

Errata for three papers (2004-05) on

fixed-priority scheduling

with self-suspensions

Technical Report

*CISTER Research Center

CISTER-TR-150713

2015/07

Konstantinos Bletsas*

Neil Audsley

Wen-Hung Huang

Jian-Jia Chen

Geoffrey Nelissen*

Technical Report CISTER-TR-150713 Errata for three papers (2004-05) on fixed-priority ...

© CISTER Research Center
www.cister.isep.ipp.pt

1

Errata for three papers (2004-05) on fixed-priority scheduling with self-

suspensions

Konstantinos Bletsas*, Neil Audsley, Wen-Hung Huang, Jian-Jia Chen, Geoffrey Nelissen*

*CISTER Research Center

Polytechnic Institute of Porto (ISEP-IPP)

Rua Dr. António Bernardino de Almeida, 431

4200-072 Porto

Portugal

Tel.: +351.22.8340509, Fax: +351.22.8321159

E-mail: ksbs@isep.ipp.pt, grrpn@isep.ipp.pt

http://www.cister.isep.ipp.pt

Abstract

The purpose of this short paper is to (i) highlight the flaws in our previous published work (2004-2005) on worst-

case response time analysis for tasks with self-suspensions and (ii) provide straightforward fixes for those flaws,

rendering the analysis safe.

Errata for three papers (2004-05) on fixed-priority
scheduling with self-suspensions∗

Konstantinos Bletsas1, Neil C. Audsley3, Wen-Hung Huang2, Jian-Jia
Chen2, and Geoffrey Nelissen1

1 CISTER/INESC-TEC, Polytechnic Institute of Porto
Porto, Portugal
{ksbs, grrpn}@isep.ipp.pt

2 TU Dortmund
Dortmund, Germany
{wen-hung.huang, jian-jia.chen}@tu-dortmund.de

3 University of York
York, United Kingdom
neil.audsley@york.ac.uk

Abstract
The purpose of this short paper is to (i) highlight
the flaws in our previous published work [3][2][5] on
worst-case response time analysis for tasks with self-

suspensions and (ii) provide straightforward fixes
for those flaws, rendering the analysis safe.

2012 ACM Subject Classification MANDATORY: Please refer to www.acm.org/about/class/2012
Keywords and phrases MANDATORY: Please provide 1–5 keywords as a comma-separated list
Digital Object Identifier 10.4230/LITES.xxx.yyy.p
Received Date of submission. Accepted Date of acceptance. Published Date of publishing.

Editor LITES section area editor

1 Introduction1

Often, in embedded systems, a computational task running on a processor must suspend its2

execution to, typically, access a peripheral or launch computation on a remote co-processor. Those3

tasks are commonly referred to as self-suspending. During the duration of the self-suspension,4

the processor is free to be used by any other tasks that are ready to execute, in accordance with5

the respective scheduling policy. This seemingly simple model is non-trivial to analyse from a6

worst-case response time (WCRT) perspective since the classical “critical instant” of Liu and7

Layland [7] (i.e., simultaneous release of all tasks) no longer necessarily provides the worst-case8

scenario when tasks may self-suspend. Modelling the duration of the self-suspension as part of the9

self-suspending task’s execution time allows use of the “critical instant” of Liu and Layland but10

often at the cost of too much pessimism. Therefore, various efforts have been made to derive less11

pessimistic, but still safe analysis.12

In the past [3, 2, 5, 4] we published such results, on computing upper bounds on the response13

times of self-suspending tasks. However, we have now come to understand that they were flawed,14

i.e., they do not always output safe upper bounds on the task WCRTs. Through this short paper,15

we therefore seek to highlight the respective flaws and propose straighforward fixes, rendering the16

two analysis techniques previously proposed in [3][2][5] safe.17

∗ This work was partially supported by someone.

