pd

CISTER

Research Centre in
Real-Time & Embedded
Computing Systems

PhD Thesis

Dynamic contracts for verif ication a nd
enfo rcement of real-time systems pro perties

André Pedro

CISTERTR-180413

2018/04/10

PhD Thesis CISTERR180413 Dynamic contracts for verification and enforcement of ...

Dynamic contracts for verification and enforcement of real-time systems
properties

André Pedro

*CISTER Research Centre

Polytechnic Institute of Porto (ISEP-IPP)

Rua Dr. Antonio Bernardino de Almeida, 431
4200-072 Porto

Portugal

Tel.: +351.22.8340509, Fax: +351.22.8321159
E-mail: anmap@isep.ipp.pt
http://www.cister.isep.ipp.pt

Abstract

Runtime verification is an emerging discipline that investigates methods and tools to enabie tverification of
program properties during the execution of the application. The goal is to complement istainalysis approaches,
in particular when static verification leads to the explosion of states. Non-functional propest such as the ones
present in real-time systems are an ideal target for this kind of verification methodologg,are usually out of the
range of the power and expressiveness of classic static analyses. Current real-time embeddestesys
development frameworks lack support for the verification of properties usingpdixit time where counting time
(i.e., durations) may play an important role in the development process. Temporal lodgmgeting real-time
systems are traditionally undecidable. Based on a restricted fragment of Metric temporagieowith durations
(MTL-f), we will present the synthesis mechanisms 1) for target systemsas runtimenitors and 2) for SMT
solvers as a way to get, respectively, a verdict at runtime and a schedulability peab to be solved before
execution. The later is able to solve partially the schedulability analysis for periodic reseumodels and fixed
priority scheduler algorithms.A domain specific language is also proposed in order to diggcsuch schedulability
analysis problems in a more high level way. Finally, we validate both approaches, the fising empirical
scheduling scenarios, and the second using the use case of the lightweight autopilot system Px4/Ardupilot.

© CISTER Research Center 1
www.cister.isep.ipp.pt

7\
_/

Universidade do Minho
Escola de Engenharia

André de Matos Pedro

Dynamic contracts for verifica
enforcement of real-time syste

Programa de Doutoramento em Informa
das Universidades do Minho, de Aveirc

- universidade de ave U' PORTO

Universidade do Minho

Trabalho realizado sob a orientacao dc
Professor Doutor Jorge Sousa Pinto

e do

Professor Doutor Luis Miguel Pinho

maio de 2018

Abstract

Runtime veri cation is an emerging discipline that investigates methods and tools to enable
the veri cation of program properties during the execution of the application. The goal is
to complement static analysis approaches, in particular when static va cation leads to
the explosion of states. Non-functional properties, such as the ones ent in real-time
systems are an ideal target for this kind of veri cation methodology, as are gually out of
the range of the power and expressiveness of classic static analyses.

Current real-time embedded systems development frameworks lackupport for the veri -
cation of properties using explicit time where counting time (i.e, durations) may play an
important role in the development process. Temporal logics targeting eal-time systems
are traditionally undecidable. Based on a restricted fragment ofMetric temporal logic with
durations (MTL- R), we present the proposed synthesis mechanisms 1) for target systsm
as runtime monitors and 2) for SMT solvers as a way to get, respectivelya verdict at
runtime and a schedulability problem to be solved before execution The later is able to
solve partially the schedulability analysis for periodic resource mdels and xed priority
scheduler algorithms. A domain speci ¢ language is also proposed in ordemtdescribe
such schedulability analysis problems in a more high level way.

Finally, we validate both approaches, the rst using empirical schediling scenarios for uni-
multi-processor settings, and the second using the use case of thightweight autopilot
system Px4/Ardupilot widely used for industrial and entertainment p urposes. The former
also shows that certain classes of real-time scheduling problems chie solved, even though
without scaling well. The later shows that for the cases where the faner cannot be used,
the proposed synthesis technique for monitors is well applicable im real world scenario
such as an embedded autopilot ight stack.

Resumo

A veri cacao do tempo de execuwcaoe uma disciplina emergene que investiga metodos e
ferramentas para permitir a veri cacao de propriedades do programa drante a execuwcao
da aplicacao. O objetivoe complementar abordagens de aralise esatia, em particular

guando a veri cacao esttica se traduz em explosao de estados. As ppriedades nao
funcionais, como as que estao presentes em sistemas em tempo reab sim alvo ideal
para este tipo de metodologia de veri cacao, como geralmente estao frdo alcance do
poder e expressividade das aralises estticas chssicas.

As atuais estruturas de desenvolvimento de sistemas embebidos paranpo real nao
possuem suporte para a veri cacao de propriedades usando o tempo @gito onde a
contagem de tempo (ou seja, duracees) pode desempenhar um papel impaite no pro-
cesso de desenvolvimento. As bgicas temporais que visam sistemas dampo real sao
tradicionalmente indecidveis. Com base num fragmento restrito e MTL- R (metric tem-
poral logic with durations), apresentaremos 0s mecanismos de sntese 1l)apa sistemas
alvo como monitores de tempo de execwcao e 2) para solvers SMT como faande obter,
respectivamente, um veredicto em tempo de execwcao e um prasha de escalonamento
para ser resolvido antes da execwcao. O ultimo e capaz de resolveparcialmente a
aralise de escalonamento para modelos de recursos perodicos e aindarp algoritmos
de escalonamento de prioridade xa. Propomos tamkem uma linguagem especa de
domnio para descrever esses mesmos problemas de aralise de escaloento de forma
mais geral e sucinta.

Finalmente, validamos ambas as abordagens, a primeira usando cerarios dsaalonamento
emprico para sistemas uni- multi-processador e a segunda usandocaso de uso do sistema
de piloto automatico leve Px4/Ardupilot amplamente utilizado para ns i ndustriais e de
entretenimento. O primeiro mostra que certas classes de problemake escalonamento em
tempo real podem ser solucionadas, embora nao seja escahvel. Oifto mostra que, para
0S cas0s em gue a primeira opcao hao possa ser usada, a ecnica deese proposta para
monitores aplica-se num cerario real, como uma pilha de v6o de um pto autorratico
embebido.

Acknowledgements

First and foremost, | would like to express my gratitude to my supenisors Professor Jorge
Sousa Pinto and Professor Lus Miguel Pinho, for their guidance, valuabé feedback, and
encouragement. Without them, this long run could never be nished wth success.

My sincere thank you also goes to David Pereira for his encouragemeninsightful com-
ments and for being so good advisor and colleague along these years. Withnhi | have
discussed several ideas often useful in this thesis. | want to th&nGeo rey Nelissen for
the fruitful meetings and discussions that we had along these years. #&lso would like
to thank Professor Simao Melo de Sousa for pushing me to this wondeitfworld of the
Formal Methods, and also for being an incentive to start my Ph.D. studes at CISTER.

Regarding host institutions, | would like to thank CISTER and Haslab, and University of
Minho.

| thank all my CISTER colleagues, Ricardo Severino, Lus Nogueira, Artem Burmyakov,
Kostiantyn Berezovskyi, and in special to Claudio Maia and Jose Fonsea for the op-
portunity to create a healthy environment to work and enjoy the life with so long mad
discussions.

Last but not least, | would like to thank my all family for supporting my hu mor and
my thoughts along these tough years, essentially my parents Eugenia andod&, my little
brother Eduardo, and my sunshine Sonia for being so cooperative and comghensive with
me.

This thesis was patrtially supported by National Funds through FCT/MEC (P ortuguese
Foundation for Science and Technology) and co- nanced by ERDF (European Rgional
Development Fund) under the PT2020 Partnership, within the CISTER Research Unit
(CEC/04234); FCOMP-01-0124-FEDER-015006 (VIPCORE) and FCOMP-01-0124-FEDER-
020486 (AVIACC); also by FCT and EU ARTEMIS JU, within project ARTEMIS/0003/2012,
JU grant nr. 333053 (CONCERTO); and by FCT/MEC and the EU ARTEMIS JU within
project ARTEMIS/0001/2013 - JU grant nr. 621429 (EMC2).

Contents

Abstract v
Resumo vii
Acknowledgements iX
1 Introduction 1
1.1 Problem Statement. 2
1.2 Summary of Research Contribution. 3
1.3 Overviewof Thesis. 4

2 Background and Related Work 7
2.1 Real-Time Systems. e 7
2.1.1 Periodic Resource Models. 11

2.2 Languages and LOQICS. e e 12
2.2.1 Metric temporal logic with durations (MTL- I:z) 14

2.2.2 rst order logic of real numbers (FOLg) 16

2.2.3 Lambda expressions (-expressions)o 17

224 Related Work 19

2.3 Runtime Verication 21
2.3.1 Runtime Monitoring of real-time system(RTS) 26

232 Related Work 26
SUMMANY e e e 32

3 RV with RMTL- R 33
3.1 The speci cation LanguageRMTL- R 33
3.2 Three-valued Extension ofRMTL- R 37
3.3 Polynomial Inequality Translation 44
3.3.1 Simplication Algorithm oo 48

3.3.2 Functional Correctness. 52

CONTENTS Xiv

3.4 SMT Synthesis forRMTL-R3 Formulae 55
3.5 Computation of RMTL-R3 Formulae 58
SUMMANY e e e e e e e e e e 62

4 RV -RMTL- R Framework 63
4.1 COompoNeNnts. i e e e e e e e e e 63
4.2 Formal Speci cation of Periodic Resources 67
4.2.1 Extension for dependenttasks 69

4.3 Safe Components and Monitors., 74
4.4 DSLTfOrcomponents i i 75
4.5 Timing guarantees by hierarchy of monitors. 79
SUMMAIY e e e e e e e e e e e e e e e 80

5 Evaluation 83
5.1 Application of DSL for o ine schedulability analysis 84
5.1.1 Two settings for schedulability analysis 86

5.1.2 Experimentalresults. 88

5.2 Lightweight Autopilot Systems: thecasestudy 89
521 UsecasesWithRMTL- 92

5.2.2 Experimental Results 97
SUMMANY e e 99

6 Conclusion and Future Work 101
6.1 Futurework 102

A RV with RMTL- R; for C++11 105
A.1 RV Monitoring Model 108

B rmtld3synth tool User's Guide 111
C RTMLib 117
C.1l Usageof RTMLib. 117
C.1.1 |Instantiating buers 117

C.1.2 Developing a simple Monitor 118

D Inequality Translation Correctness Proofs 121
D.1 Soundness proofs foraxioms 127

D.2 Application Examples e e 127

CONTENTS

Bibliography

XV

129

List of Figures

2.1
2.2

3.1
3.2

4.1
4.2

4.3
4.4
4.5
4.6

4.7
4.8

51
5.2
5.3
5.4

Al
A2

Evaluation of propositionsm, a, bover thetrace 13
Diagram of a path (a) and respective duration computation (b) 17
Graphical proof sketch. 46
Evaluation of the operatorsU< and <, and of duration terms 59

Component-based sketch with one hypervisor and quasi-omnisciemionitors. 64
Example of patterns and the global trace generated by the composition of

resource models dened inthe Example 11 66
Flow graph of the scenario considered in Example 12 and 18. 70
Encoding of processor mapping and memory mapping. 71
Diagram with evidences of infeasibility 73

Composition and complementary rules for resource domain specic lan-

guage (DSL) o e e 77
Inference tree for the Example 15. 78
Inference tree for the Example 16. 78
Linear, concave and convex restriction focpandec; 91
Experimental validation of the complexity results 93
Regions of decomposed inequalities with duratioxx;y and =10 95
Comparison of implementations/architectures 98
Tool-chain overview 106
Flow graph of the system enabled events de ned in a time window.. 109

XVi

List of Tables

2.1

3.1

5.1
5.2

5.3

Standard and Boolean Combinators 19
Complexity results of the Algorithm 2 61
Expansion of thePRM(cg) where cg meanscoreg 86
Heat maps for performance comparison using the rmtld3synth tool for
synthesization and the Z3 solver for checking satis ability 88
DSL experimental results 90

XVii

Chapter 1

Introduction

This thesis considers the eld of real-time embedded systems,niwhich it is crucial to
guarantee a correct behavior in the temporal domain $tankovic, 198§. These systems
range from simple, isolated components to large, highly complex and inhently concurrent
systems. They act upon a variety of environments which are frequery very dynamic and
hard to capture during design time. Therefore, developing arreal-time system (RTS) can
easily become a very di cult task to complete. Even though RTSs present potentially
complex requirements, their design and development processeseamostly limited to
model-driven technigues and intensive testing and fault-injetion, which are known to
allow the existence of human-introduced errors. At later stages of tk development cycle
such errors can become highly expensive and very hard to tackle, evemith the number
of static analysis tools available. As the technology evolves, real-timerebedded systems
are becoming more and more pervasive in our daily routines. Notorious exames$ of the
pervasiveness of real-time embedded systems in our daily lives rga from airplane and
car control systems to medical devices such as pacemakers. A relevaekample which
is spurring much interest and that we use in the thesis is the largevariety of exciting
new models of commercial lightweight multi-copters available in themarket and which
are currently being intensively used for aerial photography and cineratography, cargo
inspection and transportation, and for family entertainment. For safety reasons, some of
these multi-copters are being subject to restricted usage rulem several countries to limit
their excessively fast spreading in commercial applications. Theraditionally adopted
mechanisms to treat the failures that can arise during multi-copteractivity are commonly
applied only for hardware malfunctions. However, in the case of softwarethe adopted
applications/control systems are considerably open for users to modifywhich in turn
increases the risk for these multi-copters to potentially crash inpublic areas, namely when
several developers spread over the world make changes on these systen®©n the more

CHAPTER 1. INTRODUCTION 2

rigorous side of RTS development, formal methods have been introduced progressively
in the development cycle, most of which are based on temporal logic. Wrel standard
temporal logics yield a natural and abstract framework for the analysis of safty and
liveness properties Pnueli, 1977, these logics fail to capture the speci ¢ timing properties
of RTSs [Koymans, 1990. This limitation is tackled by a set of timed temporal logics
[Alur and Henzinger, 19924, and many of these logics have already been used to develop
model checking tools Behrmann et al., 200§. However, model checking has its own
pitfalls, namely when the size of the state space of the model that capires the RTS under
consideration is too large to be mechanically analyzed by a tool implen#ing a model
checking algorithm. Moreover, it might be the case that the properties to be checked
cannot be captured rigorously at the abstract level of the model of the sytem.

When we talk about Runtime Veri cation (RV) of real-time embedded systems, we are
increasing the dependability of these systems by drawing verdis at runtime that may
be used to trigger recovery actions. RV is a major complement to static methods as
it can be used to check errors for which it is possible to conclude soenproperty of
interest based exclusively in knowledge that can be gathered only atxecution time.
Contrary to ad hocinstrumentation of runtime behavior, RV based approaches use formal
speci cations and synthesize them intomonitors, that is, pieces of code that take partial
traces of execution of the system and match them against the referred sgi cations
and make a verdict. Moreover, monitors can be used both to verify and €efiorce the
properties which are provided by components, even when the componts assume the
form of a black-box, as long as each component is coupled with a formal spezation. A
simple example of the power ofRV is the case when the response to a property violation
detection consists in shutting down a complex component and give conbl to a simpler,
yet formally veri ed component. By adopting RV techniques, developers can decrease
the usual intensive testing e orts, and if used in collaboration with static veri cation
methods, this can increase the overall coverage of the system by amgég execution time
correctness in those parts of the development where heavy-weightatic approaches like
model checking and deductive veri cation fail due to well-known problems (e.g, the state-
space explosion problem inherent to model checking and the lack of pof automation in
deductive veri cation).

1.1 Problem Statement

In this thesis, we consider the problem of runtime checking hard eal-time systems by
generating correct-by-construction monitors from a formal language and the& correct
integration in target applications/systems. The outcome of a monitor checkng is a \yes",

CHAPTER 1. INTRODUCTION 3

\no" or \unknown" answer. In the case of a gas burner, for example, we may clkck
that the solenoid never leak for more than 4 time units in a period of at mos 30 time
units. For the case of the system integration, we want to ensure that tle monitoring
interference is predictable and bounded before the system begirits execution in order to
avoid unpredictable behaviors.

RV has receiving increasing attention in the real-time community in the past decade,
with clear focus on relaxing the burden of the veri cation intensive tasks using deductive
veri cation and model-checking. Deductive veri cation tends to get undecidable results
when reasoning about time (the \undecidable satis ability problem™ f or certain logic
fragments), and systems tend to scale poorly when the model size gms (the \state space
explosion problem™).

Design of a decidable veri cation method to reason with explicit time properties (i.e.,
duration properties) at runtime is the main problem. It should be capable to describe
polynomial inequalities mixed with temporal order of propositions using a formal logic
in order to deal with hard real-time systems at the design phase. Moreger, it requires

a separation of which properties classic model-checking is unfea$t to treat, due to the

need of total coverage of the model, and what properties could be addreskestatically

using deductive approachesRV only deals with one execution trace, hence it amounts to
the \word acceptance” problem rather than the \emptiness check" problem as in model-
checking.

Embedded real-time systems could be rather complex if control routies are consid-
ered and di erent numeric methods such asproportional{integral{derivative (PID) con-
trollers [Astem and Hagglund , 2004, extended Kalman Iter (EKF) [Julier and Uhlmann,
2004 are involved. For the majority of these cases, we cannot assume that fiyl describing
the behaviors with polynomial inequalities is enough. A potential soldion is to deal with
well behaved fragments and if possible put on top of it other theories. his means that
output of tools to discretize control models can be veri ed at the lewel of the discretization
instead of at the design phase, feature that is addressed by dynamic logifPlatzer,
2008 Harel et al., 2004, temporal interval logic [Chaochen et al, 1993 and/or hybrid
logic [Platzer, 2007, Blackburn and Tzakova, 1999 Blackburn and Seligman 1995.

1.2 Summary of Research Contribution

Considering the potential solution identi ed in the end of the previous section, we believe
that the polynomial description can be enough for the majority of the casesrendering
them veri able. More precisely, we set out to provide evidence dér the following statement:

CHAPTER 1. INTRODUCTION 4

Thesis. Runtime veri cation of duration properties for hard real-time s ystems can be

made through the use of the synthesization of a fragment dfletric temporal logic with
R

durations (MTL-).

We will support this statement by a set of techniques and tools for sythesization of
monitors from a fragment of MTL- R and by a correct-by-construction implementation of
the monitor integration on the target system. We developed a three-valed semantics for
a fragment of MTL- R to deal with incomplete trace evaluation [De Matos Pedro et al,
2017, 20154. For that formal language, we introduce two synthesis algorithms: one for
monitoring synthesis based on the theory of lists; and other for synthsis of satisfability
problems forsatis ability modulo theories (SMT) solvers based on non interpreted functions
with equality, arrays and non-linear arithmetic, including the use of quanti er elimination
tactic. In case of monitoring synthesis, we proceed before synthissby applying a sim-
plifcation algorithm in order to remove and partially solve the quanti e rs from formulas
in the proposed fragment of MTL-R [De Matos Pedro et al, 20140. After that, the
new monitoring algorithm will be ready to be executed. We also provigdd a mechanism
to generate the monitor architecture according to the desired settigs in order to be
embedded in the target system De Matos Pedro et al, 20149. The synthesis algorithm
for SMT solvers is also presented as a rst step to solve fundamental problesnof hard
real-time systems Pe Matos Pedro et al, 2016 2015H. In this thesis we also provide the
validation of the proposed techniques using an empirical use case abouté schedulability
analysis of hard real-time systems, and a set of use cases for the autopiktack Px4 [Meier
et al., 2019.

In addition, we have implemented a tool and a library that have come outof our research
e orts and both are now available to the public. They are rmtld3synth [De Matos Pe-
dro, 2019, a tool for synthesization of monitors and their respective safe inalsion, and
RTMLib [De Matos Pedrg 2014 the library to aid the monitor execution.

1.3 Overview of Thesis

This thesis is organized into six chapters, corresponding the thre core sections to theRv

technique, the RV framework, and the practical evaluation of the technique. To accommo-
date readers, we provide a comprehensive introduction in ChapteR of the terminologies,
notations, and techniques that are used extensively throughout the rmainder of the thesis.
The context for our research contribution with a discussion of relatedwork in hard real-

time embedded systems, languages angV is also presented.

Chapter 3 describes a new mechanism farv of hard real-time systems regarding duration

CHAPTER 1. INTRODUCTION 5

properties, based on a decidable fragment a¥iTL- R and a three-valued abstraction of this
fragment. The fragment allows for expressing quanti ed formulae, and $ adequate for
quanti er elimination: we give an algorithm for the simpli cation of formu las containing
guanti ers and free logic variables. Intuitively, we abstract our fragment into rst order
logic of real numbers(FOLR) to obtain quanti er-free formulas.

Chapter 4 provides a compositional framework that allows us to make assumptions abdu
the time isolation between components as well as the response times dfe monitors. We
apply this notion to components with di erent criticality assurance s, and whose speci c
requirements shall be guaranteed statically and dynamically through seedulability analy-
sis and runtime monitoring, respectively. To guarantee these framewarks' assumptions we
use the proposed fragment to analyze the schedulability of the&compositional monitoring
framework (CMF), and to statically check the maximum response times of each of the
generated monitors.

Chapter 5 describes the practical evaluation of the proposed technique at levedf both
static and dynamic veri cation. By static we mean a formalization of a set of rules of a
system resource usage as well as the claim of the resolution of the schéhility decision
problem for periodic resource models using a formal language. As dynamige consider
the uncertainty monitoring and the practical case study of an autopilot. Considering
that the adopted formalism supports an explicit notion of time by means of nequalities,
durations and quanti cation over these formulas, it increases the expessiveness of classic
temporal logic to deal with explicit timing settings as we point out here using practical
evaluation experiments. Given the evaluation procedure that drawsverdicts, we show the
importance of such existence in the context of hard real-time systes by ensuring that a
monitor always terminates and gives a result.

Finally, Chapter 6 discusses direction for future work inRV, including di erent synthesis
mechanisms targeting embedded systems which have so restrickeesources as well as
di erent simpli cation techniques that may be adopted to use before submitting the
problem for SMT solvers.

CHAPTER 1. INTRODUCTION

Chapter 2

Background and Related Work

The identi cation and formal description of the inherent behavior of hard real-time sys-
tems are two fundamental steps for establishing the veri cation pracess of these systems.
Concerning identi cation, we characterize those systems and clashi their schedulability
problems. Regarding the formal description, we justify the necesty, and present the
languages, to formally describe them.

Although speci cation languages and models for those systems are scarce,eh are crucial
to address the design of new veri cation approaches, particularly whent comes to Runtime
Veri cation (RV). RV may be able to draw verdicts from more expressive formalisms than
static formal veri cation may currently perform, even though RV deals exclusively with
past executions and ideally reduces the burden for the software degier.

In this chapter, we give an overview of the properties of hard real-tine systems, the formal
description of available languages for these systems, and we then deib@ the collection
of the state of the art in RV as well as the related work.

2.1 Real-Time Systems

RTS are those systems that are subject to timing constraints as well as regirce constraints.
Consequently, the correctness of such systems depends on both &mand functional aspects
where resource constraints may be included. According tddurns and Wellings, 2009, real-

time systems can be distinguished from other systems, in general,hen failure to respond
(or to react to a stimuli) can be considered non problematic. In Mall, 2009, the author

describes theresponse timeas a distinctive feature of real-time systems { although for
other authors this may be important, it is not crucial.

CHAPTER 2. BACKGROUND AND RELATED WORK 8

Real-time systems are typically divided into soft real-time systemsand hard real-time
systems In soft real-time systems, missing a deadline degrades the perimance (in
average). For instance, dropping video frames while streaming a vieb conference may
be inconvenient for the remote viewers, but no permanent harm is doa. In hard real-time
systems, deadlines cannot be missed. For instance, an orbital satédicontroller is a hard
real-time system since missing a deadline may cause the satedito fail its orbit (wherever
it occurs). In such systems, deadlines must be kept even undevorst-case scenarios.

There are many interpretations of the exact nature of a real-time systen since each
author proposes a new onelJavis and Burns, 2011, Sha et al, 2004. Nevertheless an
important one is in real-time computing the correctness of the systems depends natnly
on the logical result of the computation but also on the time at which the results are
produced. ([Stankovic, 1989).

Real-time systems span a considerable range of application domains such@®ecess control
systems (e.g., a bottle lling assembly line), manufacturing sysems (e.g., a production
control system), embedded systems (e.g., an onboard satellite compert), and multimedia
systems in general (e.g., a video streaming system), among many otter A few key
characteristics distinguish them from the more general-purpose sysms.

Time constraints: crucial to ensure deadlines, execution times (or durations), and
delays. For instance, deadlines restrict the time instant at whid a process needs to
be concluded;

Correctness criterion: this notion applies to both non real-time systems and real-
time systems. For real-time systems, this criterion di ers from the one used in the
context of traditional systems, since correctness here implies fictional and temporal
correctness. A functionally correct result produced after the dadline is considered
as incorrect;

Support for numerical computation: the notion required for hybrid systems support
(e.g., control activities; a power plant management system). Real-tine systems are
often dynamic systems where at discrete points in time some timingonstraints are
required, but their behavior is a mix between discrete and dynant systems;

Safety-Criticality : denotes a mix between safety and reliability of systems. In
traditional systems, safety and reliability are not combined. A system is considered
safe when it does not cause any damage or injury even when it fails; relidlty on
the other hand, states that a system can operate for a long time without ekibiting
any failure; and

CHAPTER 2. BACKGROUND AND RELATED WORK 9

Large and complex refers to the size and complexity of a system. While a small
program may not have signi cant problems since it is simple in its esence, the same
does not occur when developing a larger one.

Other characteristics are also applicable. However, they are not diretly related to real-
time systems but may be considered asxtension features. For instance, time constraints
characterize real-time systems directly, but a real-time systen may, or may not, be
distributed. Such new features or extensions are described as fols:

Reactive: describes the capacity of the system to react to external stimuliproducing
a feedback to the environment whenever the system evolves;

Concurrent: consists of many parallel/concurrent interaction activities that should
be handled at the same time, i.e., several coexisting external eteents with which
the computer program must interact simultaneously;

Distributed: a notion of di erent components of the system being naturally dis-
tributed across spread physical locations;

Embedded represents the notion of custom-made independent systems whicimn-
plement speci c control functions. Usually, these are known as reatime embedded
systems?;

Component criticality : represents the cost of a component failure. Real-time systems
may have components (or processes) of dierent criticalities. Ths introduces an
analysis of how critical are the results produced by each component lated to the
proper functioning of the system;

Stability: states that a system, even under overload conditions, complies tohe
timing constraints for the high criticality components; and

Fault-Tolerant : characterizes the ability to avoid a system entering a faulty stae.
Under catastrophic scenarios, the system shall detect those states andontinue
operating normally (or even in degraded mode) rather than shutting o abruptly.

Note that any real-time system can exhibit one or more of these features, athey provide
a coherent and congruent mix of characteristics.

One of the central issues in real-time systems is the mechanism teandle multiple interact-
ing activities (e.g., tasks), guaranteeing their timing constraints. This is called real-time

!Note that embedded systems are becoming more and more complex ad generic (e.g. a mobile phone;
IoT home devices), therefore this distinction is starting to be fu zzy.

CHAPTER 2. BACKGROUND AND RELATED WORK 10

schedulingand it is a very active area of research. Tasks can be seen as abstract type
which are used to denote components of code to be executed over rt constraints.
They are triggered when an event occurs (e.g., pressing a power o lton, or even when
a kitchen robot see some stairs and avoid a faulty situation). These tinng constraints
can be seen as a time restriction of code execution. In the followingaragraphs, tasks and
timing constraints are classi ed.

Tasks. Real-time tasks can be classi ed asard, rm or soft. These terms characterize
their dependence on and consequences of a deadline miss. It is notcessary that all
tasks of a real-time system belong to the same class. A hard real-timeask is one that
is constrained to produce its results within certain prede ned time bounds. A rm real-
time task, unlike hard real-time tasks, does do not fail when a timirg constraint is not
satis ed (e.g., video conferencing), but there is no value in delrering the result after the
deadline. In a soft real-time task, timing constraints can be expresed in terms of the
average response time, and results have some value, although limitedfter the deadline.

Moreover, real-time tasks can be characterized as beingeriodic, sporadic or aperiodic. A
periodic task is one that repeats within a xed inter-arrival time; a sporadic task is one that
recurs at random instants (it has a dynamic inter-arrival time with a m inimum interval);
and an aperiodic task is one that is similar to a sporadic task but has no mimum or
maximum inter-arrival time.

Timing Constraints. Timing constraints may be described by events (e.g., the occur-
rence of an input in a system such as an engine start action). These evsncharacterize
the state changes of a system. Such systems can also be named as Disr&vent
Systems QES) [Cassandras and Lafortune 200§. The events generated by real-time
systems can be classi ed astimulus eventsor response events the stimulus events are
generated by the environment where a system run and acts on it; the isponse events are
usually produced by the system in response to some stimulus of thenvironment (i.e.,
stimulus events). The timing constraints can be formulated through these type of events
and classi ed by three constraints: delay, deadling and duration. As the name suggests
a delay d is the measure given by the time di erence of two eventse;; e, greater or equal
to the value d, t(e;) t(e;) d; a deadline is the bound of timeb between two events
such ast(e;) t(e1) b; and a duration dr corresponds to the inter-arrival time between
two consecutive eventst(e;) t(e1) = dr. Timing constraints are in their essence timing
behaviors of real-time systems.

A task is instantiated multiple times and each instantiation is commonly denoted as a

CHAPTER 2. BACKGROUND AND RELATED WORK 11

job. The deadlines of real-time jobs can beelative to one time instant (e.g., the arrival
of a stimulus event) or absolute (from when the system started executing). The response
time is de ned by the time duration between the job release and the instant that the task
nalizes its execution.

Scheduling algorithms normally target uniprocessor, multiprocessr, and distributed sys-
tems. Several major abstractions can be applied between uni/multi-pocessor systems and
distributed systems. They have in their essence major delayand spatial positions.

Although the main focus of this thesis is not on real-time scheduling, & have to provide
the classic schedulability analysis ofperiodic resource modelsin order to introduce the
meaning of resources in the context of the next chapters.

2.1.1 Periodic Resource Models

Let us assume aasks set = f 1; 5;:1; n0; such that n 2 N* is the identi er of periodic
tasks, and ; = (p;;&g) with p; and g being, respectively, the period and the worst-
case execution time of the periodic task j; and a set of periodic resource models =
flg;1 o0 mg with

Li=(T;;rm),

where T , is the replenishment period is the server budget and rm is the rate
monotonic scheduling policy.

The schedulability analysis for periodic resource models was rstprovided by Shin and
Lee [Shin and Leg 2003 2009. The authors formulate an analysis based omesource model
supply. The supply bound functionsbf, (t) is de ned to calculate the minimum resource
supply for every interval of length t as follows:

8

of, (1) <t (k+1)()y ift21;
SoT = .
(k1) otherwise,

wherel =[(k+1) 2;(k+1)]. The value k is given by

8
<x ifx>1

* 1 otherwise

| m
wherex= ()

For an arbitrary set of tasks and a rate monotonic scheduling policy, Lehoczky et al.
[Lehoczky et al, 1989 proposed a demand-bound functiondbf,, (;t;i) that computes

CHAPTER 2. BACKGROUND AND RELATED WORK 12

the worst-case cumulative response demand of a task 2 for any interval of length t.

It is de ned by
X t
dbfim (;t1)= & + — e,
2 @ P
where (i) = f 1;::; igis a function that returns a set of tasks with higher-priority than

(and including) task , and is a periodic task set. The demand-bound function for
resource models is the same since the set of tasks is schedulablengghe rate monotonic
policy. This means that the supply of a resource model must be greatethan the demand
of the set of tasks that a resource model contains.

The tasks set T of a resource model is said to be schedulable accordita rate monotonic
policy if, and only if,

82 T; ot 2 [0;pi] s.t. dbfem (T;ti;i) sbfi (t):

2.2 Languages and Logics

Although any property of a system may be expressed in natural language, its hard to
ensure that someone else will understand exactly what it means. Naturalanguages are
very expressive but, at the same time, imprecise. On the other hath formal languages are
not very expressive but they are very precise, and do not allow for mitiple interpretations
of the same concept.

Temporal logic is known as a language that is adequate for expressing temporptoperties
such aslivenessand safety. Safety properties ensure that a program does not do something
bad. Liveness properties ensure that the program does eventually sorténg good.? Tem-
poral logics have been used as a formalism for specifying qualitative oeding constraints on
the observable traces. The best-known logic idinear temporal logic (LTL) [Pnueli, 1977.
A formula in this logic is built from atomic propositions, standard boolean operators, and
modal operators. NeverthelessLTL is not adequate for real-time systems speci cation. A
run of a real-time system needs to be modeled withimed interval sequencesor as ows
with domain in R g.

The most widely known extension of LTL for dealing with real-time is metric temporal
logic (MTL) in which the modalities of LTL are augmented with timing constraints [Alur
and Henzinger, 1992. A common modality is called until and is denoted by U. Usually,
temporal operators can be strict (when they do not constrain the curren instant) or not,
and matching (when they require their two arguments to hold togethen or not. Intuitively,

2There are other properties, but they are out of the scope of this the sis.

CHAPTER 2. BACKGROUND AND RELATED WORK 13

3
—o
— 3
—o

3

Q —
_):|

I
4 a
L 1 ;

Figure 2.1: Evaluation of propositionsm, a, b over the trace

"1U<¢' 2 is interpreted by true if along the execution trace (from 0 to t, excluding t),
there exists a point where' > holds, and such that all intermediate points satisfy' 1. In
case' ; is true then the formula is evaluated to true. Intuitively, we are describing the
point-wise semantics of the until operator, that is strict and non-matching.

Common shorthands for metric operators arealways (or A) and eventually (or E).

Example 1. Let us assume that the symboim is periodically released at each20 time
units, the trace begins att = 0, and that the until operator is strict and non-matching.
In Figure 2.1, we can observe that U< ;b and aU< 5o b are evaluated to false. However,
if we specify the formula

<« M! <2 aU<5b;

for u = 40, the evaluation is true. Intuitively, we are describing that for each acurrence
of the eventm in the interval [0;40], in at least 2 time units the eventa occurs, and that
the eventa holds until the eventb holds in at least 16 time units. Note that if we replace
u by 41, the formula is evaluated to false. The third occurrence of then symbol does not
hold, neither do the symbolsa and b occur further ahead.

MTL formulas can be interpreted over a variety of temporal models such asiscrete (e.g.,
N, Z) [Emerson 199Q Alur and Henzinger, 1993 and dense (e.g.,R) [Hirshfeld and

Rabinovich, 2004 Bouyer et al., 2010 Souza and Prabhakar 2007, Furia and Rossi, 2007

time domains. Metric operators de ned over discrete time can be regated as simple
syntactic sugar, since they are a succinct way of expressing metric constraintshiat can

be encoded using the LTL'snext modality. Dense-time MTL operators are commonly
classi ed in terms of pointwise and continuous semantics. The pointwise semantics is
evaluated along possibly in nite sequences of timed words, i.e., sgiences of pairs

(eo;to)(er;ty) iit;

where the g are events/propositions belonging to an alphabet and t; 2 R ¢ are the
occurrence time instants of the eventse;. The continuous semantics is evaluated over
possibly in nite signals. Given a set of propositionsP, a signal is a functionf : R o! 2P
mappingt 2 R o to the set f (t) of propositions holding at time t. A restriction of the

CHAPTER 2. BACKGROUND AND RELATED WORK 14

continuous semantics for evaluating timed interval sequences is adlsknown as aninterval-
based semanticsor in other words, a continuous semanticswith nite variability. Timed
interval sequences are sequences of pairs

(eo; lo)(er;1a) i ::;

where thel; are contiguous, non-overlapping intervals with real or rational bounds, érming
a sequence of intervals oR .

The majority of real-time systems operate in a dense time domain and sttes are always
changing at any time instant. Even if it may be possible to get in nitely many changes
over a xed interval of time as the case of control systems, this will gve us undecidable
results. As explained by Henzinger and colleagues$ienzinger et al, 1997 many veri cation
methods are based on the assumption that states are only observed at integpoints (also
called digitization). Here, we are talking about digital systems, where such in nitely many
changes cannot occur.Metric temporal logic with durations (MTL- R) is thus appropriate
for reasoning about such systems. However, the veri cation of digital sgtems does not
require the expressive power of continuousK) semantics. Instead, it may be su cient to
restrict the input model to timed interval sequences

MTL- R extend expressiveness dfiTL with fragments of classic logic, including rst order
logic of real numbers (FOLr). Nevertheless, we do not have a hybridization Blackburn
and Tzakova, 1999, since we have terms and formulas separated, and quanti cation only
occurs over relation< (a predicate in FOLg) containing terms as argument. MTL- R is
more expressive thanFOLg. Moreover, lambda calculus can encode fragments of temporal
logic without making use of a proper lambda calculus temporal extension agproposed
in [Davies, 2017. Lambda expressions will be described after introducingMTL- R and
FOLR.

2.2.1 Metric temporal logic with durations (MTL- I%

MTL- R is more expressive thanduration calculus (DC) [Lakhnech and Hooman 1995
Chaochen et al, 1993, but is undecidable since the relation over terms or the term furction
may itself be undecidable. DC is based on interval logic and includes the chop modality
instead of the until modality as in temporal logic. This constructing operator allows us
to nd a point in time where an interval can be split into two sub-in tervals. Implicitly,
this express a temporal bound over liveness properties. AlthougibC is able to deal with
liveness properties as irMTL , the inverse chop modality shall be considered. Let us begin
by brie y reviewing MTL-

De nition 1. Let P be a set of propositions andV a set of logic variables. The syntax

CHAPTER 2. BACKGROUND AND RELATED WORK 15

R . . .
of MTL- terms and formulas' is de ned inductively by

4

s=otrue JpJR(C i n)j a2t jtiU T2 1S o 9x!

R
where 2 R, x 2V is alogic variable,f a function symbol of arity n, " is the duration
of the formula ' in an interval, p 2 P is an atomic proposition, U and S are temporal

operators with 2f <; =9, 2R g,andR(1;:::; n);"1_"2;: " and9x' are de ned
as usual.

Furthermore, we will use the following abbreviations: * ~ for: ("' _:), " ! for
S, " fortrueuU ', and " for: (trueU).

