
Evaluating P-NET Message's Response Time with Fixed Priority Queuing
at Application Process Level

Eduardo Tovar

Department of Computer Science,
ISEP, Polytechnic Institute of Porto
Rua São Tomé, 4200 Porto, Portugal

E-mail: emt@dei.isep.ipp.pt

Francisco Vasques

Department of Mechanical Engineering,
FEUP, University of Porto

Rua Bragas, 4099 Porto Codex, Portugal
E-mail: vasques@fe.up.pt

Alan Burns

Department of Computer Science,
University of York

Heslington, York, YO1 5DD, UK
E-mail: burns@cs.york.ac.uk

Abstract: P-NET is a multi-master fieldbus standard based on a
virtual token passing scheme. In P-NET each master is allowed to
transmit only one message per token visit. In the worst-case, the
communication response time can be derived considering that, in
each token cycle, all stations use the token to transmit a message.
In this paper, we define a more sophisticated P-NET model, which
considers the actual token utilisation. We then analyse the
possibility of implementing a local priority-based scheduling
policy to improve the real-time behaviour of P-NET.

1. Introduction
P-NET [1] fieldbus networks adopt a multi-master MAC

scheme. All communication is based on a principle, where a
master sends a request and the addressed slave immediately
returns a response. For multi-master support, P-NET uses a
Virtual Token Passing (VTP) scheme. Contrarily to other
network protocols, such as Token Passing Bus (IEEE802.4)
or Fibber Distributed Data Interface (FDDI), in P-NET there
is no explicit token transmission between masters.

In this paper we address the possibility of enhancing the
real-time capabilities of P-NET by adding local priority-
based scheduling mechanisms which may reduce the
negative impact of the First-Come-First-Served (FCFS)
implementation of P-NET's outgoing queue.

This paper is organised as follows. In the next section we
describe the basic concepts of the P-NET medium access
control (MAC). In section 3 we introduce a basic timing
analysis, which is updated with more recent results [2] in
section 4. Finally, in section 5 we introduce the undergoing
work, which consists on adding local priority-based
scheduling mechanisms at the application process level.

2. Basic Concepts of the P-NET MAC
In P-NET, the Virtual Token Passing (VTP) scheme is

implemented using two protocol counters. The first one, the
Access Counter (AC), holds the node address of the
currently transmitting master. When a request has been
completed and the bus has been idle for 40 bit periods (bp)
(40 bp = 520µs @ 76,8Kbps1), each one of the ACs is
incremented by one. The master whose AC value equals its
own unique node address is said to hold the token, and is
allowed to access the bus.

1 The P-NET standard uses a data rate of 76800 bps. This data rate resulted
from weighing up the conflicting requirement for data to be transported as
fast as possible, but not at such speed as to negate the use of standard
microprocessor UARTS, or restrict the usable distance or cable type [3].

The second counter, the Idle Bus Bit Period Counter
(IBBPC), increments for each inactive bus bit period.
Should any transactions occur, the counter is re-set to zero.

If a master have nothing to transmit (or indeed is not
even present), the bus will continue inactive. Following a
further period of 130µs (10 bit periods), the IBBPC will
have reached 50, (60, 70,…) all the ACs will again be
incremented, allowing the next master access. The virtual
token passing will continue every 130µs, until a master does
require access.

The P-NET standard also stands that each master is only
allowed to perform one message transaction (later on
defined as message cycle) per token “visit”. After
“receiving” the token the master must transmit a request
before a certain time has elapsed (the standard specifies that
the master’s worst-case reaction time should be at most 7 bit
periods).

A slave is allowed to access the bus, between 11 and 30
bit periods after receiving a request, measured from the
beginning of the stop bit in the last byte of the frame. The
maximum allowed delay is then 390µs (corresponding to 30
bit periods). Later on, this delay will also be denoted as the
slave's turnaround time.