© Konstantinos Bletsas, Wen-Hung Huang, Jian-Jia Chen, Neil Audsley, and Geoffrey Nelissen;
licensed under Creative Commons License CC-BY

Leibniz Transactions on Embedded Systems, Vol. XXX, Issue YYY, pp. 1–12
Leibniz Transactions on Embedded Systems
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

www.acm.org/about/class/2012
http://dx.doi.org/10.4230/LITES.xxx.yyy.p
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lites
http://www.dagstuhl.de

2 Errata for three papers on FP scheduling with self-suspensions

Figure 1 Examples of task graphs for task with self-suspension. White nodes represent sections of
code with single-entry/single-exit semantics. Gray nodes represent remote operations, i.e., self-suspending
regions. The nodes are annotated with execution times, which in this example are deterministic for
simplicity. The directed edges denote the transition of control flow. Any task execution corresponds to a
path from source to sink. For task graph (a), two different control flows exist (shown with dashed lines).
In this case, the software execution and the time spent in self-suspension are maximal for different control
flows. As a result of this, C < X +G; specifically, C = X = 25 and G = 10. However, task graph (b) is
linear, so it holds that C = X +G for that task.

2 Process model and notation18

We assume a single processor and n independent sporadic1 computational tasks, scheduled under19

a fixed-priority policy. Each task τi has a distint priority pi, an interarrival time Ti and a relative20

deadline Di, with Di ≤ Ti (constrained deadline model). Each job released by τi may execute21

for at most Xi time units on the processor (its worst-case execution time in software – S/W22

WCET) and spend at most Gi time units in self-suspension (its “H/W WCET”). What in the23

works [3, 2, 5, 4] is referred to as (simply) “the worst-case execution time” of τi, denoted by Ci, is24

the time needed for the task to complete, in the worst-case, in the absence of any interference from25

other tasks on the processor. Hence Ci also accounts for the latencies of any self-suspensions in26

the task’s critical path2. This terminology differs somewhat from that used in other works, which27

call WCET what we call the S/W WCET. This mainly because it echoes a view inherited from28

hardware/software codesign that the task is executing even when self-suspended on the processor,29

albeit remotely (i.e., on a co-processor).30

In the general case, Ci ≤ Xi +Gi, because Xi and Gi are not necessarily observable for the31

same control flow, unless it is explicitly specified or inferable from information about the task32

structure that Ci = Xi +Gi. See Figure 1 for an illustration.33

Our past work considered two submodels, depending on the degree of knowledge that we have34

regarding the location of the self-suspending regions inside the process activation and whether or35

not Ci = Xi +Gi.36

1 The original papers, assumed periodic tasks with unknown offsets. It was in the subsequent PhD thesis [4]
that the observation was made that the results apply equally to the sporadic model, which is more general in
terms of the possible legal schedules that may arise.

2 We assume, as in [3, 2, 5, 4], that there is no contention over the co-processors or peripherals accessed during
a self-suspension.

K. Bletsas et. al. 3

Figure 2 Under the simple model any job by a given task τi can execute for at most Xi units in software,
at most Gi time units in hardware and at most Ci time units overall. The locations and number of the
hardware operations (self-suspensions, from the perspective of software execution) may vary arbitrarily
for different jobs by the same task, subject to the previous constraints. This is depicted here for a task τi,
with the parameters shown, which (for simplicity) is the only task in its system.

2.1 The simple model37

The simple model, is entirely agnostic about the location of self-suspending regions in the task38

code. Hence, there is no information on the number of self-suspending regions, on the instants39

at which they may be activated and for how long they may last at run-time. Moreover, the40

self-suspension pattern may additionally differ for subsequent jobs by the same task τi, subject41

to the constraints imposed by the attributes Ci, Xi and Gi. This is the model assumed in [3].42

Figure 2 illustrates the concept.43

In [2] it is additionally assumed that Ci = Xi +Gi.44

2.2 The linear model45

The linear model assumes that each task is structured as a “pipeline” of interleaved software and46

self-suspending regions, or “segments”. Each of these segments has known upper and lower bounds47

on its execution time. This means that, in all cases, Ci = Xi +Gi and the task-level upper and48

lower bounds on its software (respectively, hardware) execution time, Xi and X̂i (respectively,49

