From Task Scheduling in Single Processor
Environmentsto Message Scheduling in a PROFIBUS
Fieldbus Networ k

Eduardo Tovar', Francisco Vasques’

! Department of Computer Engineering, Polytechnic Institute of Porto, Rua de S&o Tomé, 4200
Porto, Portugal
emt@de .isep.ipp.pt
2 Department of Mechanical Engineering, University of Porto, Rua dos Bragas,
4099 Porto Codex, Portugal
vasgues@fe.up.pt

Abstract. In this paper we survey the most relevant results for the priority-
-based schedulability analysis of real-time tasks, both for the fixed and dynamic
priority assignment schemes. We give emphasis to the worst-case response time
analysis in non-preemptive contexts, which is fundamental for the
communication schedulability analysis. We define an architecture to support
priority-based scheduling of messages at the application process level of a
specific fieldbus communication network, the PROFIBUS. The proposed
architecture improves the worst-case messages' response time, overcoming the
limitation of the first-comefirst-served (FCFS) PROFIBUS queue
implementations.

1 Introduction

Real-time computing systems are defined as those systems in which the correctness of
the system depends not only on the logical result of computation, but also on the time
at which the results are produced [1]. There are various examples of real-time
computing systems, ranging from distributed computer control to robotics. In this
paper we particularly address distributed computer-controlled systems (DCCS)
applications.

A recent trend in DCCS is to interconnect distributed elements by means of a
multi-point broadcast network, instead of using traditional point-to-point links. Asthe
network bus is shared between a number of network nodes, there is an access
contention, which must be solved by the Medium Access Control (MAC) protocol.

Usually, a DCCS application imposes real-time constraints. In essence, by real-
time constraints we mean that traffic must be sent and received within a bounded
interval, otherwise a timing fault is said to occur. This motivates the use of
communication networks within which the MAC protocol is able to schedule
messages streams according to its real-time requirements.

During the past decade a reasonable number of commercial solutions, usually
called fieldbus networks, have been proposed to support DCCS applications. Some

distinguished examples are FIP [2], PROFIBUS [3], CAN [4] or P-NET [5]. In
parallel, severa international standardisation efforts have been and are till being
carried out. One of the most relevant resulted into the European Standard EN 50170
[6], which basically encompasses three well-proven fieldbus national standards:
PROFIBUS, FIP and P-NET.

A potential leap towards the use of fieldbus networks to support DCCS
applications liesin the evaluation of itstemporal behaviour. Several studies have been
performed, such as those on CAN [7,8], on FIP[9,10] and on P-NET [11,12].

Contrarily to other networks [15-16] which are based in the timed token protocol
[17], in PROFIBUS it is not possible to define, in each master, its synchronous
bandwidth allocation!. Thus, it is not possible to use analysis similar to those
proposed in [18-19]. In [13] the authors take two different approaches to guarantee
real-time traffic using PROFIBUS networks. One of the approaches considers a
worst-case scenario with, at most, one high priority message cycle? transmission per
token visit. Thus, if there are m high priority messages pending to access the bus, in
the worst-case it will take m token visits to execute al those high priority message
cycles. Considering the maximum token cycle (has derived in [14]), it is possible to
evaluate the maximum queuing delay of any message request.

In PROFIBUS, pending requests are queued in a First-Come-First-Served (FCFS)
gueue. Hence, a message request will have a worst-case queuing delay that depends
on the maximum priority inversion of messages. This motivated a study on adding
local priority-based scheduling mechanisms to PROFIBUS masters. One possibility
relies on the implementation of a priority-based queue at the application process level,
and limits the FCFS communication stack queue to one pending request. There are
several results available for the pre-run-time schedulability analysis of tasks in a
single processor environment. In this paper we will show how those results can be
adapted for message pre-run-time schedulability analysis in PROFIBUS
communication networks.

The remaining of the paper is organised as follows. In the next section we will
survey the most relevant results of tasks' pre-run-time schedulability analysis for both
fixed and dynamic priority assignment schemes. We will give emphasis to the worst-
case response time analysis in non-preemptive contexts. In section 3, PROFIBUS
protocol is presented and the timing analysis proposed in [13] is detailed. Finally, in
section 4, an architecture to support priority-based scheduling of messages at the
PROFIBUS application process level is defined, and the single processor worst-case
tasks' response time analysis is adapted to obtain the worst-case messages' response
time.

