Note that �x: fun is de�ned in C++11as

the expression[](x) f fun g.

Let us now focus on the U operator. Porting to C++11the function Compute(U< ) , re-

sponsible for the synthesis of the until operator, requires de�ning a number of auxiliary

C++11functions. As an example, the function evfold
al :: (K � � � R � 0) ! � 3 ! � 3 !

K ! B 4, as provided in the original RMTL-
R

3 evaluation algorithm, is de�ned in C++11as

shown in Listing 1. We remark that the synthesized function (evfold
al (�; �; t ) � 1 � 2 { ) is

originally de�ned by

fold
�

�v (p; (i; t 0)) ! evb
al (�; �; t 0� � ) � 1 � 2 v

�
r { ;

where � 1 and � 2 are formulas that were statically coded as theC++11lambda functions

evb
al (of which there exist as many as there are occurrences of until operators, since each

one contains di�erent formulas), { is the original trace sequence that is mapped into the

iterator iter of Listing 1, and i is the lower bound of the interval (i; t 0), � is the minimum

precision of a oat, and r is a proper mark for release if the until evaluation gives us an

unknown value, identi�ed in C++11by FV SYMBOL, respectively. The operatorsU< , < , and

duration terms
R� ' may now be fully implemented using the C++11lambda functions.
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auto eval _fold = []( struct Environment env, timespan t, TraceIterator< int > iter) > four _valued _type

{

return std::accumulate

(

iter.begin(), iter.end(), pair<four _valued _type, timespan>( FV _SYMBOL, t ),

[&env, eval _b]( const pair<four _valued _type, timespan> a, Event< int > e )

{

return make_pair( eval _b( env, a.second, a.first ), a.second + e.getTime() );

}

).first;

};

Listing 1: evfold
al synthesis in C++11

The existential operator does not need to be treated since we assume the existence of

a simpli�cation algorithm that decomposes a quanti�ed formula into a non quanti�ed

formula. The output of this tool is a monitor written in the C++11programming language

and composed by several source �les, and the input is a con�guration �le containing an

RMTL-
R

3 formula to be synthesized. Thermtld3synth synthesis tool for these operators,

written in the Ocaml programming language [The OCaml Development Team, 2013] is

fully described in [De Matos Pedro, 2018]. The reader is referred to the example in

Appendix B for further details and a worked out example.

A.1 RV Monitoring Model

In this section we describe how monitors are linked to bu�ers and tasks via the spe-

cialized RunTime Embedded Monitoring Library (RTMLib ), and then discuss how timing

guarantees are enforced in practice by the adopted hierarchy of monitors.

Linking monitors with RTMLib

Monitors are executed in a simple embedded monitoring framework which we named the

RTMLib [De Matos Pedro, 2016]. These monitors use circular bu�ers as the data structure

to hold a trace, and they have a certain periodicity. The framework ensures that monitors

retrieve events from circular bu�ers respecting their partial order, in a lock- and wait-free

manner. Note that several bu�ers are used in a composition as described in [Nelissen et al.,

2015] for the reference architecture; more details on the implementation of RTMLib can be

found in the documentation in [De Matos Pedro, 2016]. Monitors execute as higher-priority

tasks and are constantly interfering with the application. However, such interference is

predictable and constant, since each monitor can execute in constant time that depends

on the structure of the formula.1

1By constant time we mean that a monitor executes the same number of CPU cycles at each invocation.
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Figure A.2: Flow graph of the system enabled events de�ned in a time window.

Knowledge of the length of the circular bu�ers is required at compile time, and for that

we de�ne a bound over temporal formulas, allowing us to determine a map from time to

event size. The calculation of temporal bounds for formulas ofRMTL-
R

3 is then achieved

by a recursive algorithm that traverses the inductive structure of the formulas. We now

give two examples of the calculation of an upper bound for a given formula, andthe

construction of a ow graph for a given time window.

Example 20. Let us consider a trace and the formulaa U< 10 (b U< 10 c), containing

propositions a; b; c evaluated at timet = 0 . Based on the semantics of temporal operators

we achieve the timing boundst 2 ]0; 10[ and t 2 ]0; 20[, respectively. These time bounds

are intervals where the truth values resulting from the evaluation offormulas may change.

By the semantic nature of temporal operators, we know that for anyt 62]0; 10[[ ]0; 20[ the

truth value is maintained constant, which gives us the desired bound for changes of the

evaluation value.

Example 21. In order to estimate the amount of time required from the system under

observation to couple monitors in a safe manner, we can use a pessimistic approach based

on the assumption of a maximum inter-arrival time of events in the system, or we can

pre-compute the ow graph of the application. Based on these, we are able to infer how

many events will be triggered in a certain time interval. To exemplify thespeci�c case of

the latter, we de�ne a time window given by a certain formula using theprevious approach.

Then, we create a ow graph of the entire system and �x the starting point of the system

as depicted in the partial ow pattern of the events (ranging from symbol A to M) under

monitoring in the Figure A.2. From label � to � , where � corresponds to the beginning of

the execution and� corresponds to the end of the execution, we have the ow of the main

task composed by three paths (the task that manages the autopilot controller), and from

label 1 to 4, we have the optional task (a time-triggered task for device drivers execution

that need to execute at least 1 time in a second). The optional task has two times the

period of the main task. In summary, we have at most four events between� and � and

the optional task executes twice between them. The �gure also depicts the dependencies of
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events, and allows us to estimate the required relative time for someevents.

Altogether, these examples combine temporal settings of the monitors andthe system

itself: the �rst one give us the amount of time that we need to wait for a verdict (minimum

time granularity); the second one helps us to �nd the period for a monitor based on the

time behavior of the system under monitoring as well as to estimate the WCET of the

monitor (i.e, the time complexity times a constant).



Appendix B

rmtld3synth tool User's Guide

The rmtld3synth synthesis tool is able to automatically generate monitors based on

the formal speci�cations written in RMTL-
R

3. Polynomial inequalities are supported by

this formalism as well as the most common operators of temporal logics. Furthermore,

quanti�cation is also considered in the language ofRMTL-
R

3 as a means to facilitate the

decomposition of the quanti�ed formulas into several monitoring conditions.

We will now present an overview of the typical process for generating monitors for Ocaml

and C++11languages using this tool, together with a running example of a simple moni-

toring case generation. We begin by the running example, present thegenerated monitors,

and show how to con�gure the RV monitoring model to couple with the system.

Consider the formula

(a ! ((a _ b) U< 10 c)) ^
Z 10

c < 4 (B.1)

that intuitively describes that given an event a, b occurs until c and, at the same time, the

duration of b shall be less than four time units over the next 10 time units. For instance,

a trace that satis�es this formula is

(a;2); (b;2); (a; 1); (c;3); (a; 3); (c;10):

From rmtld3synth2ocaml tool, we have synthesized the formula's example into the code

of the Listing 3. For that, we have used the command in the Listing1.

./ rmtld3synth --synth - ocaml -- input - latexeq "(a \ r ighta rrow ((a \

lor b) \ unti l_ { <10} c)) \ land \ int ^{10} c < 4"

Listing 1: Utilized shell command for the Equation B.1

Next, we can also generateC++11monitors by replacing --synth-ocaml with --synth-cpp11 .

111
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The outcome is the monitor illustrated in the Listings 4 and 5. To use those monitors, we

need to de�ne a trace for Ocaml reference as in the Listing2.

module OneTrace : Trace = struct let trc = [("a " ,(0. ,2.) ) ;(" b

" ,(2. ,4.) ) ;("a " ,(4. ,5.) ) ;(" c " ,(5. ,8.) ) ;("a " ,(8. ,11. ) ) ;(" c

" ,(11. ,21.) ) ] end ;;

module MonA = Mon0 ( OneTrace ) ;;

Listing 2: Ocaml's reference code for monitor instantiation

For the Ocaml language, experimental integration with RTMLib is available. However, we

do not describe it here, but refer the reader for the examples inrmtld3synth 's repository 1.

For C++11we will now briey describe how it is performed. Given the verbosity of the

generated code, we have removed the conjunction including the duration inequality, and

used instead the simple formula
Z 10

c < 4:

Now, we describe the settings for constructing theRV monitoring model.

Overview of the con�guration settings. The settings for rmtld3synth tool are

de�ned using the syntax

(<setting_id> <bool_type | integer_type | string_type>)

where | distinguishes between the supported types of arguments such as Boolean, integer

or string, and setting id is a string containing the name of the setting to which values

are assigned. An example of a set of possible settings for the tool is given in the �rst

�ve lines of Listing 6. We now briey describe the purpose of each of the setting entries

present in Listing 6:

- gen tests sets the automatic generations of test cases (to be used as a demo in the

described illustration below).

- gen concurrency tests constructs tests for testing lock- and wait-free monitors

executing concurrently.

- gen unit tests constructs tests for C++11synthesis using the Ocaml source code

as an oracle.

1Available at https://github.com/anmaped/rmtld3synth/tree/v0.3-alpha , version 0.3-alpha.
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open L i s t

open Rmtld3

module type Trace = s i g val t r c : t r a c e end

module Mon0 ( T : Trace ) = st ruc t

l e t c o m p u t e u l e s s gamma f 1 f 2 k u t =

l e t m = ( k , u , t ) in

l e t e v a l i b1 b2 =

i f b2 <> F a l s e then b 3 t o b 4 b2 e l s e i f b1 <> True && b2 = F a l s e then b 3 t o b 4 b1 e l s e

Symbol

in

l e t e v a l b ( k , u , t ) f 1 f 2 v =

i f v <> Symbol then v e l s e e v a l i ( f 1 k u t ) ( f 2 k u t )

in

l e t e v a l f o l d ( k , u , t ) f 1 f 2 x =

f s t ( f o l d l e f t ( fun ( v , t ' ) ( prop , ( i i 1 , i i 2 ) ) > ( e v a l b ( k , u , t ' ) f 1 f 2 v , i i 2 ) ) ( Symbol , t )

x )

in

i f not (gamma > = 0 . ) then

r a i s e ( F a i l u r e "Gamma o f U o p e r a t o r i s a non n e g a t i v e v a l u e " )

e l s e

beg in

l e t k , , t = m in

l e t subk = sub k m gamma in

l e t e v a l c = e v a l f o l d m f 1 f 2 subk in

i f e v a l c = Symbol then

i f k . d u r a t i o n o f t r a c e < = ( t +. gamma) then Unknown e l s e ( F a l s e ) e l s e b 4 t o b 3 e v a l c

end

l e t compute tm dura t ion tm fm k u t =

l e t dt = ( t , tm k u t ) in

l e t i n d i c a t o r f u n c t i o n ( k , u ) t ph i = i f fm k u t = True then 1 . e l s e 0 . in

l e t r iemann sum m dt ( i , i ' ) ph i =

( � d t =( t , t ' ) and t i n ] i , i ' ] o r t ' i n ] i , i ' ] � )

c o u n t d u r a t i o n := ! c o u n t d u r a t i o n + 1 ;

l e t t , t ' = dt in

i f i < = t && t < i ' then

( � l o w e r bound � )

( i ' . t ) � . ( i n d i c a t o r f u n c t i o n m t ph i )

e l s e (

i f i < = t ' && t ' < i ' then

( � upper bound � )

( t ' . i ) � . ( i n d i c a t o r f u n c t i o n m t ' ph i )

e l s e

( i ' . i ) � . ( i n d i c a t o r f u n c t i o n m i ph i )