Gi and Ĝi) are obtained as the sum of the respective estimates of all the software (respectively)50

hardware segments. This was the model assumed in [5].51

3 The analysis in [3], its flaws and how to fix it.52

In our first work, which targeted the simple model, we sought to derive task WCRTs by shifting53

the distribution of software execution and self-suspension intervals within the activation of each54

higher-priority task in order to create the most unfavorable pattern, across job boundaries. This55

also involved aligning the task releases accordingly, in order to obtain (what we though was) the56

worst case. In order to facilitate the explanation of the specifics, it is perhaps best to first present57

the corresponding equation for computing the WCRT of a task τi, derived in [3]:58

Ri = Ci +
∑

j∈hp(i)

⌈
Ri + (Cj −Xj)

Tj

⌉
Xj (1)59

The term hp(i) is the set of higher-priority tasks for τi. For the special case where Ci =60

4 Errata for three papers on FP scheduling with self-suspensions

Figure 3 For job by τi that executes in software for Xi time units and Ci time units overall (i.e., in
software and in hardware), the latest that it can start executing in software, in terms of net execution
time (i.e., excluding preemptions) is after having executed for Ci −Xi time units in hardware.

Xi +Gi ,∀i, the above equation can be rewritten as61

Ri = Ci +
∑

j∈hp(i)

⌈
Ri +Gj
Tj

⌉
Xj (2)62

Intuitively, τi is pessimistically treated as preemptible at any instant, even those at which it is63

self-suspended. Each interfering job released by a higher-priority task τj contributes up to Xj64

time units of interference to the response time of τi. However, the variability in the location of65

self-suspending regions creates jitter in the software execution of each interfering task. The term66

(Cj −Xj), for each τi ∈ hp(i), in the numerator, which is akin to a jitter in Equation 1, attempted67

to account for this variability. Intuitively, it represents the potential internal jitter, within an68

activation of τj , i.e., when its net execution time (in software or in hardware) is considered, and69

disregarding any time intervals when τj is preempted. Figure 3 illustrates this.70

However, it is not a real jitter in the general case, because the software execution of τj can be71

pushed further to the right, along the axis of real time in a schedule, from the interference that τj72

suffers from even higher-priority tasks. An exception would be the case of a system with just two73

tasks, in which case (Cj −Xj) is the real jitter for the software execution of τj and Equation 174

would then be safe.75

However, naively, in [2], even though the authors were aware at the time that the term76 ⌈
Ri+(Cj−Xj)

Tj

⌉
Xj is not an upper bound on the worst-case interference from τj ∈ hp(i) exerted upon77

τi, it was considered (and erroneously claimed, with faulty proof) that
∑

j∈hp(i)

⌈
Ri + (Cj −Xj)

Tj

⌉
Xj78

was an upper bound for the total interference jointly by all tasks in hp(i), in the worst case. The79

flaw in that reasoning lied in assuming that the effect of any additional jitter of interfering task τj ,80

caused by interference exerted upon it by even higher-priority tasks would already be “captured”81

by the corresponding terms modelling the interference upon τi by hp(j) ⊂ hp(i); and therefore,82

suppressing the need need to include it twice.83

Accordingly, then, the worst-case scenario for the purposes of maximisation of the response84

time of a task τi, released without loss of generality at time t = 0 would happen when each85

higher-priority task86

is released at time t = −(Cj −Xj) and then releases its subsequent jobs with its minimum87

interarrival time (i.e., at instants t = Tj − (Cj −Xj), 2Tj − (Cj −Xj), . . .;88

switches for the first time to execution in software (for a full Xj time units) at t = 0, for its89

first interfering job, i.e., after a self-suspension of Cj −Xj time units;90

K. Bletsas et. al. 5

τi Ci Xi Gi Ti

τ1 1 1 0 2
τ2 10 5 5 20
τ3 1 1 0 ∞

Table 1 A set of tasks with self-suspensions. The lower the task index, the higher its priority.

executes in software for Xj time units as soon as possible, for its subsequent jobs.91

