

Enhancing the Real-time Capabilities of the
Linux Kernel

www.hurray.isep.ipp.pt

Technical Report

HURRAY-TR-120701

Version:

Date: 7/4/2012

Paulo Baltarejo Sousa

Nuno Pereira

Eduardo Tovar

Technical Report HURRAY-TR-120701 Enhancing the Real-time Capabilities of the Linux Kernel

© IPP Hurray! Research Group
www.hurray.isep.ipp.pt

1

Enhancing the Real-time Capabilities of the Linux Kernel
Paulo Baltarejo Sousa, Nuno Pereira, Eduardo Tovar

IPP-HURRAY!

Polytechnic Institute of Porto (ISEP-IPP)

Rua Dr. António Bernardino de Almeida, 431

4200-072 Porto

Portugal

Tel.: +351.22.8340509, Fax: +351.22.8340509

E-mail: pbsousa@dei.isep.ipp.pt, nap@isep.ipp.pt, emt@dei.isep.ipp.pt

http://www.hurray.isep.ipp.pt

Abstract
Abstract—The mainline Linux Kernel is not designed forhard real-time systems; it only fits the requirements of soft
realtimesystems. In recent years, a kernel developer communityhas been working on the PREEMPT-RT patch. This
patch(that aims to get a fully preemptible kernel) adds some realtimecapabilities to the Linux kernel. However, in terms
ofscheduling policies, the real-time scheduling class of Linux islimited to the First-In-First-Out (SCHED_FIFO) and
Round-Robin (SCHED_RR) scheduling policies. These scheduling policiesare however quite limited in terms of real-
time performance.Therefore, in this paper, we report one importantcontribution for adding more advanced real-time
capabilitiesto the Linux Kernel. Specifically, we describe modificationsto the (PREEMPT-RT patched) Linux kernel to
supportreal-time slot-based task-splitting scheduling algorithms. Ourpreliminary evaluation shows that our
implementation exhibitsa real-time performance that is superior to the schedulingpolicies provided by the current
version of PREMPT-RT. Thisis a significant add-on to a widely adopted operating system.

Enhancing the Real-time Capabilities of the Linux Kernel

Paulo Baltarejo Sousa, Nuno Pereira, and Eduardo Tovar
CISTER/INESC-TEC, ISEP, Polytechnic Institute of Porto

4200-072 Porto, Portugal
{pbs,nap,emt}@isep.ipp.pt

Abstract—The mainline Linux Kernel is not designed for
hard real-time systems; it only fits the requirements of soft real-
time systems. In recent years, a kernel developer community
has been working on the PREEMPT-RT patch. This patch
(that aims to get a fully preemptible kernel) adds some real-
time capabilities to the Linux kernel. However, in terms of
scheduling policies, the real-time scheduling class of Linux is
limited to the First-In-First-Out (SCHED_FIFO) and Round-
Robin (SCHED_RR) scheduling policies. These scheduling poli-
cies are however quite limited in terms of real-time perfor-
mance. Therefore, in this paper, we report one important
contribution for adding more advanced real-time capabilities
to the Linux Kernel. Specifically, we describe modifications
to the (PREEMPT-RT patched) Linux kernel to support
real-time slot-based task-splitting scheduling algorithms. Our
preliminary evaluation shows that our implementation exhibits
a real-time performance that is superior to the scheduling
policies provided by the current version of PREMPT-RT. This
is a significant add-on to a widely adopted operating system.

I. INTRODUCTION

Multiprocessors implemented on a single chip, called mul-
ticores, are a mainstream computing technology. Multicores
with 8 cores are common on desktops today and it is already
possible to find commercial chips with up to 100 generic
processing cores [1]. With chip manufacturers focused on
improving performance by increasing the number of cores,
it is expected that the number of cores per chip will continue
to increase.

Due to its wide adoption, Linux is well positioned to take
an important role leveraging the processing power of large
multicores and its wide adoption is also driving develop-
ments towards enabling real-time computing by using the
Linux kernel. The main objective of such efforts is reducing
the unpredictability sources that exist in the mainline Linux
kernel, as these can cause arbitrary delays to the real-time
tasks running on the system.

