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Abstract 
We address the problem of scheduling asynchronous periodic real-time tasks on homogeneous multicore 
platforms using a global and Fixed Job-level Priority (FJP) scheduler, e.g., global-EDF (global Earliest Deadline 
First). We establish a finite interval of time such that, if no task deadline is missed while scheduling only the jobs 
released within this interval, then no task deadline will ever be missed at run time. This kind of interval is referred 
to as “feasibility interval” and allows for sufficient and necessary schedulability analyses. 
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ABSTRACT
We address the problem of scheduling asynchronous periodic
real-time tasks on homogeneous multicore platforms using a
global and Fixed Job-level Priority (FJP) scheduler, e.g.,
global-EDF (global Earliest Deadline First). We establish a
finite interval of time such that, if no task deadline is missed
while scheduling only the jobs released within this interval,
then no task deadline will ever be missed at run time. This
kind of interval is referred to as “feasibility interval” and
allows for sufficient and necessary schedulability analyses.

1. INTRODUCTION
Many of the applications in the embedded systems arena

have stringent timing requirements (the system is then re-
ferred to as “real-time” embedded system). Among these
real-time systems, hard real-time systems are those for which
violating one of these timing requirements can entail severe
consequences, e.g., it can damage the system, lead to sub-
stantial economic loss, or even threaten human lives. Before
these hard real-time systems can actually be deployed and
marketed, they have to be certified : it has to be guaran-
teed at design time, that every “task” of the system will
always meet its timing requirements at run time. To this
end, the research community has designed many scheduling
algorithms over the last decades, together with associated
“schedulability analysis”techniques, that enable certification
experts to provide these required guarantees. An abundant
literature focusing on cost-effective certification techniques
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is available, regarding both unicore and multicore architec-
tures. Essentially, there are two different methodologies to
assert the so-called schedulability of a given set of tasks.

The first methodology consists in using schedulability tests.
In its simplest form, a schedulability test is a mathematical
condition such that, if the condition is satisfied then the sys-
tem is asserted schedulable, i.e., all the task deadlines will
always be met at run-time. In the same vein, there also
exist online schedulability analysis techniques called “ad-
mission tests”. These tests are used at run-time whenever
a task is released to figure out whether the task can be ac-
commodated and scheduled with the rest of the currently
executing workload without violating any timing require-
ment. In case the incoming task fails the admission test,
it can be simply ignored and dropped out, or there can be
some feedback mechanisms implemented. Typically, these
mechanisms send a feedback to a dedicated controller that
modifies the system configuration accordingly, i.e., it reg-
ulates the parameters of the other tasks in order to make
room for the incoming task.

The second methodology to certify the schedulability of a
task system consists in simulating the execution of the tasks
until a time-instant t such that, if no deadline is missed while
scheduling only the tasks released within the time interval
[0, t) then no deadline will ever be missed during the run
time. In the literature, such time intervals [0, t) are often
referred to as “feasibility intervals” and are the focus of this
work. More precisely, we focus on cyclic feasibility interval
formally defined as below.

Definition 1 (Cyclic feasibility interval). Given
a scheduling algorithm, a set of tasks and a computing plat-
form (uni- or multi-cores), a feasibility interval is a finite
interval of time [t0, t1) such that, if no task deadline is missed
while scheduling only the tasks released within [t0, t1) then no
deadline will ever be missed at run time. Further, a feasibil-
ity interval is said to be cyclic if and only if there exists a
time-instant t ∈ [t0, t1) such that the entire schedule within
[t, t1) is repeated from time t1 onward. That is, if ∆ = t1− t
the schedule in the time intervals [t1+k∆, t1+(k+1)∆) for
all k = 0, 1, . . . are identical to the schedule in [t, t1).

The length of the feasibility intervals established so far can
be pointed out as a former obstacle to their development.
Typically, their length is either optimistic due to extension
to multicore platforms of results obtained for unicore plat-
forms [1]1, or pessimistic as it depends on the parameters
of the tasks [3], which can result in extremely long inter-
vals and thus, substantial simulation and computation time.

1The results presented in [1] are flawed as pointed out in [2].



The latter drawback has played an important role in the
past decades as the computing capabilities of 20-years-old
computers were far behind those of today’s computers.
Regarding the schedulability tests, most of the tests that

have been proposed so far are only sufficient, i.e., there ex-
ist schedulable task systems that fail the tests. This may
have heavy consequences in the design process as failing the
test implies that the task parameters must be re-estimated
and adjusted and/or the computing capacity of the plat-
form must be enhanced. Besides, the authors of [4] have
proven that the problem of verifying the schedulability of a
task system in a sufficient and necessary fashion is PSpace-
complete, which means that unless PSpace = NP = P, there
will never be a sufficient and necessary test with a polyno-
mial time-complexity2. For example, for the popular Global-
EDF scheduler [7] and homogeneous multicore platforms (in
which all the cores have the same computational capabilities
and are interchangeable), to the best of our knowledge there
is no sufficient and necessary schedulability test established
so far, but the one obtained by Baker and Cirinei in 2007 [3]
(and improved later by Lindström et al.in [4]). This test
is based on solving a state reachability problem in a finite
automaton and is of unacceptably high computational com-
plexity as it performs an exhaustive search within a very
large state-space. It is thus not practical except for very
small task sets. Even though the approach adopted in [4]
(which is based on techniques developed by the formal verifi-
cation community and branch-and-bound alike algorithms)
substantially reduces the number of states to be explored
compared to [3], it has the same worst-case performance, re-
grettably. We refer the interested reader to [7,8] for a recent
state of the art on the Global-EDF schedulability tests. Note
that cyclic feasibility intervals inherently allow for sufficient
and necessary schedulability analysis.
Contribution and organization of the paper. Recently,
some essential results have paved the way for considering
simulating the schedule of the task set to conclude on its
schedulability. For example, the authors of [9] proposed an
upper-bound on the length of the feasibility interval (and
thus on the simulation time) for a given task set, assum-
ing a Fixed Task-level Priority (FTP) scheduler. Then,
Courbin et al.extended this analysis to parallel real-time
tasks in [10]. However, this analysis does not extend to Fixed
Job-level Priority (FJP) schedulers which assign a constant
priority to each job upon its release (different jobs of the
same task may have different priorities) and the aim of this
work is to fill this gap: we provide an upper-bound on the
length of the feasibility interval, assuming global FJP sched-
ulers, asynchronous constrained-deadline periodic tasks and
homogeneous multicore platforms (see the next section for
the details on the model).

2. MODEL OF COMPUTATION
In our model, all the timing parameters and time-instants

at which events occur are assumed to be non-negative inte-
gers, i.e., they are multiples of some irreducible time interval
(e.g., the “clock tick”, the smallest “user-defined” indivisible
core time unit).