Figure 4(a) plots the schedule that reproduces this alleged worst-case scenario, for the lowest-92

priority task in the example task set of Table 1. In this case, the top-priority task τ1 happens93

to be a regular non-self-suspending task, so its worst-case release pattern reduces to that of Liu94

and Layland. However, for the middle-priority task τ2 which self suspends, its execution pattern95

matches that described above.96

But this schedule does not constitute the worst-case, as evidenced by the following counter-97

example:98

I Example 1. Consider the task set of Table 1. Assume that the execution times of software99

segments and the durations of self-suspending regions are deterministic. The analysis in [2] and [3]100

would yield R3 = 12 – see the corresponding schedule in Figure 4(a). However, the schedule of101

Figure 4(b), which is perfectly legal, disproves the claim that R3 = 12, because τ3 in that case102

has a response time of 32− 5ε time units, where ε is an arbitrarily small quantity. Therefore the103

analysis in [2] and [3] is unsafe.104

Let us now inspect what makes the scenario depicted in the schedule of Figure 4 so unfavourable105

that the analysis in [3] fails, and at the same time let us try to understand how the analysis could106

be fixed.107

Looking at the first interfering job released by τ2 in Figure 4, one can see that almost108

all its software execution is still distributed to the very right (which was supposed to be the109

worst-case in [3]). However, by “strategically” breaking up what would have otherwise been a110

contiguous self-suspending region of length G2 in the left, with arbitrarily short software regions111

of length ε beginning at the same instants that the even higher-priority task τ1 is released, a112

particularly unfavourable effect is achieved. Namely, the execution of τ1 on the processor and113

the self-suspending regions of τ2, “sandwiched” in between are effectively serialised. In practical114

terms, it is the equivalent of the execution of τ1 on the processor preempting the execution of115

τ2 on the co-processor! This means that, when finally τ2 is done with its self-suspensions, its116

remaining execution in software is almost its entire X2, but occurs with a jitter far worse than117

that modelled by Equation 1. And, when analysing τ3, this effect was not captured indirectly, via118

the term modelling the interference exerted by τ1 onto τ3.119

So in retrospect, although each job by each τj ∈ τi can contribute at most Xj time units of120

interference to τi, the terms (Cj −Xj), one for every higher-priority task, in Equation 1, that are121

analogous to jitters, are unsafe. The obvious (now, in retrospect) fix is to replace those with the122

true jitter terms for software execution. These are Rj − Cj , ∀ τj ∈ τi.123

Reconsidering the analysis presented in [3] in light of this counter-example, one can draw the124

following conclusions:125

1. the terms Xj , one for every higher-priority task, in Equation 1, which model the fact that each126

job released by a task τj ∈ hp(i) can contribute at most Xj time units of interference, do not127

introduce optimism;128

6 Errata for three papers on FP scheduling with self-suspensions

Figure 4 Subfigure (a) depicts the schedule, for the task set of Table 1 that was supposed to result
in the WCRT for τ3 according to the analysis [3]. Upward-pointing arrows denote task arrivals (and
deadlines, since the task set happens to be implicit-deadline). Shaded rectangles denote remote execution
(i.e., self-suspension). Subfigure (b) depicts a different legal schedule that results in a higher response
time for τ3.

K. Bletsas et. al. 7

2. the terms (Cj −Xj), one for every higher-priority task, in Equation 1, that are analogous to129

jitters, are unsafe.130

The obvious fix is thus to correct those terms, replacing them with an upper-bound on the131

true jitters, which may be given by Rj − Cj , ∀ τj ∈ hp(i) as proven in the following lemma.132

I Lemma 2. The worst-case response time of a self-suspending task τi is upper bounded by the133

smallest solution to the following recursive equation134

Ri = Ci +
∑

j∈hp(i)

⌈
Ri + (Rj −Xj)

Tj

⌉
Xj (3)135

136

Proof. The interference upon τi from all subsequent jobs by τj , after the carry-in job, is maximised137

if they are released with minimum interarrival time and execute in software for a full Xj time units,138

before any self-suspension. So, the problem of finding the scenario that maximises interference139

from τj amounts to finding the set of parameters (jitter, execution in software) for the carry-in140

job.141

Since Rj is an upper bound for the response time of any job of τj (i.e. covering every possible142

control flow), we can simplify this, pessimistically (i.e., safely) to the selection of one parameter143

for the carry-in job:144

Namely, a job by schedulable task τj , released at time t, cannot switch to software execution145

for the first time later than time t+Rj − x, where x is the execution time of the job in software.146