) in

l e t e v a l e t a m dt ph i x = f o l d l e f t ( fun s ( prop , ( i , t ' ) ) > ( r iemann sum

m dt ( i , t ' ) ph i ) +. s ) 0 . x in

l e t t , t ' = dt in

e v a l e t a ( k , u ) dt fm ( sub k ( k , u , t ) t ' )

l e t env = env i ronment T . t r c

l e t l g e n v = l o g i c a l e n v i r o n m e n t

l e t t = 0 .

l e t mon = ( fun k s t > b3 no t ( ( fun k s t > b 3 o r ( ( fun k s t > b3 no t ( ( fun k s t > b 3 o r

( ( fun k s t > b3 no t ( ( fun k s t > k . e v a l u a t e k . t r a c e "a" t ) k s t ) ) k s t ) ( (

c o m p u t e u l e s s 1 0 . ( fun k s t > b 3 o r ( ( fun k s t > k . e v a l u a t e k . t r a c e "a" t ) k s t ) ( (

fun k s t > k . e v a l u a t e k . t r a c e "b" t ) k s t ) ) ( fun k s t > k . e v a l u a t e k . t r a c e " c " t ) ) k

s t ) ) k s t ) ) k s t ) ( ( fun k s t > b3 no t ( ( fun k s t > b 3 l e s s t h a n ( (

compute tm dura t ion ( fun k s t > 1 0 . ) ( fun k s t > b 3 o r ( ( fun k s t > k . e v a l u a t e k .

t r a c e " c " t ) k s t ) ( ( fun k s t > k . e v a l u a t e k . t r a c e "d" t ) k s t ) ) ) k s t ) ( ( fun k s t

> 4 . ) k s t ) ) k s t ) ) k s t ) ) k s t ) ) env l g e n v t

end

Listing 3: Generated Ocaml monitor
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#i f n d e f MON0 COMPUTE H

#def ine MON0 COMPUTE H

#include " rmt ld3 . h"

auto mon0 compute = [ ] ( s t ruc t Environment &env , t imespan t ) mutable > t h r e e v a l u e d t y p e f

return [ ] ( s t ruc t Environment env , t imespan t ) > t h r e e v a l u e d t y p e f auto t r 1 = [ ] ( s t ruc t

Environment env , t imespan t ) > d u r a t i o n f

auto e v a l e t a = [ ] ( s t ruc t Environment env , t imespan t , t imespan t upper , T r a c e I t e r a t o r < in t >

i t e r ) > d u r a t i o n

f

auto i n d i c a t o r f u n c t i o n = [ ] ( s t ruc t Environment env , t imespan t ) > d u r a t i o n f

auto fo rmu la = [ ] ( s t ruc t Environment &env , t imespan t ) mutable > t h r e e v a l u e d t y p e f auto

s f 1 = [ ] ( s t ruc t Environment &env , t imespan t ) mutable > t h r e e v a l u e d t y p e f return

env . e v a l u a t e ( env , 2 , t ) ; g ( env , t ) ; auto s f 2 = [ ] ( s t ruc t Environment &env , t imespan t )

mutable > t h r e e v a l u e d t y p e f return env . e v a l u a t e ( env , 1 , t ) ; g ( env , t ) ; return b 3 o r

( s f 1 , s f 2 ) ; g ( env , t ) ;

return ( fo rmu la == T TRUE) ? s td : : make pa i r ( 1 , f a l s e ) : ( ( fo rmu la == T FALSE) ? s td : :

make pa i r ( 0 , f a l s e ) : s t d : : make pa i r ( 0 , true ) ) ;

g ;

auto lower = i t e r . getLowerAbsoluteTime ( ) ;

auto upper = i t e r . getUpperAbsoluteTime ( ) ;

t imespan v a l 1 = ( t == lower ) ? 0 : t l ower ;

t imespan v a l 2 = ( t u p p e r == upper ) ? 0 : t u p p e r upper ;

auto cum = lower ;

return s td : : accumula te (

i t e r . beg in ( ) ,

i t e r . end ( ) ,

s t d : : make pa i r ( make dura t ion ( 0 , f a l s e ) , ( t imespan ) l ower ) , ( d u r a t i o n s t a r t s a t 0 )

[&env , va l1 , va l2 , &cum , t , t upper , i n d i c a t o r f u n c t i o n ] ( const s t d : : pa i r < du ra t i on ,

t imespan > p , Event < in t > e )

f

auto d = p . f i r s t ;

auto t b e g i n = cum ;

auto t e n d = t b e g i n + e . getTime ( ) ;

cum = t e n d ;

auto cond1 = t b e g i n < = t && t < t e n d ;

auto cond2 = t b e g i n < = t u p p e r && t u p p e r < t e n d ;

auto va l x = ( ( cond1 ) ? v a l 1 : 0 ) + ( ( cond2 ) ? v a l 2 : 0 ) ;

auto x = i n d i c a t o r f u n c t i o n ( env , p . second ) ;

return s td : : make pa i r ( make dura t ion ( d . f i r s t + ( x . f i r s t � ( e . getTime ( ) va l x ) ) , d .

second j j x . second ) , p . second + e . getTime ( ) ) ;

g

) . f i r s t ;

g ;

auto sub k = [ ] ( s t ruc t Environment env , t imespan t , t imespan t u p p e r ) > T r a c e I t e r a t o r < in t >

f

T r a c e I t e r a t o r < in t > i t e r = T r a c e I t e r a t o r < in t > ( env . t r a c e , env . s t a t e . f i r s t , 0 , env . s t a t e .

f i r s t , env . s t a t e . second , 0 , env . s t a t e . second ) ;

// t o use t h e i t e r a t o r f o r b o t h s e a r c h e s we use one r e f e r e n c e

T r a c e I t e r a t o r < in t > &i t = i t e r ;

ASSERT RMTLD3( t == i t e r . getLowerAbsoluteTime ( ) ) ;

auto lower = env . t r a c e > sea rch IndexFo rwardUn t i l ( i t , t ) ;

auto upper = env . t r a c e > sea rch IndexFo rwa rdUn t i l ( i t , t u p p e r 1 ) ;

i t . setBound ( lower , upper ) ;

return i t ;

g ;

auto t u p p e r = t + make dura t ion ( 1 0 . , f a l s e ) . f i r s t ;

return e v a l e t a ( env , t , t upper , sub k ( env , t , t u p p e r ) ) ;

g ( env , t ) ;

auto t r 2 = make dura t ion ( 4 . , f a l s e ) ;

return b 3 l e s s t h a n ( t r1 , t r 2 ) ;

g ( env , t ) ; g ;

#endi f // MON0 COMPUTE H

Listing 4: Generated C++11monitor
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#i f n d e f MONITOR MON0 H

#def ine MONITOR MON0 H

#include " Rmt ld3 reader . h"

#include "RTML monitor . h"

#include "mon0 compute . h"

#include "mon1 . h"

c l a s s Mon0 : publ ic RTML monitor f

pr ivate :

RMTLD3 reader < in t > t r a c e = RMTLD3 reader < in t > ( b u f f e r m o n 1 . g e t B u f f e r ( ) , 0 . ) ;

s t ruc t Environment env ;

protected :

void run ( ) f

t h r e e v a l u e d t y p e o u t = mon0 compute ( env , 0 ) ;

DEBUG RTEMLD3( " V e r e d i c t :%d n n" , o u t ) ;

g

publ ic :

Mon0( u s e c o n d s t p ) : RTML monitor ( p , SCHED FIFO, 5 0 ) , env ( s td : : make pa i r ( 0 , 0 ) , &t r a c e ,

o b s e r v a t i o n ) fg

g ;

#endi f //MONITOR MON0 H

Listing 5: Generated C++11monitor header

- buffer size sets the static size of the bu�er to be used (rmtld3synth tool can

change it if required by some constraints).

- minimuminter arrival time establishes the minimum inter-arrival time that the

events can have. It is a very pessimistic setting but providessome information for

static checking.

- maximumperiod sets the maximum interval between two consecutive releases of a

task's job. It has a correlation between the periodic monitor and the minimum

inter-arrival time. It provides static checks according to the size of time-stamps of

events.

- event type provides the type for dealing with events (commonly is a class parame-

ter).

- event subtype provides the type for the event data. In that case, it is an identi�er

that can distinct 255 events. However, if more events are required, the type should

be modi�ed to *uint32 t* or greater. The number of di�erent events versus the

available size for the identi�er is also statically checked.

- cluster nameidenti�es the set of monitors. It acts as a label for grouping monitor

speci�cations.

Writing formulas in RMTLD3 The formulas `m simple` and `mmorecomplex` fol-

low the same syntax de�ned in this section. For setting a periodic monitor, we use
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(gen _tests true)

(minimum _inter _arrival _time 102)

(maximum _period 2000000)

(event _subtype uint _8)

(cluster _name monitor _set1)

(m_simple 1000000 (Or (Until 200000 (Prop A) (Prop C)) (Prop B)))

(m_morecomplex 500000 (Or (Until 200000 (Prop set _off) (Or (Until 200 (Prop A) (Prop C)) (Prop B))) (

Prop B)))

Listing 6: The default con�guration �le.
type var id = string with sexp

type prop = string with sexp

type time = oat with sexp

type value = oat with sexp

type formula =

True of unit

j Prop of prop

j Not of formula

j Or of formula � formula

j Until of time � formula � formula

j Exists of var id � formula

j LessThan of term � term

and term =

Constant of value

j Variable of var id

j FPlus of term � term

j FTimes of term � term

j Duration of term � formula

with sexp

type rmtld3 fm = formula with sexp

type rmtld3 tm = term with sexp

type tm = rmtld3 tm with sexp

type fm = rmtld3 fm with sexp

Listing 7: The inductive type.

(m usecase1< period> (< monitor sexpr> ) ). They are formatted as a symbolic expres-

sion. The type in Ocaml is according to the Listing 7.



Appendix C

RTMLib

The RunTime Embedded Monitoring Library (RTMLib) is a library that has been devel-

oped with the purpose of runtime monitoring of real-time embedded systems. RTMLib

is based on lock-free ring bu�er FIFO queues for managing the information from events

that are registered in bu�ers. The library is supported in both ARM and x86 platforms.

E�cient architectures can be developed based on lock-free enqueue and dequeue primitives

over trace sequences containing time stamped events. Synchronization primitives for

dequeueing operations allow di�erent readers to progress synchronously over the target

instantiated bu�ers. Bu�ers are implemented with di�erent tim estamps, depending of the

architecture. For ARM it uses 32bit values to save memory, and for x86 it uses 64bit

timestamps.

C.1 Usage of RTMLib

C.1.1 Instantiating bu�ers

Bu�ers are resources shared between theSUO and the monitors. Bu�ers contain time-

stamped event sequences that inform monitors of the changes in the state of the SUO.

RTMLib requires at least one global bu�er available for the instrumentat ion of the SUO,

and that at the linking phase of the compilation shall provide the address of the bu�er

for external monitors to make use of it. We de�ne a "interface.h" header �le that serves

as the interface header to be used by both theSUO and the monitors. The code of the

Listing 1 exempli�es this requirement.