Task specifications. The workload is modeled by a set τ of

n recurrent and complete tasks τ
def
= {τ1, τ2, . . . , τn}, where a

2It must be noted that some NP problems can be solved both
exactly and “most of the time” efficiently. SAT-solvers [5,6]
are a good example used in real applications such as package
dependency solving in some Linux distributions.

complete task is defined in [11] as a task for which the first
release time, the worst-case execution time, the deadline,
and the rate/period are known at system design-time. We
model each τi by a constrained-deadline periodic task char-
acterized by four parameters ⟨Oi, Ci, Di, Ti⟩—an offset Oi,
a worst-case execution time Ci, a relative deadline Di ≤ Ti

and a period Ti that denotes the exact inter-arrival time
between two consecutive releases of task τi. These parame-
ters are interpreted as follows: during the execution of the
system, task τi generates a (potentially infinite) sequence
of jobs τi,j (with j = 1, . . . ,∞) released at times ri,j such

that ri,j
def
= ri,j−1 + Ti (with ri,1

def
= Oi, the release time

of the first job of task τi), each such job has an execution
requirement of at most Ci time units and must complete by

its absolute deadline di,j
def
= ri,j +Di. Hereafter, we call an

“instance” any finite or infinite collection of jobs and we call
a “legal instance of τ” any instance that could be generated
according to the parameters of the tasks in τ .

Without any loss of generality, we assume that Oi ≥ 0,
∀i ∈ [1, n], and we denote by Omax the maximal value among

all task offsets, i.e., Omax
def
= maxn

i=1{Oi}. Also, we denote
by P the hyper-period of the task set, which is defined as the

least common multiple of all tasks periods: P
def
= lcm{T1, T2,

. . ., Tn}. If τ is synchronous (i.e., Oi = Oj ∀i, j ∈ [1, n]) then
it has been proven in [9] that (i) it can be assumed without
loss of generality that Oi = 0 ∀i ∈ [1, n] and (ii) [0, P )
is a feasibility interval for both FTP and FJP schedulers.
Otherwise, if τ is not synchronous (i.e., it is asynchronous
with the meaning that ∃i, j ∈ [1, n] with i ̸= j and Oi ̸= Oj),
then no feasibility interval is known for FJP schedulers and
the main contribution of this paper is to fill this gap.

The following two definitions introduce two key concepts
defined at run-time within a system schedule, namely, the
task execution status and the system configuration.

Definition 2 (Execution status ei(t)). The execu-
tion status ei(t) of task τi at time t is the number of time
units during which its last released job has executed, from
its release time up to time t. The execution status ei(t) is
undefined for all t < Oi since τi does not have any “last
released job” before instant Oi.

Definition 3 (Configuration CS(τ, t)). Let S be the
schedule of a task set τ . The configuration CS(τ, t) of S at
time t is the n-tuple (e1(t), e2(t), . . . , en(t)). If t < Omax

then CS(τ, t) is undefined.

According to Definitions 2 and 3, it holds ∀τi, 1 ≤ i ≤ n,
and time-instant t ≥ Oi that 0 ≤ ei(t) ≤ Ci and CS(τ, t) is
defined if and only if t ≥ Omax. If t ≥ Omax and t′ ≥ Omax

are two time-instants such that t ̸= t′, then we denote by
CS(τ, t) ≽ CS(τ, t

′) the fact that ei(t) ≥ ei(t
′), ∀i ∈ [1, n].

We assume that the tasks are independent, i.e., there is
no communication, no precedence constraint and no shared
resource (besides the cores) between them. Also, we assume
that parallel execution of jobs is forbidden at run-time, i.e.,
no job can execute on more than one core at a time.

Regarding the jobs, a job τi,j is said to be active at time
t if and only if ri,j ≤ t and τi,j is not completed yet, i.e.,
ei(t) < Ci . Further, an active job is said to be running at
time t if it has been allocated to a core and is being exe-
cuted. Otherwise, the active job is said to be ready and is
pending in the ready queue of the operating system.

Platform specifications. We consider a multicore plat-

form π
def
= {π1,π2, . . . ,πm} comprisingm homogeneous cores,



where“homogeneous”means that all the cores have the same
computational capabilities and are interchangeable. In the
literature, homogeneous platforms are particular case of uni-
form platforms where all the cores have the same speed,
and uniform cores are particular case of unrelated platforms
where the execution rate si,j of each core πj is the same for
all the tasks τi executing on this core. This inclusive rela-
tion between these models will aid us later in this work.

Scheduler specifications. We consider a fully-preemptive
scheduling scheme in which a running job can be interrupted
at any discrete time-instant and have its execution resumed
later on the same core as, or a different core from, the one
on which it was executing prior to the interruption.
We consider that the tasks are globally scheduled by using

a FJP scheduler (e.g., global-EDF). Formally, a Fixed Job-
level Priority (FJP) scheduler assigns a constant priority to
each job upon its release and different jobs of the same task
may have different priorities. From now on, we always as-
sume an implementation of a FJP scheduler which is deter-
ministic, work-conserving and request-dependent according
to the definitions given in [9]. Informally speaking, these
three requirements ensure a periodic schedule, in which the
same total priority-order is used between jobs within each
hyper-period.

Lemma 1 (Periodicity – from Theorem 3 in [9]).
Let A denote any preemptive FJP and request-dependent
scheduling algorithm. For any asynchronous constrained dead-
line task set τ which is guaranteed to meet all the deadlines
when scheduled by A on m homogeneous cores, the schedule
is periodic with a period of length P .

From the statement of Lemma 1, the open question that
needs to be addressed is the following: When does the pe-
riodicity of the schedule start? Providing an answer to this
question will clearly help us in determining the duration of
the simulation process on the one hand and decide on the
schedulability of the system on the other hand.

3. PRIMARY RESULTS
Before we present the main contribution of this paper, we

shall introduce the following definitions and results. First,
let us introduce the concepts of“sustainability”(as presented
in [12] and later generalized in [13]), “sustainability with re-
spect to the execution requirement parameters (sust-C)”, and
the notion of worst-case instance denoted by τworst.

Definition 4 (Sustainable Test [12]). A schedulabil-
ity test for a scheduling policy is sustainable if any task set
deemed schedulable by the test remains schedulable when the
parameters of one or more individual job[s] are changed in
any, some, or all of the following ways: (i) decreased ex-
ecution requirements; (ii) later arrival times; (iii) smaller
jitter3; and (iv) larger relative deadlines.

Definition 5 (Sust-C). A scheduler A is said to be
sustainable4 (with respect to execution requirements) if the
A-feasibility5 of a set of tasks implies the A-feasibility of an-
other set of tasks with identical release times, relative dead-
lines and periods, but smaller execution requirements.
3The time that elapses between the arrival of the job at
the core and the earliest instant at which the job may start
executing.
4Sometimes this property is referred to as predictability in
the literature.
5All tasks meet all their deadlines when scheduled using A.

Lemma 2 (Sustainability [14]). Any work-conserving
and FJP scheduler is sustainable (with respect to execution
requirements) upon homogeneous multicore platforms.

Let τworst be the instance of τ in which all jobs execute
for their WCETs. According to Definition 5, if τworst is
schedulable on the targeted platform then any other instance
of τ in which jobs execute for less than their WCETs will
also be successfully scheduled on this platform.