This upper-bounds the jitter to Rj − x.147

So, given that 0 ≤ x ≤ Xj , we need to find the value for x that maximises the interference by148

τj upon τi. We will show that this is x = Xj . To see this, assume that there was some other value149

X ′j < Xj which instead yielded higher interference; we will show that this cannot hold.150

Recall that the switch to software execution by τj occurs at time 0, the time that τi is released.151

This implies a release at time −(Rj −X ′j), vs time −(Rj −Xj) for x = Xj .152

Consider then these two complementary cases:153

Case 1: If the interference by τj is entirely from the carry-in job (i.e. τi completes before τj154

releases the next job), then this interference cannot exceed X ′j , which in turn is smaller than Xj .155

Case 2: If there also exist one or more intefering “body jobs” by τj , then the “x = X ′j”156

scenario is analogous, in terms of interference, to shifting to the left by Xj −X ′j time units the157

arrivals of τj , relative to the “x = X ′j” scenario. See Figure 5 for an illustration. Everything158

else remaining equal (i.e. assuming no change to the releases and execution times and execution159

patterns of other tasks in hp(i)), this would (i) potentially reduce the interference from the carry-in160

job, by up to Xj −X ′j time units; (ii) not increase the number of intefering "body jobs" by τj161

because, although the releases of subsequent jobs by τj (non-interfering jobs, under our scenario)162

would be all shifted to the left by Xj −X ′j time units, the completion time of τi would also be163

shifted to the left by at least as much (and potentially more, because the reduced interference from164

τj ’s carry-in task might reduce the number of interfering body jobs by other tasks in hp(i)). J165

Note that Huang et al. already proposed a correct variation of Equation 3 in [6], using the166

deadline Dj of each higher priority task as the equivalent jitter term in the numerator of Equation 1167

(see Theorem 2 in [6]). Although slightly more pessimistic, this solution has the advantage of168

remaining compatible with Audsley’s Optimal Priority Assignment algorithm [1]. The fix proposed169

in Lemma 2 however mirrors the approach taken by Nelissen et al. [9], for which a proof sketch170

had already been provided (see Theorem 2 in [9]).171

8 Errata for three papers on FP scheduling with self-suspensions

Figure 5 Black arrows indicate the arrival times of the jobs by τj . Shorter thicker gray arrows
indicate requests for execution in software; they are annotated by the corresponding time units of software
execution. In subfigure (a), the carry-in job executes for a full Xj time units, with a jitter of Rj −Xj . In
subfigure (b), the carry-in job executes for a X ′

j time units, which is smaller than Xj , but with a greater
jitter Rj −X ′

j . In both cases, the request for execution in software by the carry-in job occurs at time 0,
i.e. the release instant of the task τi under consideration, that τj interferes with.

4 The analysis in [5], its flaws and how to fix it.172

For the “linear model” described earlier, we proposed in [5] a different analysis, that uses the173

additional information available, for tighter bounds on task WCRTs. That analysis was termed174

synthetic because it attempts to derive the WCRT estimate by synthesising (from the task175

attributes) and using task execution distributions, that might not necessarily be observable in176

practice, but (were supposed to) dominate the real worst-case. Unfortunately, that analysis too,177

was flawed – and as we will see, the flaw was inherited from the previous analysis.178

The linear model permits breaking up, for modelling purposes, the interference from each179

task τj upon a task τi into distinct terms, each corresponding to one of the software segments180

of τj . These software segments are spaced apart by the corresponding self-suspending regions181

of τj , which, for analysis purposes, translates to a worst-case offset (see below) for every such182

term Xjk . This allows for more granular/less pessimistic modelling of interference, in principle.183

However, one problem that such an approach entails is that different arrival phasings, among τi184

and every interfering task τj would need to be considered in combination with each other, to find185

the worst-case, which is undesirable from the perspective of computational complexity.186