There are many sources of unpredictability in the Linux
kernel: (i) interrupts are generated by the hardware often
in an unpredictable manner and when an interrupt arrives,
the processor execution switches to handle it; (ii) multiple
kernel threads running on different processors in parallel can
simultaneously operate on shared kernel data structures, re-
quiring serialization of the access to such data; (iii) disabling
and enabling preemption features used in many parts of the
kernel code can postpone some scheduling decisions.

Currently, the PREEMPT-RT patch1, is the foremost de-
velopment effort towards supporting the execution of real-
time tasks using the Linux kernel. The PREEMPT-RT patch
addresses these sources of unpredictability by making most
of the Linux kernel preemptible, by implementing priority
inheritance (to avoid priority inversion phenomena), and
by converting interrupt handlers into preemptible kernel
threads. These are important properties to enable real-time
computing. However, appropriate real-time scheduling poli-
cies are also needed.

The real-time scheduling class implemented in the
PREEMPT-RT patch supports the same scheduling poli-
cies of the mainline Linux kernel: the First-In-First-Out
(SCHED_FIFO) and Round-Robin (SCHED_RR) scheduling
policies. While these scheduling policies are appropriate
for unicore processors, they are not adequate for multicore
(or multiprocessor) systems because (i) their performance
is poor on multiprocessors - there exist task sets where
a system with a load a little over 50% will fail to meet
deadlines and (ii) they adopt an active push-pull approach
for balancing tasks across processors - since the Linux kernel
uses a per-processor runqueue (a runqueue stores ready
tasks), such push-pull operations require locking multiple
processor runqueues, which are an additional source of
unpredictability.

This paper describes the modifications of the (PREEMPT-
RT patched) Linux 3.2.11-rt20 kernel to support real-time
task-splitting scheduling algorithms where the time is di-
vided into timeslots (called slot-based task-splitting). Slot-
based task-splitting scheduling algorithms [2], [3] assign
most tasks (called non-split tasks) to just one processor and
a few (called split tasks) to only two processors and have a
utilization bound of 65%, configurable up to arbitrarily close
to 100% at the cost of more preemptions and migrations.

Among existing slot-based task-splitting scheduling al-
gorithms, the Notional Processor Scheduling – Fractional
capacity (NPS-F) [3] is notable for its high utilization
bound (configurable from 75% up to arbitrarily close to
100%) and is the focus of the implementation reported
in this paper. NPS-F is a semi-partitioned multiprocessor
scheduling algorithm: tasks are partitioned to servers (termed
notional processors), in turn mapped onto the (physical)

1Available online at http://www.kernel.org/pub/linux/kernel/projects/rt/

Pm rq

P2 rq

P1 rq

RT

99

1

0

Pr
io

rit
y

le
ve

ls

FIFO RR RR

RR RR

FIFO RR

Tasks

Figure 1. RT scheduling class Runqueue

processors. Some notional processors use just one physical
processor; others use two processors and migrate between
them in a controlled manner.

This work is an evolution of [4], which implements
the same scheduling algorithms by modifying the mainline
Linux Kernel. In that previous work, a scheduling policy
module – ReTAS (Real-time TAsk-Splitting) – was added
on top of the native Linux module hierarchy, making ReTAS
the highest priority module. However, such approach cannot
be employed in conjunction with the PREEMPT-RT patch
because important functionalities, such as timer interrupt
handlers, needed by the ReTAS scheduler, are implemented
within the real-time scheduling class and thus ReTAS cannot
have a higher priority than the real-time scheduling class
implemented in the PREEMPT-RT patch.

II. BACKGROUND ON REAL-TIME SCHEDULING IN THE
LINUX KERNEL AND PREEMPT-RT

The linux kernel scheduler consists of a scheduler core
(or dispatcher) and various modules, where each module
implements a scheduling class encapsulating a scheduling
policy. These scheduler modules are hierarchically organized
by priority and the dispatcher looks for a runnable task of
each module in a decreasing order of priorities. Currently,
the Linux kernel implements three native scheduler modules:
RT (Real-Time), CFS (Completely Fair Scheduling) and
Idle. The dispatcher first inquires the RT module for a
runnable task and, if this module does not have any ready
task, the dispatcher then inquires the CFS module. The Idle
module is used for the idle task, executed when there is no
other runnable task.