Note that this code, uint8 t could be used to represent events identi�ed as integers

ranging from 0 to 255 only. Other types such asuint16 t and uint32 t could also be

117
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#include "RTEML_buffer.h"

extern void __start _periodic _monitors();

// defining one buffer with size 100 of type uint8 _t

extern RTEML_buffer<uint8 _t, 100> __buffer _monitor _set1;

#define EV_C 3

#define EV_A 4

#define EV_set _off 5

#define EV_B 1

Listing 1: interface.h sample �le.
#include "M_morecomplex.h"

#include "M_simple.h"

#include "RTEML_buffer.h"

RTEML_buffer<uint8 _t, 100> __buffer _monitor _set1;

M_morecomplex mon _m_morecomplex( __buffer _monitor _set1, 500000);

M_simple mon _m_simple( __buffer _monitor _set1, 1000000);

void __start _periodic _monitors()

{

if (mon_m_morecomplex.enable()) {::printf("ERROR\n");}

if (mon_m_simple.enable()) {::printf("ERROR\n");}

}

Listing 2: interface.cpp sample �le.

used to increase the number of di�erent kinds of events that can be considered. However,

strings and classes are discouraged as they bring extra memory space overhead that, in

the extreme, can compromise the whole implementation of adding monitors into the target

SUO1.

The instantiation of bu�ers and monitors together shall follow along the li nes of the pro-

gramming structure used in the code listed below. Note, however,that is not mandatory

to instantiate the bu�er with the monitors as the Listing 2 describes. TheMsimple.h

header de�nes a monitor according to what is described in the next paragraph. The

Mmorecomplex.h header de�nes another monitor that shares the bu�er buffer monitor set1 ,

and start periodic monitors is the procedure used to initialize both monitors.

C.1.2 Developing a simple Monitor

We now show how to construct a simple monitor based onRTEMLmonitor class. First,

the RTEMLmonitor class enables monitors to execute at a certain periodicity. The class

is initialized using some arguments such as the period, the scheduler policy, and the

priority. The scheduler policies and priorities are commonly OS dependent. For instance,

in Windows Embedded 10 x86, we only have available theSCHEDFIFOpolicy in pthreads-

1The natural alternative is to map these events in a hash table to save memory space.



APPENDIX C. RTMLIB 119

#include "interface.h"

class M_simple : public RTEML_monitor {

private :

RTEML_reader< int > __reader = RTEML _reader< int >( __buffer _monitor _set1.getBuffer());

protected :

void run(){

::printf("Body of the monitor.");

}

public :

M_simple(useconds _t p): RTEML _monitor(p,SCHED _FIFO,5) {}

};

Listing 3: monitor.h sample �le.

win32, and priorities can be negative and range from -15 (lowest) to 15 (highest). Zero is

the normal priority.

For fully Posix compliant OS, the priorities are non negative and severalpolicies such as

SCHEDRR(round robin) and SCHEDOTHERexist. In case of NuttX OS, we have the same

policies. The classMsimple is de�ned in the Listing 3. This monitor will display the

string "Body of the monitor." several times with a period of p useconds. Lets replace the

`run` procedure with a consumer procedure as exempli�ed in theparagraph below.

Consumer procedure. The consumer process is exempli�ed using one lambda function.

It �ts the required interface de�ned in RTEMLmonitor for the procedurerun . The body of

the function initializes an object of type RTEMLreader<int> that will be used as the con-

sumer for the lock-free bu�er. The procedure

dequeue() peek a tuple containing an event of typeEvent<int> , where the template

typename is the type of the expected identi�er of the event, and a time-stamp. Note

that the dequeue is local to the reader, does not a�ect the global bu�er, and can be

synchronized using a certain time-stamp. However, to get a global dequeue of a certain

event, we shall share the same reader among the tasks. The consumer is de�ned in the

Listing 4, where the variable tmpEvent stores the dequeued event, where the methods

getTime() and getData() return the time-stamp and the event identi�er, respectively.

Producer procedure for Monitors Lets construct a producer for the lock-free ring

bu�ers. First, we initialize the object writer of the type RTEMLwriter<int> . Then,

we enqueue a value of typeint to the bu�er that accepts events of the type Event<int> ,

and �nally print the bu�er to the stdout for debugging purposes. The code is described

in the Listing 5.
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auto consumer = []( void � ) > void �

{

static RTEML_reader< int > __reader = RTEML _reader< int >( __buffer _monitor _set1.getBuffer());

Event< int > tmpEvent;

std::pair<state _rd _t,Event< int > &> rd _tuple = __reader.dequeue();

tmpEvent = rd _tuple.second;

::printf("event _out: %lu, %d code: %d\n", tmpEvent.getTime(), tmpEvent.getData(), rd _tuple.first);

return NULL;

};

Listing 4: Example of a consumer using lambda functions.
auto producer = []( void � ) > void �

{

static RTEML_writer< int > __writer = RTEML _writer< int >( __buffer _monitor _set1.getBuffer());

__writer.enqueue(1);

__buffer _monitor _set1.debug();

return NULL;

};

__task producer _A = __task(producer, 0, SCHED _FIFO, 100000);

Listing 5: Example of a producer using lambda functions.

Note that task is an helper used to construct the data descriptor of one task. It inputs

the function pointer, the priority, the scheduler policy, and the period. 100000 means 1
10

seconds.



Appendix D

Inequality Translation Correctness

Proofs

The following proofs are related with the Lemmas5 and 6 that were enunciated in the

Chapter 3. Let us now introduce some required de�nitions and one auxiliar Lemma11

before introducing the main proofs. Let us assume in this appendix that every formula � i

is in DNF3.

De�nition 15. Let f � (X; Y; Z ) be a shorthand for (X ! Y ) ^ (: X ! Z ), where X , Y

and Z are formulas in RMTL-
R

3.

Lemma 11. Let � be a �nite formula in RMTL-
R

3 containing propositions and inequalities

composed by rigid terms, andn > 0 the number of inequalities of� with n 2 N. Then,

there is an equivalent formula resulting from the application of both A4 and A5 at most

2n � 1 times, and containing 2n disjunctions.

Proof of Lemma 11. Straightforward induction over n. Let b be the function recursively

de�ned by f (m) = 1 + f (m � 1) + f (m � 1) with f (0) = 0, where f (m) denotes the

number of resulting disjunctions, and m = dlog2 xe, where x is the number of applied

axioms. Note that this function is structurally similar to the shape of A 4 and A5 after

applying the simpli�cation of implications to DNF3 of the form (X ^ � 1) _ (Y ^ � 2), where

� 1 and � 2 are arbitrary sub-formulas that can be �nitely expanded. We want to show that

f (n) + 1 = 2 n .

Base case:f (1) + 1 = 2 1.

Inductive case: f (n) + 1 = 2 n

121



APPENDIX D. INEQUALITY TRANSLATION CORRECTNESS PROOFS 122

f (n) = 1 + f (n � 1) + f (n � 1)

f (n) = 2 n� 1 + 2 n� 1 � 1

f (n) = 2 1 � 2n� 1 � 1

f (n) = 2 n � 1

f (n) + 1 = 2 n

�

Lemma 12. Let � be a �nite formula in RMTL-
R

3 containing inequalities, and n > 0 the

number of inequalities of� with n 2 N. There is an equivalent formula resulting from the

application of both A6 and A7 at most n times and contain m disjunctions.

Let us now recall the Lemma5.

Lemma 5. Let � 1; � 2 be two formulas in RMTL-
R

3 and consider the formula � 1 U � 2.

Then, there exists an equivalent formula where every until operator is free of inequalities

or only contains equalities of the formx =
R� ' .

Proof of Lemma 5. By induction along the structure of the formulas � 1 and � 2.

- Base cases:

1. � 1; � 2 do not contain inequalities:

The proof is straightforward. First, we apply A 4 and we get� r ! � 1 _ � 3 U � 2

or : � r ! � 1 U � 2 and � 3 equals to false. Since both disjunctions are equal, we

get � 1 U � 2, and by de�nition that f<
1 (� 2) := true , f<

1 (� 1) := true , f6<
1 (� 1) := � 1,

and f6<
1 (� 2) := � 2. Therefore, Property 1 holds with true ^ true ^ � 1 U � 2 equal

to X 1.

2. � 1; � 2 contain inequalities involving propositions:

Let � 1 be equal to (a1 ^ � � � ^ pa;1) _ � � � _ (al ^ � � � ^ pa;l ), and � 2 equal to

(b1 ^ � � � ^ pb;1) _ � � � _ (bl ^ � � � ^ pb;l), and ai ,bi be inequalities composed by rigid

terms with i; j 2 N.

For the sake of simplicity, we denote� a1 := ( � � � ^ pa;1) _ � � � _ (al ^ � � � ^ pa;l ),

� a2 := � � � _ (al ^ � � � ^ pa;l ), � b1 := ( � � � ^ pb;1) _ � � � _ (bl ^ � � � ^ pb;l), and

� b2 := � � � _ (bl ^ � � � ^ pb;l).
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Applying A 4 and A5 for the formulas � 1 and � 2, we have the formula

(a1 ^ b1 ^ � a1 U � b1) _

(a1 ^ : b1 ^ � a1 U � b2) _

(: a1 ^ b1 ^ � a2 U � b1) _

(: a1 ^ : b1 ^ � a2 U � b2):

From Lemma 11 we know that there are so many disjunctions as the 2n , where

n is the number of inequalities contained jointly in � 1 and � 2.

From the shape of A4 and A5, we see that at most four formulas� 1, � 2, � 3,

and � r are involved. For A4, we get by de�nition ( � m1 ^ � m2 U � m3), where

� m1 := f<
i (� 3)^ f<

i (� 1_(� r ^ � 2)), � m2 := f6<
i (� 1_(� r ^ � 2)), and � m3 := f6<

i (� 3).

For A5 the same scheme is followed. Both resulting formulas (� m1 ^ � m2 U � m3)

and � m1 U (� m2 ^ � m3) indicate that three formulas � m1; � m2; � m3 are required.

Since for all i such that 0 < i � n there exist functions f<
i (� 1), f6<

i (� 2), f6<
i (� 1),

and f6<
i (� 2) that map inequalities for each disjunction, then Property 1 holds

for n = m.

For the cases of� 1 or � 2 containing exclusively inequalities with propositions

the proof is similar.

3. � 1; � 2 contain inequalities with duration terms:

The proof begins as similar as the proof above and then proceeds by applying

Lemma 6 for each duration term.

For the cases where� 1 or � 2 contain exclusively inequalities with duration

terms, the proof is similar to this case.

- Inductive cases : For all formulas  1 and  2, Property 1 holds.

1. case� 1 has inequalities:

(a) containing temporal operators:

Since� 1 is a formula in DNF3 containing temporal operators and inequali-

ties of the form

�
W 1 ^ Z 1 U � 6<

�
_

�
: W 1 ^ R1 U � 6<

�
_ � � �

_ (W n ^ Z n U � 6< ) _ (: W n ^ Rn U � 6< )

containing an inequality formula W i of the form T1 < T 2 ^� � �^ T j < T j +1 ,

and two RMTL-
R

3 formulas Z i ,Ri in DNF3 free of inequalities before an until

operator occur (i.e., the new until operators can contain inequalities). Z i

and Ri are of the form

�
S1

1 U S1
2 ^ � � � ^ S1

m U S1
m

�
_ � � � _ (Sn

1 U Sn
2 ^ � � � ^ Sn

m U Sn
m ) ;
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where S is a RMTL-
R

3 formula in DNF3.

From the inductive hypothesis, we have that any sub-formulaSj
i U Sj

i has

an equivalent formula where temporal operators are free of inequalitiesand

this formula is a RMTL-
R

3 formula in DNF3. Therefore, the formula may

contain inequalities inner the until operator

Z i U � 6< :

Since there is no propositions, the replacement of the sub-formulasis straight-

forward. Applying the axiom A 4, we have

F :=
�
W 1 ^ Z 1�

_
�
: W 1 ^ R1�

_ � � �

_ (W n ^ Z n ) _ (: W n ^ Rn )

and

�
W 1 ^ F U � 6<

�
_

�
: W 1 ^ F � U � 6<

�
_ � � �

_ (W n ^ F U � 6< ) _ (: W n ^ F � U � 6< ) :

Therefore, given that a conjunction/disjunction of a DNF3 formula with

other non-DNF3 formula is a formula in DNF3. Hence, the Property 1

holds.