1 In PROFIBUS there is no synchronous bandwidth allocation (H;). If a master receives a late
token only one high priority message may be transmitted. Contrarily, in the timed token
protocol the station can transmit real-time (high-priority) traffic during H;, even if the token
islate.

2 In PROFIBUS a message cycle consists on a master's request frame and responder’s
immediate response frame.

2 Schedulability Analysisof Real-Time Tasks

One of the most used priority assignment schemes is to give tasks a priority level
based on its period: the shorter the period, the higher the priority. This assignment is
intuitively explained by the fact that more critical devices will provide inputs more
frequently (asynchronous interrupts), or indeed will be polled more frequently. Thus,
if they have shorter periods, the worst-case response time should aso be shorter. This
type of priority assignment is known as the rate monotonic (RM) priority assignment.

If some of the tasks are sporadic, it may not be reasonable to consider its relative
deadline equal to the period. A different priority assignment can be to give the tasks a
priority level based on its deadline: the shorter the relative deadline, the higher the
priority. This type of priority assignment is known as the deadline monotonic (DM)
priority assignment [20].

In both RM and DM priority assignments, priorities are fixed, in the sense that they
do not vary adong time. At run-time, tasks are dispatched highest-priority-first. A
similar dispatching policy can be used if the task that is chosen to run, is the one with
the earliest deadline. This corresponds to a priority-driven scheduling where priorities
of the tasks vary along time, hence corresponding to a dynamic priority assignment.
This type of dynamic priority assignment is known as earliest deadline first (EDF)
priority assignment [21].

In al three cases, the dispatching will take place when either a new task is released
or the execution of the running task ends. This however may not stand in a hon pre-
-emptive context. With priority-based scheduling, a higher-priority task may be
released during the execution of a lower priority one. In a pre-emptive system, the
higher-priority task will pre-empt the lower-priority one. Contrarily, in non-
preemptive systems, the lower-priority task will be allowed to complete its execution
before the other executes.

For the remaining of this paper, we characterise atask set (or a message stream set)
by its maximum execution time (transmission time), its relative deadline and its
period, denoted, respectively, as C;, D; and T;.

2.1 Analysisfor the Fixed-Priority Assignment

For the RM priority assignment, Liu and Layland [21] derived an utilisation-based
pre-run-time schedulability test, which, if satisfied, guarantees that al n tasks will
meet their deadlines: &.-,..C/T, < n~ (2V" - 1)3. This utilisation-based test is valid for
periodic independent tasks with relative deadlines equal to the period and for pre-
emptive systems. For the non pre-emptive case, a similar analysis can be adapted
from results available in [22]. The response time tests (by opposition to the
utilisation-based tests) are more advantageous for pre-run-time schedulability
analysis, since individual results can be obtained for each task.

3 Cisworst-case computation time of the task an T is the minimum time between task releases
(period). If the task is sporadic, the minimum period between any two aperiodic releases is
considered.

Joseph and Pandaya [23] proved that the worst-case response time r; of atask t; is
found when all tasks are synchronously released at their maximum rate (critical
instant). r; is computed by the following recursive equation (where hp(i) denotes the
set of tasks of higher priority thant)): ;™' = C + &; hp(.)(éri"‘/'l'jl]’ CJ-). The recursion
ends when r;™* = ;"™ = r; and can be solved by successive iterations starting from ro=
C.. Indeed, it is easy to show that r;" is non-decreasing. Consequently, the series either
converges or exceeds T; (in the case of RM) or D; (in the case of DM). If the series
exceeds T; (D)), the task t; is not schedulable.

Thisresult isvalid for the preemptive context. Fewer results are known about fixed
priority-based non-preemptive scheduling. In [24] Audsley et al. updated the analysis
of Joseph and Pandaya [23] to include blocking factors introduced by periods of non-
preemption. The worst-case response time is updated to:

r=w +Ci (1)

where w, is given by W™ = B; + ;i o (&M™/T,0" C). B, isthe blocking factor of task
t;, that is, an upper bound on the time a lower priority (thus resulting in priority
inversion) task can execute and prevent the execution of task t;. A methodology for
deriving B; was introduced in [22] to solve the problem of non-independence of tasks,
which can also be used for the schedulability analysis of non pre-emptive tasks:

B = max(c @

where Ip(i) denotes the tasks with lower priority thani.