An observation function of length 2 (R ¢[flg) over P is a function from P into
the set of functions from the interval [O;) into ftt; g. The length of is denoted by # .
A logical environment is any function :V! R o. Forany ,x2V andr 2 R, we will
denote by [x 7! r] the logical environment that maps x to r and every other variabley to

(y). The following auxiliary de nition will be used in the interpre tation of the duration
of a formula.

De nition 2 (MTL- R semantics) The truth value of a formula * will be de ned relative
to a model (; ;t) consisting of an observation , a logical environment , and a time
instant t 2 R o. We will write (; ;t) F ' when' is interpreted as true in the model
(;;t). Terms and formulas will be interpreted in a mutually recursive way. First of
all, for each formula' , observation and logical environment , the auxiliary indicator
function 1. (; y:R o! R ois de ned as follows, making use of the satisfaction relation:

8

<10t E S

L=]
- 0 otherwise.

The value T J K;)t of a term relative to a model can then be de ned. A Riemann
integral [Gordon, 1994 of 1. (. is used for the case of a duration ' :

TJIK(G)t =
T XK(;)t = ()
T I KG)t = f8(TJlK(; YEn T IaK()Y
TSZ .{(; - <Rtt+TJI(;)t1~(;)(t()dto if ()

0 otherwise

CHAPTER 2. BACKGROUND AND RELATED WORK 16

where () means that 1 (.) satis es the Dirichlet condition [Lakhnech and Hooman
1995 p.7]® and the sub-term T J K(;)t is non-negative, otherwise the function is non
Riemann integrable. The satisfaction relation in turn is de ned as:

(st)FEP i (p)(t)= tt andt< #

Gt)YFRCa:) i R(T Ja1K(;)t::5; T IaK(;)Y)
Git)F"1_"2 i (Gt)FE o (Gt)FE T2

Git)E:! i (iit)e”

Git)F iU i there exists t°suchthatt t° t+ ; (;;t 9F " 2

and for all t% t<t%<t% (;;t 9,
(;it)E'1S ' i there exists t°such that t 0t (Gt YR 2
and for all t% t°<t %<t (;;t 9"

(;;t)F X' i thereexistsanr2 Rsuchthat(; [x7!'r];t) "

Note that the semantics of the until operator is strict and non-matching [Bouyer et al.,
2010Q.

R
Figure 2.2a intuitively illustrates the use of the MTL- language. From Figure 2.2b we

X

R
can conclude that the formula8x () < x in the nite interval [0 ;64) is

interpreted as true. Note that 8x is a shorthand for :9:

2.2.2 rst order logic of real numbers (FOL Rr)

FOLr commonly denotes the rst order logic de ned over the structure (R;<; +; ;1;0) [Jo-
vanovt and de Moura, 2013. FOLR formulas, also known as Tarski formulas Tarski, 1995,
are boolean combinations of polynomial equalities and inequalities. We dee Z[x] by Py
as a ring of polynomials with one variablex, wherePo = Z, and P, = xP,, 1+ P 1.

De nition 3 (FOLR). A polynomial f 2 Z[y;x] is of the form
fly;x)=am X% +an 1 x% 1+ +a x%+ a;

where 0< dq < < dn, and the coe cients a are in Z[y] with a;, 6 0. A polynomial
constraint F is of the form f Og where f;g are polynomials andO 2 f<; ;=;6; ;>g.
We denote the polynomial constraint that represents the negation of a cortsaint F by
: F. A clause of polynomial constraints is a disjunctionF;, _ _ F, of n 2 N polynomial
constraints. Note that in this de nition we do not consider roots of polynomials.

3A function is said to satisfy the Dirichlet condition if and only i f for any bounded interval 1, it is
bounded in I and has a nite number of discontinuity points in 1|.

CHAPTER 2. BACKGROUND AND RELATED WORK 17

idle 1 ﬂ 1
U false
1 false
true
2
(a) A diagram containing: a path ; three event releases , , and iy ; and the respective truth
value of the logic formulas U , ;:= 0 _ 10, and 5 := 3 10.
60 - =
= true
40 +
>
20
OO 5

X

R
(b) The grth depi%s the formula * and
X X <x in the nite interval [0 ;64).

which allows us to visually check the
formula 8x

Figure 2.2: Diagram of a path (a) and respective duration computation (b)

Example 2. Let us now consider the polynomial inequality50 x? y < 10. It can be
expressed using the pattern of the De nition3 by

50< (1 y+0) x?+0 x'+10;
where coe cient a; is replaced by the monomiay. Considering a, equals tol y2+1 y1+0,

we get50<a, x2+0 x!+10 thatis equivalent to50<x? (y2+ y)+10.

2.2.3 Lambda expressions (-expressions)

The lambda calculus, commonly denoted by -calculus, was introduced in the 1930s by
Alonzo Church [Church, 1941). It consists of a notation for describing mathematical
functions and programs, and a functional abstraction that captures some of tle essential

CHAPTER 2. BACKGROUND AND RELATED WORK 18

common features of a wide variety of programming languaged_fague 2004. It is com-
monly described as the smallest universal programming language, sincei$ equivalent to
Turing machines. However, -calculus is focused on the transformation rules and single
function de nition scheme, instead of the shape of the actual machinemplementing them.
As such it is an approach more related to software than to hardware.

A -termis either a variable x 2 V ar, whereV ar is a countably in nite set of variables; an
application of a function ey applied to an argument e1, usually written ey e;; or a lambda
abstraction, x:e representing a function with input parameter x and body e. Formally,
lambda expressions are inductively de ned by

e = X Xe jeer
where the metavariablee represents a -calculus term.

An expression can be surrounded with parenthesis for clarity, and we se the notation

with \."s to avoid the proliferation of multiple lambdas, each one with one argument. For

instance, X 1;:::Xn:M is equivalentto (x 1(::: (X nM):::)), where M is the body of the

abstraction. We assume that lambda abstractions associate to the right, ad applications

to the left, i.e.,, MN1:::Ny is equivalent to (:::(MN1):::N,). Note that acts as

a variable binder in a similar way to the quantiers 9 and 8 in predicate calculusand
::.dx in integral calculus

We begin by describing the meaning of the reduction (!)
(x:M)N ! M [N=x];

whereM [N=x] can be read \replace free occurrences of x in M by N". The -rule is de ned
by
x:M = y:M [y=x] and y is not a free variable ofM .

This rule captures the fact that a bound variable can be replaced by any dber free variable.
The reduction denoted by ! is the transitive and re exive clousure of !

Substitution su ers from the problem of \variable capture”. It can be sol ved using di erent

approaches. A simple one is to replace the bounded variables in certaitircumstances as
in [Leagug 200Q Hindley and Seldin, 2009. For instance, to evaluate y: (X:yx)(xz), we

have that (x:yx)[y=xz]. Here, using the modern approach, we need to use the-reduction

to rename x and reduce (w:yw)[y=xz] into w:xzw .

The concept of equality in -calculus is not the same as in most of mathematics where it
is called extensional equality. Instead of including the assumption that for funtions f1;f,
with the same domain, for all x , f1(x) = f2(x) implies that f; = f,; we have that two

CHAPTER 2. BACKGROUND AND RELATED WORK

Combinator | -calculus term Combinator | -calculus term
I XX T xy: KXy
K Xy:X F Xy:y
S Xyz:xz (yz) N (NOT) p:pFT
B Xyz:X (yz) O (OR) Pg:ppg
C Xyz:Xzy E (ITE) pab:pab

19

Table 2.1: Standard and Boolean Combinators

terms are equal if they encode the same algorithm in some way. This dsenot means
that if two programs compute the same mathematical function then they arethe same
program. Note that one of them may be more e cient than the other. The -calculus is
then said to haveintensional equality. Di erent extensions exist but they converge in the
same results.

There are a diverse set of combinators. Combinators are lambda terms wit no free
variables. Informally, combinators are completely speci ed operations Some of the special
combinators are the substitute-and-apply operatorS, the identity operator |, the constant

operator K , the swap operatorC, and the compose operatoB. Church Booleans are other
special combinators: the truth value true T, the truth value false F, the if-then-else (as

know as ite) E, the or operator O, and the not operator N. All of them can be found in

Table 2.1

Example 3. Let us now see an example using Boolean combinators and the ifetirelse
operator. Consider the term \if a then T elseF". Case whena= T,we haveE T T F
equals to

(‘pab:pab)(xy:x)(xy:x)(xy:y) =(xy:x)(xy:x)(xy:y) =(xy:xx)= T:
For a= F,we haveE F T F equals to

(‘pab:pab)(xy:y)(xy:x)(xy:y) =(xy:y)(xy:x)(xy:y)=(xy:y)= F:
To sum up, -calculus, more properly the typed -calculus, is the basis of the well-known
functional programming languages such as ML and OCAML Remy, 2003. As such it may

be an elegant theory to synthesize/encoding temporal logics for di erat purposes such as
monitors and/or SMT solvers.

2.2.4 Related Work

At the beginning of the 1990s, real-time constraints have been added toemporal logics
[Koymans, 199Q Alur et al., 1993, in order to extend this vocabulary with the speci cation

CHAPTER 2. BACKGROUND AND RELATED WORK 20

of quantitative timing constraints. A bewildering diversity of ope rators are used in timed
temporal logics that introduce considerable variations on the decidabity and expressive-
ness of properties. There are two well-established families of tied logics with linear time.
The rst one is characterized by modalities decorated with quantitative constraints and is
namedtimed propositional temporal logic (TPTL). TPTL [Bouyer et al., 201(J makes use of
guanti cation together with untimed temporal modalities and explici t constraints on time
values. The second one that is characterized by th&eeze-quanti cation is metric temporal
logic (MTL). MTL uses the time interval constrained modalities \until* and \since".

Alur and Henzinger [Alur and Henzinger, 1994 investigated the expressiveness and decid-
ability properties of timed logics MTL and TPTL . They showed that MTL can be easily
translated into TPTL . Furthermore, they conjectured, giving an intuitive example, that
TPTL is more expressive thanMTL . In [Maler and Nickovic, 2004 a fragment of MTL
for continuous signals is considered, which is intrinsically di erent from observing discrete
signals in a continuous time domain.

Nevertheless,MTL and TPTL are both undecidable even for nite timed words. Thus,
several restrictions have been proposed to obtain decidable sub-lag such as Bounded-
MTL [Bouyer et al., 2008 which has \bounded" intervals (its satis ability EXPSPACE-
complete), andmetric interval temporal logic (MITL) [Alur et al., 199 which is decidable
in EXPSPACE. Subsets of TPTL are less studied; one of such logics, the constraindPTL ,
can be found in Pandya and Shah 201Q Parys and Walukiewicz, 2009.

Logics suitable for expressing linear-time temporal properties of evd timed sequences or
timed resources aretimed linear-time temporal logic (TLTL) [Bouyer, 2009 and weighted
metric temporal logic (WMTL) [Bouyer et al., 20084. Moreover, the well-known branching-
time temporal logic for timed words TCTL (UPPAAL's [Behrmann et al., 2006 underlying
logic). Such logics are well suited for expressing simple time-bowed response properties
in linear and branching time. For instance, several simple proper&s can be de ned by
these logics such as: an everd occurs in three time units, or even an eventa consumes
at least three energy units.

The temporal logic MITL is one of the most popular real-time extensions of LTL. The
main modality of MITL is the timed untii U, where | is some non-punctual interval
with integer or rational endpoints. The original version of MITL contained only future
temporal operators, although past and future versions ofMITL were proposed in Alur

and Henzinger 19924.

Nevertheless, none of these related logics deals with explicit timeé.e., when counting time
. . R :

is required. MTL- and DC are the languages that better t the requirement of embedded
hard real-time systems. DC is an interval logic making use of achop operator instead of

CHAPTER 2. BACKGROUND AND RELATED WORK 21

the common temporal modalities, andMTL- R is more expressive tharDC. The excessive
expressiveness of such languages makes them intractable. Neithe€ or MTL- R is more
convenient to describe embedded real-time systems. They arensply di erent languages

within the same roots on temporal logic. However, we believe that intrhsic temporal

modalities such asuntil and since inside the logic are more convenient and intuitive for
dealing with RV.

2.3 Runtime Veri cation

The increasing pervasiveness of critical applications in the contexof safety-critical sys-
tems leads us to state, according to Baier and Katoen, 200§, the following sentence:
"The reliability of safety-critical systems is a key issue in the gstem design process".
The magnitude of real-time systems, as well as their complexity, gro& apace, meaning
that there are no longer small and standalone applications. Typically, sub systems are
embedded in a larger context where several other components and systs connect and
interact. These systems become much more vulnerable to errors { #hnumber of defects
grows exponentially with the number of interacting system componets. In particular,
phenomena such as concurrency and non-determinism that are centrabtmodeling real-
time systems turn out to be very hard to handle with standard known techniques.

Formal veri cation have an inherent separation in two kinds of approaches deductive
reasoning [Makinson, 2012 Almeida et al., 2011, where techniques by logic deduction
are applied (e.qg., iterative theorem proving, automated theorem prowving [Harrison, 2009);
and model-based veri cation where properties are checked for all execution traces (e.g.,
classical model checking Glarke et al., 1999, probabilistic model checking Baier and
Katoen, 2008). The latter will be the focus of this chapter since timed temporal logics,
a known formalism for checking timed systems, are well suited for mdeling real-time
systems, and also because thRV concept is close to model checking techniques (i.e., a
trace model instead of an automaton).

Real-time systems are systems wher&/ may play an important role, not only due to
their high complexity, which makes several static approaches practially unfeasible in a
foreseeable future Zhu et al., 2009 Leucker and Schallhart 2009 Falcone, 2014, but
also due to their high dependence on temporal constraints (e.g., reaability becomes
undecidable due to the time clock operations: addition, subtractionby a constant, etc.)
[Norstrem et al., 1999 Fersman et al, 2007, Krcal et al., 2007, Burns and Wellings, 2009.
The research on techniques for these systems has been growing prcggieely along the
recent years, due to a high need for reliable and safe development attetives to static

CHAPTER 2. BACKGROUND AND RELATED WORK 22

approaches. Nonetheless, the trend towards new dynamic approaches hasdm higher for
soft real-time systems rather than for hard real-time systems (by fausing essentially on
the functional aspects).

The Runtime Verication (RV) technique monitors the behavior of a system to check
its conformance to a set of desirable logical properties. Note that theRv literature
mostly focuses on event-triggered solutions. Nonetheless, this mommtic event invocation
introduces two major defects to the system under scrutiny, nanely signi cant overhead,
and unpredictability. These e ects can however be eliminated byusing more recent
techniques such as event-based monitoring with predictive analys [Zhu et al., 2009,
and sample-based monitoring with predictive analysis as introducedy [Fischmeister and
Ba, 201Q Bonakdarpour et al., 2011].

Runtime monitoring (or monitoring upon execution time) is based on the synthesis of
monitors (dedicated blocks of source-code) in an automatic way from forral speci cations.
It can be deployedoine for debugging, oronline for dynamically checking properties
during execution. O ine monitoring is currently a slightly inact ive research topic; it
consists in collecting a program trace (i.e., an execution trace) whitis afterwards analyzed
to verify if the execution is in compliance with the speci cation or not. For the purposes
of replay and analysis of the scheduling process o ine monitoring maybe used to capture
from a system implementation some operations such as: system calls témrupts, context
switches, and state variables. Online monitoring, on the other hand, mg for instance
ensure, by checking upon execution, that when a plug-in is loaded dwamically by one
application, its consumed resources shall not exceed the resourcedoaled by the host
application. This can be performed viainline monitoring, where the monitoring is inserted
into execution code as annotations (e.g., assertions), or else lputline monitoring, where
the monitor executes as a separate concurrent process. In addition, dine monitors
may be implemented by hardware, synthesized from high level formaspeci cations and
executed on FPGAs, resulting in zero runtime overhead on the sysgim's CPU [Goodloe
and Pike, 2010. Typically, RV involves a signi cant time penalty when a system is under
execution, thereby some authors$ankar and Mandal, 1993 Pellizzoni et al., 200§ propose
that it is crucial to use multi-processor systems when a hardware mnitoring approach
is not used. Using a multi-processor allows the monitoring proces$o be performed
concurrently on a di erent processor, without delays for the sysem under monitoring.

Predictive analysis of runtime monitors refers to the ability of ensuring that real-time con-
current systems under scrutiny aresound Soundness means that the predictive analysis is
able to detect, correctly, functional (or even concurrency) errorsfrom observing execution
traces.

CHAPTER 2. BACKGROUND AND RELATED WORK 23

In the last decades, severaRVv approaches have emerged, mainly for concurrent systems.
These approaches are an alternative or a complement to the conventional rtteods (e.qg.,
model checking Clarke et al., 1999, theorem proving [Fitting , 1996, and testing [Hamlet,
201Q), and, as such, a lightweight manner to check the behavior of systes) even if only
partially. Let us now give a formal de nition of RV.

De nition 4. (Runtime Veri cation) RV is a veri cation technique that allows checking
whether arun of a system under scrutiny satis es or violates a given correctnessrpperty.

RV deals with the observation problem, it detects violations (or satisfactons) of speci ed
properties that can (or cannot) be mitigated. A violation occurs when a system under
scrutiny deviates from the required behavior of the system.

Runtime Monitoring. Runtime monitoring is a process that is able to enforce property
checking for systems during execution time. Bysystem under monitoring (SUM), we
consider asystem under observation(SUO) where its evolving execution is observed at
selected points (along the execution time) and those observations arénecked against the
given speci cations [Goodloe and Pike 201Q. In a more general perspective, runtime
monitoring can be viewed as a technique that allows to checlpast nite execution trace
(PFET) of a system. As such, runtime monitoring may only observenite executions (past
observations), contrary to classical veri cation techniques (e.g., nodel checking) where the
focus is only onin nite executions. Thus, an execution of a system may be viewed as a
nite pre x of a possibly in nite execution, and is therefore consi dered a PFET. The
notion of runtime monitor is established in a slightly more general form n De nition 5.

De nition 5. (Runtime Monitor) A runtime monitor is a process that reads a PFET and
yields a certain verdict at execution time.

By verdict we mean, in abstract, a truth value from some truth domain. T his domain can
be commonly-valuedtrue and false three-valuedtrue, false and unknown, or even yielding
a probabilistic interval in [0 ; 1].

The problem of RV, in its mathematical essence, can be reduced to answering thegord
problem i.e., the problem of whether a given word is included in some language.et J K
denote the set of valid executions satisfying the property . The word inclusion problem
consists in checking whether the executiorw is an element ofJ K On the other hand,
the language inclusionproblem is more complex and undecidable in general (e.qg., classical
timed automata) [Alur and Dill , 1994 Alur et al., 1999.

Runtime monitoring has been applied to concurrent (or even soft realime) systems in
order to detect functional violations at runtime, and trigger system recovery actions when

CHAPTER 2. BACKGROUND AND RELATED WORK 24

a catastrophic error occurs. However, runtime monitoring can be appkd to nonfunctional
aspects of a system through constraints, such as: performance, timepsts/weights or
even resources utilization. Currently, as far as we are aware, there arno monitoring
frameworks for such constraints.

Let us now overview logic-based monitoring. In spite of the fact that runtime monitors
typically only have nite execution traces available at some point in execution, this does
not imply that logics for in nite traces such as LTL, computation tree logic (CTL), or
even the superset of CTL (CTL*) cannot be adopted to (or restricted only to) analyze
nite execution traces. LTL [Pnueli, 1977 is a well-accepted and established logic used for
specifying properties of in nite traces, however, as referredin RV, the goal is to checkLTL
properties given nite pre xes of in nite traces. As such, we will now give a description
of two LTL -based speci cations for nite traces.

ptLTL [Laroussinie et al, 2004 was proposed to extend theLTL with past operators
The principle of this logic is rather intuitive: something in the present implies that
something happened in the past.ptLTL is a temporal logic where future-time modalities
{ F (\sometime in the future"), G (\always in the future"), U (\until") , and X (\next") {
are complemented with their past-time counterparts { P or F * (\once in the past"), H or
G ! (\always in the past”), SorU ! (\since”), and X ! (\previous") { respectively. There
is a duality between Past-time and Future-time logics, however, Gbbay [Gabbay, 1987
has proved that any linear-time temporal property expressed using pst-time modalities
can be translated into an equivalent (when evaluated at the beginning othe path), pure
future formula. Actually, ptLTL is not more expressive thanLTL, but it is more succinct
than LTL . Gabbay also argues that this result also extends to other temporal logi, such
asCTL* with past, -calculus with past, etc.

LTL 3, introduced by Bauer et al. [Bauer et al., 2017 is a logic which shares the syntax
with LTL but deviates in its semantics for nite traces. The idea was to impement three
truth values { > (true), ? (false), ? (inconclusive) { for the logic formulas. More precisely,
given a nite word u and anLTL 3 formula ' , the interpretation of u is de ned, according
to [Bauer et al,, 2017, as follows:

if there is no continuation of u satisfying ' , the value of' is false;
if every continuation of u satises ' , the value of' is true; and

if true or false values cannot be determined, the value of is inconclusive

Havelund and Rosu Havelund and Rosy 2004 propose a monitor synthesis algorithm
for ptLTL formulas. The generated monitor tests whether theptLTL formula is satis ed
by a nite trace of events given as input and executed in linear time { depending on the

CHAPTER 2. BACKGROUND AND RELATED WORK 25

ptLTL formula size as well as the memory consumption. The synthesis prosgis basically a
pretty-print, which is a direct conversion from the logic formula t o the target programming
language Java. The authors also suggest optimizations for the synthesis algtrim, which
is part of PaX, and argue that it generates e cient monitors.

Bauer et al. [Bauer et al., 2011 have developed an algorithm for generating e cient
monitors for discrete-time properties. Their approach only consides monitoring properties
that are specied in LTL 3 or in TLTL with three truth values. They describe how nite

state machines (FSMs) with three output symbols are generated fromLTL 3 formulas. The
generated automaton reads nite traces and yields their three-valued emantics. Thus,
monitors for three-valued formulas classify pre xes as being goodX), bad (?), or neither
good nor bad (?). Standard minimization techniques forFSMs can be applied to obtain
a unique FSM that is optimal with respect to its number of states. The authors despned
LTL 3 to speci cally match the needs arising inRV.

Comparing both previous solutions, there are two important di erences to note:

1. Bauer et al.'s solution usesLTL with three truth values instead of Havelund and
Rosu's solution that usesptLTL , and

2. Bauer et al.'s solution generateg=SMs from LTL 3 formulas instead of Havelund and
Rosu's solution that applies a direct conversion fromptLTL semantics to the program
code (in this case, the Java programming language).

Two techniques that are less used but are related to the topic of thighesis. The Anna
(ANNotated Ada) speci cation language was introduced in [Sankar and Mandal 1993,

including the synthesis monitor algorithm named Anna consistency clecking system (Anna
CCS). This outdated approach consists in the construction of a high-legl speci cation

language for concurrency monitoring. It is suitable to monitor the critical aspects of the
system's behavior continuously along its execution. Anna is based onrst order logic
and its syntax is an extension of the Ada syntax. Anna CCS provides the apability

to distribute the monitoring of speci cations on multi-processor hardware platforms to
meet practical time constraints. However, this approach assumes thattie program under
monitoring is sequentially executed. LOLA [D'Angelo et al., 2007 is also a speci cation
language and an algorithm for the online and o ine monitoring of synchronous sysems,
which include circuits and embedded systems. Even being a futional language over
nite streams, the initial proposal does not contemplate support for runtime monitoring

of synchronous systems using more than one clock, neither asynchrorogystems. Due to
that several streams acquired with di erent clocks cannot be used.

CHAPTER 2. BACKGROUND AND RELATED WORK 26

2.3.1 Runtime Monitoring of RTS

So far, not many approaches forRv of real-time properties have been proposed. In the
following, three real-time monitoring approaches are described.

Temporal Rover [Drusinsky, 200(Q is appropriate for monitoring of hard real-time systems
due to the temporal constraints being speci ed inMTL in spite of the monitoring software
being closed, therefore we are not able to undertansd how it is desigd. Temporal Rover
is a commercialRV tool based on future time metric temporal logic. It allows program-
mers to insert formal speci cation in programs via annotations, from which monitors are
generated. An Automatic Test Generation (ATG) component is also provided to generate
test sequences from logic speci cations. Temporal Rover and its suessor, DB Rover,
support both inline and o ine monitoring. However, they also have their speci cation
formalisms hardwired and are tightly bound to Java. [Alves et al.,, 2011 presents the
results of a formal computer-aided validation and veri cation of critical time-constrained
requirements of the Brazilian Satellite Launcher ight software basedon Temporal Rover.

In [Auguston and Trakhtenbrot, 200§ the authors present an approach for the dynamic
analysis of reactive systems viaRV of code generated from Statecharttiarel and Naamad

1994 models and veri ed by the Statemate approach Puguston and Trakhtenbrot, 2009.

The approach is based on the automatic synthesis of monitoring statechartérom formu-

las that specify the system's temporal and real-time properties in aproposed assertion
language. The promising advantage of this approach is in its ability to analyzereal-world

models (with attributes re ecting the various design decisions) in the system's realistic
environment. This capability is beyond the scope of model checkingools.

Bauer et al. have developed an algorithm for generating e cient monitors from TLTL for
real-time systems Bauer et al., 2011. The authors introduce the notion of TLTL with

three truth values, denoted TLTL 3. This basic notion is interesting and adequate forRv,
since the complete set of traces is not available and th&v requires that the speci cation
is evaluated increasingly. This approach employs so-calledvent-clock automata(ECA)
for monitoring of TLTL 3 formulas. Moreover, Bauer et al. introduce the symbolic timed
runs and show their bene ts for checking speci cations e ciently, av oiding a possible but
generally expensive translation ofECA to predicting-free timed automata. Yet, without

considering counting time explicitly.

2.3.2 Related Work

The last two decades have withessed an immense increase in resénactivities in the

CHAPTER 2. BACKGROUND AND RELATED WORK 27

area of static analysis Nielson et al, 1999 Almeida et al., 2011, Tschannen et al, 2011,
where numerous theories and methods have been developed to vgrifoth sequential and
concurrent programs Apt et al., 2009. However, technigques such as model checkingdier
and Katoen, 2008 Clarke et al., 1999 and theorem proving [Harrison, 2009 proved to be
hard, expensive and non intuitive for the common programmer (i.e., manytimes unusable
[Tschannen et al, 2011)). Moreover, the trend towards increasing size and complexity of
software in real-time systems promises to make their static veri @tion very challenging
in the foreseeable future Zhu et al., 2009. The exploration of other techniques, such as
dynamic veri cation, is necessary in order to decrease the burden gbrogram veri cation,
either in alternative or as complement to static methods [eucker and Schallhart 2009
Falconeg 2010d. A recent trend in program veri cation is the use of runtime checking to
complement the property veri cation of sequential and concurrent systems [[schannen
et al., 2011, Zee et al, 2007.

In this section, we will review some approaches to monitoring based on psct-oriented
programming, rule-based languages, and hardware monitoring.

Aspect-Oriented Programming Languages. Aspect-oriented programming is a re-
cent paradigm to organize the entities according to aspects, which hasrpved to be
adequate/useful for monitoring calls instrumentation. Aspect-oriented programming has
been increasingly adopted in di erent programming languages, e.g., Aspét (an aspect-
oriented extension of Java language), AspectC++ (an aspect-oriented ebension of C
and C++ languages), and recently Ada 2012 Barnes 2014. Building on these AOP
languages, numerous extensions have been proposed to provide domapesi ¢ features
for AOP. Among these extensions, TracematchesAllan et al., 200§ and J-LO [Bodden,
2004 support history(trace)-based aspects for Java.

Tracematches enables the programmer to trigger the execution of certaiblock of code by
specifying a parametric regular pattern of events in a computation trae, where the events
are de ned over entry/exit of AspectJ pointcuts. When the pattern i s matched during the
execution, the associated code will be executed.

J-LO is a tool for runtime-checking temporal assertions. These tempral assertions are
speci ed using parametric linear temporal logic (LTL) and the syntax adopted in J-LO is
similar to Tracematches except that the properties are speci ed ina di erent formalism.
J-LO also uses the same parametricity semantics as Tracematches. J-LOaimly focuses
on checking properties at runtime rather than providing programming support. In J-LO,
the temporal assertions are inserted into Java les as annotations that ae then compiled
into runtime checks. Both Tracematches and J-LO support parametric &ents, i.e., free

CHAPTER 2. BACKGROUND AND RELATED WORK 28

variables can be used in the speci ed properties and will be bound tespeci ¢ values at
runtime for matching events.

Rule-based Languages. Eagle Barringer et al., 20044, RuleR [Barringer et al., 2007,
and PQL [Matrtin et al. , 2005 are general speci cation languages which encompass moni-
toring algorithms. Such speci cation formalisms allow for complex propety speci cation
with parameter bindings. Eagle and RuleR are based on xed-point logics andewrite
rules, while PQL is based on SQL relational queries. PQL allows programers to express
design rules that deal with sequences of events associated with ats# related objects.
These schemes tackle the de nition of speci cation language with the spport of data
binding among many other features, which makes the languages somewhat cosfng and
probably ine cient for monitor generation.

Program Trace Query Language PTQL) [Goldsmith et al., 2003 is a language based on
SQL-like relational queries over program traces. The currentPTQL compiler, Partigle,
instruments Java programs to execute the relational queries on the y. PTQL events
are timestamped, and the timestamps can be explicitly used in queées. PTQL can be
arbitrarily complex in the worst cases but, in average, it has an acceptale overhead.
PTQL properties are globally scoped and their running mode is inling as the predecessor
PQL. PTQL provides no support for recovery, its main use being to deect errors. PTQL
has static and dynamic tools. The static analysis conservatively looksdr potential matches
for queries and is useful to reduce the number of dynamic checks. B dynamic analyzer
checks the runtime behavior and can perform user-de ned actions wén matches are found.

Attempts at monitoring hardware. BusMOP [Pellizzoni et al., 2009 is an outline
hardware monitoring solution proposed to plug a monitor into a peripherl bus. The pe-
ripheral behavior is monitored by hardware, within which the read and write transactions
are examined on the bus without runtime overhead on the system.

The PSL to Verilog compiler, P2V [Lu and Forin, 2009, is an attempt to perform runtime

monitoring of formal properties in hardware. P2V is similar to BusMOP in that monitors

are implemented in hardware rather than software, and that both approacheghus have no
runtime overhead on the CPU. P2V, however, is more similar to the aboveapproaches in
that it is designed for monitoring actual programs rather than peripheral devices. Also it
requires a dynamically extensible soft-core processor implem&d on an FPGA, while the
BusMOP approach can potentially be applied to any COTS communication arclitecture.

Furthermore, P2V uses hardwired logic (PSL) while BusMOP allows for the use of di erent
formalisms.

CHAPTER 2. BACKGROUND AND RELATED WORK 29

2.3.2.1 Frameworks

MOP [Meredith et al., 2017, RV [Meredith and Rosu, 201QJ, MaC [Kim et al., 2004,
PathExplorer (PaX) [Havelund and Rosy 2001, Eagle Barringer et al., 2004, RuleR
[Barringer et al., 2017, and RMOR [Havelund, 200§ are RV frameworks forlogic, extended
regular expressiong ERE), context-free grammar (CFG), assertion-based monitoring, within
which speci c tools for Java (and C) { Java-MOP [Jin et al., 2014, RV-Monitor/RV-
Predict, Java-MaC, Java PathExplorer, Hawk [d'’Amorim and Havelund, 2005, and RMOR,
respectively { are implemented. The summary of the specication hnguages of such
platforms, which support outline monitoring, is the following

- MOP supports extended regular expressiors(EREs), Java modeling languagéJML),
and several variants ofLTL ;

- RV uses ve di erent speci cation formalisms, namely FSMs, EREs, CFGs, past-time
linear temporal logic (ptLTL), and future-time linear temporal logic (FTLTL);

- MaC uses a specialized language based on interval temporal logic;
- JPaX just supports LTL ;
- Eagle adopts a rst order xed-point LTL with a chop operator;

- RuleR solves some performance issues of Eagle and adopts a xed-poprbpositional
temporal logic (PTL); and

- RMOR supports LTL and a graphical state machine language RCAT.

MOP, a monitor oriented programming framework, can be seen as having eveéd from
JPaX with the idea that the speci cation and implementation together f orm a system.
The MOP approach supports inline, outline, and o ine monitoring; it allo ws to de ne
new formalisms to extend the MOP framework; it generates monitors fromannotated code
as plain Java code; and it adapts easily to new languages (as the authors argueMTL
currently is not supported by MOP, neither is any other real-time logic. The RV system
[Meredith and Rosu, 2010, a commercial-grade successor of MOP, is based on the success
of the MOP system and on a vastly expanded version of the jPredictor Sytem [Chen et al,,
2009. MaC [Sokolsky et al, 2006 Sammapun et al, 2007 and JPaX integrate monitors
via Java bytecode instrumentation, making them dicult to port t o other languages.
MaC also supports statistical runtime checking. Eagle attempts to buld a logic that is
powerful enough to subsume most existing speci cation logics. The &gle logic with a
chop operator allows to model sequential composition. Although quite expessive, it does
not yield e cient monitors, so RuleR attempts to address those ine ciencies {soodloe and
Pike, 2010J. A monitor is expressed as a collection of logic rules speci ed in prapsitional

CHAPTER 2. BACKGROUND AND RELATED WORK 30

temporal logic, as aFSM, or CFG. The RMOR platform monitors C programs specifying
both safety and bounded liveness properties that can be expressed BSMs, and observes
events recorded in an execution trace.

These platforms are only suited for runtime monitoring or evenRV of concurrent systems.
As such, they cannot be used for real-time systems since only temporalonstraints are
ensured, and as it is well known that real-time systems are mainly caracterized by their
dependence on timing (or timed) constraints.

2.3.2.2 RV vs. static veri cation and testing techniques

Due to the increasing importance of contextualizing veri cation techniques in the sense
of knowing their potential and fragilities, a comparison betweenRv and three well-known

techniques (deductive reasoning, model checking and testing) ismade in the following

paragraphs. These techniques can be characterized in terms e€alability, types of prop-

erties and coverage

Model Checking. RV shares many similarities with model checking and, roughly speak-
ing, this technique can be seen as complementary to model checkir{ge., runtime veri -
cation reduces veri cation issues, which are undecidable, but alseeduces the coverage).
Nevertheless, and according tolleucker and Schallhart 2009, there are important di er-
ences to consider:

1. In RV, only one execution of a given system is checked to answer, in exe@ut time or
after the execution (inline monitoring and outline monitoring, respectively), whether
it satis es a given correctness property' . This corresponds to knowing whether
the execution trace satis es the property ' , i.e., the word acceptance problem. In
contrast, model checking deals with the language inclusion problem. Ags well-
known, the word problem is of far lower complexity than the inclusion problem
[Alur and Dill , 1994.

2. RV considers nite traces, since all executions are necessarily né, whereas model
checking deals with in nite traces.

3. RV, especially when dealing with online monitoring, considers nite &ecutions of
increasing size. For this, a monitor should be designed to considexecutions in an
incremental fashion. In contrast, model checking deals with a com@te model which
allows considering arbitrary positions of a trace.

CHAPTER 2. BACKGROUND AND RELATED WORK 31

From an application point of view, there are also important di erences baween RV and
model checking: RV deals only with observed executions. Thus it is applicable to black-
box systems for which no system model is at hand. In model checkiny however, a precise
description of the system to check is mandatory as, before actually ruming the system, all
possible executions must be checked. Furthermore, model chanlg su ers from the well-
known state explosion problemwhich refers to the fact that analyzing all executions of a
system is typically carried out by generating the whole state space, hich often becomes
unfeasibly huge. Considering a simple run, on the other hand, most agggations of RV
are not practically limited by their memory requirements, since the necessary history
information, although potentially unbounded, is usually fairly small.

Model checking is characterized by a lower scalability (due to tle state explosion problem),
a lower properties coverage (several properties cannot be checked,g., explicit time

properties, especially when dealing withTPTL and MTL), and higher coverage of the
model (e.g., a property’ holds for all possible paths of the model). However, veri cation
using model checking is only as good as the model of the system.

Deductive Reasoning. Logical deduction is clearly one of the most used techniques in
software veri cation; however, it is also one of the most di cult to app ly. Deductive proof
construction and RV are two distinct techniques, clearly without similarities. They dier

in the following points:

1. Deductive proofs are much more time-consuming than a push button ogration such
asRV in the sense of utilization perspective. Deductive reasoning ragres that well
known deductive techniques and tactics are used. Moreover, alv tools works in
an automatic fashion.

2. RV has lower coverage than deductive proofs. The latter technique is geral and
comprehensive. In contrast,RV only veri es concrete past executions which cannot
be extended or generalized.

3. Deductive proofs are exact and rigorous, no more veri cation e orts are equired
after a nite set of steps are found.

Testing. RV has similarities with testing since neither of the techniques onsiders each
possible execution of a system, but just a single or a nite subsetjndicating that their
coverage is usually incomplete.

There are two testing schemes, namelguite-basedtesting and oracle-basedtesting, that
can be usedHamlet, 201Q. Typically, a test suite is formed by a nite set of nite input-

CHAPTER 2. BACKGROUND AND RELATED WORK 32

output sequences. Test-case execution is then the act of checkinghether the output of a
system agrees with the predicted one, after giving the input sequece to the system under
test. However, oracle-based testing, a closer approach tevV, composes a test suite which
is only formed by input sequences. To anticipate the output resuls for testing, a so-called
test oracle has to be designed and coupled to the system under test. This oracle sérves
the system under test and checks a number of properties (e.g., bynit tests 4) in an
automatic way. In contrast, RV is identical in the sense that the monitor is coupled to the
system and instead of testing it, monitors whether the properties ae satis ed or violated.
An alternative way to compare both techniques, according to Bauer et al.,, 2017, is:

1. RV generates monitors from high-level speci cations rather than a handmadecon-
struction of a test oracle.

2. RV does not consider the supply of a suitable set of input sequences txhaustively
test a system.

This technique is the most widely used in industry due mainly toits greater scalability,
in spite of lower coverage and the uncertainty in test oracle developmnt.