(b) proposition and temporal operator free: The proof follows by the applica-

tion of axiom A4.

2. case� 2 has inequalities. This case is similar to previous one, but know using

axiom A5 instead of A4.

3. case� 1 and � 2 have inequalities. The proof follows in a similar way to the

previous two cases.

�

Let us now recall the Lemma6.

Lemma 6. Let � be a formula in RMTL-
R

3, and � x ; � two terms, and consider the formula

� �
R� x � . Then, there exists an equivalent formula where any duration term is free of

inequalities, or only contains equalities of the formx =
R� � .

Proof of Lemma 6. By induction over the structure of the formula � and the structure of

the term � x .

- Base cases:
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1. � does not contain any inequality:

(a) � x does not contain either logic variables or duration terms: the proof is

straightforward.

(b) � x does not contain duration terms: the proof is straightforward since� x

is a rigid term.

2. � contains inequalities without until operators, and � x does not contain either

logic variables or duration terms: Since there exists no terms that admit sub-

formulas, any atom X i;j of a formula � of the form

(X 1;1 ^ � � � ^ X 1;m ) _ � � � _ (X n;1 ^ � � � ^ X n;m ) ;

where 0< i � n and 0 < j � m, can only be a relation formula or a proposition.

From the Axiom 7, we have

� �
Z � x

(X 1;1 ^ � � � ^ X 1;m ) +
Z � x

(� � � + ( X n;1 ^ � � � ^ X n;m )) �
Z � x

((X 1;1 ^ � � � ^ X 1;m ) ^ � � � _ (X n;1 ^ � � � ^ X n;m )) :

Continuing applying Axiom 7 until no disjunctions are left, we have a formula

where the duration terms may only contain conjunctions of relation formulas

and propositions. Then, we have

� �
Z � x

(X 1;1 ^ � � � ^ X 1;m ) + � � � +
Z � x

(X n;1 ^ � � � ^ X n;m )

�
� Z � x

((X 1;1 ^ � � � ^ X 1;m ) ^ (X n;1 ^ � � � ^ X n;m )) + : : :
�

Replacing each duration term by a logic variable, we get

� � (y1;1 + � � � + ym;1) � (y1;2 + : : :) :

Now, applying Axiom 6 for each resulting duration term, we obtain a formula

where inequalities are free of occurrences of the duration term. The resulting

formula is of the form

f d( n )

�
(y1;1; : : : ; ym;1;); f �

s( � n
1 )

; (m; 1)
�

^ f d( n )

�
y1;2; f �

s( � n
2 )

; (1; 2)
�

^ � � �

Hence, Property 2 holds.

3. � contains inequalities with until formulas and � x does not contain either logic

variables or duration terms: The proof structure is similar to the previous case,

and then follows from Lemma5.

- Inductive cases : For all  ; r such that � �
Rr  , the Property 2 is true.
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1. � contains duration terms and � x is a rigid term containing only constants or

one logic variable:

We assume� is of the form (X 1;1 ^ � � � ^ X 1;m ) _ � � � _ (X n;1 ^ � � � ^ X n;m ) ;

where any atom X i;j , 0 < i � n and 0 < j � m may contain a duration term.

Applying the inductive hypothesis for each atom X i;j we have that

E := � � � y1;1 � � 1;1 + � � � + yn;m � � n;m

and

E ^ Dn ;

which is a conjuntion of an inequality bounded by � � and a disjunctive formula

Dn containing several equalities of the form

W 1;1 ! y1;1 =
Z � x

Z 1;1 ^ : W 1;1 ! y1;1 = 0 ^ � � �

^ W n;m ! yn;m =
Z � x

Z n;m ^ : W n;m ! yn;m = 0 ;

whereW atoms are conjunctions of inequalities. Simplifying we get the formula

�
E ^ W 1;1 ^ y1;1 =

Z � x

Z 1;1
�

_
�
E ^ : W 1;1 ^ y1;1 = 0

�
_ � � � :

Again applying Axiom 7 for the overall formula � �
R� x � such that there is no

disjunctions over it, we have

� �
Z � x

��
E ^ W 1;1 ^ y1;1 =

Z � x

Z 1;1
�

_
�
E ^ : W 1;1 ^ y1;1 = 0

�
^ � � � ^ X 1;m

�
+ � � � :

By applying Axiom 6, we get E and W free of duration terms. Hence, Prop-

erty 2 holds.

2. � does not contains inequalities and� x contains duration terms:

We assume� x of the form x1 � � 1 + � � � + xn � � n where � i is replaced by a

expression of the formyi; 1 � � i; 1+ � � � + yi;n � � i;m and so on replacing them until

no logic variables are remaining. Then, we could simplify it by simplyreplacing

the whole expression with a fresh logic variable using the Axiom3. Then, we

proceed with the same steps of the inductive case1. Hence, Property 2 holds.

�
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D.1 Soundness proofs for axioms

Let us now recall the introduced axioms.

A 1. � 1 � min
x

� < � 2 () (8y y < x ! : � [y=x]) ^ � 1 � x < � 2 ^ � .

A 2. � 1 � max
x

� < � 2 () (8y y > x ! : � [y=x]) ^ � 1 � x < � 2 ^ � .

A 3.
R� 3 � 1 � � 1 � � 2 () x = � 3 ^

Rx � 1 � � 1 � � 2

A 4. � 1 _ (� r ^ � 2) U � 3 () (� r ! � 1 _ � 2 U � 3) ^ (: � r ! � 1 U � 3)

A 5. � 1 U (� r ^ � 2) _ � 3 () (� r ! � 1 U � 2 _ � 3) ^ (: � r ! � 1 U � 3)

A 6.
Rr � r ^ � � � ()

�
� r ^

Rr � � �
�

_
�
: � r ^

Rr � = 0
�

A 7. �
R� � 1 _ � 2 =

R� � 1 +
R� � 2 �

R� � 1 ^ � 2

We have to prove the soundness of each one of the axioms, which means checking the

validity of each axiom. The soundness proof of A3 is straightforward since it only replaces

the term with a fresh variable. The soundness proof of A7 follows immediately from the

semantics.

Lemma 7. The axiom A4 is sound.

Proof. The proof follows directly from the de�nition of the semantic inter pretation of

RMTL-
R

3 formulas. �

Lemma 8. The axiom A5 is sound.

Proof. The proof follows directly from the de�nition of the semantic inter pretation of

RMTL-
R

3 formulas. �

D.2 Application Examples

Example 22 (Duration term example) . It illustrates for a speci�c case how simpli�cation

is done.

1. x <
Rx+1 (P ^ x < 10)

f replace duration term by yg

2. x < y ^ 0 � y � x + 1

f apply weaker inequality forP ^ x < 10 g
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3. x < y ^ 0 � y � x + 1^
�

(x < 10) !
�

0 �
Rx+1 P � x + 1

��
^

(: (x < 10) ! y = 0)

f replace new duration term byzg

4. x < y ^ 0 � y � x + 1^

((x < 10) ! (0 � z � x + 1)) ^

: (x < 10) ! y = 0

f apply CAD g

5. y = 0 ^ (z = 0 _ (0 � z � x + 1))) _ (0 < y � x + 1 ^ 0 � z � x + 1) for x 2 [� 1; 0[,

and (x < y � x + 1 ^ 0 � z � x + 1) for x 2 [0; 10[

f replace y and z by
Rx+1 P g

6.
Rx+1 P = 0 _ 0 <

Rx+1 P � x + 1 for x 2 [� 1; 0[,

x <
Rx+1 P � x + 1 for x 2 [0; 10[, and

� otherwise

f simplify
Rx+1 P � x + 1 g

7. 0 �
Rx+1 P for x 2 [� 1; 0[,

x <
Rx+1 P for x 2 [0; 10[, and

� otherwise

Now, we have that8x; x <
Rx+1 (P ^ x < 10) is false, and 9x; x <

Rx+1 (P ^ x < 10) is

true, since there is a valuex = � 1 where
Rx+1 P = 0 .

After simplifying 8x; (0 � x < 10) ! x <
Rx+1 (P ^ x < 10), we have8x; (0 � x < 10) !

x <
Rx+1 P.



Bibliography

Chris Allan, Pavel Avgustinov, Aske Simon Christensen, Laurie Hendren, Sascha Kuzins,

Ond�rej Lhot�ak, Oege de Moor, Damien Sereni, Ganesh Sittampalam, and Julian Tibble.

Adding trace matching with free variables to aspectj. SIGPLAN Not. , 40(10):345{364,

October 2005. ISSN 0362-1340. doi: 10.1145/1103845.1094839. URLhttp://doi.acm.

org/10.1145/1103845.1094839 .

Jos�e Bacelar Almeida, Maria Jo~ao Frade, Jorge Sousa Pinto, and Sim~ao Melo de Sousa.

Rigorous Software Development - An Introduction to Program Veri�cati on. Under-

graduate Topics in Computer Science. Springer, 2011. ISBN 978-0-85729-017-5. doi:

10.1007/978-0-85729-018-2. URLhttps://doi.org/10.1007/978-0-85729-018-2 .

Bowen Alpern and Fred B. Schneider. Recognizing safety and liveness. Distributed

Computing, 2(3):117{126, 1987. doi: 10.1007/BF01782772. URLhttps://doi.org/

10.1007/BF01782772.

R. Alur and T.A. Henzinger. Logics and models of real time: A survey. InProceedings of

the Real-Time: Theory in Practice, REX Workshop, pages 74{106, London, UK, UK,

1992a. Springer-Verlag. ISBN 3-540-55564-1. URLhttp://dl.acm.org/citation.

cfm?id=648143.749966.

Rajeev Alur and David L. Dill. A theory of timed automata. Theor. Comput. Sci., 126(2):

183{235, 1994. doi: 10.1016/0304-3975(94)90010-8. URLhttps://doi.org/10.1016/

0304-3975(94)90010-8 .

Rajeev Alur and Thomas A. Henzinger. Back to the future: Towards a theory of timed

regular languages. In33rd Annual Symposium on Foundations of Computer Science,

Pittsburgh, Pennsylvania, USA, 24-27 October 1992, pages 177{186, 1992b. doi: 10.

1109/SFCS.1992.267774. URLhttps://doi.org/10.1109/SFCS.1992.267774 .

Rajeev Alur and Thomas A. Henzinger. Real-time logics: Complexity and expressiveness.

Inf. Comput. , 104(1):35{77, 1993. doi: 10.1006/inco.1993.1025. URLhttps://doi.

org/10.1006/inco.1993.1025 .

129



BIBLIOGRAPHY 130

Rajeev Alur and Thomas A. Henzinger. A really temporal logic. J. ACM , 41(1):181{

204, 1994. doi: 10.1145/174644.174651. URLhttp://doi.acm.org/10.1145/174644.

174651.

Rajeev Alur, Costas Courcoubetis, and David L. Dill. Model-checking in dense real-

time. Inf. Comput. , 104(1):2{34, 1993. doi: 10.1006/inco.1993.1024. URLhttps:

//doi.org/10.1006/inco.1993.1024 .

Rajeev Alur, Tom�as Feder, and Thomas A. Henzinger. The bene�ts of relaxing punctuality.

J. ACM , 43(1):116{146, January 1996. ISSN 0004-5411. doi: 10.1145/227595.227602.

URL http://doi.acm.org/10.1145/227595.227602 .