Since homogeneous platforms are particular case of unre-
lated platforms where the execution rates si,j are identical
for all cores πj and all tasks τi, we can take advantage of
the following lemma taken from [9].

Lemma 3 (Monotonicity – from Lemma 2 in [9]).
For any preemptive, FJP and request-dependent algorithm A
and any asynchronous arbitrary deadline6 task set τ on m
unrelated cores, we have: for each task τi and for any time-
instant t ≥ Omax+P , if no deadline is missed within [t−P, t)
then

ei(t) ≤ ei(t− P ) (1)

Corollary 1. If a task set τ is schedulable on a given
platform π then the process of simulating the schedule Sworst

of the instance τworst will always reach a time-instant t at
which CSworst(τ, t) = CSworst(τ, t− P ).

Proof. From Definition 2 (execution status), we know
that in any schedule it holds for each task τi and for all
time-instants t ≥ Oi that 0 ≤ ei(t) ≤ Ci. From Lemma 3,
we also know that at each multiple of the hyper-period, it
holds true that either

1. CS(τ, t) = CS(τ, t − P ): all the task execution sta-
tuses are identical to the ones defined one hyper-period
earlier, i.e., ei(t) = ei(t − P ), ∀τi, and thus the en-
tire schedule within [t−P, t] starts repeating from this
time-instant t onward, or

2. CS(τ, t) ≺ CS(τ, t − P ): at least one of the execution
statuses is lower than the one defined one hyper-period
earlier, i.e., there exists at least one task τi for which
ei(t) < ei(t− P ).

As a consequence of this corollary, starting from any time-
instant t ≥ Omax and iterating from one hyper-period to the
next one (i.e., ∀t′ = t + k × P with k ∈ N+), the system
configuration CS(τ, t

′) does not “increase” in the sense that
none of its components ei(t

′) increases. Hence, CS(τ, t
′)

can be seen as a counter for which at each multiple of the
hyper-period, either all its components ei(t

′) are identical to
the ei(t

′ − P ) determined one hyper-period earlier (and the
schedule starts repeating from this instant t′ onward), or at
least one of its components is decremented, i.e., ∃j ∈ [1, n]
such that ej(t

′) < ej(t
′ − P ). Therefore, since the task

execution statuses are non-negative integers (and because
the task set is assumed to be schedulable), we know that the
schedule will eventually reach a time-instant t′ = t+ k × P
with k ∈ N+ such that ei(t

′) = ei(t
′ − P ), ∀τi.

From this corollary, we can easily derive a first cyclic fea-
sibility interval.

Lemma 4. A cyclic feasibility interval is given by

Istrfwd
def
=

[
0, Omax +

(
n∑

i=1

Ci + 1

)
× P

]
(2)

6There is no constraint on the relative deadline of each task.
It might be either smaller than, equal to or larger than the
task’s period.



Proof. From Corollary 1, starting from Omax (which is
the earliest time-instant in any schedule at which all the ex-
ecution statuses are defined), the longest time it may take to
reach an instant t′ such that ei(t

′) = ei(t
′−P ) (∀τi) is given

by the following scenario: the configuration/counter CS(τ, t)
at time t = Omax is such that ei(Omax) = Ci (∀τi) and at
each multiple of the hyper-period, only one task execution
status is decremented. Under this scenario, it takes

∑n
i=1 Ci

hyper-periods to reach the configuration (0, 0, . . . , 0) after
which the schedule has to repeat (assuming that the sys-
tem is schedulable). Consequently, if no deadline has been
missed until time Omax +

(∑n
i=1 Ci

)
×P +P , we can safely

conclude on the system schedulability. The term“+P”stems
from the fact that, once the configuration (0, . . . , 0) has been
reached, the simulation process requires one more hyper-
period to conclude on the schedulability, because either a
deadline will be missed within this last hyper-period, or the
configuration (0, . . . , 0) will repeat after this hyper-period
as the tasks execution statuses are non negative integers by
definition.

If no deadline is missed while simulating the schedule
Sworst of the instance τworstwithin Istrfwd, then we are guar-
anteed that no deadline will ever be missed while scheduling
Sworst. From Lemma 2, this latter statement implies that
the schedule of any other legal instance of τ will never miss
a deadline and finally, the whole system can be asserted
schedulable. The simulation of Sworst provides an exact
schedulability test, in the sense that succeeding in meeting
the deadlines of all the jobs during the simulation is a suffi-
cient and necessary condition for the system schedulability.
Indeed, sufficient : a positive outcome guarantees that all
deadlines are always met, and necessary : the failure of the
test may lead to a deadline miss at some point during the
execution of the system.
Since Istrfwd seems rather a trivial interval and simulating

a schedule within such an interval may be of very high com-
putational complexity (as shown in Section 7), we will refer
to this method as the naive solution and we will present
tighter intervals in the following sections.

4. A TIGHTER FEASIBILITY INTERVAL:
THE COUNTING FACTOR K(T )

The whole concept underlying our feasibility analysis is
based on counting the maximum number of times that the
simulation process can iterate, from one hyper-period to the
next one without missing any deadline, until reaching a time-
instant at which two consecutive configurations separated by
P time units are identical. In this section, we determine this
number of iterations in a formal way. Specifically:

Definition 6 (Counting factor K(t)). Consider a
given task system τ , platform π, and scheduler A. If the
schedule of τ is simulated from time t ≥ Omax, the counting
factor K(t) denotes the maximum number of hyper-periods
the simulation process (starting from the configuration at
time t) can iterate until it reaches a configuration at which
it starts repeating, i.e. a configuration identical to the one
defined P time units later.

Given the definition of the counting factor, feasibility in-
tervals can be written as [0, t+K(t)× P + P ], for any t ≥
Omax, and our objective in the next sections is to find the
time-instant t0 which minimizes the length of this interval,
i.e.,

t0 = min
t≥Omax

{t+K(t)× P + P} (3)

As for the naive solution, the term“+P” stems from the fact
that, once K(t) is determined, the simulation process needs
one extra hyper-period to conclude on the schedulability.

4.1 Computation of K(t) based on the individ-
ual tasks execution status

In this subsection, we propose a first approach to compute
the counting factor K(t), ∀t, based on the execution status
ei(t) of each individual task τi. To do so, let us start by
introducing few notions and prerequisites.

Definition 7 (Min- and Max- execution status).
For a given task τi and time-instant t, we respectively de-
note by emin

i (t) and emax
i (t) a lower- and upper-bound on

its execution status ei(t), assuming that no deadline has been
missed from time 0 to time t.

Definition 8 (Min- and Max- configuration). For
a given task set τ and time-instant t, we define the minimum
and maximum configurations at time t in the schedule S of
τ as follows:

Cmin
S (τ, t)

def
= (emin

1 (t), emin
2 (t), . . . , emin

n (t))

Cmax
S (τ, t)

def
= (emax

1 (t), emax
2 (t), . . . , emax

n (t))

Definition 9 (Periodic bound). For any task set τ ,
we say that a lower-bound emin

i (t) (resp. an upper-bound
emax
i (t)) is periodic if and only if it holds that emin

i (t) =
emin
i (t + P ) (resp. emax

i (t) = emax
i (t + P )), for all tasks

τi ∈ τ and instant t ≥ Omax during the simulation of τ .