Summary

Indispensable topics and respective related works have been sunamzed and merged
in this chapter as the background required to read this thesis. We hee recapped the
importance of duration properties for proving correct real-time sysems' behavior with the
conclusion that there is a huge gap oRv frameworks ready to deal with explicit real-time
systems properties. Proper languages for describing hard real-time/stems properties have
been surveyed as well, including a diverse number of propertiene important language
is MTL- R, which, being more expressive than duration calculus, may originatefurther
issues that need to be dealt statically (we will continue exploringit in the next chapter).
We have also introduced lambda calculus as basic and elegant theory fobastructing new
synthesis algorithms.

“4Consists of testing certain areas of the source-code by providirg di erent inputs for such blocks of code
(e.g., functions) and comparing it with the desired outcome.

Chapter 3

. R
RV with RMTL-

RV is concerned with the problem of generating monitors from formal specications, and
adding these monitors into the target code as a safety-net that is abled detect abnormal
behaviors and, possibly, respond to them via the release of counteneasures. Providing
an expressive formal language that ts the timing requirements of realtime systems is the
main objective of this chapter.

A fragment of MTL- R is presented as an intuitive tool to carry out RV of hard real-
time systems. We begin by thespeci cation language and then introduce the notions
of inequality translation using FOLr in order to simplify restricted metric temporal logic
with durations (RMTL- R) formulas. In the remaining part of the chapter, we present the
correctness result of the inequality translation algorithm, and we contude by describing
the synthesis algorithms for static and dynamic veri cation purposes.

3.1 The specication Language RMTL-

To overcome the undecidability results of MTL- R, we will apply restrictions on its def-
inition. RMTL- R is a syntactically and semantically restricted fragment of MTL- R; the
syntactic restrictions over MTL- include the use ofbounded formulas of a single relation
< over the real numbers, the restriction of the n-ary function terms to use one of the
+ or operators, and a restriction of constants to the set of rationals Q. Tarski's
theorem [Tarski, 1999 states that the rst-order theory of reals with +, , and < allows
for quanti ers to be eliminated. Algorithmic quanti er elimination | eads to decidability,
assuming that the truth values of formulas involving only constants (without free variables
and bound variables) can be computed.

33

R
CHAPTER 3. RV WITH RMTL- 34

The semantic restrictions on the other hand include the conversion ofthe continuous
) R . . :) .
semantics of MTL- into an interval-based semantics, where models ardimed interval

sequencesand formulas are evaluated in a given logical environment at a time 2 R .

" R " .
De nition 6 (RMTL- formulae). Let P be a set of propositions andV a set of logical
variables. The syntax ofRMTL- terms and formulas' is de ned inductively as follows:

Z
= X1 2]

s=otrue jpj 1< 2j'1_t2jitjtaU T2j'1S 29X

where: 2 R, x 2V is a logical variable, the operators 2f +; g are used for the sum
and multiplication of terms, ' is the duration of the formula ' in the interval [0;];
p 2 P is an atomic proposition, < is the relation less thanon terms, U and S are temporal
operators, with 2f <;=gand 2R .

We will use the following classic shorthands:" ~ for: (' _:), " ! for ;"

for trueU ', and " for : (trueU :'). We will denote by the set of
R

RMTL- formulas. Furthermore, we willuse 2f +; g and 2 f <; =g to range over

operators.

A timed state sequence is an in nite sequence of the form
(po; [i0;%D); (pa; [1%D 121

wherep; 2P, i) = ij+1 andij;i? 2 R o suchthatij <iandj 0. Let (t)be dened
asfpjg if there exists a tuple (pj;[ij;i9[) such that t 2 [ij;i9[, and as; otherwise. Note
that there exists at most one such tuple.

A logical environment is any function :V ! R o. Forany x 2V, r 2 R, and logical
environment , we will denote by [x 7! r] the logical environment that maps x to r and
every other variabley to (y).

De nition 7 (RMTL- R semantics) The truth value of a formula ' will be de ned relative
to a model (; ;t) consisting of a timed state sequencé, a logical environment , and
atimeinstant t 2 R o. We will write (; ;t) ' when' is interpreted as true in the
model (; ;t). Terms and formulas will be interpreted in a mutually recursive way.

First of all, for each formula ' , timed state sequencek and logical environment , the
auxiliary indicator function 1. (. y:R o! R o is de ned as follows, making use of the
satisfaction relation: 8
< 1 . . H 1
1 if(;;t)F"S
L, ()=, _
* 0 otherwise.

R
CHAPTER 3. RV WITH RMTL- 35

The value T J K;)t of a term relative to a model can then be de ned. ABiemann
integral [Gordon, 1994 of the function 1. (. is used for the case of a duration ' .

TIK;)t =
TXK;)t = (x)
TJ:1 2K:Ht = 'EI;JlK; 't T J oK)t
R)
sz A <STETIKGOU oy dt fTIK:) O
T (;)t = .
-0 otherwise

The satisfaction relation is de ned inductively as follows:

(;;t)F true

Git)Fp iop2 (Y

Git)F 1< 2 i T Ik Ht< T JI 2K)t

GCit)F"1_"2 i (Git)ET1or(Git)E 2

Got)F i(5t) e

(;st)F'1U ', i thereexists tsuchthatt t° t+ and(;;t OF"
and for all t%uch that t<t®<t® (; ;t Y ',

(st)F'1S "2 i there exists t°such that t t° tand (5t OYF ' 2
and for all t%uch that t°<t%®<t; (;:t 9 ',

(;:t)F X' i thereexistsavaluer 2 Rsuchthat(; [x7!'r];t)F"

We will write (;) F ' as shorthand for (; ; 0) F ' . Note that the semantics of the
until operator is strict and non-matching. This implies that, in order tosatisfy' ; U ' 5,
the model is not required to satisfy' ;.

R
An important property of our restriction is that RMTL- satis es by construction the
Dirichlet condition implying the Riemann property [Lakhnech and Hooman 1995 p.7]:

R . . .
Lemma 1. For any RMTL- formula ', timed state sequence , and logical environment
, the indicator function 1. (. is Riemann integrable.

Proof of Lemma 1. We proceed by contradiction on the claim that the function 1. (. y has
nitely many discontinuities. Let us consider the model (; ;t) and a proposition prop
such that prop2 (t) for t 2 [0; 1).

We consider the case when is equpIRto R prop = 1 a: from the semantic interpretation
of the duration term, we have T 1prop (;)t =1 t. Applying the substitution
property of equality, we get a + R prop = 1. Sincet is directly related to the variable a,
when the timed state sequence has nite length, from the semantic rules we can see that

R
CHAPTER 3. RV WITH RMTL- 36

if a has in nitely many discontinuities along t then 1 (.) also contains in nitely many
discontinuities. Considering the above relation betweert and the logic variablea (t = a),
introducing in nitely many discontinuities in t means that we can extend the formula

to introduce nitely many discontinuities in a. Now, from a close examination of the
semantics of the logic, we have thata can be constrained only by polynomial inequalities.
In nite discontinuities on polynomial inequalities are not obtainable .

We also need to consider the case when Boolean operators are applied to yrobmial
inequalities. In order to obtain an in nite number of discontinuiti es we would need an
in nite number of Boolean operators and then an in nite formula. Since any formula
needs to be nite to be satis able, then this contradicts the claim.

We skip the proof for the remaining cases, since no more relations begeent and logic
variables can be allowed semantically, other than those originating in deation terms in
certain circumstances. To conclude the proof, we have that no in ritely many discon-
tinuities exist, and then the Dirichlet condition holds, which i mplies that the indicator
function 1. (. is Riemann integrable.

Example 4 (Application of Durations) . Let us now consider an example using a duration
term concerning the evolution of a real-time system formed by tasksegiending entirely on
the occurrence of events, the evaluation of the propositions is perfored over these events,
and all the tasks have an associated xed set of events. Lef, be a formula that speci es
the periodic release of a renewal event for a timed resource in the ggen, and let ,, be
a formula specifying every event triggered by tasks belonging to that resoercTo monitor
utilization and the release of timed resources, we employ the fowla,

Z,

<V m - m ’

wherev is arbitrarily large, t is the budget renewal period, and is the allowed budget (i.e.
the execution time of tasks belonging to the timed resource). Let us msider two nite
sequences ; and », such that ; is a subsequence of;, and an arbitrary formula

In the two-valued setting, incremental evaluation ovet is inconsistent with respect to the
sequence, since we could have 1; ; 0) 6 and (»; ; 10) F due to lack of sequence
symbols in 1.

A di erent solution will be presented in the next section where the unknown truth-value
is an option.

R
CHAPTER 3. RV WITH RMTL- 37

3.2 Three-valued Extension of RMTL-

The three-valued logic extension ofRMTL- R, which we will call three-valued restricted
metric temporal logic with durations (RMTL- RS), is syntactically de ned as before, but

contains two new terms. These terms allow for variables to be maximied and minimized in

certain intervals, subject to a constraint given as a formula. The tems must be introduced

here due to the situation in which no minimum or maximum exists (the formula is not

satis ed in the interval), since we need to de ne an infeasible valie instead of assigning a
real number to these terms. The language of terms oIRMTL-R3 is de ned as follows:

Y4
S= jxjmin' jmax' j 1 2]
X X

where min' and max' , are respectively, the minimum and maximum of a formula with
X X R
respect to the logical variablex. All other formulas and terms are as iInRMTL- . We will
R R
denote by 3 the set of RMTL- , formulas, and by the set of RMTL- , terms.

R
De nition 8 (RMTL- , Semantics) The truth value of a formula * will again be de ned

relative to a model (;; ;t) consisting of a timed state sequencé, a logical environment
and a time instant t 2 R o, and will now be one of the 3-valuedtt; ;?g. We will write
J K(:t)= tt when' is interpreted as true in the model (; ;t), J K(;it)= when'
is interpreted as false in the model (; ;t), and J K;;t) = ? otherwise. The auxiliary
indicator function 1. ;)R o! f 1;0; 1g is de ned as follows:

1 T KGr)= tt;
0 if J |%(;;t) =
1 ifJ @(;;t):?

L ()=

W AW 00

The interpretation of the term will be given by T J K(;)t 2 R[f? rg, as de ned by
the following rules. WheneverT J K(;)t = ? R, this means that the term is infeasible

Rigid terms:

-TJiK(:)tisdenedas if ;= ,andas (x)if 1=x

Minimum and Maximum terms:

- If 1=m)i(n ", then T J 1K(;)t is de ned as:
8
<minm ifmé ; and for all y such that y < minm; J K(; x7y)t) 8 ?
© 2R otherwise

wherem= fr j J K(; x7irlt) = ttg.

R
CHAPTER 3. RV WITH RMTL- 38

-If p=max ', then T J 1K(;)t is dened as:
X

8

<maxn ifné ; and for all y such that maxn <y; J K(; [x71y}t) 8 ?

© 2R otherwise

wheren= fr j J K(; x7irlit) = ttg.
Duration term

R
- Ié 1= % ,then T J 1K(;)t is de ned as:
3 RuT K iy (1 do ifTJ2I<3(;)t 0and for all t%2 [t;t+T J oK)t

" ?R otherwise

Binary terms:

-1If 1= 2+ 3,thenT J 1K(;)tis dened as:
8
ST IKG Ht+ T I K Ht if TIKG HT Ik Ht2R

" ?R otherwise

-If 1= > 3, then T J 1K(;)t is de ned as:
8
STIKG Ht TIsKGHt ifTIKG HGT IsK: Ht2R

" ?R otherwise

Turning to the interpretation of formulas, we de ne J K(;:t) to be one of the three values
in ftt; ;?g, according to the following rules.

Basic formulae:
-If isp, then J K(;t)isttifp 2 (t), ifp 62 (t)and (t) 6 ;, and
?09f ()= ;.
Relation operator:

-If is 1< o, thenJ K(;:it) is dened as:
8
3t if TJIKG HETIKG Ht2R, and T J 1K)t < T J 2K)t

ifTJ1KG H6TI2KG Ht2 R, and T J1KG)t T J 2K)t
T? T IKG Ht=2r0OrT I K It= ?R

Boolean operators:

- If st thend Kt istt if I Kt)=, if J Kt) = tt,and? otherwise.

R
CHAPTER 3. RV WITH RMTL- 39

- If is"1_ "2, then J Kt) is ttif J 1Kt) = ttorJ oKt) = tt,
if J 1Kt)= andJ 2Kt)= , and ? otherwise.

Temporal Operators:

"1 U ', thend Kt) is de ned as:

If gs
tt if there existst®such thatt t° t+ ; J Kt 9 =tt and
forall t% t<t®<t% J Kt 9=t
if forall t%t t° t+ ;
J oKt 9 6 implies that
there existst®such that t<t ©<t%J ;K(;x 9= and
J oKt 9= implies that there exists not®such that t <t %<t % or
there existst®such that t <t ©<t%J 1Kt 9 =

- ? otherwise

- If 8is' 1S "2, thenJ K(;t) is dened as:
tt if there exists t° such that t t tJ.KGt 9=tt and
forall t% t0<t%<t; J 1Kt = tt
if for all t% t 0

J oKt 9 6 implies that
there existst®such that t<t %< t; J ;K(;x ® = and

J oKt 9= implies that there exists not®such that t°<t %<t or
there existst®such that t°<t0<t; J 1Kt 9 =

© ? otherwise

Existential operator:

-If is9x'_, then J K(;t) is de ned as:

8

% tt if there exists a valuer 2 R such that J K(; x7trjt) = tt
ifforall r 2 R; J K x7trlt) =

E ? there exitsr 2 R such that J K(; x7rjt) = ? and

there exists nor 2 R such that J K(; [x7irj) = tt

We will write (; ;t) F3' whenJ Kt)=tt,and (;;t) 63" whenJ Kt)=
In what follows we will often write 1= >for: (1< 2)": (2< 1).

Preservation of RMTL- R Semantics. An immediate motivation for (the choice of)
de ning a three-valued semantics for our logic fragment comes from the ature of runtime
veri cation, which evaluates timed sequences where it is hot posbie to determine a de ni-
tive true or false value without analyzing the complete trace. For instance, considering a

R
CHAPTER 3. RV WITH RMTL- 40

pre x {, of a timed sequenceg , we have that the evaluation of the same formula in the
models { ; ;t) and ({ p; ;t) produces dierent truth values. Classic semantics cannot
provide a common truth value to make consistent incremental evaluatbons of the model,
which is an important feature for RV.

The semantic preservation of both truth and falsity for the three-valued logic is de ned
using the following two relations: a partial relation f tt; ;29 f tt; g dened by
tt ot ,and ? ; and a partial relation / R[f? rRg R denedby ?r/ 0,
and m/m , for all m 2 R, which gives a distinct treatment to duration terms that evaluate
to 0 in the 2-valued semantics.

We will now formulate two auxiliary results required to prove the semantic preservation

R R
of RMTL- in RMTL- ..

term semantics, we have that these terms are indeed quanti ed formlas, interpreted

From a close examination of the minimum and maximum

as a minimum or a maximum value that satis es the quanti cation, or as ?r when
this minimum or maximum is nonexistent. First of all we observe that the following
axioms [Tarski, 1995 p. 205], where does not contain minimum and maximum terms,
extend to our present setting:

Al 1 min < 5 ((Byy<x!: [y=)" 1 x< 27

A2, 4 max < 0 @Byy>x!: [ya)”t 1 x< "

i R,
A 3. 1 1 2 0 X= 3" 101 2

Axioms Al and A2 indicate that a formula containing a minimum/maximum term is indeed

a quanti ed formula constrained by the mim/max of the variable x. Axiom A 3 replaces a
formula containing a duration constrained in an interval by a duration term constrained
by a logic variable. The meaning of () isthat (; ;t YFs i (;;t)Es ,for
a model (; ;t).

R . .
Lemma 2. Let be aRMTL- , formula such that minimum and maximum terms only
. . , . R
occur outside of the duration terms. Then, there exists an equivalenRMTL- , formula
containing no occurrences of minimum and maximum terms.

Proof. The proof follows by induction on the structure of the formula . We only present
the case when is 1< ,. We have to prove that there exists an equivalent form for the
minimum and maximum terms for RMTL- R3 formulas. In particular, for all 3 and 4 and
for any x and 1, the following holds

3t 4 min g<z () (Byy<x!: aly=xP" s+ 4 x<z” ¢

R
CHAPTER 3. RV WITH RMTL- 41

Suppose 1is 3+ 4 min pand ,is 5+ g min ». Assuming that ; 6 z and
X X
2 6 z, by the fourth axiom of the second axiomatization of Tarski [Tarski, 1999, we have

that 1<z”z< o ie.
3+ 4 mxin 1<z N 5+ 6 mxin > Z

Now, we have both inequalities in the same shape and we can consider thest one for
continuing the proof (since the proof for the other inequality is similar). By axiom A 1, we
have Baa<x!: j[a=x])™ 3+ 4 x<z ™ 1. Byinduction hypothesis we have

(Baa<x!: qa=x)N"(e+ 7 myin 2)*(g+ 9 min 3) x<z”" g

Re-applying Axiom 1, we have that

(Baa<x!: ja=x]"
(Bbb<y!l: by~

(Bcc<w!: glc=w)~
1M 2N g

(e+ 7 Y)+(g+ 9 W) x<z:

Hence, the minimum terms vanish. We skip the case when, = z, ,6 zand 1 6 z,
2 = z; and also when the maximum term is employed (which makes use of axiom 2,
since the proof is similar.

From Lemma 2, we conclude that the minimum and maximum terms do not increase the
RMTL-R3 expressiveness as they are indeesiyntatic sugar that can be eliminated. We
have not considered the situation when minimum and maximum terms ocur in the scope
of duration terms. For that we need to apply axiom A3 to replace the bound term of the
duration, allowing for Lemma 2 to be further applied.

Now, given the result of Lemma 2, we will add the minimum and maximum terms to

. R
the syntax and semantics ofRMTL- , since there is no di erence from the expressiveness
standpoint. Then, we will prove by mutual structural induction on t he formula that the

semantics is preserved. Let us denem = fr j J K; x7!r]t) = ttg. The minimum term
. . . . R
min ' is semantically interpreted as anRMTL- term as:
X
8
r-z Sminm ifmé ;
T min' (;)t= :
X -0 otherwise

The maximum term max ' is semantically de ned as:
X
8

r z < maxm if m6 ;
T max' (;)t= :
X -0 otherwise

R
CHAPTER 3. RV WITH RMTL- 42
. R
Lemma 3. If 1isanRMTL- , formulathenJ 1Kt) J 1K;it).

Proof. We will prove by mutual structural induction that J 1K(:t) J 1Kt) for any
R

RMTL- , formula 1, and T J 1K(:)t/ T J 1K;)t for any term ;. For terms we have

to prove that the following cases hold.

1. BaseCase)If TI K)t=TJ K: tthenTJ K)t / TJI K;)t
2. (Base Casex) If T XIK(;)t =T XK;)tthen T XK(;)t / T IXK;)t

R
3. (Step Case ' 1) If J 1K(:it) J Kt TJIKG ot/ TRJ 1K: Ht, and
TaF%K;)yt< 0i TJIiKGHt=?r_TJIaKG)t < Othent 1y3(;)t/
1

1 (5)t

4. (Step Case 1) If TIAKG Ht [TIK; yrand T I K6)t / T J 2K,)t
thenTJ1 KGOt/ TJI1 2K)t

Base cases 1 and 2 are trivially solved since by de nition the semanticules are exactly
the same, and th%n for any modelT J K(;)t=TJ K; yrand T XK(;)t =T IXK;)t

hold. Step case . Assuming that J 1K(::t) J 1Kt) and that T J 1K)t /

T J1K;)t, we need to considerRWhen the evaluation of term 1 is Iessqthan z;;ro. From
the semantic nature of the term * aé/ve h?/ve that for any model T et 3Gt =
?rif TIJ1K(G)t =?randthat T ' 17(;)t =0if TJ1K;)t < 0. Then from
aR, 1y(; yt=0i T aR, 1y3(; 1w=?r_ T aR, 1y3(; yt = 0, we concude that
TJaK: H)t<O0i TJI1KG)t=?r_TJ1K(:)t < 0holds for any model (;)t. The

step case 4 is direct.

Now, we continue the proof for formulas. We need to consider the cases:

1. (Base Casdrue) If Jrueks(;;t) = JrueK:;t) then Jruek(;:t) JrueK; it)
2. (Base Casep) If JpKs(;t)=t i JoK:;t)= tt then Jpg(: it) JoK 5t)

3. (StepCase<) If T J 1K)t/ T I 1K:), T I 2K)t/ T I 2K: Ht, T I 1K: 1t =
i TIKGHt=?r_TJIiKG Ht= ,andTJI2K; H)t= 0 T J2KG)t
2r_TJI2KG Ht= thenJd i< KGit) Ji1< 2Kit)

4. (Step Case:) If J 1K(::t) JiK:tyand J (KGr)y =t X Kot) =
andJ (K;t)=tti J 1K;it)= thend 1K(it) J 1Kt

5. (Step Case_) If J 1Kt) J Kt), J 2Kt) 3Kt), I 1KG)
tt_\] 2’%(;;t)=tti Jl_ ZI%(;;t):tt and"]lK;;t):tt_JzK;;t):tti
Ji_ oK;ty=ttthend 1 oKGt) J1_ 2K:it)

R
CHAPTER 3. RV WITH RMTL- 43

6. (Step Case U) If J 1K(;it) J Kt), J 2KGt) J 2K;t), and
J U 2Kt) = tt i J U 2Kt) = it, then
J 11U 2KGt) J1U 2Kt

7. (Step Case9x) If there exists a model (; ;t) such that J 1K(;t) J 1Kt),
Bx KGr)y=ti J9x (Kt) =tt, then J9x 1Kt) x 1K)

We trivially prove that Jruel(;:t) = JrueK;t), since the semantic de nition of true
in both logics is the same. Base casp. From the semantic nature of p, we prove that
JpKg(;it) = tt i JpK:it) = tt holds, sinceJpiKg(:t) =tti p2 (t) and JpK it) = tt
i p2 (t). Step case<. Assuming T J 1K)t / T J1K:)t and T J 2K et /
T J2K;)t, weneedtoprove thatT J 1K;)t= 1 TJI1KG HIt=?2r_T I 1K Ht=

and T JoK:)t= 1 TJI2KG Ht=?r_TJI 2K)t= hold. For simplicity, we
consider the propositionT J 1K(;)yt = tt i T J1K;)t =ttand T J K¢)t = tti
T J 2K;)t = tt. For these cases the semantic rules are the same, and then the propadsit
holds. Proofs for step cases, _, U, and 9 are skipped since they are direct.

Before concluding this section, we de ne a function to translate fomulas containing
minimum and maximum terms into formulas without occurrences of these operators.

Denition 9 (erasure of min/max terms). Let f and f be two mutually recursive
functions responsible for erasing minimum and maximum terms from fomulas and terms,
respectively. In the case when ; (the recursive argument off) is of the form

3t 4 min 1< 5
X
then the function returns
@yy<x!ti f (ay=x)"f (f (3+ 4 x)<f ()
Otherwise, the function f proceeds recursively over its sub-formulas and over its sub-

terms until no more occurrences of min/max terms exists.

Note that due to verbosity in the above de nition, the formula 3+ 4 mxin 1< 5does
not extent with the : and _ operators, since any inequality in a formula will reduce to this
pattern using the connectives properties. For terms, any term wil reduce to the pattern

3+ 4 X using commutative and distributive properties of addition and multi plication.

Lemma 4. The function f is partially correct.

Proof Sketch. The proof follows by mutual structural induction on the formulas and terms
containing min/max terms, and using axioms Al and A2.

R
CHAPTER 3. RV WITH RMTL- 44

3.3 Polynomial Inequality Translation

A close examination of the semantics oiRMTL-R3 reveals that the timed state sequence
and the logic environment are not directly related as parameters for evaluating the
truth value of formulas. This property allows us to de ne a mechanism for introducing
isolation by splitting formulas and/or translating them into polynomial i nequality condi-
tions. Several conditions can be discarded prior to execution, and theesulting simpli ed
formula is then suitable for runtime monitoring and/or checking with SMT solvers.

The axiom system for the arithmetic of real numbers provided by Tarsk [Tarski, 1995
can be used to encode polynomial inequalities as IRMTL- ,. Several properties provided
by this well-known fragment will be used to facilitate the removal of quanti ers, when
properties expressed as quanti ed formulas are monitored at executionime. From the
Tarski{Seidenberg theorem [rarski, 1999 we have that for any formula in FOLg, there
exists an equivalent one not containing any existential quanti ers. Thus it is possible
to de ne a decision procedure for quanti er elimination over FOLr. One of the most
e cient algorithms, with complexity 2-EXPTIME, is cylindrical algebraic decomposition
(CAD), later proposed by Collins [Collins, 1976 Basu et al, 2004. To use it we require
a set of axioms for isolation of temporal operators and duration terms, and an automat
mechanism to apply them.

. . : R .
Let us now describe the constraint required for anRMTL- , formula to be interpreted as
a formula of FOLg; and the notion of rigid term and rigid formula.

i . . , . R
De nition 10 (Inequality Translation Constraint) . Let 3 be a formula in RMTL- ,. 3
is a formula in FOLR if it is free of duration terms, minimum/maximum terms, temporal

operators, and propositions.

De nition 11 (Rigid Formula). A term r is said to be rigid if its evaluation does not
depend on the model parametett. A rigid formula , is a formula where every term is a
rigid term.

In what follows, let < be a formula containing a conjunction of polynomial inequalities
of the form Tt < T2A T3 <74~ A 7" 1< TN with T aterm and § the numbergf
inequalities; ¢ a formula free of polynomial inequalities; and ; a formula of RMTL-
with index i 2 N.

De nition 12 (DNF3 Formula). A formula ; 2 3 is in DNF3 if the subformulas of the
until operators and the duration terms are in DNF3, or it is a formula not containing
occurrences of until operators and duration terms, indisjunctive normal form (DNF).

R
CHAPTER 3. RV WITH RMTL- 45

Axioms A4 and A5 below describe how rigid formulas , can be isolated outside the scope
of the temporal operator. Axiom A6 isolates polynomial inequalities inside duration terms.
Axiom A7 isolates inequalities inside duration terms.

Ad 1 (™ 22U 30 (¢! 1_ 20 9~C¢ P 11U 3)
A5 U (™ 2)_ 30 (" U 2 "¢ 1V U)
Rr Rr
A6 rA 0 r/\ _(I‘AO)
R R R R
AT 1_ 2= 1+ 2 1N o2

Soundness proofs for axioms A A5, A6, A7 can be found in Appendix D. These axioms
are used to provide isolation of formulas for certain patterns, but an autonated method
is required to apply them. Due to the changing nature of temporal operabrs and the
duration terms over the model parametert, this method is not straightforward and several
details should be considered. First, we need to consider that duré&n terms inside until
operators cannot be isolated but can be simplied. The nature of these opmitors does
not allow for splitting a conjunction/disjunction of two di erent for mulas as is thew case
for rigid terms inside until operators. They can however be split usng axiom A4 and/or
A5. Terms occurring inside duration terms can be split by axiom A6, A3 and/or A 7.

De nition 13 (Isolated Formula). A formula ; is said to beisolated if every term and
temporal operator depending on the parametett does not contain other terms or temporal
operators depending on the model parametet.

De nition 14 (Simpli ed formula) . A formula is said to be simplied if the quanti ed
polynomial inequalities have been decomposed and all variables are boued. A simpli ed
formula is a formula where operators and terms depending on the paramet modelt only
contain equalities of the formx = "

The resulting formula of our process shall be a simpli ed formula. ®cond, any formula
produced by our automated method cannot contain logic variables that are fre. The
presence of free variables would mean that the monitor should solve a satability problem
on the y, which is not admissible for our purpose. We should solve as manyormulas as
possible o ine, and avoid formulas containing free variables (these arecorner cases that
will receive a di erent treatment). Lastly, we need to consider that temporal operators
shall be mapped to propositions, and duration terms to free variables. Ropositions shall
be mapped tox =1 for an arbitrary logic variable x.

R
We also prove, in Lemmasb and 6, that any formula of the form lu 2 or X

can be simpli ed. Proofs are also given in AppendixD. Some de nitions and intermediate
lemmas are included in AppendixD as well.

R
CHAPTER 3. RV WITH RMTL- 46

HYPOTHESIS

HYPOTHESIS
8; OProperty 2 holds. U 0

; OProperty 1 holds.

Figure 3.1: Graphical proof sketch

. R .
Lemma 5. Let !; 2 be two formulas in RMTL- 5, and consider the formula tu 2,
Then, there exists an equivalent formula vx&here every until operator is ée of inequalities

or only contains equalities of the formx =

. R .
Lemrréa 6. Let be aformulainRMTL- ,, and «; two terms, and consider the formula

. Then, there exists an equivalent formula ve/zhere any duration term isrée of
inequalities, or only contains equalities of the formx =

R . .
Theorem 1. Let be aRMTL- , formula. For any formula , there exists an equivalent
simpli ed formula.

Before presenting the proof of Theoreml, let us give an intuitive proof sketch for it. The
proof idea is to ensure that the existential quanti ers of a RMTL- R3 formula are removed,
and the remaining inequalities are isolated to give us a simplied fomula. Figure 3.1
shows the relations/dependences of Lemmé& and Lemma 6 that are used in parts of the
proof of Theorem1. The gure shows that two main inductive hypotheses are applied for
both branches, based on Propertyl and Property 2 that are introduced next. They refer
to formulas and terms which are mutually recursive. Before introdwcing those properties,
let us introduce some required de nitions.

De nition 15. Letf (X;Y;Z) be a shorthand for X ! Y)~ (: X ! Z), where X, Y
and Z are formulas in RMTL- Rs.
Let f8 be a map function from a formula in RMTL- R3 to a formula free of inequalities,
or at most containing equalities of the form x = 2, Where , is a sub-formula of
Let f~ be a map function from a formula in RMTL-R’3 to a formula < with arbitrary
length n. We denote byfie and 7 map functions for arbitrary identi ers i 2 N. Note that

R
CHAPTER 3. RV WITH RMTL- 47

de ning the translation in a sequence of small mappings will ease the of structure of
the Lemma 5. We also denotef; with 2f <; 9.

De nition 16. Let S(n) be a set of formulas containing a combination oh disjunctions

ff,(); :fy,()gtakenk n ata time without repetition, and S(py an element of the

set S(ny-

De nition 17. Let fs(0 N S n @ function such that fs(n)(i) is the i element of
k k

the setS, .,.
()]

De nition 18. The intermediate function fq , : V"1 NI § ") I N2 1 is
de ned by
Z X
f fs<(M (l); Yii = fs(n (l); Yii =0 ~ A
Z X
f fs<(P)(m); Ymii = fs(P)(m); Ymi =0 ;

whereymi 2 V", and (m;i) 2 N2.

The following properties will allow us to simplify/transform term s and formulas by iso-
lating inequalities from them. The isolation property for the sub-terms of the duration
terms is presented as well.

Property 1 (Until Formula Isolation) .
U 0 Xm
where X is de ned as

)M EO)N U ()

i Xi 1;
and 0<i m, m2 N.

Property 2 (Duration Term Isolation) .
Z

X

0 Yo " Dn;
where; is inductively de ned by
(it +ymi) (Yi1);
D; is inductively de ned by

0<i n,mzﬁ,andrzn (i 1.

R
CHAPTER 3. RV WITH RMTL- 48

Proof Sketch of Theoreml. The proof follows by mutual structural induction on the for-

mula and the term . The case when is ;U > 0r is R, 1 is directly proved
by applying Lemmas5 and 6, respectively. For the reamining casedrue; p;: ; ;9 and for
term cases ;Xx; , we have to prove that no relation exists between these rules andhe
model parametert, i.e, the parametert is always constant with respect to the evaluation
of these formulas and terms.

The proofs for base formulagrue and p are trivial since t is xed by the semantic rule. Let

. . L . R
us now consider the case when is: ;. From the semantic interpretation of RMTL- ,,
we have that J. 1K(;;t) and J 1K(;;t) are evaluated at the same time instantt. In the

case when is 1 _ 5, we also have 1 and » evaluating at the same timet.

Finally, for the case when is 9x 1 we have to prove that if the formula ; does not
contain operators and terms depending on the parameter modelor only contain equalities

of the form x = then from CAD we have a simpli ed formula. This comes from
straightfoward induction on 1 and from the assumption that CAD is sound.

3.3.1 Simpli cation Algorithm

Based on Theoreml, we know that there exists a decision procedure for simplifying
formulas. To translate any formula in RMTL-R3 into a formula in FOLr compliant with
De nition 10, we require an algorithm for generating simpli ed monitoring conditions.
Algorithm 1 can be used to replace duration terms by new free variables constraide
by the nature of those terms, with propositions being replaced by xel-valued logic
variables (e.g.,p = 1 means that the proposition P is required for evaluation in a certain
formula). The algorithm begins by testing if a formula contains free logt variables and
existential quanti ers. If the formula can be simpli ed we proceed, otherwise we return
the input formula 1 (Line 3). Next, the duration terms are recursively replaced by
new fresh variables in , minimum and maximum terms are transformed into quanti ed
inequalities, and inequality conditions are generated (Line5). The function reduce_fm
applies min/max term substitutions as provided by axioms Al, A2, and A3; replace _fm
and replace _tm are functions that replace temporal operators and duration terms with
new free variables and propositions (Line4) and construct a set of subformulas and
subterms to be mapped; and the auxiliary mutually recursive funcions mapand solve
translate formulas in RMTL- , into FOLg formulas ready to be decomposed usingylindri-
cal algebraic decomposition(CAD) (Line 6). The function mapgenerates the polynomial
inequality conditions for temporal operators and duration terms using axioms Ad, A5, A6,
and A7. Before submitting the resulting conditions to decomposition, all propositions are
replaced by equalities of the formp = 1. Let us now see four example applications of the

10

11

12

13

14

15

16

17

19

20

21

22

23

R
CHAPTER 3. RV WITH RMTL-

Require: a formula 1 24

Ensure : a simpli ed formula

(1)is

2

i 25
Function

begin
let

simplify

26

3 = reduce_fm(1) in 21

if is _var _free (3) then 3 else
let u_set= replace _fm(3) in

let s_set= magu_set;;) in 28
4 = CADselect (s_set)) in

reduce((s_setnfselect (s_set)g)[f

let 2

30

49)
end

Function map(u_set,sset) is

begin

if uset=; then s_setelse

let x = select (u_set) in

case x of

begin

X = 6 -

solve (s 1, ¢), u_set, sset)

31

32

33

34
7Uy s

solve (sUv, 7, g), u_set, sset)
9. 35
solve (sF(g¢), u_set, sset)

end "

end

Function solve (S,u_set,sset) is
begin
if (let (yv)=S
let u_.n = u_setnfxg in
magu_n;s_set[y)
else

in v) then
37

38
let u_n = u_setnfxg in

magu_n [y;s_set)
end

Algorithm 1: Simpli cation

algorithm.

Example 5. Consider the duration formula

Z 19
0<

49

Function sUWUa, 1, 2) is
begin
let (In;lw) = isol _disj (dnf_fm(1)) in
if lw 6] then
apply _axiom(a4_prim, a,
Ist to_dnf(In), lw, »)
else
let (In2;Iw2) = isol _disj (dnf_fm(2)) in
if w2 6[] then
apply _axiom(a5_prim, a,
Ist _to _dnf(In2), w2, 1)
else

(1U<«a 25 true)

end

Function sI(1,

begin

let (In;lw) = isol _disj (dnf_fm(1)) in

if len(lw) > 1 then
apply _axiom(a7_prim,
Ist _to _dnf(In), Iw,

else

1) is

1,

1)

let (In;lw) = isol _cnj (dnf_fm(1)) in
if lw &[] then

apply _axiom(a6_prim, 1,

Ist _to_dnf(In), Iw, 1)
else
R
(' 1; true)
end
Function sF(1) is
begin
if islsolated (1) then (1;true) else
(1;false)
end

R
of RMTL- , Inequalities

a

<.

The result of applying the functionreplace _fm to this formula is the set containing the

10

formulas 0 < x and x = a_

<. Applying axiom A7 over the second formula results

R
CHAPTER 3. RV WITH RMTL- 50

in
VAT Z 19 Z 19
X + anN o = a+ <

Getting decomposed the or operator inner the duration term, we & able to generate the
inequality conditions using the axiom A6. They are

Z 10 Z 10 Z 10
<! x= a+ true (a” true)
that simpli es to 7
10

<! x= true

and Z 1
< I x= a

Finally, the output formula is

Z 10 Z 19

O<x "™ <! x= true ~ : <! x= a

Note that when we have a temporal operator a similar generation of the inequaty
conditions is performed, but this time using axioms A4 and A5.

Example 6. Let us now see an example using a formula containing a temporal egtor.
Consider the formula
x> 0™ alUcgo(b™ x< 10):

We rst note that aU<10(b” x < 10) can be converted to an equivalent formula of the
form
((x< 10)! aU<1ob) ™ : (x< 10)! aU<1o

This result comes from the application of axiom 4. In DNF3, we have
(x> 0" x< 10" aU<qob) _ x> 0”: (x< 10)* aU<1o ;

which simpliesto 0<x < 10" aU<gb:

After this step we have the inequality conditions ready to be simpl ed using the CAD
technique (Line 6). The decomposed formula can then be reduced, or else the terms
initially found in the original formula can be replaced back (Line 7).

Example 7. Let us now see a complete application of the algorithm for a simglformula.
Consider the formula 7
x+1
X < (a™ x< 10);
with a a proposition whose truth value depends on the model parameter Since the logic
variable x is used both at the level of the relation operator of the formula andh the

R
CHAPTER 3. RV WITH RMTL- 51

duration term, nding a valuation of x that satis es the formula is not trivial; we can use
our algorithm to generate inequality conditions, and reduce thedtter conditions into an

X+1

R
RMTL- , formula. We begin by replacing the term (a™ x < 10) by y and apply axiom

A3 on the same term. We get the formula
Z w
X<y *w=x+1/"y= (a™ x< 10):

Applying axiom A6 on the duration term, we have
z

w

x< 10! y= a "((x<10)! y=0):
Replacingy = R""a with the constraint 0 y <w, we have the nal formula, ready for
simpli cation,

X<y *w=x+1"(x< 10! 0 y<w)”(:(x<10)! y=0):

After simpli cation of the formula using CAD we get

z 1+Xx
true if x 2] 1;0[; and x < aif x 2 [0;10[:

After applying the function reduce, the free logic variables are recursively substituted
following the structure of the formula, with the exception ofx that remains unchanged.
In the case thatx is substituted by a duration term, then we have a decision procedure
to compute the truth value of the term based on the outcome of th@wocedure; if x has
not been replaced by a duration term and is not quanti ed, then we need to universally
or existentially quantify it explicitly, otherwise the formula cannot be synthesized into a
monitor.