Rajeev Alur, Limor Fix, and Thomas A. Henzinger. Event-clock automata: A deter-

minizable class of timed automata. Theor. Comput. Sci., 211(1-2):253{273, 1999. doi:

10.1016/S0304-3975(97)00173-4. URLhttps://doi.org/10.1016/S0304-3975(97)

00173-4.

Miriam C. Bergue Alves, Doron Drusinsky, J. Bret Michael, and Man-tak Shing. Formal

validation and veri�cation of space ight software using statechart-assertions and

runtime execution monitoring. In 6th International Conference on System of Systems

Engineering, SoSE 2011, Albuquerque, New Mexico, USA, June 27-30, 2011, pages

155{160, 2011. doi: 10.1109/SYSOSE.2011.5966590. URLhttps://doi.org/10.1109/

SYSOSE.2011.5966590.

Bj•orn Andersson and Jan Jonsson. Preemptive multiprocessor scheduling anomalies. In

16th International Parallel and Distributed Processing Symposium (IPDPS 2002), 15-19

April 2002, Fort Lauderdale, FL, USA, CD-ROM/Abstracts Proceedi ngs, 2002. doi: 10.

1109/IPDPS.2002.1015483. URLhttps://doi.org/10.1109/IPDPS.2002.1015483 .

June Andronick, Corey Lewis, Daniel Matichuk, Carroll Morgan, and Christ ine Rizkallah.

Proof of OS scheduling behavior in the presence of interrupt-induced concurrency. In

Interactive Theorem Proving - 7th International Conference, ITP 2016, Nancy, France,

August 22-25, 2016, Proceedings, pages 52{68, 2016. doi: 10.1007/978-3-319-43144-44.

URL https://doi.org/10.1007/978-3-319-43144-4_4 .

Krzysztof R. Apt, Frank S. de Boer, and Ernst-R•udiger Olderog. Veri�cation of Sequential

and Concurrent Programs. Texts in Computer Science. Springer, 2009. ISBN 978-

1-84882-744-8. doi: 10.1007/978-1-84882-745-5. URLhttps://doi.org/10.1007/

978-1-84882-745-5 .

Neil C. Audsley, Alan Burns, Robert I. Davis, Ken Tindell, and Andy J. Wellings.

Fixed priority pre-emptive scheduling: An historical perspective. Real-Time Systems,



BIBLIOGRAPHY 131

8(2-3):173{198, 1995. doi: 10.1007/BF01094342. URLhttps://doi.org/10.1007/

BF01094342.

Mikhail Auguston and Mark B. Trakhtenbrot. Synthesis of monitors for real- time analysis

of reactive systems. InPillars of Computer Science, Essays Dedicated to Boris (Boaz)

Trakhtenbrot on the Occasion of His 85th Birthday, pages 72{86, 2008. doi: 10.1007/

978-3-540-78127-15. URL https://doi.org/10.1007/978-3-540-78127-1_5 .

Christel Baier and Joost-Pieter Katoen. Principles of Model Checking. The MIT Press,

2008. ISBN 026202649X, 9780262026499.

John Barnes. Rationale for ada 2012: Contracts and aspects. Technical report, Caversham,

UK, 2012.

Julie Baro, Fr�ed�eric Boniol, Mikel Cordovilla, Eric Noulard, and Clai re Pagetti. O�-line

(optimal) multiprocessor scheduling of dependent periodic tasks. In Proceedings of the

27th Annual ACM Symposium on Applied Computing, SAC '12, pages 1815{1820, New

York, NY, USA, 2012. ACM. ISBN 978-1-4503-0857-1. doi: 10.1145/2245276.2232071.

URL http://doi.acm.org/10.1145/2245276.2232071 .

Clark Barrett, Pascal Fontaine, and Cesare Tinelli. The smt-lib standard version 2.6.

2010.

Clark Barrett, Pascal Fontaine, and Cesare Tinelli. The SMT-LIB Standard: Version

2.5. Technical report, Department of Computer Science, The University of Iowa, 2015.

Available at www.SMT-LIB.org.

Howard Barringer, Allen Goldberg, Klaus Havelund, and Koushik Sen. Rule-Based

Runtime Veri�cation , pages 44{57. Springer Berlin Heidelberg, Berlin, Heidelberg,

2004a. ISBN 978-3-540-24622-0. doi: 10.1007/978-3-540-24622-05. URL http:

//dx.doi.org/10.1007/978-3-540-24622-0_5 .

Howard Barringer, Allen Goldberg, Klaus Havelund, and Koushik Sen. Rule-based runtime

veri�cation. In Bernhard Ste�en and Giorgio Levi, editors, Veri�cation, Model Checking,

and Abstract Interpretation , volume 2937 ofLecture Notes in Computer Science, pages

277{306. Springer Berlin / Heidelberg, 2004b. ISBN 978-3-540-20803-7.

Howard Barringer, David Rydeheard, and Klaus Havelund. Rule Systems for Run-Time

Monitoring: From Eagle to RuleR, pages 111{125. Springer Berlin Heidelberg, Berlin,

Heidelberg, 2007. ISBN 978-3-540-77395-5. doi: 10.1007/978-3-540-77395-510. URL

http://dx.doi.org/10.1007/978-3-540-77395-5_10 .



BIBLIOGRAPHY 132

Howard Barringer, David Rydeheard, and Klaus Havelund. Rule systemsfor run-time

monitoring. J. Log. and Comput., 20(3):675{706, June 2010. ISSN 0955-792X. doi:

10.1093/logcom/exn076. URLhttp://dx.doi.org/10.1093/logcom/exn076 .

Saugata Basu, Richard Pollack, and Marie-Fran�coise Roy. Algorithms in Real Algebraic

Geometry (Algorithms and Computation in Mathematics). Springer-Verlag New York,

Inc., Secaucus, NJ, USA, 2006. ISBN 3540330984.

Andreas Bauer, Martin Leucker, and Christian Schallhart. Runtime Veri�cation for LTL

and TLTL. ACM Trans. Softw. Eng. Methodol., 20(4):14:1{14:64, September 2011.

ISSN 1049-331X. doi: 10.1145/2000799.2000800. URLhttp://doi.acm.org/10.1145/

2000799.2000800.

Gerd Behrmann, Alexandre David, Kim G. Larsen, John Hakansson, Paul Petterson, Wang

Yi, and Martijn Hendriks. Uppaal 4.0. In Proceedings of the 3rd international conference

on the Quantitative Evaluation of Systems, QEST '06, pages 125{126, Washington, DC,

USA, 2006. IEEE Computer Society. ISBN 0-7695-2665-9. doi: 10.1109/QEST.2006.59.

URL http://dx.doi.org/10.1109/QEST.2006.59 .

Patrick Blackburn and Jerry Seligman. Hybrid languages. Journal of Logic, Language

and Information , 4(3):251{272, Sep 1995. ISSN 1572-9583. doi: 10.1007/BF01049415.

URL https://doi.org/10.1007/BF01049415 .

Patrick Blackburn and Miroslava Tzakova. Hybrid languages and temporal logic. Logic

Journal of the IGPL, 7(1):27{54, 1999. doi: 10.1093/jigpal/7.1.27. URLhttps://doi.

org/10.1093/jigpal/7.1.27 .

Eric Bodden. A lightweight LTL runtime veri�cation tool for Java. In Companion to the

19th Annual ACM SIGPLAN Conference on Object-Oriented Programming, Systems,

Languages, and Applications, OOPSLA 2004, October 24-28, 2004, Vancouver, BC,

Canada, pages 306{307. ACM, October 2004. URLhttp://www.bodden.de/pubs/

bodden04lightweight.pdf . ACM Student Research Competition.

Borzoo Bonakdarpour, Samaneh Navabpour, and Sebastian Fischmeister. Sampling-based

runtime veri�cation. In Proceedings of the 17th international conference on Formal

methods, FM'11, pages 88{102, Berlin, Heidelberg, 2011. Springer-Verlag. ISBN 978-3-

642-21436-3. URLhttp://dl.acm.org/citation.cfm?id=2021296.2021308 .

Borzoo Bonakdarpour, Samaneh Navabpour, and Sebastian Fischmeister. Time-triggered

runtime veri�cation. Formal Methods in System Design, 43(1):29{60, Aug 2013.

ISSN 1572-8102. doi: 10.1007/s10703-012-0182-0. URLhttps://doi.org/10.1007/

s10703-012-0182-0 .



BIBLIOGRAPHY 133

Patricia Bouyer. Model-checking timed temporal logics. Electron. Notes Theor. Comput.

Sci., 231:323{341, March 2009. ISSN 1571-0661. doi: 10.1016/j.entcs.2009.02.044. URL

http://dx.doi.org/10.1016/j.entcs.2009.02.044 .

Patricia Bouyer, Kim Guldstrand Larsen, and Nicolas Markey. Model checking one-clock

priced timed automata. Logical Methods in Computer Science, 4(2), 2008a. doi: 10.

2168/LMCS-4(2:9)2008. URL http://dx.doi.org/10.2168/LMCS-4(2:9)2008 .

Patricia Bouyer, Nicolas Markey, Jo•el Ouaknine, and James Worrell. Onexpressiveness

and complexity in real-time model checking. In Proceedings of the 35th international

colloquium on Automata, Languages and Programming, Part II, ICALP '08, pages 124{

135, Berlin, Heidelberg, 2008b. Springer-Verlag. ISBN 978-3-540-70582-6. doi: 10.1007/

978-3-540-70583-311. URL http://dx.doi.org/10.1007/978-3-540-70583-3_11 .

Patricia Bouyer, Fabrice Chevalier, and Nicolas Markey. On the expressiveness of TPTL

and MTL. Inf. Comput. , 208(2):97{116, 2010. ISSN 0890-5401. doi: 10.1016/j.ic.2009.

10.004. URL http://dx.doi.org/10.1016/j.ic.2009.10.004 .

Alan Burns and Andy Wellings. Real-Time Systems and Programming Languages: Ada,

Real-Time Java and C/Real-Time POSIX. Addison-Wesley Educational Publishers Inc,

USA, 4th edition, 2009. ISBN 0321417453, 9780321417459.

Christos G. Cassandras and St�ephane Lafortune. Introduction to Discrete Event

Systems, Second Edition. Springer, 2008. ISBN 978-0-387-33332-8. doi: 10.1007/

978-0-387-68612-7. URLhttps://doi.org/10.1007/978-0-387-68612-7 .

Franck Cassez and Kim Guldstrand Larsen. The impressive power of stopwatches. In

CONCUR 2000 - Concurrency Theory, 11th International Conference, University Park,

PA, USA, August 22-25, 2000, Proceedings, pages 138{152, 2000. doi: 10.1007/

3-540-44618-412. URL https://doi.org/10.1007/3-540-44618-4_12 .

Felipe Cerqueira, Felix Stutz, and Bj•orn B. Brandenburg. PROSA: A case for readable

mechanized schedulability analysis. In 28th Euromicro Conference on Real-Time

Systems, ECRTS 2016, Toulouse, France, July 5-8, 2016, pages 273{284, 2016. doi:

10.1109/ECRTS.2016.28. URLhttps://doi.org/10.1109/ECRTS.2016.28 .

Zhou Chaochen, Anders P. Ravn, and Michael R. Hansen. An extended duration calculus

for hybrid real-time systems. In Hybrid Systems, pages 36{59, London, UK, UK, 1993.

Springer-Verlag. ISBN 3-540-57318-6. URLhttp://dl.acm.org/citation.cfm?id=

646874.709980.