In the previous section, we mentioned that the simulation
process of our naive solution continues as long as no deadline
is missed and no “cycle” is detected in the schedule. Given
the definitions above, we can now be more precise about the
duration of this process, i.e., about the value of the counting
factor K(t). At any time t ≥ Omax in the schedule Sworst of
τworst, we can make the following two observations:

Obs. 1) As long as no deadline is missed and no cycle is
detected, the execution status ei(t) (i ∈ {0, 1, . . . , n}) of at
least one task will be decreased at each multiple of the hyper-
period, starting from time-instant t (from Corollary 1).

Obs. 2) If the bounds emin
i (t) and emax

i (t) are periodic
(i.e., if they satisfy Definition 9) then we know that at each
time-instant t′ = t + k × P for all k ∈ N+, the execution
status ei(t

′) of each task τi will be bounded from below by
emin
i (t′) = emin

i (t) and from above by emax
i (t′) = emax

i (t).

As a consequence of these two observations, starting from
any time-instant t ≥ Omax and iterating from one hyper-
period to the next one (i.e., ∀t′ = t + k × P with k ∈ N+),
the system configuration CS(τ, t

′) converges not toward the
zero-configuration (0, 0, . . . , 0) as claimed in the proof of
Lemma 4, but rather towards its minimum configuration
Cmin

S (t) (= Cmin
S (t′)). By using a similar reasoning as in

the proof of Lemma 4, starting from a time t ≥ Omax the
longest time it may take to reach an instant t′ such that
ei(t

′) = ei(t
′ − P ) (∀τi) is given by the following scenario:

the configuration at time t is CS(τ, t) = Cmax
S (τ, t) and at

each multiple of the hyper-period, the execution status of only
one task is decremented. Within this scenario, it may take
up to K(t) =

(∑n
i=1 e

max
i (t)−

∑n
i=1 e

min
i (t)

)
hyper-periods

to reach the configuration Cmin
S (τ, t), after which the sched-

ule will start repeating or a deadline will be missed in the



20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

Case 1:

Case 2: Case 3

Figure 1: Illustration of the three different cases,
assuming τi = ⟨Oi = 0, Ci = 5, Di = 15, Ti = 20⟩.

subsequent hyper-period. Since we are interested in finding
the time-instant t0 ≥ Omax leading to the shortest feasibility
interval, Equation (3) can be rewritten as

t0 = min
t≥Omax

{
t +

(
n∑

i=1

emax
i (t)−

n∑

i=1

emin
i (t)

)
× P + P

}

Moreover, if the bounds are periodic then for all instants
t ∈ [Omax, Omax + P ] and all t′ = t + k × P with k ∈ N,
we have

∑n
i=1 e

max
i (t) −

∑n
i=1 e

min
i (t) =

∑n
i=1 e

max
i (t′) −∑n

i=1 e
min
i (t′). Therefore, the instant t0 leading to the short-

est feasibility interval can be searched withinOmax andOmax+
P only, i.e.,

t0 = min
Omax≤t<Omax+P

{
t +

(
n∑

i=1

emax
i (t)−

n∑

i=1

emin
i (t)

)
× P + P

}

(4)

It is worthwhile to understand the importance of deriv-
ing periodic bounds, as it considerably reduces the research
space for t0. Note that writing feasibility intervals as a func-
tion of lower- and upper-bounds on the task execution sta-
tuses provides a wide and general framework: determining
these two periodic bounds emax

i (t) and emin
i (t) (for each τi)

is a problem that can be addressed independently of the
computation of a feasibility interval and it can potentially
be refined and optimized for a specific scheduling algorithm.
However, this work focuses on FJP schedulers in general
and the following lemmas provide generic lower- and upper-
bounds.

Lemma 5. For each task τi and for any time-instant t ≥
Omax, if there is no deadline missed from time 0 to time t,
then ei(t) ≤ emax

i (t) where

emax
i (t) = min(Ci, t− Olast

i (t)) (5)

and Olast
i (t)

def
= Oi +

⌊
t− Oi

Ti

⌋
× Ti (6)

Proof. Let Olast
i (t) denote the last release time of task

τi that occurs before (or at) time t. It can easily be shown
that this instant Olast

i (t) is given by Equation (6). Besides,
we know that Olast

i (t) is defined at time t as we assumed
t ≥ Omax, and thus τi has released at least one job (before
or) at time t. In any feasible schedule, it is obvious that
the execution status ei(t) of every task τi cannot be greater
than the difference between the current instant t and the
instant Olast

i (t) of its last release. This comes from the fact
that a task cannot have executed for longer than the time
for which it has been released. Moreover we have ei(t) ≤
Ci by the definition of an execution status. That is, for a
given time-instant t and task τi, we have ei(t) ≤ min(Ci, t−
Olast

i (t)).

Figure 1 illustrates Lemma 5, where the last release of task
τi occurred at time 20 and we consider the current time to

be t = 23. As explained in the proof above, between time-
instants 20 and 23, τi cannot have executed for more than
23− 20 = 3 time units.

Lemma 6. The upper-bound emax
i (t) defined in Lemma 5

is periodic.

Proof. For any two time-instants t and t′ such that t′ =
t+ kP , k ∈ N+, we have

Olast
i (t′)

def
= Oi +

⌊
t′ − Oi

Ti

⌋
× Ti

= Oi +

⌊
t− Oi

Ti
+

kP

Ti

⌋
× Ti

= Oi +

⌊
t− Oi

Ti

⌋
× Ti + kP as P

def
= lcm{T1, T2, . . . , Tn}

= Olast
i (t) + kP

And thus

emax
i (t′)

def
= min(Ci, t

′ − Olast
i (t′))

= min(Ci, t + kP − Olast
i (t)− kP )

= min(Ci, t− Olast
i (t))

= emax
i (t)

The lemma follows.

Let us now focus on the lower-bounds emin
i (t), for all τi

and t. Given the four parameters ⟨Oi, Ci, Di, Ti⟩ of each task
τi, there exists some methods such as the ones introduced
in [15, 16] and [17] that can be used to upper-bound the
worst-case response time (WCRT) — this bound is noted
Ri for task τi in the remainder of this paper and is assumed
to be known. This quantity Ri is defined as an upper-bound
on the time that may elapse between the release of any job
of τi and the instant it completes execution. Note that Ri

can be computed directly from the four parameters of all
the tasks in the system.