The functions sU, sD, sF are responsible for applying axioms A-A7, and will play a major
role in the proof of correctness of the algorithm.isol _disj , isol _cnj, islsolated and
dnf _fm will be described later in this thesis.

Example 8. Let us now see a nal example, but now with emphasis on duration of
durations. Consider the quanti ed formula
z Rlo 1+y+1
9y 2 <Y:
R
We can apply Axiom 3 since the scope of the duration term 10 1 is immutable, and we

et
g ZlO Zz
9y z= 1+y+1”7 2 <Yy:

Continuing the process as in the previous example, we have

9y z=h+y+1"m<y”~0 h<10"0 m<z

R
CHAPTER 3. RV WITH RMTL- 52

and after applying CAD we get
Z Z 1 Z Z 1

z z
2< 10N 1+ 1+ 2<z< 11+ 1:

A way to compute this formula is decomposing it byz; h; m order as follows:
Z 10 Z Z 10

z
(1<z< 1170 1< 1+z70 < 1 1+2) _

Zlo Zz Zlo
11 z<21n 11+z< 1< 10”00 2< 1 1+ 2):

Note the that this example cannot be submitted for monitoring yrposes until the formula
has no free variables and quanti ers. However, for solving it using arsMT solver it is
possible as we will see in the next section.

3.3.2 Functional Correctness

To ensure that the above algorithm correctly does what it is supposedad do, we begin by
stating the functional correctness criteria, lemmas and theorems. Eery lemma is guided
by the required statements to conclude the proof of the functional orrectness theorem.
Some de nitions and lemmas appear in AppendixD, due to their considerable length.

Lemma 7. The function sUis partially correct.

Proof. The proof follows by case analysis on the structure of functiorsU. We have three
cases. The rst one is when ;1 contains inequalities. We have to prove that if lw is not
empty then the application of the Axiom 4 is sound. The result came from the soundness
of the Axiom 4 as the function apply _axiom (Line 27) applies explicitly the axiom. The
second case is when is free of inequalities, and » contains inequalities. We have to
proof that if w2 is not empty then the application of the Axiom 5 is sound. The proof
cames from the soundness of this axiom as stated in Appendi®. The third case is when

1 and > do not contain formulas with inequalities. We have to prove that if lw and lw2
is empty then true is returned meaning that no changes have been performed in; neither
in 5. The proof is trivial. We conclude the proof that for a given input set there is an
output formula which is equal to the input formula, or totally/partially simpli ed.

Lemma 8. The function sDis partially correct.

Proof. The proof is similar to the proof of the Lemma 7.

Lemma 9. The function mapis partially correct.

R
CHAPTER 3. RV WITH RMTL- 53

Proof. The proof follows by case analysis ors (Line 19).

The function maptakes as input a setu_set of formulas and a sets_set of simpli ed
formulas, and calls one of the functionssU, sD, or sF, as appropriate, to process one of
the formulas of u_set. Recall that the atomic simpli cation functions sO sU sF may need
to be applied more than once to a given formula; for this reason the functins return a
pair consisting of a simpli ed formula and a boolean indicating whether the formula has
been fully simpli ed (in which case no further calls are required). Depending on whether
the selected formula has been fully simpli ed or not, it will be moved (or not) to the set
s_set of simpli ed formulas. The auxiliary function solve takes a formula returned by
sD)¥ sU sF and recursively callsmapmodifying u_set and s_set as appropriate.

- CaseS always return v equals true:

As the unsolved set (1_set) decreases and the solved set (set) increases untilu_set
is empty, we have that all formulas are solved. The functional correctess depends
then on the partially correctness of the functionssU, sD, and sF given by Lemmas?7
and 8, respectively.

- CaseS does not always returnsv equals false:

From the assumption that the function S is partially correct, we have that there is
no other path for terminating the recursive calls than at some point in the execution
of the function solve , the function S returns a solved formula several enough times
to solve all the subformulas. From that, we have to prove that if the function
mapreturns then the solved set has increased with correct solved forntas and the
unsolved set has decreased in the same ratio. Then, the correctnesstbé resulting
formula depends on the partially correctness of the functionsUand sDthat is given
by Lemmas 7 and 8, and also on the correctness of the functiorsF. The partially
correctness of this function is straightforward since it only returns a solved formula
if the formula contains every subformula in the solved set. Finally we have that "if
the function mapreturns then it returns a tuple containing a formula processed ly
applying sound axioms and a true value" holds.

Hence, the correctness proof ends since thmapfunction holds both cases.

. . N R
Let us now introduce the theorem to state that the Algorithm 1 simplify RMTL- , formulas
as expected, i.e., for each input the algorithm produces the expeetl output.

Theorem 2 (Functional Correctness). For all input formulas of the Algorithm 1, if the
Algorithm 1 returns a formula then this formula is simpli ed.

R
CHAPTER 3. RV WITH RMTL- 54

Proof of Theorem 2. Let us denote the pre condition p meaning the algorithm returns,
and the post condition g meaning that the output is a simpli ed formula. We have to
prove that p implies g We proceed by directly prove that the sequential statements
of the simplify function are partially correct. We begin by proving that the function
reduce _fmis partially correct, which result came from Lemma4. Case whenis _var _free
return true then the function returns the formula ; without minimum and maximum
terms. Otherwise, we have to prove that if the function replace _fm returns then the
output is a tuple containing two sets of formulas u_set and s_set. We skip this proof step.
Next, we prove that mapis partially correct as stated by Lemma9. We skip the proof step
for Colin's CAD since it is well know and established algorithm. We also omit the proof
step for reduce since it makes the reverse of the functiorreplace _fm. Hence, Algorithm 1
returns simpli ed formulas.

Theorem 3 (Termination) . For all input formulas, the Algorithm 1 terminates.

Proof of Theorem 3. We only consider the termination proof step for the function map
and skip the remaining direct proof steps. As the proof for the Lemma9, this proof has
the same shape for the case analysis.

- CaseS always return v equals true:

As the unsolved set decreases (get) and the solved set (sset) increases until it is
empty, we have that the mapfunction is primitive recursive if S is also a primitive
recursive function.

- Case S does not always returnsv equals false: From that, we have to prove that
if the function mapreturns then the solved set is eventually increasing with solved
formulas and the unsolved set is decreasing. We also have to prove thatuccessive
calls of sU, sD and sF are upper bounded by the number of the inequalities in a
formula and that these functions terminate.

Let us now consider three inductive steps, one for each function apjation, and
skip the base cases since they are trivial. From Lemmal, successive calls ofU are
upper bounded by 2 1, wheren is the number of inequalities. Sincen is nite,
we have to apply those axioms nitely. For successive call oD, we follow from
Lemma 12 that give us also an upper bound. Finally, function sF only returns a
formula if every sub-formula is solved. We have to prove that if nomore successive
calls of sD and sU can happen then the input formula of sF is a solved formula.
This is a result stated in Theorem 1 that indirectly states that for any formula in
RMTL-R3 there is an equivalent simpli ed formula by successive applicatbn of the
axioms A3, A4, A5, A6, A7, which is chosen as the required pattern. Given the

R
CHAPTER 3. RV WITH RMTL- 55

shape of these axioms, we also have that the application order of the axiomsdot
impact the nal formula and then no backtracking algorithm is required .

We conclude the proof with the statement that the function mapterminates. Assuming
that CADreduce _fm, replace _fm and reduce terminate then Algorithm 3 terminates.

To conclude, we guarantee that if the algorithm terminates then we havea simpli ed
formula, and at same time that the algorithm is bounded and thus terminates for any
formula, assuming that CAD terminates.

: R
3.4 SMT Synthesis for RMTL- , Formulae

The synthesis algorithm for RMTL- R3 presented here is suitable for solve the satis ability
problem of our fragment using dyadic rationals (real numbers of the formJ for n;m 2 Z).
This means that our formalization is adjusted as an input model for SMT sohers in SMT-
LIBv2 speci cation language. At this point formulas shall be in simplie d form. In the
next section we will present an alternative algorithm that generates ercutable monitors.

SMT provers have been progressively adding smart tactics for solviop problems that until
now could only be solved using human creativity. Of course severalssies such as inductive
proofs and quanti ed fragments are really di cult or even impossible t o check by such
general approaches.

Due to being the target of several optimizations, such as con it-driven clause learning,
and also due to their e ciency handling a mix of non-quanti ed logic fr agments, including
non-interpreted functions and decidable logic fragments for arithmeic, these solvers are
suited for several classic problems in the real-time community. Tks fact has not been
suitably explored until now; we give here just steps in this direction.

E cient synthesis algorithms can give modular advantages for di erent p roblem formula-
tions such as schedulability analysis. In order to give a feasibléme model for synthesis
of RMTL- Rs, we have to assume that intervals have exactly size one and symbols cdre
consecutively repeated in the input timed sequence, in order tdormulate the new synthesis
algorithm. This is a restriction over the time model used in interval-based semantics. We
take this choice to avoid a more complex problem formulation and utilizaion of the solver's
features that may induce the problem to be unfeasible at the rst place due to make use of a
more detailed timed model. We will now describe a new algorithm for gnthesis of RMTL-
with this restricted model over interval-based semantics usig lambda expressions, that
will be converted to the SMT-LIBv2 [Barrett et al., 201Q language with small e ort.

R
CHAPTER 3. RV WITH RMTL- 56

The set of theories that we use arejuanti ed uninterpreted functions with equality, arrays,
and non-quanti ed non-linear arithmetic . For arrays we use theselect word that given
a trace and a timet returns a proposition. first and second constructs are used for
pairs, and ite is the if-then-else construct. In what follows we de ne the combnators
evalP , evalU , evalD , that will evaluate respectively propositions, less-until operator, and
duration terms, based on the standard rewriting semantics of -expressions (-reduction).
The other operators available in RMTL-R3
common : and _ operators and the arithmetic operators + and . The proposition

are directly converted. These include the

formulation is encoded by the lambda expression
evalP = pt: ite (select t =ptt ;

where select word selects a given element of the array for some index and returns a
proposition. is not propagated along the de nitions in order to avoid being verbose. We
encode the trace as an array and the timg as an index, meaning that time is discrete.
The word eval should be replaced by one of the evaluation functions as appropriate.
Evaluation of the less until is de ned by the following set of lambda expressions

map4 b:ite (b=1tt) tt (ite (b=) ?);
evali = plk2:ite (k26) (map4 b2) (ite (b16 tt) (map4 bl) r));
evalb = tv: ite (v=r) (evali (eval t) (eval t)) v;
evalf® = f: xi: (x 0)! ite i 0~x>i)
(evalb x((f f) (x 1)i)=(ff)xi)
(evalb xr=(ff) xi);
evalf = evalf®evalf®
map3 = x: ite ((first x = true) ™ (second x=r)) ?
(ite ((firstx = false)” (second x=r)) (ite (second x= 4) tt));
evalc = tt %:mkpair (trc_size 10) (evalf (t 1)t%; and
evalU = tO9t: map3 (evalc t t9:

Evaluation of the duration term is de ned by

ind =t ite (eval t=1t) 10

evale® = foxi (x 0)! ite (i 0)"(x>i))
((FE)(x 1)i)+(ind x)=(ff)xi)
(ind x =(ff)xi)

evale = evald evalé®

evalD = tOt:evale(t 1)t°

R
CHAPTER 3. RV WITH RMTL- 57

Note that we need to remove the recurrence among the lambda expressis by unfolding.
To avoid us or the SMT solver unfolding so many times, a bound over quatication for the
tempRoraI and duration operators is applied, based on the temporal nature of tle operator.
For ¢ , we assume that the duration is in the interval [t;t + [for all t 2 Nj, and for
the case 1 U<, we assume the interval f;t + [forall t 2 Nj. These assumptions help
us to reduce the search space in order to generate at least one nite metl The following
Example 9 illustrates this for a simple case.

Example 9. The expressionevale 2 1 will be evaluated as follows:

evale2 1!

(xi: (x 0)! ite(i 0rx>i)

((evale® evald) x i = ((evale’evaled)(x 1)i)+ (ind k x))
((evale®evald®) x i = ind k x)) 2 1!

(2 0! ite 1 072>1)

(eval®21=(1 0! ite (1 071> 1)

(eval®1 1=(eval®1 1=ind 1)+(ind 1))

(eval11=ind 1))+ (ind 2))

(eval®2 1=ind 2))

where after simplifying we get

eval®21! (evall1=ind 1)+(ind 2):

One trick that can be used to encode such notations irsMT solvers logically consists of
encoding such de nitions by using uninterpreted functions anduniversal quanti cation.
The uninterpreted function feyae Can be speci ed by writing the following axiom:

8X i (x 0! ite (i O™ (x>1i))
(fevaie X1 = (fevale (x 1) i)+ (ind X))
(fevale X1 = ind X):

In this section we have presented a synthesis algorithm for the irgrval-based semantics of
RMTL- R3 with a restricted model. We have adopted this restriction due tothe simplicity
and feasibility of the approach using array theory. Other alternatives may be used such
as the codi cation of the interval-based semantics without such restictions, but this may
increase the burden for solving the same problem using a more re neimed model. As
a last remark, we should note that the duration term can be bounded by all €rms, not
only for and x. In what follows we will discuss a computable approach.

R
CHAPTER 3. RV WITH RMTL- 58

: R
3.5 Computation of RMTL- , Formulae

This algorithm is able to generate monitors that can be directly executé on the target
platform and draw a three-valued verdict, instead of deciding if there is a model that
satis es a given formula. Monitors are generated for functional programminglanguages
but can be further converted to imperative languages such as C++11 withsmall e ort, as
we further describe in AppendixA. This algorithm encodes reals as oating point numbers.

R
Given the de nition of RMTL- ,

synthesis. In what follows we will present the algorithm and study the time complexity of

we can derive an evaluation algorithm for monitor

the computation with respect to both trace and formula size.

We begin with a set of preliminary de nitions. The set of timed sequences is denoted
by K, the duration of the timed state sequence 2 K is denoted by d(), and the set
of logic environments is denoted by . Let B4 be the setftty; 4;?49[f rg wherer is
a new symbol that will be used only for purposes of formulae evaluation, and the set
R o[f? rQ. The function subx : (K Ro! R o! K denes a timed sub-
sequence constrained by the intervalt]t +], wheret and are real numbers to be used
as parameters insubx . The function mapB+ : B3 ! B4 mapstt to tt4, to 4 and ?
to 24, map®3 :B B, ! Bz maps (it;r), (tt;?4), and (;?24)t0 ?2;(;r), (; 4), and
(tt; 4)to ;and (;tty) and (tt;tt,) to tt. We will employ a left fold function de ned in
the usual way.

From a close examination of the operators, the corresponding Computey and Compute,
evaluation functions have time complexity constant in the number of timed sequence
symbols, linear in the depth of the formula for Compute.), and exponential in the depth
of the formula for Compute . Let us consider the functions Compute) :: (K) !
R! I D anng:ompute(. y (K R o)! 3! Bjfor the evaluation of U< and
<, and the term

Operator U.. Givenformulas 1, and 2 R g, theformula 1U< ;isevaluatedin
amodel (; ;t) by the function Compute ;_y : (K Ro! Rg! 3! 31 Bj
de ned in Figure 3.2 We report here only on the computation function Computey_;
the remaining functions are Computg,_, for punctual until, Compute s_y for the non-
punctual dual operator, and Computes_ for the punctual dual operator. These operators
have at most two new branches. Given an input with size n , and a measurem: of the
depth of a formula ' , we obtain from the structure of the computation the upper bound
of time complexity " *™ 2" | For instance, we understand by a formula with depth

m
one asaU b, a formula with depth two as (aU b)U (aU b) and so on.

R
CHAPTER 3. RV WITH RMTL- 59

el :Bs! B3z! By

8

EmapB“bz if b, 6
evy by by ,§mapB4bl if by 6 tt and by =

r otherwise
eV’ (K Ro! 3t 31 B,! By

8

<eV, Compute., m Compute; y m ifv=r
edm 1 v . al pute) 1 pute 2

Y otherwise
eVl o (K Ro! 31 31 K! By
evg® (iit) 1 2{ L fold v (mGEtY) ! ey (it) 1 av or{
evs (K Ro! Ro! %1 31 KI! (B By
e (it) 1 o2{ ., dO e e (it) 1 of

8

Smap®: efm 1 ,(sux m) if 0
Compute (y_y m 1 ,

otherwise

evy ::5! R! R

<

evy vali valy

Compute <y m hi hy

val{ <val, ifval;2 Randval, 2 R

-2 otherwise

evy Compute y mh; Compute) m h

L
Lo, y(G)t
ev,
evy (5) |

Compute R (;)ta

S(K) ! R ol %If 019
8

<1 if Computeqy (;;t) =tt

* 0 otherwise

(K)o 31 K! R

fold s, (it ! 0 Ly ()t +s 0
Sevy (;) (subx (;:;t)a) ifa O

" ?R otherwise

Figure 3.2: Evaluation of the operatorsU< and <, and of duration terms

R
CHAPTER 3. RV WITH RMTL- 60

Function Compute y (;) thz(K) ! R! I Dis
case h of
. eval
hy + hy : Compute y mh; + Compute y m h;
hi hy : Compute y m hi Compute y m h,
Zy,
: Compute(R) (;)t Compute) (;)th;
end
end
Function Compute., m :: (K Ro! 3! Bsis
case of
p s evalp mp { base case
: Compute. y m { Boolean operators
1_ 2 : Compute. ym 1 >
1 Uc 2 : Compute_y m 1 2 { temporal operators
1 Sc 2 : Compute(s<) m 1 2
1< 5 : Compute.y m 1 » { relational operator
end
end

R
Algorithm 2: Computation of RMTL- , terms (Compute) and formulas
(Compute)

Operator <. Given two terms ;; 22 ,the formula 1 < » is evaluated relative to
a model (; ;t) by the function Compute) : (K R o) ! ! I Bg, also
shown in Figure 3.2 The time complexity of this computation function depends on the
time complexity of Compute) since any formula containing only the relation operator<
cannot have size %{eater than one, or consume agy ilgput symbols. For instae, a formula

R
with depth twois * 1< * i, andwithfouris ~(= 1< ©)< *(* < 1.

Term R. The evaluation of a duration term R in the model (; ;t) is performed by
the function Compute(R) ‘(K) ! Ro! R! 231 D,againde nedin Figure 3.2 It

has linear time complexity in the size of the timed sequence, and catant time complexity

in the formula size assuming that Computg y has constant complexity. + and terms are
directly mapped into their respective computational operations. The complexity of those
operations is directly related to the number of terms. Given a formda ' and a measure
m describing the number of operators + and occurring in a formula ' , we have a linear
lower bound of time complexity in O(2™) again assuming that Computg , has constant
complexity.

R
CHAPTER 3. RV WITH RMTL-

61
Compute Big-O
(R) @) 0(1)

() (n 1 O(n)
+);() @™ h o™ 1)
(p) @ 0(1)

) (m:) O(m.)
) @m™h 0(2™-)
(<) @ 0(1)

(U<);(S<) 1) 02 ny)
()C) 2(n)? @™ 1) 4n)2+n (2™ 1) 2(n)) | Oo(*"M 2

Table 3.1: Complexity results of the Algorithm 2

Time complexity of the evaluation algorithm. We are now in a position to present
a straightforward recursive top-level evaluation Algorithm 2 excluding punctual temporal
operators, using the previous de nitions for auxiliary computations. Let m be a measure
for _, <, temporal operators, and non-rigid terms. Given the complexity of the® formulas
and term operators, and knowing that all temporal operators have the same comiexity
as the until operator, we have by semantic de nition that any combination of formulas
has higher complexity. As such, the complexity of Algorithm 2 is exponential in the input
size of the formula and the timed state sequence, as given by the uppéound identi ed

above.

Table 3.1 summarizes the complexity for each individual evaluation function. For each
function (), Compute(R), (+), (), (p), Compute.,, Compute ,, Compute.),
Compute .y and Computes_y, we assume that the function Compute) executes in
constant time in ordelr?to identify the source of complexity for each cas. This happens in
the evaluation of <, , +and . We also have asymptotically identi ed a lower bound
for the complexity of the evaluation algorithm for each case, including Conpute) and
Compute . Although the complexity is exponential, we have that in average the bé&avior

may be much closer to the lower bound, as we will see in Chaptes.

In order to analyze the space complexity of the synthesized monitors & rst note that the
synthesis algorithm produces monitors written using pure lambda finctions. Following
our approach, each formula in RMTL- R; to be synthesized, of lengthm , will originate
a set of -expressions whose global size is @(m), and whose mutual recursion pattern
(or call graph) is free of cycles, since the invocations follow the strcture of the formula

. Execution of these -expressions relies on a functional, stack-based mechanism, and it

follows that the number of push/pop operations performed will be inO(m). The required

R
CHAPTER 3. RV WITH RMTL- 62

stack size will thus be linear inm , and constant in the input trace size Therefore, the
generated monitoring algorithms haveconstant space complexityregarding the trace size,
as our experimental results will con rm in Chapter 5.

Summary

In this chapter we have presented two distinct synthesis approdues for the well-behaved
fragment of MTL- R. The approach based orSMT solvers is essential to prove some safety
properties about the basis of the monitoring architectures, and the otker approach can be
an appropriate extension for checking more expressive and complex dation properties.
This combination is essential to cover the nature of the duration propeties since the
majority of such properties are practically impossible to check staically. In this way,
synthesis of monitors acts as a complement to cover unchecked proges and draw verdicts
about the past executions. A three-valued extension of theRMTL- R formalism is also
de ned which allows us to carry out coherent sequential evaluation of taces.

As a nal note, this work will be used as basis for the next chapter, whee we address the
problem of determining which properties can be discarded staticayl and which parts can
be addressed at runtime in the context of real-time systems scenai

Chapter 4

R
RV -RMTL- Framework

RV methods can be applied to systems where the source code is not aadle , or in those
cases where we have access to the code but the complexity of the ®m's requirements is
too high to be addressed via any of the most commonly used static veri ation approaches.
For RV, only a monitoring model needs be considered beforehand as well as theonitor
synthesis mechanisms.

In this chapter, we introduce a component-based framework that help us to manage
the composition of the runtime monitors with the target system in order to support
external observations of the system at execution time. It also ensuwe properties such
as the maximum detection delayof the monitors, as well as the encoding of the scheduler
behavior, which are features that are of paramount importance for hard reatime systems.
In the remaining part of the chapter, we introduce the notion of safe monitor and describe a
domain speci c language(DSL) that supports the construction of di erent safe components
and monitoring sketches.

4.1 Components

Before introducing components' types and the framework model itsk, we will recall the
preliminary de nitions of a real-time task set, a periodic resource model, and an event
sequence.

We will assumetask sets = f 1; »;:5; ng, such that n 2 N* is the number of tasks
i = (pi;&) where p; and g are, respectively, the period and the worst-case execution
time of ;. Each task ; 2 T is implicitly periodic and has implicit deadline. A periodic
resource model' isatuple (T; ; ;rm), whereT , is the replenishment period is
the server budgetand rm is the rate monotonic scheduling algorithm. The set of periodic

63

R
CHAPTER 4. RV-RMTL- FRAMEWORK 64

Hypervisor
monitor

resource models is denoted by =f!1;!5;:::;! mg for an arbitrary m 2 N*. We denote
the index i of a task by ; and the index j of a resource by!;, where 0< i n and
0<j m holds, respectively. The outputs of a resource model are sequences of events

Let us now consider the alphabet of event&. Each element can be of one of the following
types: atask release evenRE, a task start event ST; a task sleep eventSL; a task resume
event RS atask stop eventSO; a resource budget release evenRN; or a general purpose
event identi er tuple EV. We also consider that general purpose events are special since
they include a certain event identi er. Events can also have interitance over other events
as denoted byey(e,), for any ei;e; 2 E. For short, we adopt the notation ey .) that
means that the event e; inherits from EV with event identier tuple (!;j; i), for any

b 2N, !'j2 ,and ;2T.

Event sequencesre a formalism that allows us to describe the scheduler behavior reating
a generic event language that a system can produce. If a system prodes unexpected
event words, we shall consider it a faulty system. Similar meaningd also established for
temporal logic observations [akhnech and Hooman 1995. A sequence of events, also
known asexecution trace is an in nite sequence

= (e ty)(eo;t2)

of time-stamped events €;t;) with & 2 E andt; 2 R*. The sequence satis es monotonic-
ity and progresses,i.e., ti tj+; foralli 2 N*, and for all t 2 R* there is somei > 0 such
that tj > t, respectively.

After having introduced these preliminary de nitions, we are able to start describing the
compositional monitoring framework (CMF). This framework is composed from a set of
components of one of the following types:

R
CHAPTER 4. RV-RMTL- FRAMEWORK 65

- (Timing Constraint) A timing constraint is a set of constrained te mporal formulas
R

in RMTL- .

- (Task) A task tsk is a pair (1;) suchthat ;2 and are constrained formulas
encoding several task behaviors to be checked at runtime.

- (Resource) A resourceres is a tuple of the form (!;), where ! 2 is a resource
model, and is a set of constrained formulas to be checked at runtime.

We assume the existence of a relation for the composition of resourcesasks and con-
straints. This relation is restricted by the way that components are composed with other
components of the same type. Let us now introduce a small practical exapie of a two-level
hierarchy system to be used along this chapter.

Example 10. Consider the Figure 4.1 as a component-based graphical model where each
link connecting point A to point B means "A relates with B". Solid boxes are resources,
dashed boxes are tasks, and squared solid boxes are formulaRMTL- R3. These formulas
will be automatically synthesized with respect to a given monitong model and some
properties such as if the maximum detection delay of the monitors Wibe ensured by
the framework.

In this sketch, we also have distinct resource®! ", M™ and M ! which encapsulate monitors
by priority based on di erent criticality levels. This allows us to identify until what point
this framework can deal with elastic executions. By elastic execuain we mean a system
composed by several resources that can use di erent budgets over di erent timninstants (a
feature that we will describe in the use case presented in the nextagier). A hypervisor is
no more than a component that only exists in this sketch for encapsation purposes. This
component contains a set of quasi-omniscient monitors (resp. hypgrsor monitors) that
reach verdicts about the assumptions of the monitoring architecte (a notion of monitors'
hierarchy as described in the end of this chapter).

Intuitively, we have presented the purpose ofCMF through this example, i.e., as a frame-
work to deal with description of the monitoring sketches and also to sfit the properties
to be checked statically and dynamically. Note that task and resource components are
simple encodings of task and resource model behaviors coupled witiming constraints
that are encoded asRMTL- R3 formulas to be safely monitored. Our major goal is to ensure
that every monitor complies with the expected maximum detection delay sinceworst case
execution time (WCET) violations of one or more tasks may interfere with each other and
also other non monitoring tasks, resulting in an undesirable environrant.

In addition, the predictability of our framework with respect to the event sequences can be
established by identifying the relevant or critical events, and greserving the partial order

R
CHAPTER 4. RV-RMTL- FRAMEWORK 66

tP t3 t]‘_o tgs tgg t:‘;g 14‘15

t) (L)§ ")(!A; o §(| ({_4:)31)(' - (!A;idle()i i_(ﬂ)@: 1)(I ()!A;idle)
AU FA s SA Y (Vpidle) gy A P A S LA 2 TAr 2
pattern 14—+ L i i “A’ild'e% T - | a | { |
(! ci? 1) 3(! cidle) (! cl‘; 1) (¢ ci; 1) (! ci; 1) « C;idl:e)
Pattern ! ¢ - ‘ ! | l ‘
‘ | RSy, i
STy STew! RS .. [e R
STUiA? 1) (§ "o (TS“P(!EA? 3) ST(! AL 1) Fﬁ‘ AL 2)]ST(! Ails) ('lAy) (‘ic‘ ! |
i [—— O o, N R
s,] [
] (1) ‘ O(\‘A 1) SQu.. SQ!iA;C}!A;S) q!Alia)
%(!A? 2 i Sliiciy Sluaia | Sluery TN 1
(taia) | i | | |
B¢ . j) ; 3 : SQuain ! ST“;C“’ SQuain ‘

< >

mdl of 1

Figure 4.2: Example of patterns and the global trace generated by the composadn of
resource models de ned in the Examplell

of events arrival for monitor processes. We need to save this order @uthe possibility of
using more than one trace/bu er in the same sketch of this framework. Wealso identify
the event SO as the critical event for schedulability analysis, since it is the @ent triggered
when a task job nishes its execution. We denote the critical evens by the subsetE,; E ,
the pre x-tree which preserves the partial order of events for all possible executions bypt,
and the maximum duration of a pre x trace by s. Given these predictable tracespt, we
are able to evaluate the response time of the monitom for each trace 2 pt using the
formula

N

<s el So(e;m); (4-1)
ezEcr

where SQe.m) is the triggered event that the monitor m generates at the end of its complete
execution for monitoring the task/resource that has been triggered the gent e, and s is
the time window to be considered.

Example 11. Let us assume two resource modelsy with parameters(=10; =8) and
!'c with (=5; =1) described in Figure 4.2 containing three tasks 1(p = 14;e=3),
2(p=20;e=5), and 3(p=27;e=7), and one task 1(p =33;e=4), respectively. We
could see that to guarantee the maximum detection delay of the mitor task ; in ! ¢, the
trace depicted in the Figure4.2 needs to be generated. For the generation of this trace, we
assume the well knowrcritical instant theorem to nd the worst execution trace as well

R
CHAPTER 4. RV-RMTL- FRAMEWORK 67

as the hyper-period of the resource model to de ne the maximum lengtbf the trace [Liu
and Layland, 1973. Replacing the eventSQe.my with SOy . ,) in Formulae 4.1, we are
able to check the maximum detection delay of our trace, which correspds to a value
greater than 26 time units depending on the desiredNVCET, and where the instantstag
and t3g exemplify the allowed periods. In this case, the maximum detectiodelay may
increase depending on the monitor period when greater thad2 time units. Note that
this example only works for the assumption of the critical instah theorem and/or the
consequent enumeration of the possible traces, and therefore is not geal enough.

In the remaining part of this chapter, we illustrate how to overcome this issue in an
elegant way without the assumption of pre x trees or the critical instant theorem by
reformulating the time constraints check into a satis ability problem. Without enumerating
every possible trace or selecting the worst trace, which is impodsie in a multi-processor
setting due essentially toanomalies [Andersson and Jonsson2004, we are able to specify
and analyze schedulability of multi-processor systems, notably theones with dependent
tasks

4.2 Formal Speci cation of Periodic Resources

To simplify the expressions' encoding of the safeCMF model, we rst introduce some
syntactical notations and formula abbreviations.

The set of tasks with higher-priority (and including) than ; for ! ; is denoted by . We
also useh as the hyper-period, and the operatorT , true asT de ning a shorthand for
true. For events, we adopt the following notations: EV(! j;) denotes the set of events
that can be generated by the resource model ; EV(!j; ;) denotes the set of events that
can be generated by the task; in the resource model! j; evs" (! j; i) is de ned by

evs(!j i) _ SQuyiy — BV(HjS i) _ REu; ;s

with evy(! j; i) de ned by

ST(!j; i) — RS(!J'; i) — RN(!].);
which speci es all events that a task ; in the resource model! ; can trigger; evs (!;; i)
denotes the formula resulting from the removal of theRE; ;.) and SQ; . ;) events from
evs'(!j; i); nally, evs(!;; i) denotes the formula resulting from the removal of the
ST ;) and SQq ;) events fromevs" (! j;).

A resource component (j;f 1; 2;::0) is made of the set of formulasf 1; »;::g 3

that will be automatically synthesized as a collection of online monitors and a resource

R
CHAPTER 4. RV-RMTL- FRAMEWORK 68

model ! ; that captures the semantic nature of the resource with a formula contaning
properties such as the resource model budget supply, the scheddllity policy, the task
set durations and period, and other intrinsic settings for complete peci cation of the
component. 2 is a set of three valued formulas as de ned before, and the binary operator
"1 ' 2, meaning next implies, is a shorthand for' 1 ! (" 1U« ' 2), where bis a xed
and su ciently large number.

The resource model budget supply is speci ed by the formula
Z
h RN(;].)’ = RN(|J) n B eVS+(!j; i) ; (4.2)
i2
where! j is one resource model, and are their renewal period and budget, andRN;,
is the budget renewal event. This formula states that for each occumnce of the event

RN(!J.) in the resource model! j, the duration of the other events until time units does
not overpasses the budget per period

For the partial order of the task releases, as de ned by the scheduler gicy rm, we
. R
introduce the RMTL- , formula

N

h RE(!j;i). ev(!j; i) U p So(!j;i) ; (4.3)
i2T
where 0 1
ev(!j; i), % B evs‘”(!j;k)§_evs (i i)
k2 !(ji v
and .(' 1) denotes the set of higher-priority tasks, excluding events triggegd by the task

]
i. This formula means that for every eventRE, .) there is always an eventSQy .),

and that the events occuring beforeSQ, . ;) should be any event from ;s higher-priority
tasks.

The duration of tasks allocated to one resource model is speci ed by th formula
A Z
P
h RE(! i) ° evs (! ji k) (S (4.4)
(2T 2 (D

1
|

Note that the operator should be changed to in order to specify the absoluteWCET
of the task set.

We also specify other properties such as the precedence of the eve®Qy ;) (i.e., each
event ST, ;. ;) may be followed by an eventSQ, . ,), but the event SQ . ;) occurs since
ST,) occurs). The precedence of the ever8Q ., ;) is speci ed by the formula
N
h So(lj;i). eg!j; i) Sp ST(!j;i) ; (4.5)

i2T

R
CHAPTER 4. RV-RMTL- FRAMEWORK 69

where 0 1

es(!j; i), % B eVS+(!j;k)§_eVS(!j;i):

k2 !(J-i v

The complete encoding of the component is given by the conjunction oftte formulas 4.2,
4.3, 4.4 and 4.5. For the remaining part of the chapter, we de ne it by PRM(! j), where
I'; is indexed according to certain workload parameters, allowing us to uroll the sub-
formulas in the correct way. This partFizaIIy concludes the formalization of the periodic

resource model's behavior usinRMTL- .

Note that in the Section 4.3 we will return to the hierarchical composition of the presented
resource speci cation, but only after extending the formalization to dependent tasks

4.2.1 Extension for dependent tasks

Adding dependence task checking is as easy as adding more timing coratt formulas.
Properties such as \the dependent task (B) cannot begin until the task(A) completes”
can be ensured as result of A being a pre condition for the result of B. Na that this
is necessarily a more expressive model of dependent tasks than thaes presented in the
literature [Goossens et al.2016 Putsch et al. , 2015 Baro et al., 2014. Assuming that
tasks are divided into several sections according to their ow graphswe could specify
that a section of a task has a dependence relatively to other tasks' sgons. And, other
constraints written in RMTL-R3 restricting other resources such as memory and network
message passing can be asserted as well. It turns out that extendingeéimodel is modular,
unlike the classical schedulability analysis tests where we maydve to redo everything from
scratch.

Example 12. Let us take ; as a system task and, a monitoring task, where each one
executes in isolation in the resourced ; and ! .. Consider the resources with the event
control graph described in the Figure4.3. The monitoring task has an arbitrary period
and may contain two sub-events such agEV; and EV,, or even execute arbitrarily. For
the former case, these points are when the monitor contains enougtéquired symbols to
consume, identi ed by the formula’'s morphology. Then, executing befe these points does
not make sense since it is wasting time and increasing pessimismm ithe schedulability
analysis. EV; shall execute afterEV(g), and EV(y4) and EV; shall execute afterEV)
and EV(c). For the latter case, arbitrary execution incurs in executing the moitor before
and after task i terminates, which in the worst case indicates that we need to exeeauthe
monitor after SO ,. , occurs. Executing along the system task is not safe, context-swefites

R
CHAPTER 4. RV-RMTL- FRAMEWORK 70

,,,,,,,,,,,,,,,,,,,,,,,,,,,,

’ST!232)SL!232} {ész?zlshzz}

! |
1 |
T | |
STi,: s | [EVy | ll EVe | — S0, , | !
\—ﬁf = :l% JL - Overhead |
| | EV. ‘ |
| Vi) |
i EVe) EV(H:) — BV(r) i
EV(s) // I I
EV(n) | EV(a) T |
BV | | |
| | |
l l l
| | | |
% i i i >
t0 tx ty tz tW

Figure 4.3: Flow graph of the scenario considered in Examplé2 and 18

for resuming and entering the sleep state are unnecessarily reqett, and the overhead is
tw tz.

Indeed,this is a generalization for elasticity of budgets and periodalong execution time of
resources. O sets can also be applied for starting monitor execian, avoiding ST(! »;) at
time ty, and only the hyper period among di erent cores is required to encodschedulability
of multi-core systems in a satis ability problem.

Our approach is modular in the sense that it can be extended with minore orts. It also
allows us to manage sets of polynomial inequalities as in common real-time ppoaches and
an hybrid between both formalizations may be an option. However, the dravback of the
approach is that solving the generated problems in a practicable way mafpe challenging, a
discussion that will take place in the next chapter. Note also thatSMT solvers have been
the target of signi cant advances in the last years, and heuristic approacles proposed
in hard real-time systems literature fail to deal with this type of extension since they
behave badly with non local properties Putsch et al. , 2019. Currently, only linear
programming and constraint programming techniques are successfully applied to solve
parts of this problem for a high number of tasks and several working cores ithout any
proof generation. When usingSMT solvers the same does not happen.