Feng Chen, Traian Florin Serbanuta, and Grigore Rosu. jpredictor: a predictive runtime

analysis tool for java. In Proceedings of the 30th international conference on Software



BIBLIOGRAPHY 134

engineering, ICSE '08, pages 221{230, New York, USA, 2008. ACM. ISBN 978-1-60558-

079-1. doi: 10.1145/1368088.1368119. URLhttp://doi.acm.org/10.1145/1368088.

1368119.

Alonzo Church. The Calculi of Lambda-conversion. Annals of mathematics studies.

Princeton University Press, 1941. ISBN 9780691083940.

Edmund M. Clarke, Orna Grumberg, and Doron A. Peled. Model Checking. MIT Press,

Cambridge, MA, USA, 1999. ISBN 0-262-03270-8.

George E. Collins. Quanti�er elimination for real closed �elds by cyli ndrical algebraic

decomposition: a synopsis.ACM SIGSAM Bulletin , 10(1):10{12, 1976. doi: 10.1145/

1093390.1093393. URLhttp://doi.acm.org/10.1145/1093390.1093393 .

M. Coombes, O. McAree, W. H. Chen, and P. Render. Development of an autopilot system

for rapid prototyping of high level control algorithms. In Proceedings of 2012 UKACC

CONTROL , pages 292{297, Sept 2012. doi: 10.1109/CONTROL.2012.6334645.

Marcelo d'Amorim and Klaus Havelund. Event-based runtime veri�cati on of java

programs. In Proceedings of the third international workshop on Dynamic analysis,

WODA '05, pages 1{7, New York, USA, 2005. ACM. ISBN 1-59593-126-0. doi:

10.1145/1082983.1083249. URLhttp://doi.acm.org/10.1145/1082983.1083249 .

Ben D'Angelo, Sriram Sankaranarayanan, C�esar S�anchez, Will Robinson, Bernd

Finkbeiner, Henny B. Sipma, Sandeep Mehrotra, and Zohar Manna. LOLA: runtime

monitoring of synchronous systems. In12th International Symposium on Temporal

Representation and Reasoning (TIME 2005), 23-25 June 2005, Burlington, Vermont,

USA, pages 166{174, 2005. doi: 10.1109/TIME.2005.26. URLhttps://doi.org/10.

1109/TIME.2005.26 .

Rowan Davies. A temporal logic approach to binding-time analysis.J. ACM , 64(1):1:1{

1:45, March 2017. ISSN 0004-5411. doi: 10.1145/3011069. URLhttp://doi.acm.org/

10.1145/3011069.

Robert I. Davis and Alan Burns. A survey of hard real-time schedulingfor multiprocessor

systems. ACM Comput. Surv., 43(4):35:1{35:44, October 2011. ISSN 0360-0300. doi:

10.1145/1978802.1978814. URLhttp://doi.acm.org/10.1145/1978802.1978814 .

Andr�e De Matos Pedro. rtmlib Monitoring Library, 2016. Available at https://anmaped.

github.io/rtmlib/doc/ , version 0.1-alpha.

Andr�e De Matos Pedro. rmtld3synth Synthesis Tool, 2018. Available athttps://github.

com/anmaped/rmtld3synth/ , version 0.3-alpha2.



BIBLIOGRAPHY 135

Andr�e De Matos Pedro, David Pereira, Lu��s Miguel Pinho, and Jorge Sousa Pinto.

Towards a runtime veri�cation framework for the ada programming language. In Reliable

Software Technologies - Ada-Europe 2014, 19th Ada-Europe International Conference

on Reliable Software Technologies, Paris, France, June 23-27, 2014.Proceedings, pages

58{73, 2014a. doi: 10.1007/978-3-319-08311-76. URL https://doi.org/10.1007/

978-3-319-08311-7_6 .

Andr�e De Matos Pedro, David Pereira, Lu��s Miguel Pinho, and Jorge Sousa Pinto. A

compositional monitoring framework for hard real-time systems. In Proceedings of

the 6th International Symposium on NASA Formal Methods - Volume 8430, pages

16{30, New York, NY, USA, 2014b. Springer-Verlag New York, Inc. ISBN 978-3-

319-06199-3. doi: 10.1007/978-3-319-06200-62. URL http://dx.doi.org/10.1007/

978-3-319-06200-6_2 .

Andr�e De Matos Pedro, David Pereira, Lu��s Miguel Pinho, and Jorge Sousa Pinto. Mon-

itoring for a decidable fragment of mtl-
R

. In Runtime Veri�cation - 6th International

Conference, RV 2015 Vienna, Austria, September 22-25, 2015. Proceedings, pages 169{

184, 2015a. doi: 10.1007/978-3-319-23820-311. URL https://doi.org/10.1007/

978-3-319-23820-3_11 .

Andr�e De Matos Pedro, David Pereira, Lu��s Miguel Pinho, and Jorge Sousa Pinto. Logic-

based Schedulability Analysis for Compositional Hard Real-time Embedded Systems.

SIGBED Rev., 12(1):56{64, March 2015b. ISSN 1551-3688. doi: 10.1145/2752801.

2752808. URLhttp://doi.acm.org/10.1145/2752801.2752808 .

Andr�e De Matos Pedro, David Pereira, Lu�s Miguel Pinho, and Jorge Sousa Pinto. SMT-

based schedulability analysis using RMTL-
R

. CRTS 2016, page 31, 2016.

Andr�e De Matos Pedro, Jorge Sousa Pinto, David Pereira, and Lu��s Miguel Pinho. Runtime

veri�cation of autopilot systems using a fragment of MTL-
R

. International Journal on

Software Tools for Technology Transfer, Aug 2017. ISSN 1433-2787. doi: 10.1007/

s10009-017-0470-5. URLhttps://doi.org/10.1007/s10009-017-0470-5 .

Leonardo Mendon�ca de Moura and Nikolaj Bj�rner. Z3: an e�cient SMT solver . In

Tools and Algorithms for the Construction and Analysis of Systems, 14th International

Conference, TACAS 2008, Held as Part of the Joint European Conferences on Theory

and Practice of Software, ETAPS 2008, Budapest, Hungary, March 29-April 6, 2008.

Proceedings, pages 337{340, 2008. doi: 10.1007/978-3-540-78800-324. URL https:

//doi.org/10.1007/978-3-540-78800-3_24 .

Doron Drusinsky. The temporal rover and the atg rover. In Proceedings of the 7th

International SPIN Workshop on SPIN Model Checking and Software Veri�cation ,



BIBLIOGRAPHY 136

pages 323{330, London, UK, 2000. Springer-Verlag. ISBN 3-540-41030-9. URL

http://dl.acm.org/citation.cfm?id=645880.672089 .

E. Allen Emerson. Handbook of theoretical computer science (vol. b). chapter Temporal

and Modal Logic, pages 995{1072. MIT Press, Cambridge, MA, USA, 1990. ISBN

0-444-88074-7. URLhttp://dl.acm.org/citation.cfm?id=114891.114907 .

Yli�es Falcone. You should better enforce than verify. In Proceedings of the First inter-

national conference on Runtime veri�cation, RV'10, pages 89{105, Berlin, Heidelberg,

2010. Springer-Verlag. ISBN 3-642-16611-3, 978-3-642-16611-2.

Elena Fersman, Pavel Krcal, Paul Pettersson, and Wang Yi. Task automata: Schedu-

lability, decidability and undecidability. Information and Computation, 205(8):1149{

1172, August 2007. ISSN 0890-5401. doi: 10.1016/j.ic.2007.01.009. URLhttp:

//dx.doi.org/10.1016/j.ic.2007.01.009 .

C. J. Fidge. Real-time schedulability tests for preemptive multitasking. Real-Time Syst.,

14(1):61{93, January 1998. ISSN 0922-6443.

Sebastian Fischmeister and Yanmeng Ba. Sampling-based program execution monitor-

ing. In Proceedings of the ACM SIGPLAN/SIGBED 2010 conference on Languages,

compilers, and tools for embedded systems, LCTES '10, pages 133{142, New York,

USA, 2010. ACM. ISBN 978-1-60558-953-4. doi: 10.1145/1755888.1755908. URL

http://doi.acm.org/10.1145/1755888.1755908 .

Melvin Fitting. First-Order Logic and Automated Theorem Proving, Second Edition.

Graduate Texts in Computer Science. Springer, 1996. ISBN 978-1-4612-7515-2. doi:

10.1007/978-1-4612-2360-3. URLhttps://doi.org/10.1007/978-1-4612-2360-3 .

Carlo A. Furia and Matteo Rossi. On the expressiveness of MTL variantsover dense

time. In Formal Modeling and Analysis of Timed Systems, 5th International Conference,

FORMATS 2007, Salzburg, Austria, October 3-5, 2007, Proceedings, pages 163{

178, 2007. doi: 10.1007/978-3-540-75454-113. URL https://doi.org/10.1007/

978-3-540-75454-1_13 .

Dov M. Gabbay. The declarative past and imperative future: Executable temporal logic

for interactive systems. In Temporal Logic in Speci�cation, Altrincham, UK, April

8-10, 1987, Proceedings, pages 409{448, 1987. doi: 10.1007/3-540-51803-736. URL

https://doi.org/10.1007/3-540-51803-7_36 .

Simon Goldsmith, Robert O'Callahan, and Alexander Aiken. Relational queries over

program traces. In Proceedings of the 20th Annual ACM SIGPLAN Conference on

Object-Oriented Programming, Systems, Languages, and Applications, OOPSLA 2005,



BIBLIOGRAPHY 137

October 16-20, 2005, San Diego, CA, USA, pages 385{402, 2005. doi: 10.1145/1094811.

1094841. URLhttp://doi.acm.org/10.1145/1094811.1094841 .

Alwyn Goodloe and Lee Pike. Monitoring distributed real-time systems: A survey and

future directions. Technical Report NASA/CR-2010-216724, NASA Langley Research

Center, July 2010.

Jo•el Goossens, Emmanuel Grolleau, and Liliana Cucu-Grosjean. Periodicity of real-time

schedules for dependent periodic tasks on identical multiprocessor platforms. Real-Time

Syst., 52(6):808{832, November 2016. ISSN 0922-6443. doi: 10.1007/s11241-016-9256-1.

URL http://dx.doi.org/10.1007/s11241-016-9256-1 .

Russell A. Gordon. The Integrals of Lebesgue, Denjoy, Perron, and Henstock. Graduate

studies in mathematics. American Mathematical Soc., 1994. ISBN 9780821872222.

Dick Hamlet. Composing Software Components: A Software-testing Perspective.

Springer Publishing Company, Incorporated, 1st edition, 2010. ISBN 1441971475,

9781441971470.

David Harel and Amnon Naamad. The statemate semantics of statecharts.ACM Trans.

Softw. Eng. Methodol., 5(4):293{333, October 1996. ISSN 1049-331X. doi: 10.1145/

235321.235322. URLhttp://doi.acm.org/10.1145/235321.235322 .

David Harel, Jerzy Tiuryn, and Dexter Kozen. Dynamic Logic. MIT Press, Cambridge,

MA, USA, 2000. ISBN 0262082896.

John Harrison. Handbook of Practical Logic and Automated Reasoning. Cambridge Univer-

sity Press, New York, NY, USA, 1st edition, 2009. ISBN 0521899575, 9780521899574.

Klaus Havelund. Runtime veri�cation of C programs. In Proceedings of the 20th IFIP TC

6/WG 6.1 international conference on Testing of Software and Communicating Systems:

8th International Workshop, TestCom '08 / FATES '08, pages 7{22, Berlin, Heidelberg,

2008. Springer-Verlag. ISBN 978-3-540-68514-2. doi: 10.1007/978-3-540-68524-13.

URL http://dx.doi.org/10.1007/978-3-540-68524-1_3 .