3

Bus

Access
Counter 4 1 2 3 4

IBBPC
40 50 60

70 80

Response Request

2-7 Bit Periods 11-30 Bit Periods

Response

1

40

σ τρ

Message Cycle

Token Holding Time (H)

Figure 1

A message cycle is composed by a master’s request
followed by the addressed slave’s response. Assume that CM

is the maximum transmission duration of all message cycles
in a P-NET network. This duration includes both the longest
request and response transmission times, and also the worst-
case slave’s turnaround time.

Final Version
RTSS’99, WIP Session, Madrid, December 99

If a master uses the token to perform a message cycle,
we can define a token holding time2 as:

τρ ++= MCH (1)
In equation (1), τ (= 40 bp) corresponds to the time to

pass the token after a message cycle has been performed. ρ
(≤ 7 bp) denotes the worst-case master’s reaction time.

If a station do not use the token to perform a message
cycle, the bus will be idle during σ (= 10 bp) before all ACs
are incremented.

For better understanding both the basic MAC procedures
and the notation used, refer to figure 1.

3. Basic Timing Analysis
We assume the following message model:

),,(k
i

k
i

k
i

k
i DTCS = (2)

Si
k defines a message stream i in master k (k = 1 .. n). A

message stream is a temporal sequence of message cycles
concerning, for instance, the remote reading of a specific
process variable. Ci

k is the longest message cycle duration of
stream Si

k. Ti
k is the periodicity of stream Si

k requests.
Finally, Di

k is the relative deadline of the message cycle, that
is, the maximum admissible time span between the instant
when the message request is placed in the outgoing queue
and the complete reception of the related response at the
master's incoming queue. nsk is the number of message
streams associated with a master k.

We also consider that messages generated in the
distributed system can be periodic or sporadic. For the case
of sporadic message requests, its period corresponds to the
minimum time between two consecutive requests.

In our model the relative deadline of a message can be
equal or smaller than its period (Di

k ≤ Ti
k). Thus, if in the

outgoing queue there are two message requests from the
same message stream, this means that a deadline was
missed. It also results that the maximum number of pending
requests in the outgoing queue will be, in the worst-case,
nsk.

We denote the worst-case response time of a message
stream i in a master k as Ri

k. This time is measured starting
at the instant when the request is placed in the outgoing
queue until the instant when the complete response appears
in the incoming queue. Basically, this time span is made up
of the two following components: the time spent by the
request in the outgoing queue, until gaining access to the
bus; the time needed to process the message cycle (send the
request and receive the related response).

Assume a network scenario with 3 masters. If in master
1 the number of message streams is 2 (ns1 = 2), the
worst-case response time results from considering that two
requests are placed in the outgoing queue just after receiving
the response of a previous message cycle. The last message
in the outgoing queue will need to wait for 2 token visits to
be processed. Figure 2 depicts the worst-case response time
analysis, assuming all token holding times equal to H.

2 It is not usual to include the token passing time in the token holding time. However, due to the
specificity of the Virtual Token Passing scheme, we decided to associate the token holding time with
the state of the P-NET access counter in each node.

ρ

2

H

res(S1
1)

3 1 2

req(S1
1)

τ

Bus

Access
Counter 3 1

res(S2
1)req(S2

1)

Q2
1

both requests from
master 1 placed in

outgoing queue

1

R2
1

C

Figure 2

In figure 2, Qi
k is the worst-case queuing delay for a

message stream i in master k. In fact, the worst-case queuing
delay (and the worst-case response time Ri

k) is the same for
all streams in a particular master. In each station the worst-
case queuing delay only depends on nsk. Thus, we define the
worst-case queuing delay of a message cycle in master k as:

CVnsHVnsQ kkk −×=++−×= ρτ (3)
where V is the worst-case virtual token rotation time, which
is defined as follows:

HnV ×= (4)
and n stands for the number of masters of the network. The
worst-case response time (WCRT)3 is then given by:

VnsCQR kkk ×=+= (5)
Therefore, in order to guarantee the message streams

deadlines, the following condition must be satisfied:

ik
k
i

k DR , , ∀≤ (6)