To the best of our knowledge, there are presently no published workin the RV literature

that, instead of considering a unique period for a monitor, consider rultiple periods
for the same monitor, each one activated at certain time instants. This isa pattern of
periods which we will call monitoring with elastic execution. Periods and execution times
are not xed. We know that event-driven approaches are not so feasibledr embedded
systems and even less feasible for hard real-time systems wheresgictability and timing

correctness are required Mledhat et al.,, 2015 Bonakdarpour et al., 2013. Commonly,

R
CHAPTER 4. RV-RMTL- FRAMEWORK 71

core 0 ‘ core 1 ‘ memory chunk 0
(@ — F— } 00—
to | tx by tz
core 0 ‘ corel | memory chunk 0
(b)) — }—% . %
to T 1 tx 71 1 ty tz

Figure 4.4: Encoding of processor mapping and memory mapping

such approaches propose nding new parameters for existing schednlj algorithms. Time-
triggered approaches are too generic but predictable in comparison witlthe event-driven
ones. Moreover, the classical schedulability analysis can be readilgpplied but they are
in general too pessimistic forRv of hard real-time systems. This is the novelty of our
approach, that instead of being too generic allows us to de ne more constints about the
execution of the monitors, including the extension for multi-core ystems. Proofs are also
generated for each sketch and we only need to assume the synthesispste

Example 13. Consider that we have to get a scheduler for dependent tasks executing
in a multi-core system. Given our approach we can deal with it by siply extending the
formulas as easily as constructing a formula of the form

N
=tem() PRM (!);
12
where Icm is a function returning the least common multiple for a resource! . We are
assuming that each resourcé executes in di erent cores.

In Figure 4.4, we have a graphical representation of this encoding, including theay we

reserve memory.lcm will give usO or ty. ty is used to nd that
Z

tz
= EV(i: usage < 106;

_ty

which means that the memory usage should be less than 10 space unilote that we
reason about both space and time in the same trace. In case ofate (b), the overlapping
of the same execution unit when migrating to di erent cores is not albwed. From these,
we know where the task allocates its stack ensuring that it is alled by the speci cation.
We specify it by the formula

<tx ST)Ry =t ST) — Ry s

for any resource! 2 . We see a task only making use of a local stack, indicating that
the memory allocation is predictable. By stack we mean a portion ofnemory allocated
continuously and dedicated only to a task.

R
CHAPTER 4. RV-RMTL- FRAMEWORK 72

Another feature that we have is the g)osition at which the local atks are allocated. Instead
of providing an inequality such as , size(j) <L, where we do not know anything
about the allocation as in Pu tsch et al. , 2015, we ensure that there is enough space and
the order of the allocation. Knowing the portion where we allogte memory can help us to
speedup the execution of the system since we may have non homogesenemories in the
system, which means di erent speed accesses.

This example has illustrated how multi-processor scheduling carbe encoded by simply
extending the presented formalization, including dependent taks.

Another feature that we might refer here is how contention accessing a shared memory
resource can a ect the schedulability analysis, as has been exempid in the Figure 4.4.
Instead of getting worst-case bound on the contention, we can formulate ti$ constraint in
a di erent way. The presented approach avoids considering a posslb pessimistic worst-
case scenario of contention a priory. For instance, if two cores accessdlsame region
of memory then this will cause contention somehow. However, if we eofce these cores
to use the memory in a dierent time instant or during better circ umstances then the
contention is relaxed, and the worst case will not be worth applying. In tis way, this
approach using temporal formulas describing temporal patterns may be mre appropriate
in terms of access patterns to reduce contention, improving on thedchniques that can be
found in the literature.

Scrutinizing the importance of WCET and dependent constraints in monitor-

ing. Letus now see an important case that is often neglected in th&V literature. WCET
has been commonly assumed for constructing schedulability analysis afi erent schedu-
lability algorithms. However, this introduces some issues regardig the pessimism and the
practical application of these approaches for analysis of runtime monitors. WCET is a
general assumption that is su cient for cases where there are no depetency constraints
on tasks or resources, i.e., they are independent or partially indep&lent.

Consider a system with a taskset containing a task wher&/CET depends on the execution
of the other tasks as in the running Examplel1l It turns out that the schedulability of
the taskset is infeasible according to $hin and Leg 200§, since the WCET may tend to
be unachievable and/or too pessimistic to be considered, and even duto this test only
working with independent tasks (i.e., unsafe for our purpose). By asuming a simple
dependency constraint, we may nd a lower WCET and a schedulable taskset using
our logic fragment. This is how monitors can behave if they are dependig on timing
constraints, and properties such as maximum detection delay are nessary for ensuring
it.

R
CHAPTER 4. RV-RMTL- FRAMEWORK 73

to t3 tats tio ta1 tas tag tag tas
RS(VC,S
Lo ; RS‘EA: 9 V(:dle) RSi,: 0 '
v STuan o STeery ! Rucin ! STas 0 STpie: 1)
STaia:) ‘l b STuii STeain STuni | STeaih } \
L J (Em— — e o T
RS ! | t1t ‘ t
boSQuaiy : SQuaip SQain
P SQuaiy 1 SQuia: 2 1
Lo Slpein Sk Sl b Skay }
G s Tewda, 3
; P ; RS};A: 3 i Rial Av) EV(Jule) RSi,: 0 !
STein | STehin RSubiy Stcid Toai 0 STele: o)
lSTuA;};) { L STeais STuain T(HA;Q) STuaih } I
s i ‘ | | R \
—mm ? S E— S — 5
SRR Tt 11 | T
w I S) T ‘[‘[T : } ISOUA‘) SQuai)
! Lo SQuia; 2) Sloa: SQua:) !
PSloci || PSleciy Sty : I I 3
ARSI ffro 3 3 s, 3
s 1 ..
STy 1 STl o) RSty RSuici i d ! a0 STole: v
() T s) iy T(tin: 2) L STaarh |
R | | | B \
— T I S N o N S B
‘[SO(TAI) quI) JL(T T ISQI\L SQvTA:L)
: o o R T SQa:) :
O i o Sheein 1 Sl Slecin Sleaia Sk 9
faia ‘ Lo ‘ : : :
O a2 = sa,Seso 13 13 sa, 3
0 ¢ai s L . | |
O e P > | 3
) mdl of 1 g

Figure 4.5: Diagram with evidences of infeasibility

The Figure 4.5 provides evidences of di erent traces 1, 2, and 3, where using periodic
resource models can introduce such infeasibility. , and 3 are traces where the maximum
detection delay is lower, but they have more context-switchesand portions of execution
where the task may be wasting time. ; is an acceptable trace, however, , and 3 may
not work due to discharging 2 and 1 time units before executing ;. This time may be
crucial for executing a monitor for 1 under the assumption of thewCET of the task. More
precisely, a monitor task will execute as the system provides sybols for consumption and
the rst block of both traces will not be considered in these traces.

To provide a real WCET for this application without requiring to largely estimate it,
we only need to nd the exact WCET of a job with the assumption that each entry of
this job will be executed when events are ready to be consumed, ugj a time triggered
approach. For that, we need to statically assert the formula4.1 and a formula encoding
their precedences at the level of the internal events of a task or a sef tasks.

RV of explicit time is inherently dependent of past execution and as sch we need to adopt

R
CHAPTER 4. RV-RMTL- FRAMEWORK 74

models such as the ones containing dependent tasks with exact schédbility to avoid
pessimism. Monitoring and pessimism do not combine, since the goal of monitor is to
interfere as low as possible in the system but increase as high as pdssithe reliability of
the system.

4.3 Safe Components and Monitors

In this section, we will continue extending the scheduling fornalization of resource models
5 We
consider mdl as the function transforming a formula to be monitored into one formula

in order to support construction of safe components and monitors usingRMTL-

including the maximum detection delayassertion.

Let us recall that {; is a pre x of a timed sequence ati,and jisasuxof ati.We
write | P when the time sequence satis es the property P.

Let us start by de ning what is meant by a safety property [Alpern and Schneideg 1987.

De nition 19. Let K be the set of in nite timed sequences, andP a property. P is a
safety property i forall 2 K such that 6 P there exists ani;i 0 such that for all
b2 K,{i b6 P.

Since monitoring a property does not ensure anything by itself, weneed to establish the
following propositions.

R
Proposition 1. Let be a monitoring formula in RMTL- ,. The monitor formula is

safe i the formula mdl() is satis able.

Proof (sketch). Consider that is a safety property, and mdl constructs the setE of sub-

formulas from . Then, we have to prove that the formula <5 ¢ €! SQmy Is
safe. Since for ale 2 E, eis a safe formula, it remains to prove that 5 (: €1) _ SOmy *
(:e)_ SOmy ::: is asafe formula. The proof follows by De nition 19 for the cases

. e;e_ e, ande Us e, which we omit here for simplicity. Hence, if it is satis able then
we have a safe monitor.

Proposition 2. Let C be a component of the form(;!;#; sup), and gy is equal to
in=l mdl(;) is satis able.

Proof (sketch). Assuming that PRM(!) is a safe formula, the proof follows directly from
Proposition 1.

R
CHAPTER 4. RV-RMTL- FRAMEWORK 75

Lemma 10. Let C; and C, be two components of the forn§ 1;! 1;#1; 1) and(2;! 2;#2; 2)
where g is equalto 1[2 and of the form ; »;:::; n for an arbitrary length n.
Arbitrary execution of C; and C; is safe i the formula PRM(! 1)* PRM(! 2)* L, mdI(i)
is satis able.

Proof (sketch). The proof follows directly from Proposition 2 for C; and Cs.

Let us now go back to the Example10 containing an hierarchy of monitors. A hierarchy
of components as described in Figurd.1 can be speci ed based on arbitrary execution of
components.

The composition for the case of the hypervisor of the form (; p; m; n), where is
a set of resource models, , a set of proces\s/ors, and, a set of memories, is indeed a
composition of the components inside and ~, mdi().

Ensuring the safety property for each monitoring formula is of extrene importance in
order to ensure that nothing bad happens when other monitors and systemtasks are
combined. To facilitate the description of monitoring schemes usig a more natural
language for program developers, we will introduce next a micro resouecDSL. Note
that every construction of this DSL is on top of the presented formalization of the last
sections.

4.4 DsL for components

Regarding resources, tasks, and other abstractions for task jobs and exe@n units of RTS,
there are noDSLs appropriate to reason about resource availability and schedulability. h
this section we introduce the DSL language that have been designed to appropriately deal
with resources and tasks among other constraints such as describingrfational properties,
including safety and liveness properties. Let us now introduce le syntax and establish
how this language is synthesized tRMTL- , by the respective operational semantics.

De nition 20 (Syntax). Let opx denote one of the operators or / , where means
the relation of the priority of tasks, and / means that two tasks can be executed with the
same priority, or execute arbitrarily. The operator for resources isops 2 fk ; g , where

k means that the resources execute in parallel, and means that the resources have a
priority relation. We introduce a mapping operator 7! for constraining the resources to
memory regions. For instance, the expressiomes(tsk(10; 3); 5; 10) 7 chk(1) means that
the resourceres(tsk(10; 3);5;10) is mapped to the rst chunk of memory. In a similar
way, we use the operator'f! for mapping resources to cores. For instance, the expression

R
CHAPTER 4. RV-RMTL- FRAMEWORK 76

res(tsk(10; 3); 5; 10) 7 cre(1l) means that the resource will be executed in core one. We
also de ne chk as intervals (e.g, p;H, a;b 2 N*) mapped to memory chunks, andcre
as a map of core indexes to Booleans. Finally, we de net as a shallow translation of
RMTL-R3 to express the same timing constraints. The DSL is inductively de ned by
task expressiongk and resource expressionss, as follows:

tm = vl j [ct]y

cti=evj:ctjcty_ctrjctyMctajcty! ctpjcty ctoj [[ct]lm jtmy <tm ,
tk ;= tsk(p;e) j tky opk tka

rs = res(tk; ;!)jrsiops rsajrs 7l chkjrs 71 crejrs/ct

wheretsk(p; €) is a task identi ed by a period e2 N* and an execution time e 2 N*, and
res(tk; ;) is a resource with period 2 N* and budget 2 N*.

De nition 21 (Operational semantics) The semantics of our DSL will be given by a
set of rules having as premises and conclusion judgments of the forha; i) h b; 4 with
the meaning that a reduces tob and the current formula being synthesized is updated
to © Note that this is a small step semantics.

The compositional semantic rules as well as the complementary rules arde ned in the

Figure 4.6. The semantic rules for expressions using! and/ operators are also included.
Note also that the remaining rules for reducingct are a shallow translati%n of RMTL- Rs,
and no modi cations in the syntax of the logic occurs. [t], is the same as ' ct, ct; _ ctp

is the same asct; U ety with b su ciently large, and [[ct]]y is the same asct” [ct]m .

Let us now consider the events de ned above in this chapter, and thedentier " ©"
for labeling sub-formulas. Remark also that terminal rulescpl, and cpl3 make changes
according to the formal speci cation introduced in Section 4.2 for resources and tasks,
respectively. chk, cre and ct rules are used for mere labeling.

We exemplify now two options that can be adopted. The rst option is de ning one formula
generated by unfolding the temporal formula until a desired time bownd. For instance,
considering the punctual formula, which may be impractical for larger bounds. For the
second option we need the de nition of an invariant with a built-in imp lication, since we
do not require to be constantly evaluating the until operator for each time instant, but
only at certain time instants. In this case, the drawback is the de nition of an auxiliary
sub-formula, describing that an event is triggered once at each desideperiod.

Example 14. Let us assume the expressiotsk(9; 3) and the formula equals to
Zyg
STey _R§) _SL(;) U9 SOy * STy Ry _SL SO <3

R
CHAPTER 4. RV-RMTL- FRAMEWORK 77

Composition rules
. htsk (a;b); i)h 5 9% htg %%)n O G
cmps:
P1 hisk (ab) tc i)h O O
htsk (a;b); i)h 5 % htc %)h O O ._hsk(ab); i)h i M htg M)n &% O
cm cmpsy, :
P2e hisk (a;b) /t; i)h O O P22 hik sk (aib)i i)h % O
. hres (a;bic); i)h 5 %% hrs; %9)h rs9 O
cmpas:
Ps hres (a;b;c) rs; i)h rs% G
hres (a;b;c); i)h 5 % hrs; %)h rs9 O ._hres (asbic); i)h 5 %% hrsp)b rs% G
cm cmpa, :
Pay hres (a;b;c) krs; i)h rs% P4z hrs kres (a;bic); i)h rs% O
Complementary rules
Cohrs; i)h o 9% het i)h o O
rsct:
hrs/ ct; iYh - Op 09
. A . 0 . 0 - 0; . f - 0 . 0 . 0;
rschk: s Dh i M hetk ®)h 5 % gape. s Db 5 M herer M) 5 8
hrs A chk; iyh ;O trs A cre; i)h i O
chk: cre:
hchk; i)h : O here; i)h 5 G
ctt—M —
het; i)h O
Cohtk i)h o %% hres(sab); %)h o O
cply:
Pl1 hres (t;a;b); i)h 5 O
cpla:
pl2 htsk (a;b); i)h = O
cpls:
Pls hres (5a;b); %%)h : O

Figure 4.6: Composition and complementary rules for DSL

We can unfold the meaning of the expressiotsk(9; 3) by

N9 N oz N = (4.6)

which is as big as the required bound, which in this case is= 27.

For the second alternative making use of the always operator, we dee it by the formula

REH" «REHD —pREy 75 (4.7)

where b is the upper bound, equal t®7 +9, and p =9 is the task period, which means the
starting point of the execution of a task.

We decided to adopt the second option for DSL, since in terms of synthesis the result
will be more succinct.

R
CHAPTER 4. RV-RMTL- FRAMEWORK 78

cplz: cplz:
e Pl2 htsk (9;3); i)h = 09 Pl2 htsk (11;5); %9)nh :; 9
P1- htsk (9;3) tsk (11;5); i)h :; 9
Figure 4.7: Inference tree for the Examplel5
. Example 15
Cp| Cmpl' htsk (9; 3) tsk (11;5); i)h 0g Cp|3 hres (:; 10; 5); 00|)h 5 0
1 hres (tsk (9;3) tsk (11;5);10;5); i)h :; O

Figure 4.8: Inference tree for the Examplel6

Example 15. Let us begin by a simple example using the expressitsk(9;3) tsk(11;5),
and identify tsk(9; 3) by 1 andtsk(11;5) by ». Applying the rules cpl, and cmp;, we can
construct the inference tree depicted in the Figure4.7. We get %equal to

RE(z)! =11 RE(z) * ST(2)—ZR§2)—SL(2)—FI(09 Ucna So(z) "
11
RE) ! ST(,)_Sk,_Rg,_Sq, =5 » P
where %%s equal to

0 0
RE(1) ! =9 RE(I ST(1) — R% 1) — SL(1) Uc<o SC)(1) labell unt1”
Z, 0
RE ! ST(y_Sky_R§H_SG =3 durl® |

and the lter function FI(99 returns the formula
RE 1)—ST(1)—R$ 1)—SL(1)—80(1)
Note that the lter FI makes use of labels. For the next example, let us denotd®by ;.

Example 16. Let us assume the expressiores(u® 10; 4), where u®is equal totsk(9; 3)
tsk(11; 5) as in the Example15. Applying the rules cpk, cmpy, cplo, and cpk, we get the
inference tree depicted in Figure4.8. We get °equal to

Z 10
(-10 RN)» RN! FI(%<4
Note that in this case 9 ; is false, since %conicts with ; due to the execution time
of the tasks that exceed 4 time units. Let us now denote®® | by for simplicity.
Finally, we get the nal formula

RNe RE ;)¢ RE, "~ <« 2

where b is the least common multiple of the expression.

R
CHAPTER 4. RV-RMTL- FRAMEWORK 79

4.5 Timing guarantees by hierarchy of monitors

Timing correctness regarding the execution of explicit time monitor s. Knowl-

edge of the length of the traces is required before execution, and for &t we de ne a bound
over temporal formulas, allowing us to determine a map from time to eent size. The
calculation of temporal bounds for formulas ofRMTL-R3 is then achieved by a recursive
algorithm that traverses the inductive structure of the formulas by summing the time

window required for each formula. We now give two examples of the caldation of an

upper bound for a given formula, and the construction of a ow graph for a given time

window.

Example 17. Let us consider a trace and the formulaa U<jp (b U<19 C), containing
propositions a; b; cevaluated at timet = 0. Based on the semantics of temporal operators
we achieve the timing boundd 2]0;10[and t 2]0;20], for the inner and outer until
operators. These time bounds are intervals where the truth values malséing from the
evaluation of formulas may change. By the semantic nature of temporabperators, we
know that for any t 62]0; 10[[]0; 20[the truth value is maintained constant, which gives
us the desired bound for changes of the evaluation value.

Example 18. In order to estimate the amount of time required from the system uder
observation to couple monitors in a safe manner, we can use a pessgtic approach based
on the assumption of a maximum inter-arrival time of events in the gstem, or we can
pre-compute the ow graph of the application. Based on these, we arable to infer how
many events will be triggered in a certain time interval. To exemplify thespeci c case of
the latter, we de ne a time window given by a certain formula using therevious approach.
Then, we create a ow graph of the entire system and x the starting pint of the system
as depicted in the partial ow pattern of the events under monitoringin the Figure 4.3.
From label ST, ,. , to SO ,. ,, where ST corresponds to the beginning of the execution and
SO corresponds to the end of the execution, we have the ow of the maiagk composed by
three paths , and from labelST,,. , to SO ,. ,, we have the optional task, which includes
EV(y and EV(3. In summary, we have at most four events betweeST and SO and the
optional task two events. The gure also depicts the dependencies of eventsd allows
us to estimate the required relative time for some events.

Altogether, these examples combine temporal settings of the monitors andhe system
itself: the rst one give us the amount of time that we need to wait for a verdict (minimum
time granularity); the second one helps us to nd the period for a montor based on the
time behavior of the system under monitoring as well as to estimate te WCET of the
monitor (i.e, the time complexity times a constant).

R
CHAPTER 4. RV-RMTL- FRAMEWORK 80

Timing guarantees of the hard real-time systems are commonly pessimniis [Shin and
Lee 2003. Given that, it is not good to have monitors always executing in consant
time since they may consume more time than required in average. In dler to produce
coherent timing verdicts of monitors without assuming any speci ¢ heduler, a hierarchy
of monitors should be employed. The main monitor requires to executén constant time
to supervise the other monitors that can be executing without any resriction of time.
Given that, as the time elapses the main monitor is ensuring the timhg guarantees of the
other monitors and then these monitors are supervising the main appliation. Now, we
are able to use our framework to settle on any real-time scheduler.

The idea behind a hierarchy of supervising monitors is to obtain a morior that is correct-
by-construction and executes in constant-time and constant-space. fis allows us for
adaptability of new monitors, as well as to incorporate new system funcins. In order
to give constant-time implementation of a monitor, we need to x the sample size for the
trace that the supervisor monitor uses to incrementally evaluate, anduse the symbol-based
execution for arbitrary n steps. However, we do not have guarantees that the maximum
delay detection will be ensured. For that we need to consider the ate of the events
that scheduler and monitors trigger. It is relatively simple since nonitors are time/event
triggered or both. Since counting events is constant time, we have a onitor that will
count the events in order to verify if they are greater than the amount of events allowed
by the system. Note that this is safe by itself since the assumptions also monitored.

Note that none of the related works have focus on an hierarchy of trusted maitors. At
most, they assume that the monitors execute as fast as possible and whehere is no
real-time operating system(RTOS), the scheduling is employed by the hardware interrupt
routines [Pike et al., 201Q.

Summary

In this chapter, we have presented the formalization of periodic reource models extended
with dependent tasks. Based on that we have constructed the analysifor the presented
framework in order to discharge properties statically by means of an oine analysis,
and at execution time employing runtime monitors. For constructing the skeleton of
the monitoring sketch, we have introduced the DSL language, which we believe has the
potential to become an important artifact for the real-time community, e mbedding the
same language as the one we have introduced in Chapt@rto synthesize monitors.

This is the novelty of our approach. Instead of being too generic, it albws us to de ne more
concrete/speci ¢ constraints about the execution of the system unde observation, and at

R
CHAPTER 4. RV-RMTL- FRAMEWORK 81

the same time specifying runtime monitors. For the cases where thie are less constraints,
the output of the oine analysis will be successful as well, including the extension for
multi-core systems where cores and memory regions are automatically agsied. Moreover,
proofs are generated for each sketch giving us a great con dence over tlamalysis just by
assuming the synthesis mechanisms. The practicability of our approdcdepends on both
synthesis steps, which are of major importance.

In terms of the practical implementation of the framework proposed and dscribed in the
chapter, we follow an approach that consists in: 1) synthesis mechanisrfor functional
language (and then extended to imperative languages such as C++); 2) syntbsis mecha-
nism for SMT solvers such as Z3 , and 3) the framework including a proper language and
tools to combine both o ine and online mechanisms. When mixing thesetechniques we
are able to carry out safeRv of hard real-time systems.

R
CHAPTER 4. RV-RMTL- FRAMEWORK

82

Chapter 5

Evaluation

Over the past decades several approaches for schedulability analysiswe been proposed
for both uni-processor and multi-processor real-time systemsCavis and Burns, 2011].
Although di erent techniques are employed, very little has been put forward in using
formal speci cations, with the consequent possibility for mis-interpretations or ambiguities
in the problem statement [Cerqueira et al, 2014.

Moreover, the major e ort in the research community working on controller design for
real-time embedded systems is the design gfhysical modelsrather than model synthe-
sis techniques and associated formal veri cation approachesHanjbaran and Khorasani,
201Q0. Even when formal synthesis and veri cation methods are used, thetechniques
for enforcing time isolation are generally discarded and delegated to theapabilities of
non-formally/partially veried RTOSs [Andronick et al., 2016 Meier et al., 2015.

In this chapter, we describe the application of the techniques and ke framework pre-
sented in the preceding chapters, and evaluate their usability rgarding the safe inclusion
of monitors in a working environment as well as the monitor synthesis fom RMTL- ,
language. We will begin by describing the usefulness of our approach inhé context
of oine schedulability analysis, and later on showing evidence of the e ectiveness for
schedulability analysis of uni- and multi-processor systems witbut runtime monitors.

Then, we introduce the case study forRV of lightweight avionic systems making use of
the RV-RMTL- R framework for monitoring control systems. Finally, we discuss the kind

of properties we are able to deal with, as well as the results achievea verifying them.

83

CHAPTER 5. EVALUATION 84
5.1 Application of DsL for oine schedulability analysis

Along almost forty years, a bewildering diversity of schedulability tests for hard real-
time systems has been proposed to address the constrains imposed Ihetrequired timing
predictability. These tests vary considerably in their complexity, expressivity, and target

scheduling policies (e.g., xed task or job priority, preemptive or non-preemptive). The
literature [Audsley et al.,, 1995 Fidge, 1999 reveals that generally schedulability testing
works by assuming a worst-case scenario and checking that each of thevolved tasks gets
a su cient allocation of shared resources or jobs complete before theideadlines. Although
in multi-core the same does not naturally happen, cases that are not "the wrst" will also

succeed.

The reasons for adopting a logic-based paradigm for schedulability analysare: it becomes
more comprehensive and expressive; it rules out potential speciation incoherences typical
of informal speci cations; and it has some bene ts relatively to the awailable analysis, not
in terms of e ciency but in terms of being easily extendable for monitoring approaches
such as the acquisition of the maximum detection delay of a task as inZhu et al., 2009.

As further context on o ine scheduling using temporal logic, we note that:

1. the outcome of a classical schedulability analysis is typically a vetict for a certain
set of tasks, but no counter-examples are shown if the set of tasks isoshschedulable;

2. the behavior of the scheduler isassumedrather than being explicitly included in the
schedulability test;

3. the timing description of the tasks is the unique data provided ly classical analysis
methods (.e., 0 sets, jitters, periods, deadlines);

4. standard approaches are not possible to extend with other useful propes such
as monitoring and enforcement of real-time properties Pinisetty et al., 2013 Pike
et al., 201Q, due to the restricted de nition of their sets of tasks (e.g, de ning a
bound for two consecutive instructions, the inter-arrival time of an event);

5. some real-time systems literature Zhu et al., 201G 2009 commonly considers the
estimation of an arrival rate, which implies minimization and produces signi cant
issues (e.g., under and over estimations, local minimums and maxinms, etc.).

This work integrates the description of the scheduling behavior wih the schedulability

analysis, which enables the generation of counter-examples when thgsiem is not schedu-
lable. These counter-examples are fundamental for the system designto understand and
adapt the design accordingly. Although giving an unsatis able answer is, ingeneral, faster,

CHAPTER 5. EVALUATION 85

it is not straightforward to draw a readable counterexample as theSMT solver normally
relies on getting the minimal unsatis able core.

The present schedulability analysis consists in the evaluation of adrmula over a trace
(or a set of traces) produced by a periodic resource model where ties execute along a
xed priority scheduling. In order to decrease the state space seatfcwe might assume for
uni-core scheduling the critical instant theorem [Liu and Layland, 1973. This assumption
would reduce our problem to just one trace acceptance for a set of logic prepties and
would allow us to identify the relevant traces and combine our approach th the foun-
dational real-time systems theory. However, this does not work for mui-core scheduling
and is thus not su ciently generic for our purposes.

Our schedulability decision problem is indeed a satis ability problem over a trace regarding
R

a RMTL- formula. The general schedulability problem for tasks/resources is decribed

in the following de nitions.

Denition 22. Letf 1; 1;:::;, ng T be a set of tasks with arbitrary size n. The
set of tasks are schedulable according to a xed priority if and only if there exists an event
sequence such thaPRM(! 1) holds for some! 1 equal to (T ;I;1;fp) with | a su cient large
number, and fp the xed priority policy.

De nition 23. Let fl 1!t mg be resource models with arbitrary size m. The
resource models are said to bechedulableif and only if, there exists an event sequence
such that PRM(! 1) » PRM(!) ~ PRM(! i) is satis ed, and the duration of the found
event sequence is greater than or equal to hyper period among resousce

Informally, these de nitions lead us to state that there exists in the past su cient resources
to meet the deadlines of all tasks in the periodic resource model ithis resource model
acts as speci ed (i.e., behaves accordingly).

Our schedulability analysis for several period resource models laxes the truth notion of
the WCET. This means that the WCET of a task (or set of tasks) can be erroneously
estimated, and ensures that the remaining resource models are alsoh&dulable, which is
a property of great interest for multi-core scheduling where anomalie can happen.

Next, we will consider a simple xed priority schedulability test with implicit deadlines,
and then move forward to a more elaborated example based on multi-core sebuling. For
both we will use DSL (introduced in Chapter 4 as part of the RV-RMTL- R framework) to
encode simple expressions, since it is more succinct.

CHAPTER 5. EVALUATION 86

prop tm . RU(co; 1)_SO(co; 1)_RU(co; 2)_SO(co; 2)_RU(co; 3)_SO(co; 3)

init , RN(cp)U < 2 (RE(cp; 1)U < 2 (RE(co; 2)U < 2 RE(Cp; 3)))
<60 RN(co)! -0 RN(!) ~ Reo prop tm < 50
<60 RE(co; 1)! —20 RE(co; 1) " (RE(co; 1) U<2 (RU(co; 1)_RU(co; 3)_SO(co; 3) U 29 SO(co; 1)))
<60 RE(co; 2)! =15 RE(co; 2) " (RE(co; 2) U<2 (RU(co; 2)_RU(co; 1)_SO(co; 1)_RU(co; 3)_SO(co; 3) U 15 SO(co; 2)))
<60 RE(Co; 3)! =10 RE(co; 3) ~(RE(co; 3) U<2 (RU(co; 3)_RU(Co; 2)_RU(co; 1)_SO(co; 1)_SO(co; 2) U 10 SO(co; 3)))

Rao

<60 RE(Co; 1)! RU(co; 1)_SO(co; 1)=9
Ris

<60 RE(co; 2)! RU(co; 2)_SO(co; 2)=8

Rio
<60 RE(Co; 3)! RU(co; 3)_SO(co; 3)=3

init

Table 5.1: Expansion of thePRM(cy) where ¢ meanscore

5.1.1 Two settings for schedulability analysis

DSL in uni-core setting. To demonstrate the e ectiveness of the schedulability anal-
ysis using DSL, we introduce a synthetic workload. Consider as example the workload
composed by one component (6§®0), which executes at each hyper period three tasks with
parameter pairs (20 9), (15;8) and (10; 3), with available 50/60 time units for executing.
The rst element of the tuple is the period and the second the deadhe/budget. In DSL,
the expression describing the example is

[
(20;9) (15:8) (10;3) .
serverg tskig tskiso” /tsK 53 ©0:50) " (5.1)

which speci es that ts1 has higher priority than ts2, and ts3 executes arbitrarily with ts1
and ts2.

Usage of events as speci ed in theRv-RMTL- R framework is more adequate for runtime
monitoring purposes. Due to the overhead that resume and sleep evenmay cause when
using SMT solvers and the ability to infer when a task sleeps/stops occurs baskeon non
consecutive events, we will adopt only three events per taskRE RU (meaning ST, RS
or SL) and SO. Based on that, we have automatically formulated the set of formulas
described in Table 5.1 from Expression 5.1 using the proposed synthesis algorithm for
SMT solvers. The same table also includes a trace that satis es the givenpgci cation.
Note also that other events can be further considered as required. Theeader is referred
to Appendix B for a more detailed example of a complete synthesis.

CHAPTER 5. EVALUATION 87

(define -fun indicator ((mt Time)) Int
(ite (= (compute, trace mt p,) TVIRUE) 1 0)

(declare -fun evaln ((Time)) Int)

(assert (= 0 (evaln 0)))

(assert (forall ((x Int)) (=> (> x 0) (= (evaln x) (+ (evaln (- x 1))
(indicator x))))))

(assert (< (evaln 10) 9))

R
Listing 5.1: Example of aRMTL- duration term encoding using SMT-Libv2

DSL in multi-core setting. A speci cation for a multi-core setting, making use of
the previous expression, can be expressed as

@7:7)

servery tsk(9® sk@0P sk @] (1'1)7‘1. corep k
server; tskCo® sk (&2 a 71 corey; (5.2)

where instead of specifying the amount of execution time allowed for a&h resource the
expression assigns foserverg and server; the pair (1;1). This means that all available
resources in theserverg are executing in isolation in the corey as well as the resources of
server; in corey.

For both settings, the next step of the approach (introduced in Chapte 4) consists in the
transformation of a speci cation written in DSL into an equivalent RMTL- R speci cation.
We can then check the satis ability of a scheduling property over the generated set of
formulas like for instance checking if taskts1 can execute more than 9 time units. Next,
we convert this formula into the SMT-LIBv2 [Barrett et al., 2019 language using our tool
(described in Appendix B) and delegate the reasoning to the Z3 solverde Moura and
Bj rner , 2009.

To better exemplify how the process is done, let us consider theisting 5.1 that shows an
incomplete candidate encoding of the interval-based semantics forhe RMTL- R duration

term. The uninterpreted function compute, evaluates a proposition at the instantmt, and
pa is a proposition representing an event. It is true from the beginnirg of the event's
occurrence until the next event is triggered in the system. Ourgoal is to nd a trace

(or set of traces) that satis es these constraints, henceforth if theanswer we obtain is
unsat then the system cannot be scheduled (the constraints are somehowdansistent);
otherwise, we have a ow of the system for which these constraintsesult in a schedulable
behaviour.

CHAPTER 5. EVALUATION 88

ID Formula Checked Performance
(@) PN w, P! =P X -
(b) (p_q U, 1 X
Ry
(c) p<3 . X
d U, NN Yr< 2 X
(d) | ((p_ad) Ucwp, 1) R, -
e | ((p_q) U, r)~10< “r | unsat
) <0, P b P unsat
@ w@buer | X |

Table 5.2: Heat maps for performance comparison using the rmtld3synth tool dr
synthesization and the Z3 solver for checking satis ability

Comparatively to classic approaches, it is clear that this type of reasomig allows us to
construct and extend our constraints easily, without the need to rebrmulate every step of
the analysis (it is a constructive approach). Note also that the expresiseness to deal with
temporal order is of extreme importance when dealing with systems deending on time,
which sets of inequalities and equalities alone cannot provide. It isherefore important to

reuse such sets of (in-)equalities and combine them with logic congéves to get a ne-
grained description of the system. Furthermore, the recent devepments of SMT solvers
positively impact our approach, namely due to the e ciency of the underlying reasoning
methods that increase the chances of constructing the proofs we ngén a fully automatic

way.

5.1.2 Experimental results

The setup employed in our experimental evaluation was based on an InteCore i3-3110M
at 2.40GHz CPU with 8 GB of RAM memory, and running Windows 10 Embedded x86
in a virtual machine running on a Fedora 23 X86'64 host.

For RMTL- R3 formulas. Currently, it is not possible to devise a fair evaluation compar-
ison for our approach since there are no available tools that consider duran terms in the
way we consider in this work. In order to provide some insight about the feasibility of our
technique, we have measured the times taken by the ZSMT solver to prove satis ability

of a set of speci cations, as shown in Table5.2. We have considered di erent structures
for the presented formulae. The goal is to show indicators of the feasilify of the approach
on sets of formulae with heterogeneous structural schemes, as we woulgpect to occur
in a real-life example.

CHAPTER 5. EVALUATION 89

The time required to solve formulas is not directly related with a formula's complexity
or length, as formula (a) indicates when compared to (c). Note that formulascontaining
durations are slower in average to solve than formulas containing only teqmoral operators,
as con rmed by the time it took to solve the satis ability of formula (b) when compared
to formula (c). Furthermore, a mix of both temporal operators and durations does not
mean slower times as exhibited in the case of formula (d). We also notthat showing
that a formula is unsatis able is in general faster than proving satis ability. The formula
(e) from Table 5.2 is an example of this phenomenon. Finally, formula (g) show that
nested temporal operators could grow exponentially. Note thatby and b, are sampled at
increments of 5 from 5 to 50, < 1s andjj = 100s, and black cells mean a timeout (more
than 150s).

More complex examples can be seen in the tool's repositorfDp Matos Pedrg 201§. Our
experimental results indicate that this method can indeed be feable for small sets of tasks
and resource models.

For DSL expressions. Experiments using DSL are described in Table5.3. The results
indicate that this approach does not scale. However, it is very impresive that it was
possible to obtain in a few hours results for such highly nested formlas as shown in the
table. Note also that jUj means the number of until operators in the formula, andj j the
number of duration terms. The experiments also show that the resubk are not dependent
of the numbﬂr of constraints, ibut on the size of the required input squence. As the

case ofcorey tskt(f;lg) tskt(f;zl) 208) getting an unsatis able result is faster than getting

h i
a satis able result when using only one task (i.e, the formulacore, tsk;? (10.10)). We use
the operators<, > to give an upper and lower bound to the time that we require to satisfy

the formula.

5.2 Lightweight Autopilot Systems: the case study

In fact, the most common models in the market { excluding the military-grade ones
{ are not required to follow the rigorous software development processs that are used
in commercial avionic systems, mostly because they are small, cheapnd appear to
be ino ensive. Furthermore, multi-copters do not have any specialinherent stability

mechanism, and are very dependent on their control softwareMuller and D'Andrea ,

2014. Paradoxically, they are simpler than helicopters but also unsafer since the latter
provide auto-rotation maneuvers that allow them to glide to the ground and still land

vertically [Ho mann et al. , 2007.

CHAPTER 5. EVALUATION 90

R
ID Expression Uj 1T] t(s) sat
h 50 i
@) serverg tsk&i? 1010 5 3 13.55 X
h i
(b) serverg tsk&i® sk &5 . 10| 5 3.05 X
h i
(c) serverg tsk(19? tsk$5? k1% 0410, 13| 7 | <10800| X
h i

(d) serverg tsk23'? sk 58/ tsk 093 60150 13| 7 | timeout | 7

h i h i
(e) stvo sk sk 8D s sk B2 k srvy tsk&yY 18 | 10 | < 16800| X

(10;8) (10;5)
h [
serverg tsk19? tsk&D /tsk &2 (1_1)7°! coreg K
h i '
® server; tsk&;® sk 7 core 20 | 10| < 14400 X
1 ts4 85 . 1

h (9:8) (3'1)i

(g) | servero tskQ:”? tsks 0.2 I (RUgserver s 1)— RUgserver gis2)) | 12 | 5 | < 11000 | X

Table 5.3: DSL experimental results

We will now show an example that illustrates the usage of an autopilot instumented with
runtime monitors capable to observe the execution of multiple resoure models in order
to increase the timing con dence of the autopilot's control loop. Our approach uses an
o ine algorithm for formula simpli cation, and an online evaluation proced ure that can
be directly applied for the synthesis of runtime monitors. We will begin by presenting an
example of application of Algorithm 1 (already introduced in Chapter 3) for monitoring the
budget of a set of Resource models (RMs); then we will present the empirical validation
of the complexity results for Algorithm 2 (also presented in Chapter3). In the remaining
part of this chapter, we will introduce two use cases followed by tle strong evidence of the
feasibility of the runtime monitoring approach.