Klaus Havelund and Grigore Rosu. Monitoring java programs with java pathexplorer.

Electr. Notes Theor. Comput. Sci., 55(2):200{217, 2001. doi: 10.1016/S1571-0661(04)

00253-1. URLhttps://doi.org/10.1016/S1571-0661(04)00253-1 .

Klaus Havelund and Grigore Rosu. Synthesizing monitors for safety properties. In

Proceedings of the 8th International Conference on Tools and Algorithms for the

Construction and Analysis of Systems, TACAS '02, pages 342{356, London, UK, 2002.

Springer-Verlag. ISBN 3-540-43419-4. URLhttp://dl.acm.org/citation.cfm?id=

646486.694486.



BIBLIOGRAPHY 138

Thomas A. Henzinger, Zohar Manna, and Amir Pnueli. What good are digital clocks?

In Automata, Languages and Programming, 19th International Colloquium, ICALP92,

Vienna, Austria, July 13-17, 1992, Proceedings, pages 545{558, 1992. doi: 10.1007/

3-540-55719-9103. URL https://doi.org/10.1007/3-540-55719-9_103 .

J. Roger Hindley and Jonathan P. Seldin. Lambda-Calculus and Combinators: An

Introduction . Cambridge University Press, New York, NY, USA, 2nd edition, 2008.

ISBN 0521898854, 9780521898850.

Yoram Hirshfeld and Alexander Rabinovich. Logics for real time: Decidability and

complexity. Fundam. Inf. , 62(1):1{28, January 2004. ISSN 0169-2968. URLhttp:

//dl.acm.org/citation.cfm?id=1227039.1227041 .

Gabriel M. Ho�mann, Haomiao Huang, Steven L. Wasl, and Er Claire J. Tomlin.

Quadrotor helicopter ight dynamics and control: Theory and experiment . In Proc.

of the AIAA Guidance, Navigation, and Control Conference. Vol. 2., 2007.

Paul Hunter, Jo•el Ouaknine, and James Worrell. Expressive completeness for metric

temporal logic. In 28th Annual ACM/IEEE Symposium on Logic in Computer Science,

LICS 2013, New Orleans, LA, USA, June 25-28, 2013, pages 349{357, 2013. doi:

10.1109/LICS.2013.41. URLhttps://doi.org/10.1109/LICS.2013.41 .

Dongyun Jin, Patrick O'Neil Meredith, Choonghwan Lee, and Grigore Ro�su. Javamop:

E�cient parametric runtime monitoring framework. In Proceeding of the 34th Interna-

tional Conference on Software Engineering (ICSE'12). IEEE, 2012. to appear.

Dejan Jovanovi�c and Leonardo de Moura. Solving non-linear arithmetic. ACM Commun.

Comput. Algebra, 46(3/4):104{105, January 2013. ISSN 1932-2240. doi: 10.1145/

2429135.2429155. URLhttp://doi.acm.org/10.1145/2429135.2429155 .

Simon J. Julier and Je�rey K. Uhlmann. Unscented �ltering and nonlin ear estimation.

Proceedings of the IEEE, 92(3):401{422, 2004. doi: 10.1109/JPROC.2003.823141. URL

https://doi.org/10.1109/JPROC.2003.823141 .

Moonzoo Kim, Mahesh Viswanathan, Sampath Kannan, Insup Lee, and Oleg Sokolsky.

Java-mac: A run-time assurance approach for java programs.Form. Methods Syst. Des.,

24(2):129{155, March 2004. ISSN 0925-9856. doi: 10.1023/B:FORM.0000017719.43755.

7c. URL http://dx.doi.org/10.1023/B:FORM.0000017719.43755.7c .

Ron Koymans. Specifying real-time properties with metric temporal logic. Real-Time

Systems, 2(4):255{299, October 1990. ISSN 0922-6443. doi: 10.1007/BF01995674. URL

http://dx.doi.org/10.1007/BF01995674 .



BIBLIOGRAPHY 139

Pavel Krcal, Martin Stigge, and Wang Yi. Multi-processor schedulability analysis of

preemptive real-time tasks with variable execution times. InProceedings of the 5th inter-

national conference on Formal modeling and analysis of timed systems, FORMATS'07,

pages 274{289, Berlin, Heidelberg, 2007. Springer-Verlag. ISBN 3-540-75453-9, 978-3-

540-75453-4. URLhttp://dl.acm.org/citation.cfm?id=1779879.1779899 .

Shankara Narayanan Krishna, Khushraj Madnani, and Paritosh K. Pandya. Metric

temporal logic with counting. In Foundations of Software Science and Computation

Structures - 19th International Conference, FOSSACS 2016, Held as Part of the Euro-

pean Joint Conferences on Theory and Practice of Software, ETAPS 2016, Eindhoven,

The Netherlands, April 2-8, 2016, Proceedings, pages 335{352, 2016. doi: 10.1007/

978-3-662-49630-520. URL https://doi.org/10.1007/978-3-662-49630-5_20 .

Yassine Lakhnech and Jozef Hooman. Metric temporal logic with durations. Theor.

Comput. Sci., 138(1):169{199, 1995. doi: 10.1016/0304-3975(94)00151-8. URLhttps:

//doi.org/10.1016/0304-3975(94)00151-8 .

Fran�cois Laroussinie, Nicolas Markey, and Philippe Schnoebelen. Temporal logic with

forgettable past. In 17th IEEE Symposium on Logic in Computer Science (LICS 2002),

22-25 July 2002, Copenhagen, Denmark, Proceedings, pages 383{392, 2002. doi: 10.

1109/LICS.2002.1029846. URLhttps://doi.org/10.1109/LICS.2002.1029846 .

Christopher League. Lambda calculi: A guide for computer scientists bychris hankin.

SIGACT News, 31(1):8{13, March 2000. ISSN 0163-5700. doi: 10.1145/346048.568490.

URL http://doi.acm.org/10.1145/346048.568490 .

John P. Lehoczky, Lui Sha, and Y. Ding. The rate monotonic scheduling algorithm: Exact

characterization and average case behavior. InProceedings of the Real-Time Systems

Symposium - 1989, Santa Monica, California, USA, December 1989, pages 166{171,

1989. doi: 10.1109/REAL.1989.63567. URLhttps://doi.org/10.1109/REAL.1989.

63567.

Martin Leucker and Christian Schallhart. A brief account of runtime ve ri�cation. J. Log.

Algebr. Program., 78(5):293{303, 2009.

C. L. Liu and James W. Layland. Scheduling algorithms for multiprogramming in a hard-

real-time environment. J. ACM , 20(1):46{61, January 1973. ISSN 0004-5411. doi:

10.1145/321738.321743. URLhttp://doi.acm.org/10.1145/321738.321743 .

Hong Lu and A. Forin. Automatic processor customization for zero-overhead online

software veri�cation. IEEE Transactions on Very Large Scale Integration (VLSI)

Systems, 16(10):1346 {1357, October 2008. ISSN 1063-8210.



BIBLIOGRAPHY 140

David Makinson. Sets, Logic and Maths for Computing, Second Edition. Undergraduate

Topics in Computer Science. Springer, 2012. ISBN 978-1-4471-2499-3. doi: 10.1007/

978-1-4471-2500-6. URLhttps://doi.org/10.1007/978-1-4471-2500-6 .

Oded Maler and Dejan Nickovic. Monitoring temporal properties of continuous signals.

In FORMATS/FTRTFT , pages 152{166, 2004.

Rajib Mall. Real-Time Systems: Theory and Practice. Prentice Hall Press, Upper Saddle

River, NJ, USA, 1st edition, 2009. ISBN 8131700690, 9788131700693.

Michael C. Martin, V. Benjamin Livshits, and Monica S. Lam. Finding appl ication

errors and security aws using PQL: a program query language. InProceedings of the

20th Annual ACM SIGPLAN Conference on Object-Oriented Programming, Systems,

Languages, and Applications, OOPSLA 2005, October 16-20, 2005, San Diego, CA,

USA, pages 365{383, 2005. doi: 10.1145/1094811.1094840. URLhttp://doi.acm.

org/10.1145/1094811.1094840 .

Ramy Medhat, Borzoo Bonakdarpour, Deepak Kumar, and Sebastian Fischmeister.

Runtime monitoring of cyber-physical systems under timing and memory constraints.

ACM Trans. Embed. Comput. Syst., 14(4):79:1{79:29, October 2015. ISSN 1539-9087.

doi: 10.1145/2744196. URLhttp://doi.acm.org/10.1145/2744196 .

Lorenz Meier, Dominik Honegger, and Marc Pollefeys. PX4: A node-based multithreaded

open source robotics framework for deeply embedded platforms. InIEEE International

Conference on Robotics and Automation, ICRA 2015, Seattle, WA, USA, 26-30 May,

2015, pages 6235{6240, 2015. doi: 10.1109/ICRA.2015.7140074. URLhttps://doi.

org/10.1109/ICRA.2015.7140074 .

Patrick Meredith and Grigore Ro�su. Runtime veri�cation with the r v system. In

Proceedings of the First international conference on Runtime veri�cation , RV'10, pages

136{152, Berlin, Heidelberg, 2010. Springer-Verlag. ISBN 3-642-16611-3, 978-3-642-

16611-2. URLhttp://dl.acm.org/citation.cfm?id=1939399.1939413 .

Patrick O'Neil Meredith, Dongyun Jin, Dennis Gri�th, Feng Chen, and Grigore Ro�su. An

overview of the MOP runtime veri�cation framework. International Journal on Software

Techniques for Technology Transfer, 2011.

Patrick Moosbrugger, Kristin Y. Rozier, and Johann Schumann. R2U2: monitoring and

diagnosis of security threats for unmanned aerial systems.Formal Methods in System

Design, 51(1):31{61, 2017. doi: 10.1007/s10703-017-0275-x. URLhttps://doi.org/

10.1007/s10703-017-0275-x .



BIBLIOGRAPHY 141

Mark W. M•uller and Ra�aello D'Andrea. Stability and control of a quadrocop ter despite

the complete loss of one, two, or three propellers. In2014 IEEE International Conference

on Robotics and Automation, ICRA 2014, Hong Kong, China, May 31- June 7, 2014,

pages 45{52, 2014. doi: 10.1109/ICRA.2014.6906588. URLhttps://doi.org/10.

1109/ICRA.2014.6906588.

Samaneh Navabpour, Borzoo Bonakdarpour, and Sebastian Fischmeister. Time-triggered

runtime veri�cation of component-based multi-core systems. In Runtime Veri�cation

- 6th International Conference, RV 2015 Vienna, Austria, September 22-25, 2015.

Proceedings, pages 153{168, 2015. doi: 10.1007/978-3-319-23820-310. URL https:

//doi.org/10.1007/978-3-319-23820-3_10 .

G. Nelissen, D. Pereira, and L. M. Pinho. A novel run-time monitoring architecture for

safe and e�cient inline monitoring. In Ada-Europe 2015, pages 66{82, June 2015.

Dejan Nickovic and Nir Piterman. From mtl to deterministic timed aut omata. In

Formal Modeling and Analysis of Timed Systems - 8th International Conference,

FORMATS 2010, Klosterneuburg, Austria, September 8-10, 2010. Proceedings, pages

152{167, 2010. doi: 10.1007/978-3-642-15297-913. URL https://doi.org/10.1007/

978-3-642-15297-9_13 .

Flemming Nielson, Hanne Riis Nielson, and Chris Hankin.Principles of program analysis.