As depicted in Figure 1, tasks in the RT scheduling
class are organized by priority level. Inside each pri-
ority level, the RT module implements two scheduling
heuristics: SCHED_FIFO and SCHED_RR. SCHED_FIFO
is based on the first-in-first-out heuristic: whenever a
SCHED_FIFO task is executing, it continues until pre-
empted (by a higher-priority task) or blocked (e.g., by
an I/O operation). SCHED_RR implements the round-robin
heuristic: a SCHED_RR task executes (if it is not preempted
or blocked) until it exhausts its timeslice.

The mainline Linux defines one runqueue (an instance
of struct rq, where all ready tasks are stored) per-

Pm rq

P2 rq

P1 rq
ReTAS

ncpu1 ncpu1 ncpu1

res len

x
res len

N
res len

y

Notional Processors

NPk runqueue

NP2 runqueue

NP1 runqueue

NPS F NPS F

Ta
sk

s

Figure 2. ReTAS Runqueue

physical processor and, at any time instant, the processor is
executing one task stored in its runqueue. This may result in
unbalanced workloads across processors. In order to balance
the workload across processors, the RT module adopts an
active push-pull strategy as follows: whenever the dispatcher
inquires the RT module, it first tries to pull the non-executing
highest-priority task from the other runqueue (if it is not in
its runqueue) and, after selecting the next running task, it
checks if it can push the (freshly) preempted task to another
processor which is executing a task with lower priority than
the preempted task. Observe that, moving tasks between two
runqueues requires locking both runqueues and this may
introduce considerable overheads.

The PREEMPT-RT patch reduces the kernel latencies
by reducing its non-preemptible sections. This is done by
replacing most kernel spinlocks by mutexes, which sup-
port priority inheritance, and by transforming all interrupts
handlers into preemptive kernel threads, scheduled by the
RT scheduling class. These kernel threads have assigned a
priority level (50 by default) and, therefore, they can be pre-
empted by other RT tasks with higher-priority. As mentioned
before, the RT scheduling class does not implement any
scheduling algorithm suitable for multiprocessor systems
and the PREEMPT-RT patch does not add any scheduling
algorithms suitable for multiprocessor systems.

III. IMPLEMENTING SLOT-BASED TASK-SPLITTING

Achieving an effective implementation of NPS-F in the
Linux Kernel is a challenging task, as it requires efficient
mechanisms to: (i) handle migrations; (ii) manage ready
tasks; (iii) handle reserves and (iv) mapping of notional
processors to physical processors. The following section
discusses these challenges and Section III-B describes how
the ReTAS scheduler module was integrated into the RT
scheduling class.

A. Issues in implementing NPS-F
As explained before, the mainline Linux kernel may incur

in overheads due to the way task migrations are imple-
mented. In NPS-F, migrations involve the entire notional
processor. As this would typically imply moving multiple
tasks, adopting a similar strategy for the implementation
of NPS-F would be inefficient. Indeed, our implementation

2

employs a different arrangement that largely solves these is-
sues. Namely, we opt for one runqueue per notional (not per
physical) processor (see Figure 2 - ReTAS is used to denote
the implementation of slot-based task-splitting scheduling
algorithms). Under this approach, all ready tasks assigned to
a notional processor are always stored on (i.e. inserted to/d-
equeued from) the same respective (per-notional-processor)
runqueue. Then, when a notional processor migrates (i.e.
with all its tasks) from processor Pp to processor Pp+1, we
simply change the runqueues used by Pp and Pp+1.

To implement NPS-F, each physical processor needs
to be configured with its timeslot composition. For this
purpose, we introduce the following set of variables that
store information about the processor reserves. The vari-
able begin_curr_timeslot stores (as suggested by
its name) the beginning of the current timeslot and it is
incremented by S (the timeslot length). Observe that no
synchronization mechanism is required for updates to this
variable. The timeslot composition is defined by an array
of 2-tuples <res_len, ncpu1> (see Figure 2). Each
element of this array maps a reserve of length (res_len)
to the notional processor (ncpu1). A timer is used to trigger
scheduling decisions at the beginning of each reserve.