Let us now recall the concept of resource modelRM). RMs are servers capable to ensure
timed resource isolation between tasks. If they are constrained pesidically, we de ne
them using a replenishment period and a budged supply. The buddesupply is available
as time elapses, and is renewed at each period by the resource modéllastic periodic
RMs are resource models containingelastic coe cients (similar to spring coe cients in
physics) to describe how a task can be compressed when the systemoverloaded, and
manage imprecise computation. Naturally, the coe cients need to be corstrained (linearly
or non-linearly) before execution. Intuitively, the idea is to check the coe cients according
to the polynomial constraints using our static phase, and provide the snpli ed formulas
for the further runtime evaluation phase.

Let us now extend Example4 for multiple RMs, considering without loss of generality the
case of twoRMs. We will use indexed formulas n,, m, withO i<n,n =2, and let

CHAPTER 5. EVALUATION 91

0:8

0:6

C1

0:4

0:2

| |
OO 02 04 06 08 1

Figure 5.1: Linear, concave and convex restriction forcg and ¢,

i; i be indexed constants. For measuring the budgets of two resource moldewe could
use the foIIowing invariant:
11
m 1 X 1 Z i
@, n! @ Xj < i"Xj=¢ mAA N
i=0 j=0
wherev is arbitrarily large, ¢ is a coe cient indexed at i that mean di erent weights for
eachRM (two in this setting), and rp, is a constraint formula over the free variablescy

and ¢;.

The problem is then to nd values for ¢p; c; satisfying the constraints

1
= + = C
r 550 (245 444 ¢, +200 ¢ C]_) C1,

r,.=1 Cp = C1, Or
rs:=1 ¢ Co=C
as shown in Figure5.1, based on two duration observations over the formulas n,, and

m,- Note that rp, is replaced by one of these constraints, namely,, and 0 ¢5, 0 ¢
holds. r1 and r3 are only exempli cations of other possible constraints.

We will use Algorithm 1 for discarding possible con icts, and decompose the formulas into
sub-formulas that are free of quanti ers. Let us simplify the previously de ned invariant
for two resource models where the coe cientscy and c; are existentially quanti ed and
constrained by r,. After some transformations on the formula and assuming that both
resource models have the same settings (i.e.p is equal to ; and ¢ is equal to 1), we
obtain

such that 7 7

CHAPTER 5. EVALUATION 92

and
1:=9ci:0 cg a+cy b< o”rs

0 1

holds. The duration terms mo and m, have been replaced by the logic variables
a and b, and the free logic variablesxg and x1 have been erased since the duration terms
evaluate at the same time. We will then have an isolated formula, and applyCAD to
determine if 1 is satised. If it is, then we directly replace é by true, otherwise we

have the bounds that satisfy é . For this case, we obtain for 1 the decomposition
(a<0”b 0)_0 a<10_(a 10" b<10):

Intuitively, we may think on the instances co =0 and ¢c; =1, and ¢cg =1 and ¢c; = 0.
After this step, the simpli ed bounds are ready to be evaluated by the online method.
Note that we cannot proceed with the monitoring step without removing all the free
variables since our monitoring algorithm does not support solving ineqalities at runtime.
We also have to justify that the usage of runtime solvers is di cult t o apply on real-time
embedded systems since the demand of computation resources is inetimajority of the
cases unavailable.

Let us now discuss the complexity of Algorithm 2 and establish an empirical comparison
with the bounds presented in the Chapter3. We observe that the generation of nested
durations is more critical on average than the nesting of temporal operators This result

matches the semantics of both terms and formulas, since the duration tens can integrate

any indicative function provided for any trace, unlike the until operator that requires a

successful trace to maximize its search. Consider Figurg.2c, where the boxesi; to ig are

respectively the intervals 110;10 **] for all j 2 [1;7[. They represent the number of cycles
performed by folding functions. The results con rm that as the number of until operators

stabilizes and the number of duration operators increases, the computan time also

increases at a higher rate due to the presence of durations. This ocufor generateduni-

form formulas and traces; deep nesting of until operators and nested dations is unlikely

to occur in hand-written speci cations (it has not been clearly con rmed whether they

are useful for real-life applications). The experiments con rm the theoretical complexity

bounds obtained earlier (Figure5.2d). We have performed the experiments on an Intel
Core i3-3110M at 2.40GHz CPU, and 8 GB RAM running Fedora 21 X86'64.

R
5.2.1 Use cases with RMTL- ..

The adopted formalism supports an explicit notion of time that is required for the timing
analysis ofRTSs. Support of inequalities, durations and quanti cation over these, ncreases
the expressiveness of classic temporal logics to specify explititning settings, lling a gap

CHAPTER 5. EVALUATION 93

STl I B |
R bk

10 410 310 210 ! 10° 10t 107 i1 i i3 g 5 g
Computation Time (s) fold cycles

fold cycles
Until operators (n)

(a) execution cycles of fold functions vs. com-(b) number of until operators vs. execution
putation time, m(')=2% 1andn =1000 cycles of fold functions,m(") = 2% 1 and

n = 1000
10 ‘ 1@ T \\HHW T T 171 T \\HHW \/\/\/U,Hﬂ T T T TTT
00 m(') -
— 8 N @ d; //”//, 7]
G o 17106 (') -0 =1000
%) >
£ 6/ E n =100
= 102 -m('
2 § 1 |
S 4f 1 8 10
I 3
a 2| 1 g0t 1
O
Of \ | I ! ! ! | 10 4 -8« T
i1 i» iz ia i5 g 10 10t 10?0 108 100 1P
fold cycles m(")

(c) number of duration terms vs. execution (d) computation time vs. formula size
cycles of fold functions,m(') = 2% 1 and constructed with nested Until operators
n =1000

Figure 5.2: Experimental validation of the complexity results

in the common speci cation languages foIRTSs. Increasing the expressiveness of temporal
logics may introduce decidability issues; the interest of decidble fragments, likeRMTL- Rg,

is that the existence of an e ective procedure that always evaluatesany formula in any
model as a truth value is guaranteed. In practice, the existence of tis procedure implies
that a monitor always terminates drawing a verdict, which is indeed important in runtime
monitoring applications, and even more important in the context of hard real-time systems.

R
Let a be a coe cient represented by a logic variable. Duration terms of theform a vy

CHAPTER 5. EVALUATION 94

can be synthesized if the coe cient a is constrained by polynomial inequalities, or if the

coe cient a with distribution Beta or Dirichlet is employed. Under these restrictions,
our tool [De Matos Pedrq 201§ is able to generate monitors that evaluate conditional

probabilities of random actions of RTSs. For instance, these monitors can be used to
monitor the in ation and the de ation of imprecise tasks, which is requ ired when imprecise
computation models are employed. Moreover, the degradation of the systm can also be
speci ed by de ning liveness properties such as \a task cannot exagte for less that 5 time

units in one interval of 100 time units".

Two use cases for monitoring of the Ardupilot autopilot framework are descibed in this
section. The rstis a simple case that exempli es the quanti cati on of linearly constrained
duration formulas, to illustrate how to generate monitoring conditions in C++. Use
Case (2) explores how to encode uncertainty by using polynomial inaglities to constrain
quanti ed duration formulas.

Use Case (1): RM establish amounts of shared resources to be consumed by working
tasks in RTSs. Normally, these mechanisms focus on time consumption and ensutine
isolation between dierent tasks or sets of tasks. Periodic RMs are de ned by their
replenishment period and budget supply Budgets are dynamically available as the time
elapses and are replenished at certain de ned periodsElastic RMs are an extension of
periodic RMs containing elastic coe cients , similar to spring coe cients in physics. They
describe how the execution time of a task can be temporally de ated o ated by applying
n-D geometric region constraints (polynomial inequalities) over resotce budgets. These
restricted coe cients allow for the system's under-load and overload to be controlled.
Spring coe cients, which are seen as logic variables, de ne the rate(or constraint) of
in ation and de ation of a resource (in our case, processing time) and canbe changed
during execution. In this use case, these coe cients are goverree by linear inequality
constraints which dictate the under- and over-loading conditions of acertain set of tasks.

Example 19. Consider the formuI%
1
0 a 1+ b 2 —

that speci es the resource constraints of twoRMs where coe cients are managed according
to the linear equationa=1 bfor a;b %1, that 1, 2 are two formulas describing the
event releases of two distinct tasks, and that is the allowed execution time for theRMs.

Informally, the formula species that both resource models have dérent budgets when
both execute at the same time, which in practice is the case when bdMs interfere in the

system. To nd the conditions for monitoring we need to quantify the formula, yielding a
new formula

A"pb>=-"20 a 1+ b 2 —

Nl
N

gfa;bg a=1 bra>

CHAPTER 5. EVALUATION 95

T T T T T

10}« 0. x. .2% 83X <y<..10...3x..
N
Noo2<x 578 3x<y< 10 3x
N
gl \%<x grg 3x<y<s x|
\%\<x< 1070 y< H)Tx
N
6 BN N
\\
> N\
N
4 \ .
N
N
2| R
N
N

of o

| | | | | |
0 2 4X 6 8 10

Figure 5.3: Regions of decomposed inequalities with duratiox;y and =10

Later, after applying the simpli cation algorithm described in the Chapter 3, we generate
the monitoring conditions from Example 19, as follows:

R R R R R
(1 1=070 2 3<) _ (O< 1 3<470 2 ,« 31 1) .
R R R R R
(1 1=5"0 22 3) _ 75 1 aszh0 2 o —75 _
R R R R R
1 4= §/\ 3 13 2 ,< 31 1 _ §< 1 1< 70 2 ,< 31 1

where 1 and » are both simpli ed formulas.

In Figure 5.3 we can see regions where thBMs are able to consume resources or not, as
well as regions where they are not able to do so. For instance, the ragoe B cannot
consume any resource if resourceA consumes10 units, and the resource A can only
consume more than4 units if the resource B consumes less thar? time units, due to
resource constraints. For the case of both resources consumir5 units each, the di erence
between the sum and the execution time indicates that the interfereacof both resource
models executing concurrently is at mosb time units (it is identi ed by the hashed region).
Intuitively, this constraint means that one resource needs to & de ated when the other
resource is in ated and conversely. Note that di erent regions can e found by modifying
the constraints of the scale factor%, or any of the , a or b parameters.

Use Case (2): A conditional probability for a given duration measure for tasks can be
speci ed using this formalism. We will next evaluate the likelihood of the remaining tasks
in a system to be unscheduled, based on the overload of a certain taskThis example
applies in the context of RMs monitoring and also of imprecise computation monitoring.
Let a be de ned as a coe cient with uncertainty. Any probability distri bution that can
be described using polynomial inequalities can be encoded usindnis approach. Here
we will focus on the Beta distribution only, but other interesting distributions, such as
multinomial and Dirichlet distributions, could be equally used.

CHAPTER 5. EVALUATION 96

Let X and Y behave as two random variables with distribution Beta(a;;) for i 2 0; 1.
To encode these random variables inRRMTL- we de ne the Beta probability density
function (pdf) as a constraint of the form

3!

o1 x; 1) fo(x; 1)
c :

whereC is simpli ed and equal to B(;), and fPis the power function. Power functions
can be encoded irRMTL- , with the following axiom

R
y= xb, xP=y

R
for any x;y 2 R o, a;b2 Qs¢. Any function f° may now be encoded inRMTL-

;- The
Beta distribution p= f . (x) is now fully de ned by
yalz(l X)blAZaZ:XbZ’\inZ:p;
wherea;j;b 2 N, i 2 f 1;2g are solutions of the formulas";‘)l—1 = 1 and ";‘)2—2 = 1, andp

stands for the probability of the logical variable x in the interval [0; 1].

Intuitively, the idea is to specify non-deterministic actions based on the information
provided at execution time. For instance, a system can change itsnodus operandisif for
some reason the probability of a given overload is greater than a certain xd probability
threshold. Note that these probabilistic inequality constraints will be used as monitoring
conditions. The generation of monitoring conditions based on simpli cation approaches,
as in the Use Case (1), is only required if quanti ers are applied.

Let us consider without loss of generality the case of two tasks, where # rst one may
have a chance to overload, and the second one should avoid this by sei-ating. The

speci cation of probabilistic coe cients that supports elasticity when overload situations
occur is encoded by

P1 3
a= 1N o« f (a)<21! <pi+tp; d

wherev is arbitrarily large, 4 is de ned as

Z,,

2<b d;

a and b are restricted by one polynomial inequality constraint (e.g.,a = b+ 1), dis the
maximum allowed execution time for a task, and 1, 2 are the formulas de ned for each
of the two tasks (e.g., conjunction of propositions for specifying a ceaain task or RM).
Remark also that p; and p, are constants which represent the period of the tasks.

CHAPTER 5. EVALUATION 97
5.2.2 Experimental Results

Before discussing the experimental results for the presentedse cases, we start by compar-
ing the results presented in Figure5.2 with the ones presented next, where we show that
one element takes in average 401 to be processed using an Intel x86 machine. For that,
we re-use the Ocaml source code used to generate the results pred in the Figure 5.2
in order to compare with our present setting.

. . : . R
For comparing both implementations, we have used the following set oRMTL- , formulas:

(@) true U { (eventually); (b) ! t (bounded-invariance); (c) t

I t

(limited-duration); and nally (d) (bounded-duration).

For each formula we have tested, we have also used dierent trace zs ranging from
10 to 10°. The traces that we consider are selected as the traces that maximizehe
execution time of each formula evaluation. We have run the experimets on two distinct
architectures, namely, the ARM(armv7) and the x86(i686) architectures. The OCaml
experiments were only performed on the x86 architecture, while tb C++ implementation

was tested on both of them.

PixHawk [Meier et al., 2015 board is the target platform to execute periodic monitors
that were synthesized fromRMTL- , formulas into C++. We also have tested the same
implementation using an Intel Core i3-3110M at 2.40GHz CPU with 8 GB of RAM
memory, and running Windows 10 Embedded x86 in a virtual machine ruming on a
Fedora 23 X86'64 host.

In the case of the PixHawk board, we have only 256kb of memory RAM for the overdl
system and we assign at most 90% of the processor usage for these monitoringpesments.
From the experimental results presented in Figureb.4, we can conclude that such monitors
execute in polynomial time as the trace increases, which goes accordgiro the theoretical
results presented in Pe Matos Pedro et al, 20154. ! The stack consumption is also
acceptable for PixHawk board. The constant upper dashed line is the mamium stack
consumption of 176kb for the formula (c), and the other two lines are the lower bounds
of the remaining three formulas that have a very similar stack usage. Derent lines
are depicted in Figure 5.4. They correspond to dierent execution times and stack
experiments: the lines tagged with "ocaml” refer to the execution ofthe original evaluation
algorithm using ocaml; the ones tagged with "x86" are the execution times of he C++
implementation in the same platform of the Ocaml test; and nally, the ones tagged with
"arm" refer to the execution time of the C++ implementation in the Pi xHawk board.

1The instructions to generate the C++ code les that are the outpu t of the use cases experiments are
fully detailed in Appendix C.

CHAPTER 5. EVALUATION 98

1010 ¢ 2
B —e— (a) ocaml
i = (a) x86
109* 115 e (a) arm
- ' 2 (b) ocaml
= 108§ = |-+ (b) x86
= B 14 < |-e (b) arm
GE" 10 3 é -a- (c) ocaml
b= § » |-e-(c) x86
108 | -~ (c) arm
g 105 |4 (d) ocaml
108} ~o (d) x86
F ‘ o —o— (d) arm

o il |
10 107 103
Figure 5.4: Comparison of implementations/architectures

In these experiments, we do not consider more than two nested uritioperators, which is
indeed a common pattern of formulas for the speci cation of embedded sysms. Therefore,
we do not have any evidence of how deep nested until operators can beadsin a real
application scenario.

Experimental results: execution time vs. stack size. Let us rst begin with the
analysis of the impact in the Ardupilot rmware. The Use Case (1) is composel of several
disjunctions, meaning that each branch of the formula can take di erert execution times.
However, the results demonstrate that these formulas are not out of the cope of the
previous experiments. The stack usage is 3.4kb for the Use Case (1), and 4tBkor the
formula proposed in the Use Case (2). Based on that, the execution times aron average
faster than the worst case considered. Commonly, the monitor increasats execution time
as more events are triggered. This means that if the set of events seted for a system
is subdivided in di erent bu ers (when possible), then the monitoring will generate lower
overheads. However, the impact of the overheads in the Ardupilot isnot negligible. The
overhead generated in the system is 10us/1s for the instrumentation of tev sub-tasks, and
is 50ms/1s for the monitor (the sub-tasks have periods of 10ms and 5ms respeely).
We have also an idle time of about 40% percent. Monitor bu er length is xed to 100
elements, which is the value obtained according to the pre-calculad time interval required
for the formulas under synthesis, and we consider a maximum inter-aival time of 1ms.
The monitors execute with a period of 1s.

Unrecoverable actions. In these use cases, a parachute may be released if a wrong
verdict is obtained, or else a safe technique can be deployed, wleethe multi-copter will
spin in order to compensate for a faulty motor. Parachutes are currentlyused in lightweight
aviation to avoid possible unrecoverable mechanical faults, such as @tor and propeller
failures.

CHAPTER 5. EVALUATION 99

Autopilot Firmware. Ideally, lightweight controller systems should use elastic execu-
tion time for tasks, in order to enable the required adaptability for reducing overload
situations.

Ardupilot 2 supports several platforms such as AVR, ARM (based on
NuttX 2), and X86 (based on the Linux kernel) [Coombes et al, 2019. Recently, Ardupi-
lot has adopted non-linear Kalman lters for the attitude and heading reference system
(AHRS). It is a demanding process that can only be executed in the PixHawkoard. For
this ARM architecture, two versions are available to perform the sametasks as in imprecise
computation de nitions. The faster one adopts direction cosine matrix (DCM), which is
su cient for the majority of the cases (but is less accurate). The slower version reveals
that AHRS can be much better for heavy copters. Ardupilot for the AVR architecture
contains several sub-tasks that are scheduled using cyclic schdihg rules. It uses the
Hardware Abstraction Library (HAL) to communicate with the devices directly, using
interrupt-driven routines. However, Ardupilot for PixHawk uses t he HAL to communicate
with device drivers that are implemented as separate tasks runningn NuttX. The RTOS
runs a single main task as de ned by the AVR architecture, and, insteadof using interrupt-
driven routines, uses four optional tasks that should be executed at st once each second.
These optional tasks have di erent purposes such as controlling the®, the UART, and
managing timing events and storage (system drivers). The main task cordins sub-tasks
that execute cyclically in di erent frequencies ranging from 20hz o 400hz, dictated from
the de ned cyclic scheduler. The execution rule for sub-taskss: based on the predicted
WCET, an optional task will execute if there exists available time

For construction of a safe autopilot, we are required to ensure time-sace isolation. This
is crucial for autopilot tasks that have not been formally veri ed, or are still undergoing
testing. To the best of our knowledge none of the currently available atopilot systems for
radio control copters have been formally veri ed. They may well geneate absurd values
due to hardware failures and are susceptible tantroduced code attacksvia radio-frequency
telemetry links [Moosbrugger et al, 2017.

Summary

Evaluating the proposed theory is of great importance. Formally proving that a real-
time scheduler acts as desired, i.e., is correct, is extremelyi dulty (it is in many case
a combinatorial problem) due to the inherent dependency on time. Howver, proving

2http://copter.ardupilot.org
Shttp://nuttx.org/

CHAPTER 5. EVALUATION 100

it automatically is even more complex and in the majority of the cases it 5 undecidable
(although there are cases where it may be decidable to say if a giventtiags is schedulable
or not according to a given algorithm).

In this chapter, it has been demonstrated that certain classes of reakne scheduling
problems can be solved, but not as e ciently as the real-time community could expect.
Even though this approach may not scale well, as our results have showni points
out several issues that would have to be solved in order to increase ¢happlicability
of constructing proofs using SMT-based techniques. The positive points are: our results
show that it is extremely easy and intuitive to encode schedulig problems in this logic;
the approach uses a push button technique to tell us if the schedirlg property holds or
not, at least in an initial phase (normally saying that a system is unscledulable is close
to immediate); and nally the approach mixes o ine checking with run time checks.

In the nal part of this chapter, it was shown that monitoring durations e ven in lightweight
platforms such as small embedded systems is feasible and of great impanice, in order to
avoid possible execution overloads. Overheads are signi cant depeimd) on the formulas to
be monitored. Nevertheless, the push button synthesis allows usotmonitor properties in
the system for the cases where an event sequence is adopted to log aming application.
Acting on the results of monitoring is outside the scope of this work.

Chapter 6

Conclusion and Future Work

RV is a promising technique for making real-time systems (and also otheypes of systems
in general) more reliable and safer. It has been established as a replawent or as
complement to static approaches (e.g., model-checking and dedugt approaches).

Although RV approaches targeting speci cally real-time systems are scarce, theyi er
from the classic ones. Time bounds and bounded interference are reiged for explicit
time properties. As such, we have developed a new approach for thiev of hard real-time
systems, where duration properties play an important role, and increnental evaluation
is required. The closest approaches to ours are that of Nickovic and cobigues Nickovic
and Piterman, 2010, who provide synthesis algorithms for MTL speci cations, and the
work of Pike and colleaguesPike et al., 2010, who have developed a framework based on
a formal stream language, together with a synthesis mechanism that generas monitors.
However, none of these previous approaches is su ciently expressivto allow for reasoning
about duration properties, which is the novelty of our work.

The rst level of operation of our approach consists of oine analysis for the simpli -

cation of formulas by means of quanti er removal techniques; the seconds an online
evaluation algorithm for RV purposes. We restrict syntactically and semantically the two-
valued MTL- R logic, with a three-valued interpretation. Incremental evaluation allows our
technique to handle millions of samples, with formulas containing hmdreds of operators.

Another important point is the expressiveness of the logic that has beermdopted for this
work. Contrary to MTL , which is not su ciently expressive to deal with explicit durat ions
of propositions/events, our experimental results have revealed thausing RMTL- R3 allows
for properties to be speci ed at the abstraction level of counting time, and to be e ciently
synthesized for a platform as small as PixHawk, which is certainly impessive.

101

CHAPTER 6. CONCLUSION AND FUTURE WORK 102

Yet, regarding the expressiveness and computing feasibility of med temporal logics,
the unbounded Since operator was not considered very relevant in this work, because
it requires a full history of a trace. This is not feasible in the context of lightweight real-
time embedded systems where resources are scarce. It is knoworfr [Hunter et al., 2013
that for each formula containing the Since operator there exists a corresponding formula
making use of its dualUntil operator, which further justi es our exclusive use of the latter
operator in this work.

The overall conclusion of our work is that software monitoring techniques, which draw
verdicts about timing software faults as well as hardware timing failures, are valid, and
may be extremely useful to complement the fault-tolerant mecharsms Ranjbaran and
Khorasani, 201Q Mdller and D'Andrea , 2014 that are used for the detection of abnormal
mechanical failures.

Additionally, we have described in this thesis an alternative approat to scheduling anal-
ysis following a formal based speci cation of the components of a schedlang hierarchy,
and its translation into the SMTLIBv2 language for which we have used theZ3 solver to
obtain valid schedules.

6.1 Future work

In terms of future work related to formal languages, it remains to be seenwhether
extensions ofLTL that are strictly more expressive than MTL, such as TPTL [Bouyer
et al., 201Q could be used as an alternative for dealing with durations.

Regarding simpli cation techniques for Rv, other e cient mechanisms to reduce the
execution time of the monitors as well as the stack usage are required. Ehshape of
the formula impacts severely on its execution time.

Other optimization techniques for synthesis ofRMTL- R3 into SMT problems may be worth
exploring. An example is the extension of the synthesis algorithm for iterval-based
semantics without assuming unit intervals (i.e., intervals of sizZ one), and the consequent
repetition of non interleaved symbols. Instead of two intervals [Q1] and [1 2[evaluating
the symbol a, we have only one interval [Q2[evaluating a. The theory of strings (word
equations) could also be adopted to solve partially the multi-core schauling problem,
instead of the array theory. However, it remains to be seen whethertis can be better to
explore interleaving of tasks.

Hybrid approaches, in the context of multi-core hard real-time scheduability analysis, can
be adopted to treat global scheduling for multi-core systems.

CHAPTER 6. CONCLUSION AND FUTURE WORK 103

. . . N R . L
Regarding the synthesis mechanisms, synthesization dRMTL- . into classic timed au-

3
tomata (TA) is an option. Although it appears to be unfeasible for RV due to the state
explosion problem, encoding time can only be possible if we make use wiore expressive
classes of automata, such a3A extended with stopwatches Cassez and Larsen200Q.
However, the reachability problem for these classes is undecidahlevhich may imply that
no gain should be expected from the point of view of either static analys or of space

complexity for RV purposes.

Regarding the framework, predicting the size of the traces has beenoasidered in this
thesis, but more clever solutions should be investigated, for instage along the lines of the
idea proposed in Navabpour et al., 2019. Instead of estimating the best periods, we could
formulate a problem to nd the execution pattern that is enough for the application and

the monitor. Moreover, we may avoid formulating an optimization problem using linear

programming. For that, we might use SMT solvers that we think would be capable to
extend the presented schedulability analysis approach to dependé sporadic tasks with

monitors.

Regarding the overall thesis, as the rmtld3synth tool is su cientl y mature, other problems
could be solved using the proposed techniques. One of them is the mitaring of security
threads, throughput, and counting (although not equal, it may be close to MTL with

counting [Krishna et al., 2014). RMTL- ,
of functional properties by adding some syntactic sugar over the duratbn terms. Even

will allow us to deal with a great number

though the word duration refers to time, RMTL- , is able to deal with di erent units such
as space and energy. It is simply a case of meaning.

CHAPTER 6. CONCLUSION AND FUTURE WORK 104

Appendix A

. R
RV with RMTL- , for C++11

In this section we present aRv framework for embeddedRTSs based on the novelRV

monitoring model that will be described in Section A.1. The latter contains the con-
straints/rules from the application side that allow us to synthesize a proper architecture
for monitors. These rules are used to con gure the target application to ke executed in a
multi-processor embedded system or over a classic single-pr@ser from the AVR or ARM-

M families of embedded processors. The support is given by the RTMbi [De Matos Pedrg

2014 library that allows us to execute monitors in a lock-free and wait-fee manner, which
is very useful to guarantee deadlock-fredrv operation.

Our toolchain is depicted in Figure A.1. As input, we have a set of formulas that will
be converted to monitors using a one-to-one correspondence. From thedormulas, we
generate Ocaml andC++11source code as well as tests faC++1limplementation that are
automatically generated from the Ocaml synthesis, which correspondsat the dependence
between both synthesis tools and identi ed by the dashed arrow. Tets and synthesized
monitors are merged and compiled using the gcc toolchain including theupport library
RMTLib. This binary will run under NuttX OS. Otherwise, the compi led code from the
synthesis Ocaml tool is executed in a common x86 operating system.

Operationally, each monitor can share resourcese(g, memory and processors) with other
monitors or may execute in isolation (using its own processor and memgr partition),
which is part of the speci cation of the RV monitoring model. The monitors have di erent
execution rules that may change at execution time, and rules for theiroperation.

- Execution rules are step-based (for iterative/tail recursive montors; for an arbitrary
number n 2 N of execution steps), symbol-based (for explicit symbol consumption
in automata formalisms), time-based (a timed bound in discrete exegtion time for
execution of general purpose monitors). Based on this we can change the ex¢ion

105

R
APPENDIX A. RV WITH RMTL- ; FOR C++11 106

R o
Tool-chain <RMTL- 5 Speci cation | ‘R\/ Mon. Model >
‘ Pretty-printer }—[rtml3synth200aml}+ ————— -~ rtmI3synth2cpp
Monitors ‘ Unit Tests

.mli‘.ml .c.h % { .c .h.mk
‘ |

[gcc 4.7 with C++ atomics

+ + Input O
C [Nuxos f-felf]) oubt o

Figure A.1: Tool-chain overview

of the monitor at runtime in a dynamic way (a feature provided by RTMLi b).

- Operation rules are time-triggered or event-triggered; the idea igo generate runtime
veri ers depending of the target RTS. The modes of operation/execution are assigned
according to the Rv model.

For hard RTS, we use the step-based rule combined with a time-triggered ruleNote that
there is no explicit architecture for monitoring, and di erent RV rules produce di erent
monitor architectures, depending on the target systems and the proded RV monitoring
model.

R
Synthesis Algorithm Re nement. The evaluation algorithm proposed for RMTL-
in the Chapter 3 uses functional programming language features such gmttern matching

and higher-order functions, in particular fold operations.

Let K be a set of sequences, a set of logic environments , andR the domain of atime
instant t (analogous to the model (; ;t)). Let us rst consider the lambda functions, as
already de ned in the Chapter 3, such asCompute :: (K Ro! 3! 31 Bj
Compute. y = (K Ro! 3! Bs Computey,) = (K Ro! R !

1 31 Bg, and ComputgR) i (K)! Ro! FE{! 31 D, that evaluate
formula schemes of the form ; _ ,,: , 1U< 2, and , respectively. Note that
(K R o) is a model (consisting of a sequence K, a logic environment in , and
atime instantin R o), D the setR o[f? rg, 2 is a set of three-valued formulasBs; is
the set of three-valuesftt; ;?g , and B4 is a four-valued set de ned by B3 [f rg, where
r is the fourth symbol of the four-valued set. Pattern matching features are currently not
included in imperative programming languages such a£++11 Henceforth, and for the
sake of compatibility with C++11 we adapt that algorithm as follows:

{ the pattern matching constructions are statically erased and fully encoded into the
generated monitors;

R
APPENDIX A. RV WITH RMTL- ; FOR C++11 107

{ the fold functions are encoded asiterators over the structure of traces;
{ the remaining functions are encoded asC++11lambda functions
Pattern matching is simpli ed over the inductive structure of t he formulas. For instance,

the formula a! °bis implemented without pattern matching by composition over the
structure of the formula. For that, we need to de ne some newC++11lambda functions

such ascompute, :: P ! (K R o) ! Bgs, compute : ((K R o)! B3)!
(K R o)! B computeR :R! ((K Ro! B3)! (K) ! R ! D;
and
compute :: (K R o)! (K R o)! B3)! B3)!
(((K Ro! Bg! (K) ! Ro! D)!
(K R o)! Ba:

Note that they encode the pattern matching (all required combinationsfor a given formula)
. . R . .
instead of acceptlnq:\BMTL- , formulas as input arguments. The generated function that
corresponds toa ! Y% is then the lambda function

m: compute (compute (compute, a)) compute® 10 (computg, @) m

where m is the model dened in C++11 as Tracelterator<int> iter ,
struct Environment env , and timespan t . Note that x: fun is dened in C++1las
the expression[](x) ffung.

Let us now focus on the U operator. Porting to C++11the function Compute_, re-
sponsible for the synthesis of the until operator, requires de nirg a number of auxiliary
C++11functions. As an example, the function ef@d :: (K Ro! 31 3

K ! By, as provided in the original RMTL- , evaluation algorithm, is de ned in C++11as
shown in Listing 1. We remark that the synthesized function eV (; ;t) 1 2{)is

originally de ned by
fold v (p;(i;t9) ! e’ (;;t°) 1 av r{;

where ; and » are formulas that were statically coded as theC++11lambda functions
e\)gl (of which there exist as many as there are occurrences of until operatsy since each
one contains di erent formulas), { is the original trace sequence that is mapped into the
iterator iter of Listing 1, and i is the lower bound of the interval (i;t9, is the minimum
precision of a oat, and r is a proper mark for release if the until evaluation gives us an
unknown value, Iiqdenti ed in C++11by FV.SYMBOQkespectively. The operatorsU., <, and
duration terms ' may now be fully implemented using the C++11lambda functions.

R
APPENDIX A. RV WITH RMTL- ; FOR C++11 108

auto eval _fold = [|(struct Environment env, timespan t, Tracelterator< int > iter) > four _valued _type

{

return std::accumulate

(

iter.begin(), iter.end(), pair<four _valued _type, timespan>(FV _SYMBOL, t),
[&env, eval _b](const pair<four _valued _type, timespan> a, Event< int > e)
{

return make_pair(eval _b(env, a.second, a.first), a.second + e.getTime());

}
) first;

k

Listing 1: evid synthesis in C++11

The existential operator does not need to be treated since we assuméd existence of
a simpli cation algorithm that decomposes a quanti ed formula into a non quanti ed
formula. The output of this tool is a monitor written in the C++11programming language
and composed by several source les, and the input is a con guration le ontaining an
RMTL- R3 formula to be synthesized. Thermtld3synth synthesis tool for these operators,
written in the Ocaml programming language [The OCaml Development Team 2013 is
fully described in [De Matos Pedrg 201§. The reader is referred to the example in
Appendix B for further details and a worked out example.

A.1 Rv Monitoring Model

In this section we describe how monitors are linked to bu ers and tags via the spe-
cialized RunTime Embedded Monitoring Library (RTMLib), and then discuss how timing
guarantees are enforced in practice by the adopted hierarchy of monitors.

Linking monitors with RTMLib

Monitors are executed in a simple embedded monitoring framework with we named the
RTMLib [De Matos Pedrg 2016. These monitors use circular bu ers as the data structure
to hold a trace, and they have a certain periodicity. The framework easures that monitors
retrieve events from circular bu ers respecting their partial order, in a lock- and wait-free
manner. Note that several bu ers are used in a composition as describedi[Nelissen et al,
2019 for the reference architecture; more details on the implementatin of RTMLib can be
found in the documentation in [De Matos Pedrg 201§. Monitors execute as higher-priority
tasks and are constantly interfering with the application. However, sich interference is
predictable and constant, since each monitor can execute in constantrie that depends
on the structure of the formula.t

1By constant time we mean that a monitor executes the same number of CPU cycles at each invocation.

R
APPENDIX A. RV WITH RMTL- ; FOR C++11 109

Execution Flow Window

Figure A.2: Flow graph of the system enabled events de ned in a time widow.

Knowledge of the length of the circular bu ers is required at compile time, and for that

we de ne a bound over temporal formulas, allowing us to determine a map from time to
event size. The calculation of temporal bounds for formulas of?MTL-R3 is then achieved
by a recursive algorithm that traverses the inductive structure of the formulas. We now
give two examples of the calculation of an upper bound for a given formula, andhe
construction of a ow graph for a given time window.

Example 20. Let us consider a trace and the formulaa U<3p (b U<19 C), containing
propositions a; b; cevaluated at timet = 0. Based on the semantics of temporal operators
we achieve the timing bounds 2]0; 10[and t 2]0; 20], respectively. These time bounds
are intervals where the truth values resulting from the evaluation oformulas may change.
By the semantic nature of temporal operators, we know that for any 620; 10[[]0; 20[the
truth value is maintained constant, which gives us the desired bodnfor changes of the
evaluation value.

Example 21. In order to estimate the amount of time required from the system uder
observation to couple monitors in a safe manner, we can use a pessstic approach based
on the assumption of a maximum inter-arrival time of events in the gstem, or we can
pre-compute the ow graph of the application. Based on these, we arable to infer how
many events will be triggered in a certain time interval. To exemplify thespeci ¢ case of
the latter, we de ne a time window given by a certain formula using therevious approach.
Then, we create a ow graph of the entire system and x the starting pint of the system
as depicted in the partial ow pattern of the events (ranging from synwol A to M) under
monitoring in the Figure A.2. From label to , where corresponds to the beginning of
the execution and corresponds to the end of the execution, we have the ow of the main
task composed by three paths (the task that manages the autopitmntroller), and from
label 1 to 4, we have the optional task (a time-triggered task for dedadrivers execution
that need to execute at least 1 time in a second). The optional &k has two times the
period of the main task. In summary, we have at most four events betweenand and
the optional task executes twice between them. The gure also depictset dependencies of

R
APPENDIX A. RV WITH RMTL- , FOR C++11 110
events, and allows us to estimate the required relative time for somevents.

Altogether, these examples combine temporal settings of the monitors andhe system
itself: the rst one give us the amount of time that we need to wait for a verdict (minimum
time granularity); the second one helps us to nd the period for a montor based on the
time behavior of the system under monitoring as well as to estimate te WCET of the
monitor (i.e, the time complexity times a constant).

Appendix B

rmtld3synth tool User's Guide

The rmtld3synth synthesis tool is able to automatically generate monitors based on

N _ : R
the formal speci cations written in RMTL- .

this formalism as well as the most common operators of temporal logics. Furthienore,

Polynomial inequalities are supported by

quanti cation is also considered in the language ofRMTL- , as a means to facilitate the
decomposition of the quanti ed formulas into several monitoring conditions.

We will now present an overview of the typical process for generatig monitors for Ocaml
and C++11languages using this tool, together with a running example of a simple mni-
toring case generation. We begin by the running example, present thgenerated monitors,
and show how to con gure the RV monitoring model to couple with the system.

Consider the formula Z
(a! ((a_bU<pq)® c<4 (B.1)

that intuitively describes that given an event a, b occurs until c and, at the same time, the
duration of b shall be less than four time units over the next 10 time units. For irstance,
a trace that satis es this formula is

(a;2); (b;2); (a;1); (c;3); (a; 3); (c; 10):

From rmtld3synth2ocaml tool, we have synthesized the formula's example into the code
of the Listing 3. For that, we have used the command in the Listing1.

Jrmtld3synth --synth-ocaml --input-latexeq "(a \righta rrow ((a \
lor b) \until_{<10} c¢)) \land \int*{10} ¢ < 4"

Listing 1: Utilized shell command for the Equation B.1

Next, we can also generat€++11monitors by replacing --synth-ocaml with --synth-cpp11 .

111

APPENDIX B. RMTLD3SYNTBOL USER'S GUIDE 112

The outcome is the monitor illustrated in the Listings 4 and 5. To use those monitors, we
need to de ne a trace for Ocaml reference as in the Listing.

module OneTrace : Trace = struct let trc = [("a",(0.,2.));(" b
"(2.,4.));("a",(4.,5.));("c",(5.,8.));("a",(8.,11.));("c
",(11.,21.))] end;;

module MonA = MonO(OneTrace);;

Listing 2: Ocaml's reference code for monitor instantiation

For the Ocaml language, experimental integration with RTMLib is available. However, we
do not describe it here, but refer the reader for the examples immtld3synth 's repository *.
For C++11we will now brie y describe how it is performed. Given the verbosity of the
generated code, we have removed the conjunction including the dation inequality, and

used instead the simple formula 7
10

c< 4

Now, we describe the settings for constructing theRvV monitoring model.