Lemma 7. For each task τi and for any time-instant t ≥
Omax, if there is no deadline missed from time 0 to time t,
then ei(t) ≥ emin

i (t) where

emin
i (t) =

{
max(0, Ci − (rnexti (t)− t)) if rnexti (t) ≥ t
Ci otherwise

(7)

and rnexti (t)
def
= Oi +

⌊
t− Oi

Ti

⌋
× Ti + Ri (8)

Proof. Let rnexti (t) denote an upper-bound on the com-
pletion time of the last released job of task τi at time t,

i.e., rnexti (t)
def
= Olast

i (t) + Ri where Olast
i (t) is defined as in

Lemma 5 and Ri is an upper-bound on the response time
of τi. Depending on t, three cases may arise for a feasible
schedule (see Figure 1):
Case 1: rnexti (t) ≥ t and rnexti (t) − t ≥ Ci. Task τi could
execute entirely after time t, hence yielding emin

i (t) = 0.
Case 2: rnexti (t) ≥ t and rnexti (t) − t < Ci. Task τi must
have executed for at least Ci−(rnexti (t)−t) time units at time
t, otherwise τi would complete after time rnexti (t) (which is
in contradiction with the definition of rnexti (t)). Cases 1 and
2 lead to the first piece of Expression (7).
Case 3: rnexti (t) < t. By definition of rnexti (t), task τi has
executed for Ci time units at time t.
The lemma follows.

Lemma 8. The lower-bound emin
i (t) defined in Lemma 7

is periodic.



Proof. For any two time-instants t and t′ such that t′ =
t+ kP , k ∈ N+, we have

rnext
i (t′)

def
= Oi +

⌊
t′ − Oi

Ti

⌋
× Ti + Ri

= Oi +

⌊
t− Oi

Ti
+

kP

Ti

⌋
× Ti + Ri

= Oi +

⌊
t− Oi

Ti

⌋
× Ti + kP + Ri as P

def
= lcm{Ti}1≤i≤n

= rnexti (t) + kP

And thus

emin
i (t′)

def
=

{
max(0, Ci − (rnexti (t′)− t′)) if rnexti (t′) ≥ t′

Ci otherwise

=

{
max(0, Ci − (rnexti (t) + kP − (t + kP ))) if rnexti (t) ≥ t
Ci otherwise

=

{
max(0, Ci − (rnexti (t)− t)) if rnexti (t) ≥ t
Ci otherwise

= emin
i (t)

The lemma follows.

Following this computation of emax
i (t) and emin

i (t), if no
deadline has been missed from 0 up to any time t during
the simulation process, then the shortest feasibility interval
is given by Iimpr where

Iimpr
def
=
[
0, tupimpr

]
(9)

and

tupimpr = min
Omax≤t<Omax+P

{
t +

(
n∑

i=1

emax
i (t)−

n∑

i=1

emin
i (t)

)
× P + P

}

(10)

Expression (10) introduces a significant pessimism: K(t)
is built upon the conservative assumption that at each mul-
tiple of the hyper-period the execution status of only one
task is decremented. To overcome this limitation, the next
subsection provides another method for deriving K(t). In-
stead of considering the execution status of the tasks, this
second method is built upon an estimation of the workload
that has been executed up to time t; Thus, it takes into
consideration the computing capability of the platform.

4.2 Computation of K(t) based on the previ-
ously executed workload

Because the execution status ei(t) of each individual task
τi is a non-increasing step-case function from one hyper-
period to the next one as proven in Lemma 3, the cumulative
amount of time “

∑n
i=1 ei(t)” executed by all the tasks in the

system is also a non-increasing step-case function from one
hyper-period to the next one. As such, if

∑n
i=1 ei(t+k ·P ) =∑n

i=1 ei(t+ (k + 1) · P ) for any k ∈ N, then it also holds by
construction that ei(t+k·P ) = ei(t+(k+1)·P ) for each indi-
vidual task τi. Consequently, the intuitive idea behind this
second approach is to take advantage of the total computing
capability provided by the platform for the computation of
K(t). Rather than decreasing the execution status “ei(t)”
of each individual task as previously, this second technique
decrements the cumulative amount of time “

∑n
i=1 ei(t)” ex-

ecuted by all the tasks since their last release.

Definition 10 (E(t)). The cumulative amount of time
executed by all tasks since their last release times up to time-

instant t is defined as: E(t)
def
=
∑n

i=1 ei(t) if t ≥ Omax, and
E(t) is undefined otherwise.

Algorithm 1: Computation of Emax(t).
Input : time-instant t ≥ Omax

Output: Emax(t)
{α1,α2, . . . ,αp}← set of p events occurring before time t ;

1 rem budget← α1.wcet ;
2 cumul budget← rem budget ;
3 cumul alloc← 0 ;
4 indic dead← 1 ;
5 indic budg← 1 ;

foreach (j = 2 to p) do
if (αj .time > αj−1.time) then

6 nb proc max← min(m, indic budg, indic dead) ;
7 alloc←

min(rem budget, nb proc max×(αj .time−αj−1.time));
cumul alloc← cumul alloc+ alloc ;
if (cumul alloc == cumul budget) then

8 indic budg← 0;
end
rem budget← rem budget− alloc ;

end
if (αj . type == release) then

9 indic dead← indic dead+1 ;
10 indic budg← indic budg+1 ;

rem budget← rem budget+αj .wcet ;
cumul budget← cumul budget+αj .wcet ;

else
11 indic dead← indic dead−1;

end
end

12 nb proc max← min(m, indic budg, indic dead) ;
alloc← min(rem budget, nb proc max×(t− αp.time));

13 cumul alloc← cumul alloc+ alloc ;
return cumul alloc ;

Corollary 2 (From Lemma 3 — Monotonicity).
For any preemptive, FJP and request-dependent algorithm A
and any asynchronous constrained-deadline task set τ on m
homogeneous cores, we have: for any time-instant t ≥ Omax,
if there is no deadline missed up to time t+P , then E(t) ≥
E(t+ P ).

Proof. The proof is a direct consequence of Lemma 3.
Since ∀t ≥ Omax and ∀τi, we have ei(t) ≥ ei(t + P ), it
obviously holds that

∑n
i=1 ei(t) ≥

∑n
i=1 ei(t+ P ).

Given a current time-instant t, we attach to each task
τi two different “events”: (1) one occurring at the time of
its last job release and (2) another one at the deadline of
this last released job. Among the 2n events obtained, we
keep only those occurring before time t and we denote the
jth task event by αj . Based on this notion of task event,
Algorithm 1 provides an upper-bound on E(t) by performing
some computation at each task events occurring before time
t. We use the following notations:

• “p” is the number of task events occurring before t,
• “αj .time” is the time at which the event αj occurs,
• “αj .type” is the type of the event (release or deadline),
• “αj .wcet” is the WCET of the task generating αj .

The task events are sorted by non-decreasing order of occur-
ring time, i.e., ∀j ∈ [2, p]: αj−1.time ≤ αj .time. By defini-
tion, there are at most 2 events per task and the first event is
always of type “ job release”. Algorithm 1 goes through each
event, from α1 to αp and finally from αp to time t, and its
objective is to schedule as many execution units as possible
within each time interval, using only the workload of the last
released job of each task at time t. However, Algorithm 1
sometimes allows job parallelism while scheduling the jobs,
and the amount of work that it executes within [α1.time, t]
is therefore always greater than or equal to the amount of
work that can actually be executed without job parallelism,
hence providing an upper-bound on E(t).