If one observes two consecutive timeslots, whenever a
split notional processor consumes its reserve on processor
Pp, whichever task was executing at the time has to “imme-
diately” resume execution on another reserve on processor
Pp+1. However, due to many sources of unpredictability,
common in a real operating system, arbitrary levels of time
precision are not possible. Consequently, the dispatcher of
processor Pp+1 can be prevented from selecting the task in
consideration from execution because processor Pp has not
yet relinquished (the runqueue associated with) that task.

One solution could be for processor Pp+1 to send an inter-
processor interrupt (IPI) to Pp to relinquish (the runqueue
associated with) that split task. Another could be for Pp+1

to set up a timer x time units in the future to force the
invocation of its dispatcher. We chose the latter option
for two reasons: (i) we know that if a dispatcher has not
yet relinquished the split task it was because something is
preventing it from doing so (e.g. the execution of an interrupt
service routine (ISR)); (ii) using an IPI solution introduces
a dependency between processors that can compromise the
scalability of the dispatcher.

B. Adding ReTAS to the RT Scheduling Class

Apart from the required code to manipulate notional
processors (enqueue and dequeue of ReTAS tasks as
well as getting the task with earliest absolute dead-
line) and the timeslot infrastructure, incorporating Re-
TAS into the RT scheduling class implies a set of
modifications in functions implemented in the sched_
rt.c file. Those functions are enqueue_task_rt,

dequeue_task_rt, check_preempt_curr_rt, and
pick_next_task_rt.

The enqueue_task_rt is called whenever a RT task
enters into a runnable state. If the runnable task is a ReTAS
task (ReTAS tasks are also RT tasks, with a priority level, but
are scheduled according to the SCHED_NPS_F scheduling
policiy), then it is enqueued into the respective notional
processor runqueue. When a RT task is no longer runnable,
then the dequeue_task_rt function is called to remove
the task from the respective notional processor runqueue.

As the name suggests, the check_preempt_curr_rt
function (Listing 1) checks whether the currently running
task must be preempted or not (e.g. when a RT task wakes
up). It receives two pointers, one for the processor runqueue
that is running this code (rq) and another to the woken up
task (p). If the priority of the woken up task is higher or
equal than (lower prio values mean higher priority) the
currently executing task (pointed by rq->curr), it checks
if p is a ReTAS task and if the current reserve is mapped
to task p notional processor. If that is the case, then the
currently running task is marked for preemption.

s t a t i c vo id
c h e c k p r e e m p t c u r r r t (s t r u c t rq ∗rq , s t r u c t t a s k s t r u c t ∗

p , i n t f l a g s)
{

i f (p−>p r i o <= rq−>c u r r−>p r i o)
i f (r e t a s p o l i c y (p−>p o l i c y))

i f (c h e c k p r e e m p t c u r r r e t a s (rq)){
r e s c h e d t a s k (rq−>c u r r) ;
re turn ;

}
. . .

}

Listing 1. Changes on the check_preempt_curr_rt function.

The pick_next_task_rt function also needs a small
modification. This function selects the task to be executed
by the current processor and is called by the dispatcher
whenever the currently executing task is marked to be
preempted or finishes its execution. It first gets the highest-
priority RT task, then it gets the highest-priority ReTAS task.
After, it selects the highest-priority task between them, if
there is some, otherwise it returns NULL, which forces the
dispatcher to inquiry the CFS scheduling module.

IV. EVALUATION

In order to compare the performance of our implementa-
tion2 of the NPS-F scheduling policy with the Linux native
real-time scheduling policies, we have conducted a range of
experiments with a 4-core platform (Intel(R) Core(TM) i7
CPU @ 2.67GHz). A set of implicit-deadline task sets was
generated as follows. We have defined four types of tasks:
“normal”, ‘heavy”, “medium”, and “light”, where normal
tasks have a ui (the individual task utilization) in the range
0.05 to 0.95. Heavy tasks have a ui in the range 0.65 to

2The implementation is available at http://webpages.cister.isep.ipp.pt/
∼pbsousa/retas/

3

0.5 0.55 0.6 0.65 0.7 0.75
0.92

0.94

0.96

0.98

1

Us

%
de

ad
lin

es
m

et
(a) SCHED FIFO

0.5 0.55 0.6 0.65 0.7 0.75
0.92

0.94

0.96

0.98

1

Us

%
de

ad
lin

es
m

et

(b) SCHED RR

0.5 0.55 0.6 0.65 0.7 0.75
0.92

0.94

0.96

0.98

1

Us

%
de

ad
lin

es
m

et

(c) SCHED NPS F

Light; Medium; Heavy; Normal;

Figure 3. Success (deadlines met) Ratio of Tasks using SCHED FIFO, SCHED RR and SCHED NPS F

0.95, while medium tasks have a ui in the range 0.35 to
0.65. Finally, light tasks have ui in the range 0.05 to 0.35.