So the main idea behind the synthetic analysis was to calculate the interference from a higher-187

priority task τj exerted upon the task τi under analysis assuming that the software segments and188

the self-suspending regions of τj appear in a potentially different rearranged order from the actual189

one. This so-called synthetic execution distribution would represent an interference pattern that190

dominates all possible interference patterns from τj , without having to consider possible phasings191

in the release of τj relative to τi. This approach is conceptually analogous to converting a task192

conforming to the multiframe model [8] into an accumulatively monotonic execution pattern [8]193

K. Bletsas et. al. 9

- with the added complexity that the spacing among software segments is asymmetric and also194

variable at run-time (since the self-suspension intervals vary in duration within known bounds).195

In terms of equations, the claimed upper bound on the WCRT of a task τi is given by:196

Ri = Ci +
∑

j∈hp(i)

n(τj)∑
k=1

Ri>ξOjk

⌈
Ri − ξOjk +Aj

Tj

⌉
ξXjk (4)197

where n(τj) is the number of software segments of linear task τj and the terms ξXjk (a198

per-software-segment interference term), ξOjk (a per-software-segment offset term) and Aj (a199

per-task term, analogous to a jitter) are defined in terms of the worst-case synthetic execution200

distribution for τj .201

For a rigorous definition, we refer the reader to [4]. However, for all prractical purposes, and202

in intuitive terms: ξXj1 is the WCET of the longest software segment of τj ; ξXj2 is the WCET of203

the second longest one; and so on. As for ξOjk , it is defined3 as204

ξOjk =
{

0, if k = 1∑k−1
`=1 (ξXj` + ξGj`), otherwise

(5)205

Analogously as before, ξGj1 is the best-case of the shortest software segment of τj (in terms206

of their BCETs); ξGj2 is that of the second shortest one; and so on. However, in addition to the207

actual self-suspending regions of τj , when creating this sorted sequence ξGj1 ,
ξGj2 , . . . a so-called208

“notional gap” Nj of length Tj −Rj is considered4.209

For tasks that both start and end with a software segment, this is the minimum spacing210

between the completion of a job by τj (i.e. its last software segment) and the time that the next211

job by τj arrives5 . This is so that the interference pattern considered dominates all possible212

arrival phasings between τj and τi.213

Finally,214

Aj = Gj − Ĝj (6)215

It is in the quantification of this final term, Aj , that the analytical flaw lies, as we will see.216

That the analysis, as originally formulated is flawed can be established by the following217

counter-example.218

I Example 3. Consider a task set with the parameters shown in Table 2. In this example, the219

execution times of the various software segments and self-suspending regions are deterministic.220

The analysis in [5], as sanitised in [4] with respect to the issue of Footnote 4, would be reduced to221

3 It is an opportunity to mention that, in the corresponding equation (Eq. 12), of that thesis [4], there existed
two typos: (i) the condition for the first case has “k = 0” instead of “k = 1” and (ii) the RHS for the second
case does not have parentheses, as should. We have rectified both typos in Equation 5 here.

4 In [5], the length of the notional gap was incorrectly given as Tj − Cj . In this paper, we consider the correct
length of Tj −Rj , as in the thesis [4].

5 For tasks that start and/or end with a self-suspending region, the Ĝ of the corresponding self-suspending
region(s) is also incorporated to the notional gap. But that is part of a normalisation stage that precedes
the formation of the worst-case synthetic execution distribution, so the reader may assume, without loss of
generality, that the task both starts and ends with a software segment. For details, see page 115 in [4].

10 Errata for three papers on FP scheduling with self-suspensions

τi execution distribution Di Ti

τ1 [2] 5 5
τ2 [2] 10 10
τ3 [1, (5), 1] 15 15
τ4 [3] 20 ∞

Table 2 A set of linear tasks.

the familiar uniprocessor analysis of Liu and Layland for the first few tasks, since τ1 and τ2 lack222

self-suspending regions. So we would get R1 = 2 and R2 = 4.223

Doing the same for τ3 would yield R3 = 19. However, since the software segments and224

the intermediate self-suspending region of τ3 execute with strict precedence constraints, it is225

also possible to derive another estimate for R3 by caculating upper bounds on WCRTs of the226

software/hardware segments and adding them together6. Doing this, and taking into account that227