4. Considering Actual Token Utilisation
In the previous section we assumed that in nsk

consecutive token cycles, all other masters use the token for
processing message cycles and therefore this situation
corresponds to the worst-case token cycle rotation. Such
analysis is only accurate for a specific master k if the
following condition is verified:

ky
ky nsns ≠∀≥ , (7)

Since in all the other masters the worst-case number of
pending requests may be greater than nsk, all those masters
may use the token in the next nsk consecutive rotations of
the token. As messages are processed in a first-come
first-served basis, in master k the worst-case response time
is then given by equation (5). Otherwise, if nsy < nsk (y ≠ k),
such analysis may not be accurate because, the worst-case
response time depends also on the periodicities of the stream
requests in those masters.

The basic timing analysis (section 3), which considers
that the token is always fully utilised, is similar to a TDMA
analysis, with the length of a TDMA slot equal to H.
Considering this TDMA analogy, we define the worst-case
queuing delay of a message in a master k, as:

() ρτρτ ++×−×=++−×= HnnsHVnsQ kkk
TDMA 1 (8)

To develop a more accurate analysis for the case where
one or more masters do not use the token, we need to

3 As the bit rate in P-NET is 76800 bps, the propagation delay can be neglected, even for P-NET
networks with some kilometers.

evaluate how many times this happens during nsk

consecutive token cycles. Furthermore, considering that for
each non used token, the token holding time (H = ρ + CM +
τ) is reduced to σ, the actual worst-case queuing delay will
be:

()σ−×−= HnutQQ kk
TDMA

k (9)
where nutk (non used tokens) stands for the number of times
that during nsk consecutive token cycles other stations rather
than k do not use the token. In [2] the authors derived the
exact computation for nut:

{ }[] ()∑
=

−×−−=
n

y

ykk
TDMA

k HnrqnsQQ k

1

/ ,0 max σ (10)

where

∑
= 










 +
+=

y k

k

ns

i
y

i

ky
ringyy

T

QJ
nsnrq

1

/

/

(11)

Figure 3, explains how we got to equation (12).
Basically, what this figure reflects is that the critical instant
we should consider, is when in all other masters y (y ≠ k) nsy

requests are placed in the outgoing
queues ()[] HnyknJ ky

req ×−+= mod / before instant 0. We denote

this time as the ring request jitter. To this time we must
subtract HJ ky

vis =/ , the ring visit jitter, because a new request

in a master y, will only be able to be processed if it appears
H before Qk. A full treatment for these jitters is given in [2].
Thus,

()()[] HnyknJ ky
ring ×−−+= 1 mod / (12)

Master 1

Master 2

Master 3

1 2 3 4 5 6 7 8 9 units of H

Q1
1

Master 4

R1
1

10

�

�

0-1

�

�

�

2 /1Jvis

2 /1Jreq

Token Holding Time

Idle Token Slot

= nsk requests placed in the outgoing queue of master k

Figure 3

5. Undergoing Work
One possibility to reduce the worst-case response time

relies on the implementation of a priority queue at the
application process level. The P-NET protocol uses First-
Come-First-Served (FCFS) outgoing queues at the
communication stack. Thus, we need to implement a
priority-based queue for the message requests at the
application process level, and limit the stack outgoing
communication queue to one pending request.

One of the most used priority assignment schemes is to
give the messages a priority level based on its period: the
shorter the period, the higher the priority (that is, Ti < Tj ⇒

Pi > Pj). This type of priority assignment is known as rate
monotonic (RM) priority assignment. If, due to the
characteristics of the devices, some of the inputs are
sporadic, where the period is considered to be equal to the
minimum inter-arrival time, it may not be reasonable to
consider D = T.

A different priority assignment can then be to give the
tasks a priority level based on its deadline: the shorter the
deadline, the higher the priority (that is, Di < Dj ⇒ Pi > Pj).
This type of priority assignment is known as deadline
monotonic (DM) priority assignment.