For each of the four task types, we generated 5 task sets
and repeated this for 25 different Us (Us =

�
τi∈τ

Ci
Ti

)
values, varying from 0.50 to 0.75 (this value is the utilization
bound of the NPS-F scheduling algorithm) with an incre-
ment of 0.01. The periodicity of all tasks was uniformly
generated in the range 5 ms to 50 ms. The characteristics
of these tasksets are not particularly suited for NPS-F. They
were generated with the purpose of testing high-utilization
periodic workloads with different characteristics. There is a
relevant setup phase in NPS-F, prior to runtime, were tasks
are assigned to processors. This phase is only part of NPS-
F, and thus other algorithms have a slightly more simplified
setup.

We ran each task set using the SCHED_FIFO,
SCHED_RR, and SCHED_NPS_F for a total of over 39
hours. Figure 3 plots the percentage of all task instances
executed during the experiment which met its deadline.

As it can be seen by inspecting Figure 3, that
SCHED_NPS_F was the only scheduling policy that met all
deadlines, as predicted by the theory. Both SCHED_FIFO
and SCHED_RR fail to meet all deadlines. Observe that
longer experiments could reveal a different percentage of
deadlines met, however, the theory tells us that all deadlines
will be met in a correct NPS-F scheduler. Interestingly, with
heavy tasks, none of the schedulers fails deadlines. This is
expected as, for this case, the task set generation method
produces a number of tasks which is smaller or equal to m,
thus each processor is only assigned one task.

V. CONCLUSIONS

This paper addressed the relevant problem of provid-
ing adequate real-time scheduling policies for multicore
systems using the Linux kernel. We have overviewed the
implementation challenges posed by this implementation
and overviewed the structure and the main modifications

introduced. We also presented an evaluation showing that
our implementation is able to meet all deadlines and that its
real-time performance is superior to that of the other real-
time scheduling policies available in the Linux kernel.

Our contribution is completely compatible with the
PREEMPT-RT patch and was implemented with minor mod-
ifications. In our opinion, adding adequate scheduling algo-
rithm to the Linux kernel (compatible with PREEMPT-RT
patch) is an important concern to make this widely adopted
operating system more suitable for real-time systems.

ACKNOWLEDGMENT

This work was partially supported by National Funds
through FCT (Portuguese Foundation for Science and Tech-
nology) and by ERDF (European Regional Development
Fund) through COMPETE (Operational Programme ’The-
matic Factors of Competitiveness’), within project Ref.
FCOMP-01-0124-FEDER-022701 and also the REHEAT
project, ref. FCOMP-01-0124-FEDER-010045.

REFERENCES

[1] Tilera, “TILE-Gx processor family overview,” http://www.
tilera.com/products/processors/TILE-Gx Family.

[2] B. Andersson and E. Tovar, “Multiprocessor scheduling with
few preemption,” in 12th IEEE International Conference on
Embedded and Real-Time Computing Systems and Application
(RTCSA 06), Sydney, Australia, 2006, pp. 322–334.

[3] K. Bletsas and B. Andersson, “Notional processors: an ap-
proach for multiprocessor scheduling,” in 15th IEEE Real-
Time and Embedded Technology and Applications Symposium
(RTAS’09), San Francisco, CA, USA, 2009, pp. 3–12.

[4] P. B. Sousa, K. Bletsas, E. Tovar, and B. Andersson, “On the
implementation of real-time slot-based task-splitting schedul-
ing algorithms for multiprocessor systems,” in Proc. of the
13th Real-Time Linux Workshop (RTLWS’13), Prague, Czech
Republic, 2011, pp. 207–218.

4