R32 = G32 because the harware operation suffers no interference, yields R3 = R31 +R32 +R33 =228

5 + 5 + 5 = 15. This is in fact the exact WCRT, as evidenced in the schedule of Figure 6, for the229

job released by τ3 at t = 0.230

Next, to obtain R4 we need to generate the worst-case execution distribution of τ3. Since, in231

the worst-case, τ3 completes just before its next job arrives (see Figure 6 at time 15) its “notional232

gap” N3 is 0. Then, the synthetic worst-case execution distribution for τ3 is233

[1, (0), 1, (5)]234

which is equivalent to [2].235

From the fact that software and self-suspending region lengths are deterministic, we also have236

A3 = 0. In other words, to compute R4 according to this analysis, is akin to replacing τ3 with a237

(jitterless) sporadic task without any self-suspension, with C = 2 and D = T = 15. Then, the238

corresponding upper bound computed for the WCRT of τ4 would be R4 = 15.239

However, the schedule of Figure 6, which is perfectly legal, disproves this. In that schedule, τ1,240

τ2, and τ3 arrive at t = 0 and a job by τ4 arrives at t = 40 and has a response time of 18 time241

units. Therefore, the analysis in [5] is also flawed.242

For the purposes of fixing the analysis we note that the characterisation of the interference243

by τj upon τi is correct for any schedule where no software segment by τj inteferes more than244

once with τj . This holds by design, because the longest software segments and the shortest245

interleaved self-suspending regions are selected in turn (according to the property of accumulative246

monotonicity). Therefore, the problem lies in the quantification of the per-task term Aj . Using247

the real jitter for the software execution of τj , which is upper bounded by (Rj −Xj), would then248

solve the problem. Intuitively, since the linear model allows a smaller degree of freedom regarding249

the location of software execution and self-suspending regions within a job, the corresponding250

jitter for the software execution of τj , in the scenario that maximises its interference upon τi,251

would not exceed the corresponding term (Rj −Xj) for the simple model and its analysis.252

6 In [4], the definition of WCRT is extended from tasks to software or hardware segments: The WCRT Rij of a
segment τij is the maximum possible interval from the time from that τij is eligible for execution until it
completes. This approach of computing the WCRT of a self-suspending task by decomposing it in subsequences
of one or more segments and adding up the WCRTS of those subsequences is also described there.

K. Bletsas et. al. 11

Figure 6 A schedule, for the task set of Table 2, that highlights the flawedness of the synthetic
analysis [5]. The job released by τ4 at time 40 has a response time of 18 time units, which is more than
the estimate for R4 (15) output by the analysis.

Figure 7 The synthetic worst-case execution distribution of τj (a) without jitter and (b) with maximum
jitter.

I Lemma 4. Using the value Aj = Rj −Xj suffices to make the estimates on Ri, computed by253

the synthetic analysis (Equation 4), safe.254

Proof. Again, τi is the task whose WCRT we want to upper-bound and τj ∈ hp(i). Let us255

pessimistically treat any self-suspending regions by τi as software execution, i.e., as preemptible by256

the software execution of higher-priority tasks; the response time of τi, all other things remaining257

equal, cannot decrease as a result.258

By design, the interference suffered by τi due to activations of τj released not earlier than τi259

cannot exceed the interference that would result if these activations of τj were characterised by260

its synthetic worst-case execution distribution (Theorem 2, p. 116 in [4]). Additionally, because261

that synthetic distribution is characterised by accumulative monotonocity both with respect to262

the length of its software segments (which appear in order of decreasing length) and its “gaps”263

(which appear in order of increasing length, and which consist of all the self-suspending regions264

plus the notional gap), the release offset for τj that maximises interference on τi, if the jobs of τj265

are characterised by the synthetic distribution is when (i) the first (hence, the longest) software266

segment of the synthetic distribution of τj starts its execution at the same time that τi is released267

and (ii) this occurs with the maximum jitter, for that software segment.268

This permits upper-bounding (see Figure 7) the jitter to269

12 Errata for three papers on FP scheduling with self-suspensions

Tj −

(n(τj)∑
k=1

ξXjk


︸ ︷︷ ︸

Xj

+

n(τj)∑
k=1

ξGjk


︸ ︷︷ ︸

Ĝj+Nj

)
270

which in turn is upper-bounded by Rj −Xj . J271

5 Additional discussion272

Priority assignment: In [2], it was claimed that the bottom-up Optimal Priority Assignment273