Springer, 1999. ISBN 978-3-540-65410-0. doi: 10.1007/978-3-662-03811-6. URLhttps:

//doi.org/10.1007/978-3-662-03811-6 .

Christer Norstr•om, Anders Wall, and Wang Yi. Timed automata as task models for

event-driven systems. In Proceedings of the Sixth International Conference on Real-

Time Computing Systems and Applications, RTCSA '99, pages 182{, Washington, DC,

USA, 1999. IEEE Computer Society. ISBN 0-7695-0306-3. URLhttp://dl.acm.org/

citation.cfm?id=519167.828781 .

Paritosh K. Pandya and Simoni S. Shah. Unambiguity in timed regular languages:

Automata and logics. In Formal Modeling and Analysis of Timed Systems - 8th

International Conference, FORMATS 2010, Klosterneuburg, Austria, September 8-10,

2010. Proceedings, pages 168{182, 2010. doi: 10.1007/978-3-642-15297-914. URL

https://doi.org/10.1007/978-3-642-15297-9_14 .

Pawel Parys and Igor Walukiewicz. Weak alternating timed automata. In Proceedings of

the 36th Internatilonal Collogquium on Automata, Languages and Programming: Part

II , ICALP '09, pages 273{284, Berlin, Heidelberg, 2009. Springer-Verlag. ISBN 978-3-

642-02929-5. doi: 10.1007/978-3-642-02930-123. URL http://dx.doi.org/10.1007/

978-3-642-02930-1_23 .



BIBLIOGRAPHY 142

Rodolfo Pellizzoni, Patrick Meredith, Marco Caccamo, and Grigore Rosu. Hardware

runtime monitoring for dependable cots-based real-time embedded systems. In

Proceedings of the 2008 Real-Time Systems Symposium, RTSS '08, pages 481{491,

Washington, DC, USA, 2008. IEEE Computer Society. ISBN 978-0-7695-3477-0. doi:

10.1109/RTSS.2008.43. URLhttp://dx.doi.org/10.1109/RTSS.2008.43 .

Lee Pike, Alwyn Goodloe, Robin Morisset, and Sebastian Niller. Copilot: A hard real-time

runtime monitor. In Runtime Veri�cation - First International Conference, RV 2010,

St. Julians, Malta, November 1-4, 2010. Proceedings, pages 345{359, 2010. doi: 10.1007/

978-3-642-16612-926. URL https://doi.org/10.1007/978-3-642-16612-9_26 .

Srinivas Pinisetty, Yli�es Falcone, Thierry J�eron, Herv�e Marchan d, Antoine Rollet, and

Omer Landry Nguena Timo. Runtime Enforcement of Timed Properties, pages 229{244.

Springer Berlin Heidelberg, Berlin, Heidelberg, 2013. ISBN 978-3-642-35632-2. doi:10.

1007/978-3-642-35632-223. URL https://doi.org/10.1007/978-3-642-35632-2_

23.

Andr�e Platzer. Towards a hybrid dynamic logic for hybrid dynamic sys tems. Electron.

Notes Theor. Comput. Sci., 174(6):63{77, June 2007. ISSN 1571-0661. doi: 10.1016/j.

entcs.2006.11.026. URLhttp://dx.doi.org/10.1016/j.entcs.2006.11.026 .

Andr�e Platzer. Di�erential dynamic logic for hybrid systems. Journal of Automated

Reasoning, 41(2):143{189, Aug 2008. ISSN 1573-0670. doi: 10.1007/s10817-008-9103-8.

URL https://doi.org/10.1007/s10817-008-9103-8 .

Amir Pnueli. The temporal logic of programs. In Proceedings of the 18th Annual

Symposium on Foundations of Computer Science, SFCS '77, pages 46{57, Washington,

DC, USA, 1977. IEEE Computer Society. doi: 10.1109/SFCS.1977.32. URLhttp:

//dx.doi.org/10.1109/SFCS.1977.32 .

Wolfgang Pu�tsch, Eric Noulard, and Claire Pagetti. O�-line mapping of mu lti-rate

dependent task sets to many-core platforms.Real-Time Syst., 51(5):526{565, September

2015. ISSN 0922-6443. doi: 10.1007/s11241-015-9232-1. URLhttp://dx.doi.org/10.

1007/s11241-015-9232-1 .

Mina Ranjbaran and Khashayar Khorasani. Fault recovery of an under-actuated quadrotor

aerial vehicle. In Proceedings of the 49th IEEE Conference on Decision and Control,

CDC 2010, December 15-17, 2010, Atlanta, Georgia, USA, pages 4385{4392, 2010. doi:

10.1109/CDC.2010.5718140. URLhttps://doi.org/10.1109/CDC.2010.5718140 .

Didier R�emy. Using, Understanding, and Unraveling the OCaml Language From Practice

to Theory and Vice Versa, pages 413{536. Springer Berlin Heidelberg, Berlin,



BIBLIOGRAPHY 143

Heidelberg, 2002. ISBN 978-3-540-45699-5. doi: 10.1007/3-540-45699-69. URL

http://dx.doi.org/10.1007/3-540-45699-6_9 .

Usa Sammapun, Insup Lee, Oleg Sokolsky, and John Regehr. Statistical runtime checking

of probabilistic properties. In Proceedings of the 7th international conference on

Runtime veri�cation , RV'07, pages 164{175, Berlin, Heidelberg, 2007. Springer-Verlag.

ISBN 3-540-77394-0, 978-3-540-77394-8. URLhttp://dl.acm.org/citation.cfm?id=

1785141.1785158.

Sriram Sankar and Manas Mandal. Concurrent runtime monitoring of formally speci�ed

programs. Computer, 26(3):32{41, March 1993. ISSN 0018-9162. doi: 10.1109/2.204684.

URL http://dx.doi.org/10.1109/2.204684 .

Lui Sha, Tarek Abdelzaher, Karl-Erik �en, Anton Cervin, Theodore Baker , Alan Burns,

Giorgio Buttazzo, Marco Caccamo, John Lehoczky, and Aloysius K. Mok. Real

time scheduling theory: A historical perspective. Real-Time Syst., 28(2-3):101{155,

November 2004. ISSN 0922-6443.

Insik Shin and Insup Lee. Periodic resource model for compositional real-time guarantees.

In Proceedings of the 24th IEEE Real-Time Systems Symposium (RTSS 2003), 3-5

December 2003, Cancun, Mexico, pages 2{13, 2003. doi: 10.1109/REAL.2003.1253249.

URL https://doi.org/10.1109/REAL.2003.1253249 .

Insik Shin and Insup Lee. Compositional real-time scheduling framework with periodic

model. ACM Trans. Embedded Comput. Syst., 7(3):30:1{30:39, 2008. doi: 10.1145/

1347375.1347383. URLhttp://doi.acm.org/10.1145/1347375.1347383 .

Oleg Sokolsky, Usa Sammapun, Insup Lee, and Jesung Kim. Run-time checking of dynamic

properties. Electron. Notes Theor. Comput. Sci., 144(4):91{108, May 2006. ISSN 1571-

0661. doi: 10.1016/j.entcs.2006.02.006. URLhttp://dx.doi.org/10.1016/j.entcs.

2006.02.006 .

Deepak Souza and Pavithra Prabhakar. On the expressiveness of mtl inthe pointwise and

continuous semantics. Int. J. Softw. Tools Technol. Transf. , 9(1):1{4, February 2007.

ISSN 1433-2779. doi: 10.1007/s10009-005-0214-9. URLhttp://dx.doi.org/10.1007/

s10009-005-0214-9 .

John A. Stankovic. Misconceptions about real-time computing. IEEE Computer, 21(10):

10{19, 1988. doi: 10.1109/2.7053. URLhttps://doi.org/10.1109/2.7053 .

Karl Johan �Astr•om and Tore H•agglund. Advanced PID Control. ISA - The Instrumenta-

tion, Systems and Automation Society, 2006. ISBN 978-1-55617-942-6.



BIBLIOGRAPHY 144

Alfred Tarski. Introduction to Logic and to the Methodology of Deductive Sciences. Dover

Books on Mathematics Series. Dover Publications, 1995. ISBN 9780486284620.

The OCaml Development Team. Ocaml programming language, 2013. URLhttp://www.

ocaml.org .

Julian Tschannen, Carlo A. Furia, Martin Nordio, and Bertrand Meyer. Usabl e veri�cation

of object-oriented programs by combining static and dynamic techniques. In Software

Engineering and Formal Methods - 9th International Conference, SEFM 2011, Montev-

ideo, Uruguay, November 14-18, 2011. Proceedings, pages 382{398, 2011. doi: 10.1007/

978-3-642-24690-626. URL https://doi.org/10.1007/978-3-642-24690-6_26 .

Karen Zee, Viktor Kuncak, Michael Taylor, and Martin Rinard. Runtime c hecking

for program veri�cation. In Proceedings of the 7th international conference on

Runtime veri�cation , RV'07, pages 202{213, Berlin, Heidelberg, 2007. Springer-Verlag.

ISBN 3-540-77394-0, 978-3-540-77394-8. URLhttp://dl.acm.org/citation.cfm?id=

1785141.1785161.

Haitao Zhu, Matthew B. Dwyer, and Steve Goddard. Predictable runtime monitoring. In

21st Euromicro Conference on Real-Time Systems, ECRTS 2009, Dublin, Ireland, July

1-3, 2009, pages 173{183, 2009. doi: 10.1109/ECRTS.2009.23. URLhttps://doi.org/

10.1109/ECRTS.2009.23.

Haitao Zhu, Steve Goddard, and Matthew B. Dwyer. Selecting server parameters for

predictable runtime monitoring. In 16th IEEE Real-Time and Embedded Technology

and Applications Symposium, RTAS 2010, Stockholm, Sweden, April 12-15, 2010, pages

227{236, 2010. doi: 10.1109/RTAS.2010.18. URLhttps://doi.org/10.1109/RTAS.

2010.18.


	Página 1
	Página 2
	Página 3
	Página 4
	Abstract
	Resumo
	Acknowledgements
	Introduction
	Problem Statement
	Summary of Research Contribution
	Overview of Thesis

	Background and Related Work
	Real-Time Systems
	Periodic Resource Models

	Languages and Logics
	Metric temporal logic with durations (MTL-)
	first order logic of real numbers (FOLR)
	Lambda expressions (-expressions)
	Related Work

	Runtime Verification
	Runtime Monitoring of RTS
	Related Work

	Summary

	RV with RMTL-
	The specification Language RMTL-
	Three-valued Extension of RMTL-
	Polynomial Inequality Translation
	Simplification Algorithm
	Functional Correctness

	SMT Synthesis for RMTL-3 Formulae
	Computation of RMTL-3 Formulae
	Summary

	RV-RMTL- Framework
	Components
	Formal Specification of Periodic Resources
	Extension for dependent tasks

	Safe Components and Monitors
	DSL for components
	Timing guarantees by hierarchy of monitors
	Summary

	Evaluation
	Application of DSL for offline schedulability analysis 
	Two settings for schedulability analysis
	Experimental results

	Lightweight Autopilot Systems: the case study
	Use cases with RMTL-3.
	Experimental Results

	Summary

	Conclusion and Future Work
	Future work

	RV with RMTL-3 for C++11
	RV Monitoring Model

	rmtld3synth tool User's Guide
	RTMLib
	Usage of RTMLib
	Instantiating buffers
	Developing a simple Monitor


	Inequality Translation Correctness Proofs
	Soundness proofs for axioms
	Application Examples

	Bibliography
	Página em branco
	Página em branco