The variables of this algorithm have the following inter-
pretation (assuming that the algorithm is at the jth iteration
with j ∈ [2, p], i.e., at time αj .time):
“cumul alloc” records the amount of execution units that

have already been executed from time α1.time to time αj .time.
This quantity is initially set to 0 at line 3 and is returned at
the end of the algorithm as Emax(t).
“rem budget” records the amount of execution units avail-

able to be scheduled within [αj−1.time,αj .time]. This vari-
able is initially set to α1.wcet (at line 1) since the very first
event is a job release and thus α1.wcet execution units can
be scheduled within [α1.time,α2.time].
“cumul budget”records the amount of execution units that

have been available to be scheduled from the beginning, i.e.,
from α1.time, to the current time αj .time. This variable is
initially set to rem budget at line 2.
“indic dead” and “indic budg” are two different indicators

that provide an upper-bound on the number of jobs active
at time αj .time. “indic dead” is based on the number of
releases and deadlines that occurred from time α1.time to
time αj .time. It is initially set to 1 at line 4 (to count
the release occurring at time α1.time) and then, it is in-
cremented on each job release (line 9) and decremented on
each job deadline (line 11). “indic budg” is based on the
difference between the amount cumul budget of execution
units that have been available to be scheduled up to the
current time αj .time, and the amount cumul alloc of exe-
cution units that have been executed by the algorithm up
to that time. As for indic dead, the indicator indic budg
is incremented on each job release (line 10), but it is never
decremented, rather it is reset to 0 whenever all the execu-
tion units available for execution have been scheduled, i.e.,
whenever cumul alloc = cumul budget (line 8). Note that
indic budg gives an upper-bound on the number of active
jobs only under the assumption that job parallelism is al-
lowed.
“nb proc max” is an upper-bound on the number of cores

that can be used within [αj−1.time,αj .time]. This upper-
bound is computed as the minimum between the number m
of cores, and the maximum number of jobs that can be ac-
tive at time αj−1.time, that is, min(indic dead, indic budg)
(line 6).
“alloc” records the amount of execution units that the al-

gorithm schedules in [αj−1.time,αj .time], considering only
the last released job of each task at time t. This quantity is
computed at line 7 as the minimum between

1. the amount rem budget of execution units available to
be scheduled in [αj−1.time,αj .time], and

2. the maximum amount of execution units that can be
scheduled in that interval, which is given by
nb proc max×(αj .time−αj−1.time).

Lemma 9. For any preemptive, FJP and request-dependent
scheduler A, and for any periodic, asynchronous constrained-
deadline task set τ scheduled by A upon m homogeneous
cores, we have: for any time-instant t ≥ Omax, if there is
no deadline miss up to time t, then E(t) ≤ Emax(t) where
Emax(t) is obtained by Algorithm 1.

Proof. The lemma is obtained from the construction of
Algorithm 1, and from the pessimism that it introduces dur-
ing this computation of alloc.

Example 1. Consider the four tasks τi = ⟨Oi, Ci, Di, Ti⟩
with characteristics: τ1 = ⟨9, 9, 20, 20⟩, τ2 = ⟨5, 5, 7, 20⟩,
τ3 = ⟨3, 3, 6, 20⟩ and τ4 = ⟨0, 4, 8, 20⟩. Let us assume that

time 
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Figure 2: Schedule computed by Algorithm 1, con-
sidering the task set of Example 1.

these four tasks are scheduled on two homogeneous cores π1

and π2 and let us compute Emax(15) using Algorithm 1. Fig-
ure 2 depicts the schedule which is assumed by the algorithm.
The up and down arrows represent the release and deadline
of every task, respectively. As we can see, job parallelism
is permitted in the computed schedule, hence bringing some
pessimism in the computation of Emax(15). However, the
parallelism is sometimes avoided thanks to the indicators
“indic budg” and “indic dead”. For example, when τ2,1 is
released at time 5, indic budg is reset7 to 0 at line 21 and
then immediately incremented to 1 at line 29 to count the
release of τ2,1. This operation prevents τ2,1 from being exe-
cuted on more than one core during the time interval [5, 9].
Analogously at time 12, the indicator “indic dead” prevents
τ1,1 from being executed on multiple cores, because the dif-
ference between the number of releases and the number of
deadlines that occur in the time interval [0, 12] is 3− 2 = 1
and the algorithm deduces from this information that there
cannot be more than 1 active job at that time.

Algorithm 2 provides a lower-bound on E(t). The main
idea to minimize the workload executed before time t is to
maximize the workload executed after time t. Once this
maximum is determined, the searched minimum can then
be obtained by subtracting the obtained maximum from the
total workload

∑n
i=1 Ci. As such, the problem of finding the

minimum workload executed before time t can be reduced
to the reverse problem of finding the maximum workload
executed after time t. This is why Algorithm 2 proceeds
almost the same way as Algorithm 1, except that it iterates
backward, from the latest event back to time t. The main
difference between Algorithms 1 and 2 resides in the task
events. Firstly, the task events correspond only to job dead-
lines as the last job release of each task occurs by definition
before (or at) time t. That is, only deadline-type events are
considered, which in turn further simplifies the algorithm
since the maximum number of potentially active jobs can
be estimated only by using the indicator indic budg. Sec-
ondly, the set {α1,α2, . . . ,αp} is sorted by decreasing order
of occurring time, i.e., ∀j ∈ [1, p− 1]: αj .time ≥ αj+1.time.

Lemma 10. For any preemptive, FJP and request-depen-
dent scheduler A, and for any periodic and asynchronous
constrained-deadline task set τ scheduled by A on m homo-
geneous CPUs, we have: for any time-instant t ≥ Omax, if
there is no deadline missed up to the latest deadline of all
the jobs released prior to time t, then E(t) ≥ Emin(t) where
Emin(t) is obtained using Algorithm 2.

Proof. Algorithm 2 is similar to Algorithm 1 and is safe-
by-construction.
7because the amount cumul alloc of execution units that
has been scheduled at time 5 is equal to the amount
cumul budget of work generated since time α1.time = 0.