Overview of the con guration settings. The settings for rmtld3synth tool are
de ned using the syntax

(<setting_id> <bool_type | integer_type | string_type>)

where| distinguishes between the supported types of arguments such as Bealn, integer
or string, and setting _id is a string containing the name of the setting to which values
are assigned. An example of a set of possible settings for the tool is given the rst
ve lines of Listing 6. We now brie y describe the purpose of each of the setting entries
present in Listing 6:

- gen_tests sets the automatic generations of test cases (to be used as a demo in the
described illustration below).

- gen_concurrency _tests constructs tests for testing lock- and wait-free monitors
executing concurrently.

- gen_unit _tests constructs tests for C++11synthesis using the Ocaml source code
as an oracle.

! Available at https://github.com/anmaped/rmtld3synth/tree/v0.3-alpha , version 0.3-alpha.

APPENDIX B. RMTLD3SYNTBOL USER'S GUIDE

113

open List
open Rmtld3
module type Trace = sig val trc trace end
module Mon0O (T Trace) = struct
let compute _uless gamma f1 f2 k u t =
let m= (k,u,t) in
let eval _i bl b2 =
if b2 < False then b3_to_b4 b2 else if bl < True & b2 = False then b3 _to_b4 bl else
Symbol
in
let eval _b (k,u,t) f1 f2 v =
if v < Symbol then v else eval_i (f1 k ut) (f2 k u t)
in
let eval _fold (k,u,t) f1 f2 x =
fst (fold _left (fun (v,t") (prop,(iil,ii2)) > (eval _.b (k, u, t') f1 f2 v, ii2)) (Symbol,t)
X)
in
if not (gamma >= 0.) then
raise (Failure "Gamma _of _U_operator _is._a.non negative _value")
else
begin
let k,_-,t=m in
let subk = sub _k m gamma in
let eval _.c = eval _fold m f1 f2 subk in
if eval _c = Symbol then
if k.duration _of_trace <= (t +. gamma) then Unknown else (False) else b4_to_b3 eval _c
end
let compute _tm _duration tm fm k u t =
let dt = (t,tm k u t) in
let indicator _function (k,u) t phi = if fm k u t = True then 1. else 0. in
let riemann _sum m dt (i,i') phi =
(dt=(t,t') and t in]i,i'] or t' in J]i,i'])
count _duration := !count _duration + 1 ;
let t,t' = dt in
if i <=1&t < i' then
(lower bound)
(i".t) (indicator _function m t phi)
else (
if i <=1t & t' < i' then
(upper bound)
(t' i) (indicator _function m t' phi)
else
(it i) (indicator _function m i phi)
) in
let eval _eta m dt phi x = fold _left (fun s (prop,(i,t")) > (riemann _sum
m dt (i,t') phi) +. s) 0. x in
let t,t' = dt in
eval _eta (k,u) dt fm (sub ko(k,u,t) t')
let env = environment T.trc
let lg_env = logical _environment
let t = 0.
let mon = (fun k s t > b3_not ((fun k s t > b3_or ((fun k s t > b3_not ((fun k s t > b3_or
((fun k s t > b3_not ((fun k s t > k.evaluate k.trace "a" t) k s t)) k s t) ((
compute _uless 10. (fun k s t > b3_or ((fun k s t > k.evaluate k.trace "a" t) k s t) ((
fun k s t > k.evaluate k.trace "b" t) k s t)) (fun k s t > k.evaluate k.trace "c" t)) k
s t)) k s t)) k s t) ((fun k s t > b3_not ((fun k s t > b3_lessthan ((
compute _tm _duration (fun k s t > 10.) (fun k s t > b3_or ((fun k s t > k.evaluate k.
trace "c" t) k s t) ((fun k s t > k.evaluate k.trace "d" t) k s t))) k s t) ((fun k s t
> 4.) ks t)) k s t)) ks t)) ks t)) envig —env t
end

Listing 3: Generated Ocaml| monitor

APPENDIX B. RMTLD3SYNTBOL USER'S GUIDE

114

-MONO _COMPUTE
-MONO _COMPUTE
“rmtld3 . h"

#ifndef
#define
#nclude

auto _monO _compute [1
return [1(struct
Environment env,

[1(

durati

eval _eta
iter) >

auto

_fun

(1

indicator
formula =
sfl
env.evaluate
mutable
(sf1,

auto
auto

>
sf2);

(formula
make _pair

return

9;

iter.g
iter.g

lower =
upper
timespan vall (
timespan val2 (
auto lower ;

auto

auto =
= (t
= (t

cum
return std ::accumu
iter .begin(),
iter.end(),
std ::
[&env,

make _pair (

vall, val2

d
t_begin
t_end =t
t _end;

condl
cond2

auto =
auto
auto
cum

auto
auto
auto

auto

t
=t

X =

std::m
i

return
second
g
). first;
g
auto sub _k =
f

[1¢
Tracelterator <

first ,
/I to use the

Tracelterator <

ASSERT _RMTLD3(t
lower
auto upper = env.tr

it.setBound(lower,

auto env.tr

return it;

9;

auto t_upper =t + m

return eval _eta(env

g(env,t);

= make
return b3 _lessthan

g(env,t); g;

#endif /I "MONO _COMPUT

auto tr2

timespan

[1(struct

=7
(0,

timespan > p,

valx = ((condl)? vall
indicator

struct
int
env. state .second ,

iterator
int

Lot

_duration (4.,

H_
H_

Environment &env, t)
timespan t)

duration f

timespan
>

struct
Environment env,

t)

(

>

struct Environment env, timespan t,

on
= Environment env,
timespan
t)

sf2

struct
Environment &env,
timespan

auto

ction
(struct

= [I(
t)
Environment &env,

(env, 2, t); g(env,t);
three _valued _type f return

g(env, t);

[1(

(1, false)
(0, true)) ;

_TRUE)? std:: make
std :: make

_pair

false) _pair

etLowerAbsoluteTime () ;
etUpperAbsoluteTime () ;
lower)? 0 t
_upper upper

lower;
)?2 0 t

_upper

late (

(0,
_upper,
> e)

false),
indicator

make _duration
, &um, t, t
Event < int

p.first;

cum;
-begin + e.getTime();

<=t & t < t_end;
<=t _upper & t _upper
0) + ((cond2)? val2
p.second);

_begin
_begin t_end

0);

<
_function (env,

ake (make

p.second + e.getTime());

_pair
x.second),

Environment env, timespan t,

Tracelterator < int >
o,
both searches we use one

iter;

> iter =
env.state .second);
for
> &it

iter.getLowerAbsoluteTime ());
> searchindexForwardUntil (
> searchindexForwardUntil (

it,
it

t);
t

ace
ace
upper);

ake _duration(10., false).first;

t _upper, sub _k(env, t, t _upper));

false);
(tr1, tr2);

E H_

timespan

timespan

mutable
three _valued _type

t

mutable
struct
env.evaluate (env,

((formula

upper;

(timespan)lower),
_function](

_duration (d.first + (x.first

timespan t
(env.trace,

reference

_upper

t)

mutable

> three _valued _type f

trl [1(C struct

f auto

-upper, Tracelterator <

> duration f

three _valued _type
three _valued _type f
timespan

return

f auto
return
t)
b3 _or

>
>
Environment &env,

1, t); g(env,t);

=T _FALSE)? std::

(duration
const std :: pair

starts at 0)
< duration ,

(e.getTime() valx)), d.

_upper) > Tracelterator < int

env.state.first, 0, env.state.

1

Listing 4. Generated C++11monitor

APPENDIX B. RMTLD3SYNTBOL USER'S GUIDE 115

#ifndef
#define
#nclude
#include
#include
#include

class
private

RMTLD3 _reader < int > trace = RMTLD3 _reader < int > (__buffer _monl.getBuffer(), 0.);
struct Environment env;

protected
void run() f
three _valued _type _out = _monO _compute(env,0);
DEBUG _RTEMLD3("Veredict:%d nn", _out);
9
public
MonO(useconds _t p): RTML _monitor(p,SCHED _FIFO,50), env(std:: make _pair (0, 0), &trace,
--observation) fg
g,
#endif /IMONITOR -MONO _H

MONITOR _MONO _H

MONITOR _MONO _H
"Rmtld3 _reader.h"
"RTML _monitor. h"
"mon0 _compute.h"
"monl.h"

MonO : public RTML _monitor f

Listing 5. Generated C++11monitor header

buffer _size sets the static size of the buer to be used (mtld3synth tool can
change it if required by some constraints).

minimuminter _arrival _time establishes the minimum inter-arrival time that the
events can have. It is a very pessimistic setting but providessome information for
static checking.

maximunperiod sets the maximum interval between two consecutive releases of a
task's job. It has a correlation between the periodic monitor and the mnimum
inter-arrival time. It provides static checks according to the size of time-stamps of
events.

event _type provides the type for dealing with events (commonly is a class parame
ter).

event _subtype provides the type for the event data. In that case, it is an identi er
that can distinct 255 events. However, if more events are required,hte type should
be modied to *uint32 _t* or greater. The number of di erent events versus the
available size for the identi er is also statically checked.

cluster _nameidenti es the set of monitors. It acts as a label for grouping monitor
speci cations.

Writing formulas in RMTLD3 The formulas ‘'m.simple’ and "'mmorecomplex” fol-

low the same syntax de ned in this section. For setting a periodic monitor, we use

APPENDIX B. RMTLD3SYNTBOL USER'S GUIDE 116

(gen _tests true)

(minimum _inter _arrival _time 102)
(maximum _period 2000000)

(event _subtype uint _8)

(cluster _name monitor _setl)

(m_simple 1000000 (Or (Until 200000 (Prop A) (Prop C)) (Prop B)))
(m—_morecomplex 500000 (Or (Until 200000 (Prop set —off) (Or (Until 200 (Prop A) (Prop C)) (Prop BY))) (

Prop B)))

Listing 6: The default con guration le.

type var _id = string with sexp
type prop = string with sexp
type time = oat with sexp
type value = oat with sexp

type formula =

True of unit

Prop of prop

Not of formula

Or of formula formula
Until of time formula formula
Exists of var _id formula
LessThan of term term
and term =

Constant of value

Variable of var _id

FPlus of term term
FTimes of term term
Duration of term formula

with sexp

type rmtld3 _fm = formula with sexp
type rmmtld3 _tm =term with sexp
type tm =rmtld3 _tm with sexp
type fm =rmmtld3 _fm with sexp

Listing 7. The inductive type.

(m_usecaseXk period> (<monitor sexpr>)). They are formatted as a symbolic expres-
sion. The type in Ocaml is according to the Listing 7.

Appendix C

RTMLIb

The RunTime Embedded Monitoring Library (RTMLIb) is a library that has been devel-
oped with the purpose of runtime monitoring of real-time embedded sgtems. RTMLib
is based on lock-free ring bu er FIFO queues for managing the informaibn from events
that are registered in bu ers. The library is supported in both ARM and x86 platforms.
E cient architectures can be developed based on lock-free enqueaiand dequeue primitives
over trace sequences containing time stamped events. Synchroaiion primitives for
dequeueing operations allow di erent readers to progress synchronaly over the target
instantiated bu ers. Bu ers are implemented with di erent tim estamps, depending of the
architecture. For ARM it uses 32bit values to save memory, and for x86 it ses 64bit
timestamps.

C.1 Usage of RTMLib

C.1.1 Instantiating bu ers

Bu ers are resources shared between thésUO and the monitors. Bu ers contain time-

stamped event sequences that inform monitors of the changes in the statof the SUO.
RTMLib requires at least one global bu er available for the instrumentat ion of the SUO,
and that at the linking phase of the compilation shall provide the addres of the bu er

for external monitors to make use of it. We de ne a "interface.h" header le that serves
as the interface header to be used by both thesUO and the monitors. The code of the
Listing 1 exempli es this requirement.

Note that this code, uint8 _t could be used to represent events identied as integers
ranging from 0 to 255 only. Other types such asuintl6 _t and uint32 _t could also be

117

APPENDIX C. RTMLIB 118

#include "RTEML-buffer.h"

extern void __start _periodic _monitors();

/I defining one buffer with size 100 of type uint8 —t
extern RTEMLbuffer<uint8 _t, 100> __buffer _monitor _setl;

#define EV_C 3
#define EV_A 4
#define EV_set _off 5
#define EV_B 1

Listing 1: interface.h sample le.

#include "M_morecomplex.h"
#include "M_simple.h"
#include "RTEML_buffer.h"

RTEML buffer<uint8 _t, 100> __buffer _monitor _setl;

M_morecomplex mon _m-morecomplex(—buffer _monitor _setl, 500000);
M_simple mon _m.simple(—buffer _monitor _setl, 1000000);

void __start _periodic _monitors()

{
if (mon_m_morecomplex.enable()) {::printf("ERROR\n");}
if (mon_m_simple.enable()) {:printf("ERROR\n");}

}

Listing 2: interface.cpp sample le.

used to increase the number of di erent kinds of events that can be ensidered. However,
strings and classes are discouraged as they bring extra memory space dwad that, in

the extreme, can compromise the whole implementation of adding monita into the target

Suot.

The instantiation of bu ers and monitors together shall follow along the lines of the pro-
gramming structure used in the code listed below. Note, howeverthat is not mandatory

to instantiate the bu er with the monitors as the Listing 2 describes. TheMsimple.h
header de nes a monitor according to what is described in the next paagraph. The
Mmorecomplex.h header de nes another monitor that shares the bu er __buffer _monitor _setl,
and __start _periodic _monitors is the procedure used to initialize both monitors.

C.1.2 Developing a simple Monitor

We now show how to construct a simple monitor based orRTEMImonitor class. First,
the RTEMImonitor class enables monitors to execute at a certain periodicity. The clas
is initialized using some arguments such as the period, the schetfir policy, and the
priority. The scheduler policies and priorities are commonly OS depndent. For instance,
in Windows Embedded 10 x86, we only have available th& CHEIFIFO policy in pthreads-

1The natural alternative is to map these events in a hash table to save memory space.

APPENDIX C. RTMLIB 119

#include “interface.h"
class M.simple : public RTEMLmonitor {

private
RTEMLreader< int > __reader = RTEML _reader< int >(_—buffer _monitor _setl.getBuffer());

protected
void run(){
sprintf("Body of the monitor.");
}

public :
M_simple(useconds _t p): RTEML _monitor(p,SCHED _FIFO,5) {}

Listing 3: monitor.h sample le.

win32, and priorities can be negative and range from -15 (lowest) to 15 (highst). Zero is
the normal priority.

For fully Posix compliant OS, the priorities are non negative and severalpolicies such as
SCHEIRR(round robin) and SCHETHERXist. In case of NuttX OS, we have the same
policies. The classMsimple is de ned in the Listing 3. This monitor will display the
string "Body of the monitor." several times with a period of p useconds. Lets replace the
‘run’ procedure with a consumer procedure as exempli ed in theparagraph below.

Consumer procedure. The consumer process is exempli ed using one lambda function.
It ts the required interface de ned in RTEMImonitor for the procedurerun. The body of
the function initializes an object of type RTEMlreader<int> that will be used as the con-
sumer for the lock-free bu er. The procedure
dequeue() peek a tuple containing an event of typeEvent<int> , where the template
typename is the type of the expected identi er of the event, and a tme-stamp. Note
that the dequeue is local to the reader, does not aect the global buer, and can be
synchronized using a certain time-stamp. However, to get a global dague of a certain
event, we shall share the same reader among the tasks. The consumer is mked in the
Listing 4, where the variable tmpEvent stores the dequeued event, where the methods
getTime() and getData() return the time-stamp and the event identi er, respectively.

Producer procedure for Monitors Lets construct a producer for the lock-free ring
bu ers. First, we initialize the object __writer of the type RTEMMriter<int> . Then,
we engqueue a value of typent to the bu er that accepts events of the type Event<int> ,
and nally print the bu er to the stdout for debugging purposes. The code is described
in the Listing 5.

APPENDIX C. RTMLIB 120

auto consumer = [J(wvoid) > void

{
static RTEMLreader< int > __reader = RTEML _reader< int >(_—buffer _monitor _setl.getBuffer());

Event< int > tmpEvent;

std::pair<state —_rd _t,Event< int > &> rd _tuple = __reader.dequeue();
tmpEvent = rd _tuple.second;
printf("event —out: %lu, %d code: %d\n", tmpEvent.getTime(), tmpEvent.getData(), rd _tuple.first);

return NULL;
h

Listing 4: Example of a consumer using lambda functions.

auto producer = [[(void) > void

{
static RTEMLwriter< int > __writer = RTEML _writer< int >(_—buffer _monitor _setl.getBuffer());

—_writer.enqueue(1);

—buffer _monitor _setl.debug();
return NULL;
h

__task producer _A = __task(producer, 0, SCHED —FIFO, 100000);

Listing 5: Example of a producer using lambda functions.

Note that __task is an helper used to construct the data descriptor of one task. It inpts
the function pointer, the priority, the scheduler policy, and the period. 100000 means%
seconds.

Appendix D

Inequality Translation Correctness
Proofs

The following proofs are related with the Lemmas5 and 6 that were enunciated in the
Chapter 3. Let us now introduce some required de nitions and one auxiliar Lemmall
before introducing the main proofs. Let us assume in this appendixhat every formula
is in DNF3.

De nition 15. Letf (X;Y;Z) be a shorthand for X ! Y)~ (: X ! Z), where X, Y
and Z are formulas in RMTL- R3.
Lemma 11. Let be a nite formulain RMTL- R3 containing propositions and inequalities
composed by rigid terms, andn > 0 the number of inequalities of with n 2 N. Then,
there is an equivalent formula resulting from the application of bth A4 and A5 at most
2" 1 times, and containing 2" disjunctions.

Proof of Lemma 11. Straightforward induction over n. Let b be the function recursively
dened by f(m) =1+ f(m 1)+ f(m 1) with f(0) = 0, where f(m) denotes the
number of resulting disjunctions, and m = dog, xe, where x is the number of applied
axioms. Note that this function is structurally similar to the shape of A4 and A5 after
applying the simpli cation of implications to DNFj3 of the form (X * 1) _ (Y™), where

1 and » are arbitrary sub-formulas that can be nitely expanded. We want to show that
f(n)+1=2".

Base casef (1)+1=2 1.

Inductive case:f (n)+1=2"

121

APPENDIX D. INEQUALITY TRANSLATION CORRECTNESS PROOFS 122

f(ny)=1+ f(n 1)+ f(n 1)
f(ny=2" t+2"1 1
f(ny=2t 2"t 1
f(n)=2" 1

f(n)+1=2"

R
Lemma 12. Let be a nite formula in RMTL- , containing inequalities, and n > 0 the
number of inequalities of with n 2 N. There is an equivalent formula resulting from the
application of both A6 and A7 at most n times and contain m disjunctions.

Let us now recall the Lemmab.

: R :
Lemma 5. Let !; 2 be two formulas in RMTL- , and consider the formula U 2.
Then, there exists an equivalent formula V\Il_\pere every until operator is &e of inequalities
or only contains equalities of the formx = ' .

Proof of Lemma 5. By induction along the structure of the formulas ! and 2.

- Base cases:

1. 1; 2 do not contain inequalities:

The proof is straightforward. First, we apply A4andweget ;! 1 33U >
or: ;! 11U sand j3equals to false. Since both disjunctions are equal, we
get 1U », and by de nition that 5 (2) = true, f;(1):= true,ff(1) = 1,
and ff(2) := 2. Therefore, Property 1 holds with true ~ true» 1 U », equal
to X1.

2. 1. 2 contain inequalities involving propositions:

Let ; beequalto @™ " pa1)_ _ (@™ " pal), and » equal to
(™ ™ poa)_ _ (™ ~ ppi), and &,k be inequalities composed by rigid
terms with i;j 2 N.

For the sake of simplicity, we denote 51 := Npa1)_ _ @™ N opal),
2= _@” "Ppa) m=("pa)_ _ (" " pp) and
= _((Bd" " po)

APPENDIX D. INEQUALITY TRANSLATION CORRECTNESS PROOFS 123

Applying A 4 and A5 for the formulas 1 and 5, we have the formula

(@ b aaU) _
(@b e U) _
Ca"b” a2l m)_
Ca: N 22U)

From Lemma 11 we know that there are so many disjunctions as the 2, where

n is the number of inequalities contained jointly in 1 and ».

From the shape of A and A5, we see that at most four formulas 1, 2, 3,

and ; are involved. For A4, we get by denition (m1" m2 U m3), where
m1=)M ™ 2) m2= (A 2)and mai= 7 (a).

For A5the same scheme is followed. Both resulting formulas (n1® m2 U m3)

and m1U (m2” m3)indicate that three formulas m1; m2; m3 are required.

Since for alli such that 0<i n there exist functions f5 (1), f* (2), f°(1),

and fig(2) that map inequalities for each disjunction, then Property 1 holds

forn=m.

For the cases of 1 or 2 containing exclusively inequalities with propositions

the proof is similar.

3. 1 2 contain inequalities with duration terms:

The proof begins as similar as the proof above and then proceeds by apjhg

Lemma 6 for each duration term.

For the cases where * or 2 contain exclusively inequalities with duration

terms, the proof is similar to this case.

- Inductive cases : For all formulas 1 and », Property 1 holds.

1. case ! has inequalities:

(a) containing temporal operators:
Since 1 is a formula in DNF3 containing temporal operators and inequali-
ties of the form

winrzlu ¢ _ wirRlU ¢
_(W"AZ'U g) _(W"ARM"U §)
containing an inequality formula W' of the form T < T2~ A TI <TI*,
and two RMTL- , formulasZ',R' in DNF; free of inequalities before an until

operator occur (i.e., the new until operators can contain inequalitiey. Z'
and R' are of the form

stusin Ashush _ _(STUSIA A ShUSh);

APPENDIX D. INEQUALITY TRANSLATION CORRECTNESS PROOFS 124

where S is a RMTL- R3 formula in DNFs.

From the inductive hypothesis, we have that any sub-formuIan u S,J has
an equivalent formula where temporal operators are free of inequalitieand
this formula is a RI\/lTL-R3 formula in DNF3;. Therefore, the formula may
contain inequalities inner the until operator

Z'U &:

Since there is no propositions, the replacement of the sub-formulas straight-
forward. Applying the axiom A 4, we have

F:= wirzl wirRgr?
WAz whARM

and

WIrNFU ¢ _ :W!"F U ¢
(WMAFU g)(W""F U 6):

Therefore, given that a conjunction/disjunction of a DNF3 formula with
other non-DNF3; formula is a formula in DNF3;. Hence, the Property 1
holds.

(b) proposition and temporal operator free: The proof follows by the applca-
tion of axiom A4.

2. case 2 has inequalities. This case is similar to previous one, but know usp
axiom A5 instead of A4.

3. case ! and 2 have inequalities. The proof follows in a similar way to the
previous two cases.

Let us now recall the Lemmapé.

R
Lemrrp?a 6. Let beaformulainRMTL- ,, and «; two terms, and consider the formula

. Then, there exists an equivalent formula where any duration term isrée of
inequalities, or only contains equalities of the formx =

Proof of Lemma 6. By induction over the structure of the formula and the structure of
the term .

- Base cases:

APPENDIX D. INEQUALITY TRANSLATION CORRECTNESS PROOFS 125

1.

- Inductive cases : For all ;r such that

does not contain any inequality:

(@) x does not contain either logic variables or duration terms: the proof is
straightforward.

(b) x does not contain duration terms: the proof is straightforward since
is a rigid term.

contains inequalities without until operators, and x does not contain either
logic variables or duration terms: Since there exists no terms that adrit sub-
formulas, any atom X;; of a formula of the form

X A Xagm) — _ Knn™ ™ Xm)
where 0<i nandO0<j m, canonly be arelation formula or a proposition.
From the Axiom 7, we have
Z X Z X
X1 N Xgm)+ (+(Xp2™® " Xnm))
Z

(X2 N Xem)™ _ Xz N Xam)) -

Continuing applying Axiom 7 until no disjunctions are left, we have a formula
where the duration terms may only contain conjunctions of relation formuas

and propositions. Then, we have
Z X Z X
(Xl;lA N Xl;m)+ + (Xn;l/\ N xn;m)
Z X
(X A Xgm) N Kz ® N Xgm)) + 11

Replacing each duration term by a logic variable, we get
(Yii+ *+yma) (Yiz+ i)

Now, applying Axiom 6 for each resulting duration term, we obtain a formula
where inequalities are free of occurrences of the duration term. Tda resulting
formula is of the form

Hence, Property 2 holds.

contains inequalities with until formulas and 4 does not contain either logic
variables or duration terms: The proof structure is similar to the previous case,
and then follows from Lemmab.

r

, the Property 2 is true.

APPENDIX D. INEQUALITY TRANSLATION CORRECTNESS PROOFS 126

1. contains duration terms and is a rigid term containing only constants or
one logic variable:

We assume is of the form (X1 ~ Xim)_ _ Xn2™ ™ Xam);
where any atomXjj, 0<i nand0<j m may contain a duration term.
Applying the inductive hypothesis for each atom X;; we have that

E = Y11 11t F Ynm n;m
and
E " Dp;

which is a conjuntion of an inequality bounded by and a disjunctive formula
D, containing several equalities of the form

Z
whttr oy = zBAr whE yg =02
Z X
AWMy = zZm"M A WMy, = 0;

whereW atoms are conjunctions of inequalities. Simplifying we get the formud
z

X

EAWHEEA ypg = z% _ EN WHERA Yy =0
: : : R .
Again applying Axiom 7 for the overall formula ¥ such that there is no

disjunctions over it, we have
z z

X X

EAWl;lAyl;lz Zl;l _ E AN Wl;ll\ Y1;1=O N N Xl;m

By applying Axiom 6, we getE and W free of duration terms. Hence, Prop-
erty 2 holds.

2. does not contains inequalities and x contains duration terms:

We assume y of the form x 1+ + Xn n Where ; is replaced by a
expression of the formy;.1 i1+ +Vin i:m and so on replacing them until
no logic variables are remaining. Then, we could simplify it by simplyreplacing
the whole expression with a fresh logic variable using the AxionB. Then, we
proceed with the same steps of the inductive cas&. Hence, Property 2 holds.

APPENDIX D. INEQUALITY TRANSLATION CORRECTNESS PROOFS 127
D.1 Soundness proofs for axioms

Let us now recall the introduced axioms.

Al 1 min < 5 ((Byy<x!: [y=)" 1 x< 2"
A2 max < 20 @Byy>x!: [y=xP” 1 x< 7
R R,
A 3. 1 1 20 x= 3" 1 1 2
Ad 1 (™ 22U 30 (! 1_ 20 3)"(C ! 11U 3)
A5 U(™ 2)_ 30 (! 12U 2_)¢ ! 121U 3)
R R R
A6 T A 0 A AT =0
R R R
A7 1_ 2= 1+ 2 1N o2

We have to prove the soundness of each one of the axioms, which means ckiag the
validity of each axiom. The soundness proof of & is straightforward since it only replaces
the term with a fresh variable. The soundness proof of & follows immediately from the
semantics.

Lemma 7. The axiom A4 is sound.

Proof. The proof follows directly from the de nition of the semantic inter pretation of
R

RMTL- , formulas.

Lemma 8. The axiom A5 is sound.

Proof. The proof follows directly from the de nition of the semantic inter pretation of
R
RMTL- , formulas.

D.2 Application Examples

Example 22 (Duration term example). It illustrates for a speci ¢c case how simpli cation
is done.

R
1. x< (P~ x< 10)
freplace duration term byyg

2. x<y”"0 y x+1
f apply weaker inequality forP ~ x < 10 g

APPENDIX D. INEQUALITY TRANSLATION CORRECTNESS PROOFS 128

Rx+l
3. x<y”"0 y x+1n (x< 10! O P x+1 A
(: (x< 10)! y=0)
freplace new duration term byzg

4. x<y "0 y x+17
(x<10)! O z x+1))~»
c(x< 10)! y=0
fapply CAD g

5, y=07(z=0_(0 z x+1))_(0O<y x+170 z x+1) forx2][10
and (x<y x+170 2z x+1) for x2][0;10]
freplacey andz by "' P g

R R
6. *p=0_0< *P x+1forx2[L0[

Rx+1
X < P x+1 for x 2 [0;10], and
otherwise

fsimplify ** p

Xx+1g

R
7.0 *tpforx2[1,0
x< **1p for x 2 [0;10], and
otherwise

R R
1 (P~ x< 10) is false, and9x;x < " (P~ x< 10) is

true, since there is a valuex = 1 where **1p =0,

Now, we have that8x; x <

R
After_simplifying 8x; (0 x< 10)! x< X+l (P~ x< 10), we have8x; (0 x< 10)!

x< **lp.

Bibliography

Chris Allan, Pavel Avgustinov, Aske Simon Christensen, Laurie Hendre, Sascha Kuzins,
Ondej Lhotk, Oege de Moor, Damien Sereni, Ganesh Sittampalam, and Judian Tibble.
Adding trace matching with free variables to aspectj. SIGPLAN Not. , 40(10):345{364,
October 2005. ISSN 0362-1340. doi: 10.1145/1103845.1094839. URp://doi.acm.
0rg/10.1145/1103845.1094839 .

Jose Bacelar Almeida, Maria Joao Frade, Jorge Sousa Pinto, and Simao MeloedSousa.
Rigorous Software Development - An Introduction to Program Veri cation. Under-
graduate Topics in Computer Science. Springer, 2011. ISBN 978-0-85729-017-5. doi:
10.1007/978-0-85729-018-2. URIhttps://doi.org/10.1007/978-0-85729-018-2

Bowen Alpern and Fred B. Schneider. Recognizing safety and livenes Distributed
Computing, 2(3):117{126, 1987. doi: 10.1007/BF01782772. URIhttps://doi.org/
10.1007/BF01782772

R. Alur and T.A. Henzinger. Logics and models of real time: A survey. InProceedings of
the Real-Time: Theory in Practice, REX Workshop, pages 74{106, London, UK, UK,
1992a. Springer-Verlag. ISBN 3-540-55564-1. URIhttp://dl.acm.org/citation.
cfm?id=648143.749966.

Rajeev Alur and David L. Dill. A theory of timed automata. Theor. Comput. Sci., 126(2):
183{235, 1994. doi: 10.1016/0304-3975(94)90010-8. URiitps://doi.org/10.1016/
0304-3975(94)90010-8 .

Rajeev Alur and Thomas A. Henzinger. Back to the future: Towards a theory of timed
regular languages. In33rd Annual Symposium on Foundations of Computer Science,
Pittsburgh, Pennsylvania, USA, 24-27 October 1992pages 177{186, 1992b. doi: 10.
1109/SFCS.1992.267774. URIlhttps://doi.org/10.1109/SFCS.1992.267774

Rajeev Alur and Thomas A. Henzinger. Real-time logics: Complexity and expessiveness.
Inf. Comput., 104(1):35{77, 1993. doi: 10.1006/inc0.1993.1025. URNDbttps://doi.
0rg/10.1006/inc0.1993.1025

129

BIBLIOGRAPHY 130

Rajeev Alur and Thomas A. Henzinger. A really temporal logic. J. ACM, 41(1):181{
204, 1994. doi: 10.1145/174644.174651. URtttp://doi.acm.org/10.1145/174644.
174651

Rajeev Alur, Costas Courcoubetis, and David L. Dill. Model-checkirg in dense real-
time. Inf. Comput., 104(1):2{34, 1993. doi: 10.1006/inco.1993.1024. URIhttps:
//doi.org/10.1006/inc0.1993.1024

Rajeev Alur, Tomas Feder, and Thomas A. Henzinger. The bene ts of relaxing punctuality.
J. ACM, 43(1):116{146, January 1996. ISSN 0004-5411. doi: 10.1145/227595.227602.
URL http://doi.acm.org/10.1145/227595.227602

Rajeev Alur, Limor Fix, and Thomas A. Henzinger. Event-clock automata: A deter-
minizable class of timed automata. Theor. Comput. Sci., 211(1-2):253{273, 1999. doi:
10.1016/S0304-3975(97)00173-4. URIhttps://doi.org/10.1016/S0304-3975(97)
00173-4.

Miriam C. Bergue Alves, Doron Drusinsky, J. Bret Michael, and Man-tak Shing. Formal
validation and veri cation of space ight software using statechart-assertions and
runtime execution monitoring. In 6th International Conference on System of Systems
Engineering, SOoSE 2011, Albuquerque, New Mexico, USA, June 27-30, 2Q1fpages
155{160, 2011. doi: 10.1109/SYSOSE.2011.5966590. URItps://doi.org/10.1109/
SYSOSE.2011.5966590

Bpern Andersson and Jan Jonsson. Preemptive multiprocessor schedimg anomalies. In
16th International Parallel and Distributed Processing Symposim (IPDPS 2002), 15-19
April 2002, Fort Lauderdale, FL, USA, CD-ROM/Abstracts Proceedi ngs 2002. doi: 10.
1109/IPDPS.2002.1015483. URLhttps://doi.org/10.1109/IPDPS.2002.1015483

June Andronick, Corey Lewis, Daniel Matichuk, Carroll Morgan, and Christine Rizkallah.
Proof of OS scheduling behavior in the presence of interrupt-indced concurrency. In
Interactive Theorem Proving - 7th International Conference, ITP 2016, Nancy, France,
August 22-25, 2016, Proceedingspages 52{68, 2016. doi: 10.1007/978-3-319-4314444
URL https://doi.org/10.1007/978-3-319-43144-4 4

Krzysztof R. Apt, Frank S. de Boer, and Ernst-Radiger Olderog. Veri cation of Sequential
and Concurrent Programs. Texts in Computer Science. Springer, 2009. ISBN 978-
1-84882-744-8. doi: 10.1007/978-1-84882-745-5. URittps://doi.org/10.1007/
978-1-84882-745-5 .

Neil C. Audsley, Alan Burns, Robert I. Davis, Ken Tindell, and Andy J. Wellings.
Fixed priority pre-emptive scheduling: An historical perspective. Real-Time Systems

BIBLIOGRAPHY 131

8(2-3):173{198, 1995. doi: 10.1007/BF01094342. URIhttps://doi.org/10.1007/
BF01094342

Mikhail Auguston and Mark B. Trakhtenbrot. Synthesis of monitors for real- time analysis
of reactive systems. InPillars of Computer Science, Essays Dedicated to Boris (Boaz)
Trakhtenbrot on the Occasion of His 85th Birthday pages 72{86, 2008. doi: 10.1007/
978-3-540-78127-b. URL https://doi.org/10.1007/978-3-540-78127-1 5

Christel Baier and Joost-Pieter Katoen. Principles of Model Checking The MIT Press,
2008. ISBN 026202649X, 9780262026499.

John Barnes. Rationale for ada 2012: Contracts and aspects. Technical report,aersham,
UK, 2012.

Julie Baro, Feceric Boniol, Mikel Cordovilla, Eric Noulard, and Clai re Pagetti. O -line
(optimal) multiprocessor scheduling of dependent periodic task. In Proceedings of the
27th Annual ACM Symposium on Applied Computing SAC '12, pages 1815{1820, New
York, NY, USA, 2012. ACM. ISBN 978-1-4503-0857-1. doi: 10.1145/2245276.2232071.
URL http://doi.acm.org/10.1145/2245276.2232071

Clark Barrett, Pascal Fontaine, and Cesare Tinelli. The smt-lib standard version 2.6.
2010.

Clark Barrett, Pascal Fontaine, and Cesare Tinelli. The SMT-LIB Standard: Version
2.5. Technical report, Department of Computer Science, The Univerdy of lowa, 2015.
Available at www.SMT-LIB.org

Howard Barringer, Allen Goldberg, Klaus Havelund, and Koushik Sen. Rule-Based
Runtime Veri cation , pages 44{57. Springer Berlin Heidelberg, Berlin, Heidelberg,
2004a. ISBN 978-3-540-24622-0. doi: 10.1007/978-3-540-24628-0 URL http:
/ldx.doi.org/10.1007/978-3-540-24622-0 5

Howard Barringer, Allen Goldberg, Klaus Havelund, and Koushik Sen. Rulebased runtime
veri cation. In Bernhard Ste en and Giorgio Levi, editors, Veri cation, Model Checking,
and Abstract Interpretation, volume 2937 ofLecture Notes in Computer Science pages
277{306. Springer Berlin / Heidelberg, 2004b. ISBN 978-3-540-20803-7.

Howard Barringer, David Rydeheard, and Klaus Havelund. Rule Systems for Run-Time
Monitoring: From Eagle to RuleR, pages 111{125. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2007. ISBN 978-3-540-77395-5. doi: 10.1007/978-3-540-7739505 URL
http://dx.doi.org/10.1007/978-3-540-77395-5_10

BIBLIOGRAPHY 132

Howard Barringer, David Rydeheard, and Klaus Havelund. Rule systemsfor run-time
monitoring. J. Log. and Comput., 20(3):675{706, June 2010. ISSN 0955-792X. doi:
10.1093/logcom/exn076. URL http://dx.doi.org/10.1093/logcom/exn076

Saugata Basu, Richard Pollack, and Marie-Frarcoise Roy. Algorithms in Real Algebraic
Geometry (Algorithms and Computation in Mathematics). Springer-Verlag New York,
Inc., Secaucus, NJ, USA, 2006. ISBN 3540330984.