In order to use a priority-based dispatching policy, there
is the need to previously check the feasibility of the priority
assignment. There are several results available for the task
scheduling in a single processor environment that can be
adapted for message scheduling in communication
networks.

5.1. Single Processor Pre-Run-Time Scheduling Theory
Joseph and Pandaya [4] showed that the worst-case

response time ri of a task τi is found in a scenario in which
all tasks are at their maximum rate and released
synchronously at instant t = 0. ri is computed by the
following recursive equation (where hp(i) denotes the set of
tasks with higher priority than task τi):

()
∑

∈

+














×












+=

ihpj
j

j

m
i

i
m

i C
T

r
Cr 1

(13)

The recursion ends when i
m

i
m

i rrr ==+1
 and can be solved

by successive iterations starting from ii Cr =0
. Indeed, it is

easy to show that
m

ir is non-decreasing. Consequently, the

series either converges or exceeds Di. In this last case, the
task τi is not schedulable.

This result is valid for the pre-emptive context.
However, the pre-emptive context is not much useful for the
case of message cycles instead of tasks. In fact a message
cycle transmission can not be interrupted if a higher priority
message appears in the outgoing queue. Hence, we need an
analysis for the non pre-emptive context.

Contrarily to the pre-emptive context, fewer results are
known about fixed priorities non pre-emptive scheduling. In
[5] the authors updated the analysis of Joseph and Pandaya
[4] to include blocking factors introduced by periods of non
pre-emption. The following equations represent this
analysis:

iii Cwr += (14)
where wi is given by:

()
∑
∈∀

+














×












+=

ihpj
j

j

m
i

i
m
i C

T

w
Bw 1

(15)

Bi is the blocking factor of task τi (a bound on the time a
lower priority task can execute and prevent the execution of
task τi). In [6] a methodology for deriving Bi is given.
Although the inclusion of this blocking factor was to solve
the problem of the tasks being not totally independent, we
can use this result for the scheduling analysis of non

pre-emptive messages. In the case of the tasks scheduling,
the blocking factor will be:

()
{ }j

ilpj
i CB

∈∀
= max (16)

where lp(i) denotes the tasks with lower priority than i.

5.2. Fixed Priority Scheduling in the P-NET Model
Equation (10) must now be updated to:

()
{ }[] ()∑∑

=∈∀

−×−−









×












+=

n

y

yk

ihpj
k
j

k
ik

i
k
i HnrqnsV

T

Q
BQ k

1

/ ,0 max σ (17)

where the blocking factor is V (as defined in (4)) or 0 for the
lower priority message (in this case there is no blocking -
priority inversion).

5.3. Holistic Approach
We can assume that in a master, message requests are

placed in the priority-ordered application process queue by
an application task. It is, therefore important to have a
holistic approach [7,8] for the evaluation of the end-to-end
communication delay. Underlying the holistic approach, in
[9] it is defined the end-to-end communication delay, which
includes the following four major components: generation
delay; queuing delay; transmission delay; delivery delay:

The generation delay is the worst-case time taken
between the "notification" of the sender task and the
queuing of the related message. The queuing delay can be
seen as the time that the message spends waiting to be
removed from the queue by the communications device. The
transmission delay is the time taken for the message to be
sent once it has been removed from the outgoing queue.
Finally, the delivery delay is the amount of time it takes to
process the incoming data and deliver it to destination tasks.

This model can be adapted to encompass the P-Net
model. In P-NET, a slave differs from a master in the sense
that it does not have to support pending packets, as
responses to requests from masters should be immediate. In
fact, this generic computational model is particularly
suitable for P-NET masters (slaves are passive devices).

The worst-case end-to-end communication delay (E) can
be expressed as follows:

dCQgE +++= (18)
In equation (18), g represents the worst-case generation

delay for the master application task to generate and queue a
specific message request. The term Q corresponds to the
worst-case delay for that request to gain access to the
communications device after being queued. The term C
corresponds not only to the worst-case for transmitting a
request, but also to the time needed to receive the response
from the slave. Finally, d represents the delivery delay, that
is, the time needed to process the response before finally
delivering it to the destination task, which, in the case of
P-NET, is in the same host processor as the sending task.