Algorithm 2: Computation of Emin(t).
Input : time-instant t ≥ Omax

Output: Emin(t)
{α1,α2, . . . ,αp}← set of p events (deadlines) occurring after
time t ;

1 rem budget← α1.wcet ;
2 cumul budget← rem budget ;
3 cumul alloc← 0 ;
4 indic budg← 1 ;

foreach (j = 2 up to p) do
alloc←
min(rem budget,min(m, indic budg)×(αj−1.time−αj .time);
cumul alloc← cumul alloc+ alloc ;
rem budget← rem budget− alloc ;
if (cumul alloc == cumul budget) then indic budg← 0;
rem budget← rem budget+αj .wcet ;
cumul budget← cumul budget+αj .wcet ;
indic budg← indic budg+1 ;

end
alloc← min(rem budget,min(m, indic budg)× (αp.time−t);
cumul alloc← cumul alloc+ alloc ;

return
(∑n

j=1 Ci − cumul alloc
)

;

As a conclusion, if no deadline has been missed until the
latest deadline of all the jobs released prior to time t then
we can safely conclude on the system schedulability if no
deadline is missed until time t+K2(t)× P + P where

K2(t)
def
=
(
Emax(t)− Emin(t)

)
(11)

Finally, since the tasks are periodic they have the same
release pattern at every multiple of the hyper-period. As
a consequence Algorithm 1 produces the same output at
every time t′ = t + kP , for any t ≥ Omax and k ∈ N (and
the same is true for Algorithm 2). That is, Algorithms 1
and 2 provide periodic bounds and w.r.t. Equation (3), the
shortest feasibility interval is given by Iimpr2 where

Iimpr2
def
=
[
0, tupimpr2

]
(12)

and

tupimpr2 = min
Omax≤t<Omax+P

{
t +

(
Emax(t)− Emin(t)

)
P + P

}
(13)

5. SOME TRICKS TO FURTHER TIGHTEN
THE FEASIBILITY INTERVAL

A simple way to derive the shortest feasibility interval
from all the methods presented in this paper is to combine
all these results together. Such a combination results in the
following interval:

tupbest = min
Omax≤t<Omax+P

{t + (UB(t)− LB(t))P + P} (14)

where (UB(t)−LB(t)) is the counting factor at time t and:

UB(t)
def
= min

(
Emax(t),

n∑

i=1

emax
i (t)

)
(15)

LB(t)
def
= max

(
Emin(t),

n∑

i=1

emin
i (t)

)
(16)

Since the four terms “emin
i (t)”, “emax

i (t)”, “Emin(t)”, and
“Emax(t)” are computed based on the task parameters, their
order of magnitude is likely to be the same as the order
of magnitude of these parameters. This can be observed
in the following example. Let us consider a two-processors
platform and a task set τ composed of three tasks whose

Task set τ Task set τ′

Oi Ci Di Ti Ri O′
i C′

i D′
i T ′

i R′
i

τ1 50 90 120 120 100 ⇔ τ1 5 9 12 12 10

τ2 30 60 80 80 70 τ2 3 6 8 8 7

τ3 0 10 120 120 100 τ3 0 1 12 12 10

Table 1: Parameters of equivalent task sets τ and τ ′

time 0 25 50 75 100 125 150 175 200 225 250 275 300 

Figure 3: Schedule of τ from time 0 to 300 on a two-
processors platform, using G-EDF.

time 0 5 10 15 20 25 30 

Figure 4: Schedule of τ ′ from time 0 to 30 on a two-
processors platform, using G-EDF.

parameters are listed in Table 1. The schedule of these three
tasks by Global-EDF is depicted in Figure 3 from time 0 to
300. From that picture, the schedule will repeat from time
Omax +P = 290 onward. That is, the schedule repeats after
one hyper-period, starting from Omax.

By computing the feasibility interval given by Equation (9),
it can be showed that the value of tupimpr that minimizes the
length of the interval is obtained at time t = 100, with
emin
2 (100) = emax

2 (100) = C2 = 60, emin
3 (100) = emax

3 (100) =
C3 = 10, and emin

1 (100) = 40 and emax
1 (100) = 50. The

counting factor K(t) at that time t = 100 is

K(100) =
n∑

i=1

emax
i (100)−

n∑

i=1

emin
i (100) = 120− 110 = 10 (17)

As we can observe, the task parameters are all multiples of
ten, and so are the terms emin

i (100), emax
i (100) and K(100).

This counting factor leads to tupimpr = t + K(t) × P + P =
100 + 10× 240 + 240 = 2740, and thus the schedulability of
the task set τ can be asserted by constructing its schedule
from time 0 up to 100 + 11× P .

A second trick to reduce the length of the feasibility inter-
val is to replace the given task set τ for an equivalent task
set τ ′ with smaller task parameters. Two task sets τ and τ ′

are said to be equivalent if and only if the schedulability of
either of them can be deduced from the schedulability of the
other. Considering FJP schedulers, it can easily be shown
that for all k ∈ R+, multiplying all the task parameters by
k results in an equivalent task set.

To illustrate that claim, let us consider the task set τ ′

derived from τ by multiplying all the task parameters by
1/10 (see right table of Table 1). The response time of the
tasks become R′

1 = 10, R′
2 = 7, and R′

3 = 10. The schedule
of these three tasks is depicted in Figure 4 and we can see
that this schedule is exactly the same as the schedule of τ ,
except that it is shrunk by a factor 10 (hence the equivalence
of the two task sets). In the schedule of τ ′, the value of
tupimpr that minimizes the length of the feasibility interval

is obtained at t = 10, with emin
2 (10) = emax

2 (10) = C′
2 =

6, emin
3 (10) = emax

3 (10) = C′
3 = 1, and emin

1 (10) = 4 and



emax
1 (10) = 5. The counting factor K′(10) is then given by:

K′(10) =
n∑

i=1

emax
i (10)−

n∑

i=1

emin
i (10) = 12−11 = 1 =

K(100)

10
(18)

which leads to tupimpr = t+K′(t)× P ′ + P ′ = 10 + 1× 24 +
24 = 58. Consequently, the schedulability of τ ′ (and thus
the schedulability of τ) can be asserted by simulating the
schedule of τ ′ from time 0 to 10 + 2× P .
As a general rule, the smaller the task parameters, the

shorter the feasibility interval. Therefore, an efficient trick is
to first divide the parameters of all the tasks by the greatest
common divisor of those parameters.

Theorem 1 (Exact schedulabillity test). System
τ is schedulable if and only if all the job deadlines of τworst

are met in [0, tupbest], where t
up
best is defined as in Equation (14).

Proof. If a deadline is missed in [0, tupbest], then the sys-
tem is clearly not schedulable. Otherwise, the schedule of
τworst has passed by all possible system configurations, plus
one, without any deadline miss. Hence τ is schedulable.

6. COMPUTATIONAL COMPLEXITY
In this section we distinguish between (1) the time com-

plexity of computing the length of the feasibility interval
[0, tupbest], and (2) the time complexity of the exact analysis
this interval allows for.
The computation of the feasibility interval [0, tupbest] in-

volves computing emin
i (t), emax

i (t), Emin(t), and Emax(t) at
all time-instants t ∈ [Omax, Omax+P ] and for all tasks τi ∈ τ .
From Expressions (5) and (7), the computation of emin

i (t)
and emax

i (t) takes O(1), assuming that Ri is computed be-
forehand, and from Algorithm 1 and 2 the computation of
Emin(t) and Emax(t) takes O(n log(n)) – the computation
is linear in p ≤ 2n and takes O(p log(p)) due to the sorting
of the set of events. Therefore, the overall complexity of
computing tupbest is O(P × (n + n + n log(n) + n log(n))) =
O(P × n log(n)).
Regarding (2), as mentioned in Theorem 1, an exact schedu-

lability test for a given task set τ consists in simulating the
execution of its instance τworst within the interval [0, tupbest].