Andreas Bauer, Martin Leucker, and Christian Schallhart. Runtime Veri cation for LTL
and TLTL. ACM Trans. Softw. Eng. Methodol., 20(4):14:1{14:64, September 2011.
ISSN 1049-331X. doi: 10.1145/2000799.2000800. URittp://doi.acm.org/10.1145/
2000799.2000800

Gerd Behrmann, Alexandre David, Kim G. Larsen, John Hakansson, Paul Peterson, Wang
Yi, and Martijn Hendriks. Uppaal 4.0. In Proceedings of the 3rd international conference
on the Quantitative Evaluation of Systems QEST '06, pages 125{126, Washington, DC,
USA, 2006. IEEE Computer Society. ISBN 0-7695-2665-9. doi: 10.1109/QEST.2006.59.
URL http://dx.doi.org/10.1109/QEST.2006.59

Patrick Blackburn and Jerry Seligman. Hybrid languages. Journal of Logic, Language
and Information, 4(3):251{272, Sep 1995. ISSN 1572-9583. doi: 10.1007/BF01049415.
URL https://doi.org/10.1007/BF01049415

Patrick Blackburn and Miroslava Tzakova. Hybrid languages and temporal logic Logic
Journal of the IGPL, 7(1):27{54, 1999. doi: 10.1093/jigpal/7.1.27. URL https://doi.
org/10.1093/jigpal/7.1.27

Eric Bodden. A lightweight LTL runtime veri cation tool for Java. In Companion to the
19th Annual ACM SIGPLAN Conference on Object-Oriented Programming, Systems,
Languages, and Applications, OOPSLA 2004, October 24-28, 2004, ancouver, BC,
Canada pages 306{307. ACM, October 2004. URLhttp://www.bodden.de/pubs/
boddenO4lightweight.pdf . ACM Student Research Competition.

Borzoo Bonakdarpour, Samaneh Navabpour, and Sebastian Fischmeister. Sating-based
runtime veri cation. In Proceedings of the 17th international conference on Formal
methods FM'11, pages 88{102, Berlin, Heidelberg, 2011. Springer-Verlag. ISBN 978-3-
642-21436-3. URLhttp://dl.acm.org/citation.cfm?id=2021296.2021308

Borzoo Bonakdarpour, Samaneh Navabpour, and Sebastian Fischmeister. Tieatriggered
runtime veri cation. Formal Methods in System Design 43(1):29{60, Aug 2013.
ISSN 1572-8102. doi: 10.1007/s10703-012-0182-0. URItps://doi.org/10.1007/
s$10703-012-0182-0.

BIBLIOGRAPHY 133

Patricia Bouyer. Model-checking timed temporal logics. Electron. Notes Theor. Comput.
Sci., 231:323{341, March 2009. ISSN 1571-0661. doi: 10.1016/j.entcs.2009.02.044. URL
http://dx.doi.org/10.1016/j.entcs.2009.02.044

Patricia Bouyer, Kim Guldstrand Larsen, and Nicolas Markey. Model chedking one-clock
priced timed automata. Logical Methods in Computer Science 4(2), 2008a. doi: 10.
2168/LMCS-4(2:9)2008. URL http://dx.doi.org/10.2168/LMCS-4(2:9)2008

Patricia Bouyer, Nicolas Markey, Joel Ouaknine, and James Worrell. Onexpressiveness
and complexity in real-time model checking. In Proceedings of the 35th international
colloguium on Automata, Languages and Programming, Part || ICALP '08, pages 124{
135, Berlin, Heidelberg, 2008b. Springer-Verlag. ISBN 978-3-540-70582-6. doi: 10.1007/
978-3-540-70583-31. URL http://dx.doi.org/10.1007/978-3-540-70583-3_11

Patricia Bouyer, Fabrice Chevalier, and Nicolas Markey. On the expresiveness of TPTL
and MTL. Inf. Comput., 208(2):97{116, 2010. ISSN 0890-5401. doi: 10.1016/j.ic.2009.
10.004. URL http://dx.doi.org/10.1016/j.ic.2009.10.004

Alan Burns and Andy Wellings. Real-Time Systems and Programming Languages: Ada,
Real-Time Java and C/Real-Time POSIX. Addison-Wesley Educational Publishers Inc,
USA, 4th edition, 2009. ISBN 0321417453, 9780321417459.

Christos G. Cassandras and Setphane Lafortune. Introduction to Discrete Event
Systems, Second Edition Springer, 2008. ISBN 978-0-387-33332-8. doi: 10.1007/
978-0-387-68612-7. URLhttps://doi.org/10.1007/978-0-387-68612-7

Franck Cassez and Kim Guldstrand Larsen. The impressive power of stopatches. In
CONCUR 2000 - Concurrency Theory, 11th International Conference, Lhiversity Park,
PA, USA, August 22-25, 2000, Proceedings pages 138{152, 2000. doi: 10.1007/
3-540-44618-412. URL https://doi.org/10.1007/3-540-44618-4 12

Felipe Cerqueira, Felix Stutz, and Bprn B. Brandenburg. PROSA: A case for readable
mechanized schedulability analysis. In28th Euromicro Conference on Real-Time
Systems, ECRTS 2016, Toulouse, France, July 5-8, 2016pages 273{284, 2016. doi:
10.1109/ECRTS.2016.28. URLhttps://doi.org/10.1109/ECRTS.2016.28

Zhou Chaochen, Anders P. Ravn, and Michael R. Hansen. An extended durain calculus
for hybrid real-time systems. In Hybrid Systems pages 36{59, London, UK, UK, 1993.
Springer-Verlag. ISBN 3-540-57318-6. URLhttp://dl.acm.org/citation.cfm?id=
646874.709980.

Feng Chen, Traian Florin Serbanuta, and Grigore Rosu. jpredictor: a prelictive runtime
analysis tool for java. In Proceedings of the 30th international conference on Software

BIBLIOGRAPHY 134

engineering ICSE '08, pages 221{230, New York, USA, 2008. ACM. ISBN 978-1-60558-
079-1. doi: 10.1145/1368088.1368119. URAhttp://doi.acm.org/10.1145/1368088.
1368119

Alonzo Church. The Calculi of Lambda-conversion Annals of mathematics studies.
Princeton University Press, 1941. ISBN 9780691083940.

Edmund M. Clarke, Orna Grumberg, and Doron A. Peled. Model Checking MIT Press,
Cambridge, MA, USA, 1999. ISBN 0-262-03270-8.

George E. Collins. Quanti er elimination for real closed elds by cylindrical algebraic
decomposition: a synopsis. ACM SIGSAM Bulletin, 10(1):10{12, 1976. doi: 10.1145/
1093390.1093393. URIhttp://doi.acm.org/10.1145/1093390.1093393

M. Coombes, O. McAree, W. H. Chen, and P. Render. Development of an autdfot system
for rapid prototyping of high level control algorithms. In Proceedings of 2012 UKACC
CONTROL, pages 292{297, Sept 2012. doi: 10.1109/CONTROL.2012.6334645.

Marcelo d’Amorim and Klaus Havelund. Event-based runtime verication of java
programs. In Proceedings of the third international workshop on Dynamic analsis,
WODA '05, pages 1{7, New York, USA, 2005. ACM. ISBN 1-59593-126-0. doi:
10.1145/1082983.1083249. URAhttp://doi.acm.org/10.1145/1082983.1083249

Ben D'Angelo, Sriram Sankaranarayanan, Gsar Sanchez, Will Robinson, Bend
Finkbeiner, Henny B. Sipma, Sandeep Mehrotra, and Zohar Manna. LOLA: runtime
monitoring of synchronous systems. In12th International Symposium on Temporal
Representation and Reasoning (TIME 2005), 23-25 June 2005, Buihgton, Vermont,
USA, pages 166{174, 2005. doi: 10.1109/TIME.2005.26. URIhttps://doi.org/10.
1109/TIME.2005.26.

Rowan Davies. A temporal logic approach to binding-time analysis.J. ACM, 64(1):1:1{
1:45, March 2017. ISSN 0004-5411. doi: 10.1145/3011069. URLtp://doi.acm.org/
10.1145/3011069.

Robert I. Davis and Alan Burns. A survey of hard real-time schedulingfor multiprocessor
systems. ACM Comput. Surv., 43(4):35:1{35:44, October 2011. ISSN 0360-0300. doi:
10.1145/1978802.1978814. URbttp://doi.acm.org/10.1145/1978802.1978814

Ande De Matos Pedro. rtmlib Monitoring Library, 2016. Available at https://anmaped.
github.io/rtmlib/doc/ , version 0.1-alpha.

Ande De Matos Pedro. rmtld3synth Synthesis Tool, 2018. Available athttps://github.
com/anmaped/rmtld3synth/ , version 0.3-alpha2.

BIBLIOGRAPHY 135

Ande De Matos Pedro, David Pereira, Lus Miguel Pinho, and Jorge Sousa Hnto.
Towards a runtime veri cation framework for the ada programming language. In Reliable
Software Technologies - Ada-Europe 2014, 19th Ada-Europe Interational Conference
on Reliable Software Technologies, Paris, France, June 23-27, 2014#roceedings pages
58{73, 2014a. doi: 10.1007/978-3-319-083114& URL https://doi.org/10.1007/
978-3-319-08311-7_6 .

Ande De Matos Pedro, David Pereira, Lus Miguel Pinho, and Jorge Sousa FAnto. A
compositional monitoring framework for hard real-time systems. In Proceedings of
the 6th International Symposium on NASA Formal Methods - Volume 843Q pages
16{30, New York, NY, USA, 2014b. Springer-Verlag New York, Inc. ISBN 978-3-
319-06199-3. doi: 10.1007/978-3-319-0620026 URL http://dx.doi.org/10.1007/
978-3-319-06200-6_2 .

Ande De Matos Pedro, David Pereira, Lqu2 Miguel Pinho, and Jorge Sousa Hnto. Mon-
itoring for a decidable fragment of mtl- . In Runtime Veri cation - 6th International
Conference, RV 2015 Vienna, Austria, September 22-25, 2015. Procedings, pages 169{
184, 2015a. doi: 10.1007/978-3-319-2382043. URL https://doi.org/10.1007/
978-3-319-23820-3 11.

Ande De Matos Pedro, David Pereira, Lus Miguel Pinho, and Jorge Sousa HAnto. Logic-
based Schedulability Analysis for Compositional Hard Real-time Embeddd Systems.
SIGBED Rev., 12(1):56{64, March 2015b. ISSN 1551-3688. doi: 10.1145/2752801.
2752808. URLhttp://doi.acm.org/10.1145/2752801.2752808

Ande De Matos Pedro, David Pereira, Lu s I\/IRigueI Pinho, and Jorge Sousa Pito. SMT-
based schedulability analysis using RMTL- . CRTS 2016 page 31, 2016.

Ande De Matos Pedro, Jorge Sousa Pinto, David Pereira, andRLus Miguel Pinho. Runtime
veri cation of autopilot systems using a fragment of MTL- . International Journal on
Software Tools for Technology Transfer Aug 2017. ISSN 1433-2787. doi: 10.1007/
$10009-017-0470-5. URIhttps://doi.org/10.1007/s10009-017-0470-5

Leonardo Mendorca de Moura and Nikolaj Bjrner. Z3: an e cient SMT solver . In
Tools and Algorithms for the Construction and Analysis of Sysems, 14th International
Conference, TACAS 2008, Held as Part of the Joint European Conferenes on Theory
and Practice of Software, ETAPS 2008, Budapest, Hungary, March 2%April 6, 2008.
Proceedings pages 337{340, 2008. doi: 10.1007/978-3-540-7880248. URL https:
//doi.org/10.1007/978-3-540-78800-3_24

Doron Drusinsky. The temporal rover and the atg rover. In Proceedings of the 7th
International SPIN Workshop on SPIN Model Checking and Software ¥ri cation ,

BIBLIOGRAPHY 136

pages 323{330, London, UK, 2000. Springer-Verlag. ISBN 3-540-41030-9. URL
http://dl.acm.org/citation.cfm?id=645880.672089

E. Allen Emerson. Handbook of theoretical computer science (vol. b). chpter Temporal
and Modal Logic, pages 995{1072. MIT Press, Cambridge, MA, USA, 1990. ISBN
0-444-88074-7. URLhttp://dl.acm.org/citation.cfm?id=114891.114907

Yles Falcone. You should better enforce than verify. In Proceedings of the First inter-
national conference on Runtime veri cation, RV'10, pages 89{105, Berlin, Heidelberg,
2010. Springer-Verlag. ISBN 3-642-16611-3, 978-3-642-16611-2.

Elena Fersman, Pavel Krcal, Paul Pettersson, and Wang Yi. Task automata: $hedu-
lability, decidability and undecidability. Information and Computation, 205(8):1149{
1172, August 2007. ISSN 0890-5401. doi: 10.1016/j.ic.2007.01.009. URititp:
//dx.doi.org/10.1016/j.ic.2007.01.009

C. J. Fidge. Real-time schedulability tests for preemptive multtasking. Real-Time Syst,,
14(1):61{93, January 1998. ISSN 0922-6443.

Sebastian Fischmeister and Yanmeng Ba. Sampling-based program exeoomi monitor-
ing. In Proceedings of the ACM SIGPLAN/SIGBED 2010 conference on Languages
compilers, and tools for embedded systemd.CTES '10, pages 133{142, New York,
USA, 2010. ACM. ISBN 978-1-60558-953-4. doi: 10.1145/1755888.1755908. URL
http://doi.acm.org/10.1145/1755888.1755908

Melvin Fitting. First-Order Logic and Automated Theorem Proving, Second Edition
Graduate Texts in Computer Science. Springer, 1996. ISBN 978-1-4612-7515-2. doi:
10.1007/978-1-4612-2360-3. URIhttps://doi.org/10.1007/978-1-4612-2360-3

Carlo A. Furia and Matteo Rossi. On the expressiveness of MTL variantsover dense
time. In Formal Modeling and Analysis of Timed Systems, 5th Internatioral Conference,
FORMATS 2007, Salzburg, Austria, October 3-5, 2007, Proceedings pages 163{
178, 2007. doi: 10.1007/978-3-540-754544B. URL https://doi.org/10.1007/
978-3-540-75454-1 13.

Dov M. Gabbay. The declarative past and imperative future: Executable temporal logic
for interactive systems. In Temporal Logic in Speci cation, Altrincham, UK, April
8-10, 1987, Proceedings pages 409{448, 1987. doi: 10.1007/3-540-5180336. URL
https://doi.org/10.1007/3-540-51803-7_36

Simon Goldsmith, Robert O'Callahan, and Alexander Aiken. Relational queries over
program traces. In Proceedings of the 20th Annual ACM SIGPLAN Conference on
Object-Oriented Programming, Systems, Languages, and ApplicationgOOPSLA 2005,

BIBLIOGRAPHY 137

October 16-20, 2005, San Diego, CA, USApages 385{402, 2005. doi: 10.1145/1094811.
1094841. URLhttp://doi.acm.org/10.1145/1094811.1094841

Alwyn Goodloe and Lee Pike. Monitoring distributed real-time systems: A survey and
future directions. Technical Report NASA/CR-2010-216724, NASA Langley Research
Center, July 2010.

Joel Goossens, Emmanuel Grolleau, and Liliana Cucu-Grosjean. Perdicity of real-time
schedules for dependent periodic tasks on identical multiproasor platforms. Real-Time
Syst., 52(6):808{832, November 2016. ISSN 0922-6443. doi: 10.1007/s11241-016-9256-1.
URL http://dx.doi.org/10.1007/s11241-016-9256-1

Russell A. Gordon. The Integrals of Lebesgue, Denjoy, Perron, and HenstockGraduate
studies in mathematics. American Mathematical Soc., 1994. ISBN 9780821872222.

Dick Hamlet. Composing Software Components: A Software-testing Perspective
Springer Publishing Company, Incorporated, 1st edition, 2010. ISBN 1441971475,
9781441971470.

David Harel and Amnon Naamad. The statemate semantics of statechartsACM Trans.
Softw. Eng. Methodol, 5(4):293{333, October 1996. ISSN 1049-331X. doi: 10.1145/
235321.235322. URLhttp://doi.acm.org/10.1145/235321.235322

David Harel, Jerzy Tiuryn, and Dexter Kozen. Dynamic Logic. MIT Press, Cambridge,
MA, USA, 2000. ISBN 0262082896.

John Harrison. Handbook of Practical Logic and Automated ReasoningCambridge Univer-
sity Press, New York, NY, USA, 1st edition, 2009. ISBN 0521899575, 9780521899574.

Klaus Havelund. Runtime veri cation of C programs. In Proceedings of the 20th IFIP TC
6/WG 6.1 international conference on Testing of Software and Conmunicating Systems:
8th International Workshop, TestCom '08 / FATES '08, pages 7{22, Berlin, Heidelberg,
2008. Springer-Verlag. ISBN 978-3-540-68514-2. doi: 10.1007/978-3-540-68523:1
URL http://dx.doi.org/10.1007/978-3-540-68524-1_3

Klaus Havelund and Grigore Rosu. Monitoring java programs with java pathexplorer.
Electr. Notes Theor. Comput. Sci, 55(2):200{217, 2001. doi: 10.1016/S1571-0661(04)
00253-1. URL https://doi.org/10.1016/S1571-0661(04)00253-1

Klaus Havelund and Grigore Rosu. Synthesizing monitors for safety propies. In
Proceedings of the 8th International Conference on Tools and Algothms for the
Construction and Analysis of Systems TACAS '02, pages 342{356, London, UK, 2002.
Springer-Verlag. ISBN 3-540-43419-4. URLhttp://dl.acm.org/citation.cfm?id=
646486.694486.

BIBLIOGRAPHY 138

Thomas A. Henzinger, Zohar Manna, and Amir Pnueli. What good are digital clock®
In Automata, Languages and Programming, 19th International Colloquim, ICALP92,
Vienna, Austria, July 13-17, 1992, Proceedings pages 545{558, 1992. doi: 10.1007/
3-540-55719-9103. URL https://doi.org/10.1007/3-540-55719-9 103

J. Roger Hindley and Jonathan P. Seldin. Lambda-Calculus and Combinators: An
Introduction. Cambridge University Press, New York, NY, USA, 2nd edition, 2008.
ISBN 0521898854, 9780521898850.

Yoram Hirshfeld and Alexander Rabinovich. Logics for real time: Decidabilty and
complexity. Fundam. Inf., 62(1):1{28, January 2004. ISSN 0169-2968. URIhttp:
/[dl.acm.org/citation.cfm?id=1227039.1227041

Gabriel M. Ho mann, Haomiao Huang, Steven L. Wasl, and Er Claire J. Tomlin.
Quadrotor helicopter ight dynamics and control: Theory and experiment. In Proc.
of the AIAA Guidance, Navigation, and Control Conference. Vol. 2., 2007.

Paul Hunter, Joel Ouaknine, and James Worrell. Expressive completness for metric
temporal logic. In 28th Annual ACM/IEEE Symposium on Logic in Computer Science,
LICS 2013, New Orleans, LA, USA, June 25-28, 2013 pages 349{357, 2013. doi:
10.1109/LICS.2013.41. URLhttps://doi.org/10.1109/LICS.2013.41

Dongyun Jin, Patrick O'Neil Meredith, Choonghwan Lee, and Grigore Rasu. Javamop:
E cient parametric runtime monitoring framework. In Proceeding of the 34th Interna-
tional Conference on Software Engineering (ICSE'12) IEEE, 2012. to appear.

Dejan Jovanovt and Leonardo de Moura. Solving non-linear arithmetic. ACM Commun.
Comput. Algebra 46(3/4):104{105, January 2013. ISSN 1932-2240. doi: 10.1145/
2429135.2429155. URIhttp://doi.acm.org/10.1145/2429135.2429155

Simon J. Julier and Je rey K. Uhlmann. Unscented Itering and nonlin ear estimation.
Proceedings of the IEEE 92(3):401{422, 2004. doi: 10.1109/JPROC.2003.823141. URL
https://doi.org/10.1109/JPROC.2003.823141

Moonzoo Kim, Mahesh Viswanathan, Sampath Kannan, Insup Lee, and Oleg Sokdg.
Java-mac: A run-time assurance approach for java programst-orm. Methods Syst. Des,
24(2):129{155, March 2004. ISSN 0925-9856. doi: 10.1023/B:FORM.0000017719.43755.
7c. URL http://dx.doi.org/10.1023/B:FORM.0000017719.43755.7¢c

Ron Koymans. Specifying real-time properties with metric tempoml logic. Real-Time
Systems 2(4):255{299, October 1990. ISSN 0922-6443. doi: 10.1007/BF01995674. URL
http://dx.doi.org/10.1007/BF01995674

BIBLIOGRAPHY 139

Pavel Krcal, Martin Stigge, and Wang Yi. Multi-processor schedulability analysis of
preemptive real-time tasks with variable execution times. InProceedings of the 5th inter-
national conference on Formal modeling and analysis of timed stems FORMATS'07,
pages 274{289, Berlin, Heidelberg, 2007. Springer-Verlag. ISBN 3-540-75453-9, 978-3-
540-75453-4. URLhttp://dl.acm.org/citation.cfm?id=1779879.1779899

Shankara Narayanan Krishna, Khushraj Madnani, and Paritosh K. Pandya. Metric
temporal logic with counting. In Foundations of Software Science and Computation
Structures - 19th International Conference, FOSSACS 2016, Held as &t of the Euro-
pean Joint Conferences on Theory and Practice of Software, ETAPS 204, Eindhoven,
The Netherlands, April 2-8, 2016, Proceedings pages 335{352, 2016. doi: 10.1007/
978-3-662-49630-20. URL https://doi.org/10.1007/978-3-662-49630-5_20

Yassine Lakhnech and Jozef Hooman. Metric temporal logic with durations. Theor.
Comput. Sci., 138(1):169{199, 1995. doi: 10.1016/0304-3975(94)00151-8. URittps:
//doi.org/10.1016/0304-3975(94)00151-8

Frarcois Laroussinie, Nicolas Markey, and Philippe Schnoebelen. Teporal logic with
forgettable past. In 17th IEEE Symposium on Logic in Computer Science (LICS 2002),
22-25 July 2002, Copenhagen, Denmark, Proceedingpages 383{392, 2002. doi: 10.
1109/LICS.2002.1029846. URLhttps://doi.org/10.1109/LICS.2002.1029846

Christopher League. Lambda calculi; A guide for computer scientists bychris hankin.
SIGACT News, 31(1):8{13, March 2000. ISSN 0163-5700. doi: 10.1145/346048.568490.
URL http://doi.acm.org/10.1145/346048.568490

John P. Lehoczky, Lui Sha, and Y. Ding. The rate monotonic scheduling algoribm: Exact
characterization and average case behavior. IfProceedings of the Real-Time Systems
Symposium - 1989, Santa Monica, California, USA, December 1989pages 166{171,
1989. doi: 10.1109/REAL.1989.63567. URLhttps://doi.org/10.1109/REAL.1989.
63567.

Martin Leucker and Christian Schallhart. A brief account of runtime veri cation. J. Log.
Algebr. Program., 78(5):293{303, 2009.

C. L. Liu and James W. Layland. Scheduling algorithms for multiprogramming in a hard-
real-time environment. J. ACM, 20(1):46{61, January 1973. ISSN 0004-5411. doi:
10.1145/321738.321743. URIhttp://doi.acm.org/10.1145/321738.321743

Hong Lu and A. Forin. Automatic processor customization for zero-overhead onhe
software veri cation. |IEEE Transactions on Very Large Scale Integration (VLSI)
Systems 16(10):1346 {1357, October 2008. ISSN 1063-8210.

BIBLIOGRAPHY 140

David Makinson. Sets, Logic and Maths for Computing, Second Edition Undergraduate
Topics in Computer Science. Springer, 2012. ISBN 978-1-4471-2499-3. doi: 10.1007/
978-1-4471-2500-6. URLhttps://doi.org/10.1007/978-1-4471-2500-6

Oded Maler and Dejan Nickovic. Monitoring temporal properties of continuous signals.
In FORMATS/FTRTFT , pages 152{166, 2004.

Rajib Mall. Real-Time Systems: Theory and Practice Prentice Hall Press, Upper Saddle
River, NJ, USA, 1st edition, 2009. ISBN 8131700690, 9788131700693.

Michael C. Martin, V. Benjamin Livshits, and Monica S. Lam. Finding appl ication
errors and security aws using PQL: a program query language. InProceedings of the
20th Annual ACM SIGPLAN Conference on Object-Oriented Programming, Systems,
Languages, and Applications, OOPSLA 2005, October 16-20, 2005, 8aDiego, CA,
USA, pages 365{383, 2005. doi: 10.1145/1094811.1094840. URItp://doi.acm.
0rg/10.1145/1094811.1094840 .

Ramy Medhat, Borzoo Bonakdarpour, Deepak Kumar, and Sebastian Fischmeier.
Runtime monitoring of cyber-physical systems under timing and menory constraints.
ACM Trans. Embed. Comput. Syst, 14(4):79:1{79:29, October 2015. ISSN 1539-9087.
doi: 10.1145/2744196. URLhttp://doi.acm.org/10.1145/2744196

Lorenz Meier, Dominik Honegger, and Marc Pollefeys. PX4: A node-based muthreaded
open source robotics framework for deeply embedded platforms. IEEEE International
Conference on Robotics and Automation, ICRA 2015, Seattle, WA, WBA, 26-30 May,
2015 pages 6235{6240, 2015. doi: 10.1109/ICRA.2015.7140074. URittps:/doi.
0rg/10.1109/ICRA.2015.7140074 .

Patrick Meredith and Grigore Rosu. Runtime veri cation with the r v system. In
Proceedings of the First international conference on Runtime verication , RV'10, pages
136{152, Berlin, Heidelberg, 2010. Springer-Verlag. ISBN 3-642-16611-3, 978-3-642-
16611-2. URL http://dl.acm.org/citation.cfm?id=1939399.1939413

Patrick O'Neil Meredith, Dongyun Jin, Dennis Gri th, Feng Chen, and Grigore Rasu. An
overview of the MOP runtime veri cation framework. International Journal on Software
Techniques for Technology Transfer 2011.

Patrick Moosbrugger, Kristin Y. Rozier, and Johann Schumann. R2U2: monitoring and
diagnosis of security threats for unmanned aerial systemsFormal Methods in System
Design 51(1):31{61, 2017. doi: 10.1007/s10703-017-0275-x. URhitps://doi.org/
10.1007/s10703-017-0275-x .

BIBLIOGRAPHY 141

Mark W. Mdller and Ra aello D'Andrea. Stability and control of a quadrocop ter despite
the complete loss of one, two, or three propellers. 12014 IEEE International Conference
on Robotics and Automation, ICRA 2014, Hong Kong, China, May 31- June 7, 2014
pages 45{52, 2014. doi: 10.1109/ICRA.2014.6906588. URAhittps://doi.org/10.
1109/ICRA.2014.6906588.

Samaneh Navabpour, Borzoo Bonakdarpour, and Sebastian Fischmeister. Tieatriggered
runtime veri cation of component-based multi-core systems. In Runtime Veri cation
- 6th International Conference, RV 2015 Vienna, Austria, September 2225, 2015.
Proceedings pages 153{168, 2015. doi: 10.1007/978-3-319-2382(3. URL https:
//doi.org/10.1007/978-3-319-23820-3_10

G. Nelissen, D. Pereira, and L. M. Pinho. A novel run-time monitoring architecture for
safe and e cient inline monitoring. In Ada-Europe 2015 pages 66{82, June 2015.

Dejan Nickovic and Nir Piterman. From mtl to deterministic timed aut omata. In
Formal Modeling and Analysis of Timed Systems - 8th Internatioral Conference,
FORMATS 2010, Klosterneuburg, Austria, September 8-10, 2010. Proeedings pages
152{167, 2010. doi: 10.1007/978-3-642-152974%8. URL https://doi.org/10.1007/
978-3-642-15297-9 13.

Flemming Nielson, Hanne Riis Nielson, and Chris Hankin.Principles of program analysis
Springer, 1999. ISBN 978-3-540-65410-0. doi: 10.1007/978-3-662-03811-6. URips:
//doi.org/10.1007/978-3-662-03811-6

Christer Norstmm, Anders Wall, and Wang Yi. Timed automata as task models for
event-driven systems. InProceedings of the Sixth International Conference on Real-
Time Computing Systems and Applications RTCSA '99, pages 182{, Washington, DC,
USA, 1999. IEEE Computer Society. ISBN 0-7695-0306-3. URIhttp://dl.acm.org/
citation.cfm?id=519167.828781

Paritosh K. Pandya and Simoni S. Shah. Unambiguity in timed regular languages
Automata and logics. In Formal Modeling and Analysis of Timed Systems - 8th
International Conference, FORMATS 2010, Klosterneuburg, Austria, September 8-10,
2010. Proceedings pages 168{182, 2010. doi: 10.1007/978-3-642-15297t9. URL
https://doi.org/10.1007/978-3-642-15297-9 14

Pawel Parys and Igor Walukiewicz. Weak alternating timed automata. In Proceedings of
the 36th Internatilonal Collogquium on Automata, Languages and Rygramming: Part
II, ICALP '09, pages 273{284, Berlin, Heidelberg, 2009. Springer-Verlag. ISBN 978-3-
642-02929-5. doi: 10.1007/978-3-642-029302B. URL http://dx.doi.org/10.1007/
978-3-642-02930-1_23.

BIBLIOGRAPHY 142

Rodolfo Pellizzoni, Patrick Meredith, Marco Caccamo, and Grigore Rosu. Hardware
runtime monitoring for dependable cots-based real-time embedded ystems. In
Proceedings of the 2008 Real-Time Systems SymposiynRTSS '08, pages 481{491,
Washington, DC, USA, 2008. IEEE Computer Society. ISBN 978-0-7695-3477-0. doi:
10.1109/RTSS.2008.43. URLhttp://dx.doi.org/10.1109/RTSS.2008.43

Lee Pike, Alwyn Goodloe, Robin Morisset, and Sebastian Niller. Copilot A hard real-time
runtime monitor. In Runtime Veri cation - First International Conference, RV 2010,
St. Julians, Malta, November 1-4, 2010. Proceedinggpages 345{359, 2010. doi: 10.1007/
978-3-642-16612-26. URL https://doi.org/10.1007/978-3-642-16612-9 26

Srinivas Pinisetty, Yles Falcone, Thierry Eron, Hene Marchan d, Antoine Rollet, and
Omer Landry Nguena Timo. Runtime Enforcement of Timed Properties, pages 229{244.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2013. ISBN 978-3-642-35632-2. ddiD.
1007/978-3-642-35632-23. URL https://doi.org/10.1007/978-3-642-35632-2_

23.

Ande Platzer. Towards a hybrid dynamic logic for hybrid dynamic systems. Electron.
Notes Theor. Comput. Sci, 174(6):63{77, June 2007. ISSN 1571-0661. doi: 10.1016/].
entcs.2006.11.026. URLhttp://dx.doi.org/10.1016/j.entcs.2006.11.026

Ande Platzer. Dierential dynamic logic for hybrid systems. Journal of Automated
Reasoning 41(2):143{189, Aug 2008. ISSN 1573-0670. doi: 10.1007/s10817-008-9103-8.
URL https://doi.org/10.1007/s10817-008-9103-8

Amir Pnueli. The temporal logic of programs. In Proceedings of the 18th Annual
Symposium on Foundations of Computer SciengeSFCS '77, pages 46{57, Washington,
DC, USA, 1977. IEEE Computer Society. doi: 10.1109/SFCS.1977.32. URIhttp:
//dx.doi.org/10.1109/SFCS.1977.32

Wolfgang Pu tsch, Eric Noulard, and Claire Pagetti. O -line mapping of mu lti-rate
dependent task sets to many-core platformsReal-Time Syst,, 51(5):526{565, September
2015. ISSN 0922-6443. doi: 10.1007/s11241-015-9232-1. URtp://dx.doi.org/10.
1007/s11241-015-9232-1 .

Mina Ranjbaran and Khashayar Khorasani. Fault recovery of an under-actuatel quadrotor
aerial vehicle. In Proceedings of the 49th IEEE Conference on Decision and Control,
CDC 2010, December 15-17, 2010, Atlanta, Georgia, USApages 4385{4392, 2010. doi:
10.1109/CDC.2010.5718140. URLhttps://doi.org/10.1109/CDC.2010.5718140

Didier Remy. Using, Understanding, and Unraveling the OCaml Language From Practe
to Theory and Vice Versa pages 413{536. Springer Berlin Heidelberg, Berlin,

BIBLIOGRAPHY 143

Heidelberg, 2002. ISBN 978-3-540-45699-5. doi: 10.1007/3-540-45699-6 URL
http://dx.doi.org/10.1007/3-540-45699-6_9

Usa Sammapun, Insup Lee, Oleg Sokolsky, and John Regehr. Statistical rtime checking
of probabilistic properties. In Proceedings of the 7th international conference on
Runtime veri cation , RV'07, pages 164{175, Berlin, Heidelberg, 2007. Springer-Verlag.
ISBN 3-540-77394-0, 978-3-540-77394-8. URittp://dl.acm.org/citation.cfm?id=
1785141.1785158

Sriram Sankar and Manas Mandal. Concurrent runtime monitoring of formally speci ed
programs. Computer, 26(3):32{41, March 1993. ISSN 0018-9162. doi: 10.1109/2.204684.
URL http://dx.doi.org/10.1109/2.204684

Lui Sha, Tarek Abdelzaher, Karl-Erik en, Anton Cervin, Theodore Baker, Alan Burns,
Giorgio Buttazzo, Marco Caccamo, John Lehoczky, and Aloysius K. Mok. Real
time scheduling theory: A historical perspective. Real-Time Syst, 28(2-3):101{155,
November 2004. ISSN 0922-6443.

Insik Shin and Insup Lee. Periodic resource model for compositionaleal-time guarantees.
In Proceedings of the 24th IEEE Real-Time Systems Symposium (RTS 2003), 3-5
December 2003, Cancun, Mexicopages 2{13, 2003. doi: 10.1109/REAL.2003.1253249.
URL https://doi.org/10.1109/REAL.2003.1253249

Insik Shin and Insup Lee. Compositional real-time scheduling framewrk with periodic
model. ACM Trans. Embedded Comput. Syst, 7(3):30:1{30:39, 2008. doi: 10.1145/
1347375.1347383. URIhttp://doi.acm.org/10.1145/1347375.1347383

Oleg Sokolsky, Usa Sammapun, Insup Lee, and Jesung Kim. Run-time cbking of dynamic
properties. Electron. Notes Theor. Comput. Sci, 144(4):91{108, May 2006. ISSN 1571-
0661. doi: 10.1016/j.entcs.2006.02.006. URhttp://dx.doi.org/10.1016/j.entcs.
2006.02.006 .

Deepak Souza and Pavithra Prabhakar. On the expressiveness of mtl ithe pointwise and
continuous semantics. Int. J. Softw. Tools Technol. Transf., 9(1):1{4, February 2007.
ISSN 1433-2779. doi: 10.1007/s10009-005-0214-9. URLttp://dx.doi.org/10.1007/
$10009-005-0214-9.

John A. Stankovic. Misconceptions about real-time computing. IEEE Computer, 21(10):
10{19, 1988. doi: 10.1109/2.7053. URLhttps://doi.org/10.1109/2.7053

Karl Johan Astrem and Tore Hagglund. Advanced PID Control. ISA - The Instrumenta-
tion, Systems and Automation Society, 2006. ISBN 978-1-55617-942-6.

BIBLIOGRAPHY 144

Alfred Tarski. Introduction to Logic and to the Methodology of Deductive SciencesDover
Books on Mathematics Series. Dover Publications, 1995. ISBN 9780486284620.

The OCaml Development Team. Ocaml programming language, 2013. URLbttp://www.
ocaml.org .

Julian Tschannen, Carlo A. Furia, Martin Nordio, and Bertrand Meyer. Usabl e veri cation
of object-oriented programs by combining static and dynamic techniqus. In Software
Engineering and Formal Methods - 9th International Conference, SEM 2011, Montev-
ideo, Uruguay, November 14-18, 2011. Proceedingpages 382{398, 2011. doi: 10.1007/
978-3-642-24690-26. URL https://doi.org/10.1007/978-3-642-24690-6_26

Karen Zee, Viktor Kuncak, Michael Taylor, and Martin Rinard. Runtime c¢ hecking
for program verication. In Proceedings of the 7th international conference on
Runtime veri cation , RV'07, pages 202{213, Berlin, Heidelberg, 2007. Springer-Verlag.
ISBN 3-540-77394-0, 978-3-540-77394-8. URittp://dl.acm.org/citation.cfm?id=
1785141.1785161

Haitao Zhu, Matthew B. Dwyer, and Steve Goddard. Predictable runtime monitoring. In
21st Euromicro Conference on Real-Time Systems, ECRTS 2009, Dubi Ireland, July
1-3, 2009 pages 173{183, 2009. doi: 10.1109/ECRTS.2009.23. URittps://doi.org/
10.1109/ECRTS.2009.23.

Haitao Zhu, Steve Goddard, and Matthew B. Dwyer. Selecting server prameters for
predictable runtime monitoring. In 16th IEEE Real-Time and Embedded Technology
and Applications Symposium, RTAS 2010, Stockholm, Sweden, Aprl2-15, 2010 pages
227{236, 2010. doi: 10.1109/RTAS.2010.18. URILhttps://doi.org/10.1109/RTAS.
2010.18.

	Página 1
	Página 2
	Página 3
	Página 4
	Abstract
	Resumo
	Acknowledgements
	Introduction
	Problem Statement
	Summary of Research Contribution
	Overview of Thesis

	Background and Related Work
	Real-Time Systems
	Periodic Resource Models

	Languages and Logics
	Metric temporal logic with durations (MTL-)
	first order logic of real numbers (FOLR)
	Lambda expressions (-expressions)
	Related Work

	Runtime Verification
	Runtime Monitoring of RTS
	Related Work

	Summary

	RV with RMTL-
	The specification Language RMTL-
	Three-valued Extension of RMTL-
	Polynomial Inequality Translation
	Simplification Algorithm
	Functional Correctness

	SMT Synthesis for RMTL-3 Formulae
	Computation of RMTL-3 Formulae
	Summary

	RV-RMTL- Framework
	Components
	Formal Specification of Periodic Resources
	Extension for dependent tasks

	Safe Components and Monitors
	DSL for components
	Timing guarantees by hierarchy of monitors
	Summary

	Evaluation
	Application of DSL for offline schedulability analysis
	Two settings for schedulability analysis
	Experimental results

	Lightweight Autopilot Systems: the case study
	Use cases with RMTL-3.
	Experimental Results

	Summary

	Conclusion and Future Work
	Future work

	RV with RMTL-3 for C++11
	RV Monitoring Model

	rmtld3synth tool User's Guide
	RTMLib
	Usage of RTMLib
	Instantiating buffers
	Developing a simple Monitor

	Inequality Translation Correctness Proofs
	Soundness proofs for axioms
	Application Examples

	Bibliography
	Página em branco
	Página em branco