(OPA) [1] algorithm could be used in conjunction with the simple analysis. However, once the274

proposed fix is applied, it becomes evident that this is not the case. Namely, we now need275

knowledge of Rj , ∀j ∈ hp(i) in order to compute Ri. In turn, these values depend on the relative276

priority ordering of tasks in hp(i). This contravenes the basic principle upon which OPA relies [1].277

Resource sharing In [3], WCRT equations are augmented with blocking terms, for resource278

sharing under the Priority Ceiling Protocol. However, there was an omission of a term in those279

formulas (since those blocking terms have to be multiplied with the number of software segments280

of the task – or, equivalently, the number of interleaved self-suspensions plus one). This has281

already been acknowledged and rectified in [4], p. 101, but we repeat it here too, since this is the282

erratum for that paper.283

Multiprocessor extension of the synthetic analysis In Section 4 of [5], a multiprocessor284

extension of the synthetic analysis is sketched, assuming multiple software processors and a global285

fixed-priority scheduling policy. The previously discussed fix for the uniprocessor case, with respect286

to the jitter Aj , also propagates to that multiprocessor extension, as sketched in [5].287

6 Conclusions288

It is very unfortunate that the above flaws found their way to publication undetected. However,289

as obvious as they may seem in retrospect, they were not at all obvious at the time to authors290

and reviewers alike. At least, this errata paper comes at a time when the topic of scheduling with291

self-suspensions is attracting more attention by the real-time community.292

References
1 N. C. Audsley. On priority assignment in fixed pri-

ority scheduling. Information Processing Letters,
79(1):39–44, 2001.

2 N. C. Audsley and K. Bletsas. Fixed priority tim-
ing analysis of real-time systems with limited par-
allelism. In Proc. 16th Euromicro Conf. on Real-
Time Systems (ECRTS), pages 231–238, 2004.

3 N. C. Audsley and K. Bletsas. Realistic analysis
of limited parallel software/hardware implement-
ations. In Proc. 10th IEEE Real-Time and Em-
bedded Technology and Applications Symposium
(RTAS), pages 388–395, 2004.

4 K. Bletsas. Worst-case and Best-case Timing Ana-
lysis for Real-time Embedded Systems with Limited
Parallelism. PhD thesis, Dept of Compputer Sci-
ence, University of York, UK, 2007.

5 K. Bletsas and N. C. Audsley. Extended analysis
with reduced pessimism for systems with limited
parallelism. In Proc. 11th Int. Conf. on Embedded

and Real-Time Computing Systems and Applica-
tions (RTCSA), pages 525–531, 2004.

6 Wen-Hung Huang, Jian-Jia Chen, Husheng Zhou,
and Cong Liu. PASS: Priority assignment of real-
time tasks with dynamic suspending behavior un-
der fixed-priority scheduling. In To appear in the
proceedings of the 52nd Design Automation Con-
ference (DAC), 2015.

7 C. L. Liu and James W. Layland. Scheduling al-
gorithms for multiprogramming in a hard real-time
environment. Journal of the ACM, 20(1):46–61,
1973.

8 A. K. Mok and D. Chen. A multiframe model for
real-time tasks. In Proc. 17th IEEE Real-Time
System Symposium (RTSS), pages 22–29, 1996.

9 Geoffrey Nelissen, José Fonseca, Gurulingesh
Raravi, and Vincent Nelis. Timing analysis of
fixed priority self-suspending sporadic tasks. In
Proc. 27th Euromicro Conf. on Real-Time Systems
(ECRTS), 2015.

	Introduction
	Process model and notation
	The simple model
	The linear model

	The analysis in rtas:2004, its flaws and how to fix it.
	The analysis in rtcsa:2005, its flaws and how to fix it.
	Additional discussion
	Conclusions