Since tupbest is computed based on P and P
def
= lcm{Ti}1≤i≤n,

it follows that the computing complexity of an exact schedu-
lability analysis is a function of the least common multiple of
the task periods. Specifically, the number of hyper-periods
the simulator must scrutinize is given by the counting fac-
tor K (obtained during the computation of tupbest). Since
the number of scheduling decisions taken within an hyper-
period P is given by 2 ×

∑
τi∈τ

P
Ti

(one decision at each

job arrival and another one at each job completion), the
total amount of scheduling decisions taken during the sim-
ulation is 2K ×

∑
τi∈τ

P
Ti
, resulting in a time-complexity of

O(K ×
∑

τi∈τ
P
Ti
).

Based on this complexity, one can decide either to use
existing sufficient schedulability tests (see [7]) or to simulate
the schedule of τworst if the simulation time appears to be
reasonable.

7. SIMULATION RESULTS
This section reports on the lengths of the feasibility in-

tervals obtained in this paper. For simplicity, our simula-
tions are carried out by using periodic and asynchronous
implicit-deadline8 tasks and comparisons are performed by
8For each task τi = ⟨Oi, Ci, Di, Ti⟩ we have Di = Ti.

simulating the execution of thousands of task sets scheduled
by global-EDF. For each generated task set τ , we computed
the exact feasibility interval (see below) and the length of
the tightest interval [0, tupbest] that we obtained from Equa-
tion (14). Each task set is generated as explained below.
Task generation process: The input to the task-set gen-
erator is: a number m of processors, a minimum task uti-
lization Umin, a maximum task utilization Umax, and a tar-
geted total utilization Usum. Given these inputs, utilization
values ui are uniformly generated within [Umin, Umax] un-
til their sum becomes ≥ Usum − Umax. Once this threshold
is exceeded, a last task is generated with utilization equal
to Usum −

∑
ui. Then, the period of the tasks are gener-

ated in such a way that the hyper-period is kept “reason-
ably small”. This was necessary since the method used to
derive the exact (i.e. smallest) length of a feasibility inter-
val is highly computationally intensive and its complexity
depends on the least common multiple of the task periods.
Each task period is generated as follows: we randomly chose
a number ai ∈ {2, 4, 8, 16}, a second number bi ∈ {3, 6, 9, 12}
and a third number ci ∈ {5, 10, 15}; The period Ti is then
set to ai × bi × ci. Finally, the WCET of each task is com-
puted based on its utilization and period, Ci = ui × Ti (it
is rounded up to 1 if ≤ 1) and its offset Oi is uniformly
generated within [1, Ti].
Computation of the exact interval [0, texact]: For a
given task set τ , we simulate the schedule of τ and we
record and store the system configuration CS(τ, t) at each
and every time-instant t, starting from t = Omax. Once
t ≥ Omax + P , every configuration CS(τ, t) recorded at
time t is further compared against the one recorded at time
t − P . While CS(τ, t) ̸= CS(τ, t − P ), the simulation pro-
cess continues; In this case the configuration CS(τ, t−P ) is
dropped out (as it is no longer useful) and the configuration
CS(τ, t) is stored. The simulation process is stopped once
CS(τ, t) = CS(τ, t− P ) and texact = t is returned. For each
generated system τ , we divided the length texact of the exact
interval by Omax+P before plotting the resulting value. We
did so in order to depict only values that are not propor-
tional to the length of the hyper-period and the maximum
task offset.

We ran several sets of experiments with different values of
the four input parameters: m = 4, 8, and 16, Umin = 0.01,
and Umax = 0.1, 0.5, and 1. For all combinations of these
parameters, we made Usum varying from 0.1 to m with a step
of 0.1. Due to the space limitation, all the figures presented
here use the parameters m = 8, Umin = 0.01, Umax = 1, and
Usum varies from 0.1 to m by step of 0.1.
Experiment 1 (Figure 5): As it can be seen, the interval
[0, tupbest] has the same length as the exact interval for a total
utilization less than 3. Beyond 3, the accuracy of [0, tupbest]
starts deteriorating and the our interval is no longer tight.
Note that the plotted values for tupbest in Figure 5 are not
the absolute values of tupbest; Rather, it is the values of tupbest
divided by the length of the corresponding exact interval
(and this applies to all the other results that are presented in
this section). The rational for applying this transformation
is that the ratio between the lengths of the intervals is a
much more meaningful information. Also, given that the
resulting values for the exact interval seem to always be
equal to one, it might be thought that the length of this
interval is always equal to Omax+P . However, there are few
cases for which it is not true! (not so many cases though).

Another misinterpretation of the results of Figure 5 is
to claim that, since the exact interval is most of the time
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served by using of the “gcd” trick.

of length Omax + P , it is a wiser option to compute this
exact interval rather than an over-approximated one (like
tupbest). Here again, our experiments revealed that this in-
tuition is wrong. Computing the exact interval may be ex-
tremely memory-intensive as the system configurations must
be recorded at every time-instant t during an entire hyper-
period. This may result in an excessive number of configu-
rations to be stored and moreover, the computation of this
exact interval progresses time unit by time unit, and pass-
ing through all the system configurations within an entire
hyper-period may take a non-acceptable amount of time. In
contrast, though the length of our interval [0, tupbest] may be
a way longer than the exact one, simulating the schedule of
the system within that interval does not require to progress
so slowly through the schedule. The simulation can instead
progress from one “event” to the next one, where an event is
either a task release or a job completion.
Experiment 2 (Figure 6): In this second set of experi-
ments, we illustrate the benefit of using the “gcd” trick pre-
sented in Section 5. We carried out the same simulations
as in Experiment 1, but from each generated task set τ we
created four additional task sets τ2, τ4, τ8, and τ16. Each
additional task set τx is obtained from τ by multiplying all
its task parameters by x. Then, we computed the length of
our feasibility interval [0, tupbest] for each of these additional
task sets. The results show that: the bigger the task param-
eters, the longer the interval [0, tupbest]. That is (the other
way around), the higher the greatest common divisor of all
the task parameters, the higher the benefits of using this
technique.
Experiment 3 (Figure 7): We observed an interesting
phenomenon while testing the “gcd” trick. Beyond a certain
utilization threshold (when the displayed functions seem to
stabilize after taking off, around approximately m

2 ), a re-
duction of all the task parameters by a factor x results in a
feasibility interval [0, tupbest] approximately x2 times shorter.
Surprisingly, and beyond all expectations, this simple trick
appeared to be a necessary step to considerably reduce the
pessimism of the computed interval. So far, we have not yet
found any explanation for this quadratic reduction.

8. CONCLUSION
In this paper, we proposed a feasibility interval for pe-

riodic and asynchronous constrained-deadline tasks, FJP
schedulers, and homogeneous multicores. We have shown
through extensive experiments that the proposed interval
is as pessimistic as the utilization of the system increases.
However, we propose a simple trick (referred to as the“gcd”-
trick in the paper) to considerably reduce this pessimism for
highly utilized systems. It is important to stress that such
feasibility intervals allow for exact schedulability analyses.
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