In [7] the holistic approach allows the analysis of
end-to-end computations in real-time distributed systems
where host processors schedule tasks and messages
according to fixed priorities by means of a very interesting
concept: attribute inheritance. The message sent by a task

inherits two of its temporal attributes, namely the period and
the release jitter. If each instance of the task communicates,
the message inherits a period equal to that of the task.
Furthermore, if the message can be queued at any time by
the sender task, the difference from its earliest and latest
releases is bounded by the sender worst-case response time
(assume a pre-emptive context for the tasks at the host
processor). This is the release jitter inherited by the
message. Basically, in terms of the network subsystem, what
may happen is that the minimum inter-arrival time for a
message may be shorter than the period of the sending tasks.
A release jitter should then be included in equation (17):

()
{ }[] ()∑∑

=∈∀

−×−−













×











 +
+=

n

y

yk

k
j

k
j

k
ik

i
k
i HnrqnsV

T

JQ
BQ k

1ihpj

/ ,0 max σ (19)

and also in equation (11):

∑
= 










 ++
==

y k

k

ns

l
y

i

y
l

k
i

y
ringyy

T

JQJ
nsnrq

1

/

/ (20)

In this way, the overall analysis can be de-coupled in
two different subsystems: the host processor and the
network.

Previous works on this subject, considered network
systems where the sending and destination tasks where at
different processors. Furthermore, they do not consider
actual token utilisation (in case of token passing networks
[7, 9]) or the networks considered had priority busses [10],
hence with no need to implement the priority-based queue at
the application process level.

The work being now carried out consists on obtaining an
accurate characterisation of the release jitter in P-NET
networks, as results by the implementation of the scheduling
mechanisms in actual P-NET node masters.

References
[1] EN 50170. General Purpose Field Communication System. Vol. 1/3 (P-

NET). CENELEC 1996.
[2] E. Tovar, F. Vasques and A. Burns. “Communication Response Time

in P-NET Networks: Worst-Case Analysis Considering Actual Token
Utilisation”. Technical Report ISEP - 981001, 1998.

[3] C. Jenkins. P-NET as a European Fieldbus Standard EN 50170 vol. 1.
In: Institute of Measurement + Control Journal, 1997.

[4] M. Joseph, P. Pandaya. “Finding Response Times in a Real-Time
System”, The Computer Journal, Vol. 29, NO. 5, pp. 390-395, 1986.

[5] N. Audsley, A. Burns, M. Richardson, K. Tindell, A. Wellings.
“Applying New Scheduling Theory to Static Priority Pre-emptive
Scheduling”, Software Engineering Journal, Vol. 8, NO. 5, pp. 285-
292, September 1993.

[6] L. Sha, R. Rajkumar, J. Lehoczky: “Priority Inheritance Protocols: an
Approach to Real-Time Synchronisation”, IEEE Transactions on
Computers, Vol. 39, NO. 9, pp. 1175-1185, September 1990.

[7] K. Tindell, J. Clark. “Holistic Schedulability Analysis for Distributed
Hard Real-Time Systems”, in Microprocessors and
Microprogramming, No. 40, 1994.

[8] M. Spuri. “Holistic Analysis for Deadline Scheduled Real-Time
Distributed Systems”, INRIA, Technical Report no. 2873, April 1996.

[9] K. Tindell, A. Burns, A. Wellings. “Analysis of Hard Real-Time
Communications”, in The Journal of Real-Time Systems, No. 9, 1995.

[10]K. Tindell, H. Hansson, A. Wellings. “Analysing Real-Time
Communications: Controller Area Network (CAN)”, in Proceedings of
the IEEE Real-Time Systems Symposium, pp. 259-263, December
1994.