2.2 Dynamic-Priority Assignment

The EDF schedulability test was introduced in [21], for periodic tasks with relative
deadlines equal to task periods. The main result from that work is the following
utilisation-based test: &., .Ci/T; < 1. Thisresult is hardly useful for real-time systems
with sporadic tasks. If we consider the more general case of Di£T; [25], the inequality
can be updated to: " .. o, & -1_(&t—D)/Tiif © C) £, where & = 0if x <.

The proof for this inequality is intuitive. Assume that at time t = O, there are no
pending tasks. Then, a necessary condition to guarantee the tasks deadlines is that the
amount of time, T, needed to transmit all tasks generated during [0, t] with absolute
deadlines £ t is not greater than t. Since the minimal inter-arrival time for atask t; is
T,, there are at most &t — D))/T,i" requests for that task during [0, t] which have a
deadline £ t. Those requests will need, at most, §t — D)/T,i" ~ C; time to be
completed. Thus the maximum value for T is given by é.:l,__,n(é(t —-D)ITU Ci).

Note that if D; = T;, inequality " (s o, é.:l,__,n(é(t -D)IT Ci) £ tis satisfied if the
utilisation-based test, &:-,..Ci/Ti < 1, is satisfied, since in this case &t — T;)/T;t" £ t/T;.
The inequality " ., éi=1,__,n(é(t— D)/Tid Ci) £ t has a practical problem, since it must
be checked over an infinite length interval [0, ¥). But, if we look to its left-hand
interval, we can easily understand that its value only changes at k™ T;+D; steps.

Additionally, there exists a point tyg,, such that &, (&t — D)MW~ C) £t aAways
hold for" .- ... (under the condition that the total utilisation & .-, ,Ci/T; < 1). Hence, the
following represents the feasibility test for EDF dispatched tasks in a single processor
pre-emptive context:

oAU et withs=F (D, +k T.kT AYC [0t 3)
mé T % @

The determination of t..., has been addressed in several works [26-29]. Note that
when the utilisation approaches 1, t. becomes very large. This is the main difficulty
for such utilisation-based schedul ability test.

For the non-preemptive case, asimilar feasibility test was derived in [25,30]:

E C+max{C}£t with D, = min{D,} (4)
a o

In [31], George et al. argue about the pessimism of (4). The main argument is that
in [30] Zheng and Shin consider that the cost of possible priority inversions, caused
by task non pre-emptability, is always initiated by the longest task and, moreover, is
effective during al the studied interval. To reduce the pessimism level of (4), they
suggest the following update (the values for Sare precisely defined in [31]):

"ﬂs,agu Ci+_rqax{ -1 £t, Wlthmax{ -3=0if$:D, >t (5
e hiou o o

The worst-case response time analysis for preemptive EDF scheduling was first
studied in [32]. The starting basis for such analysis was that the worst-case response
time for a general task set is not necessarily obtained with a synchronous pattern
arrival (that is, considering the critical instant as defined for the fixed priority case).
In that work, Spuri showed that the worst-case response time of atask t; is found in
the deadline busy period* of the processor.

This means that, in order to find the worst-case response time of t;, we need to
examine several scenarios within which, while t; has an instance released at time a,
all other tasks are synchronously released. If the start time of the asap® pattern of t; is
denoted by Sthen S =0, " ;... In general, t; may aso have other instances released
earlier than a. In particular, its start timeis§ =a—&/T,0" T;. Thus, given avaue of
a, the response time of thet; ‘sinstance released at time ais:

r.(a) =max{C,,L (a)- a} (6)

4 The longest deadline busy period (the processor is fully utilised) appears when al tasks but
task i are synchronously released and at their maximum rate.
5 as soon as possible

where L;(a) is the length of the busy period. Li(a) can be evaluated by the following
iterative computation (starting with L,°=0): L™(a) = Wi(a, L"(a)) + (1+éa/T, 0)’ C,
With W(@, t) = &+, oy caeos (Min{ &/Tj04 1+&a+D-D; /T, 0} G).

The worst-case response time for atask t; is then given:

= n;f?)x{ f (a)} ()

The remaining problem is for which values of a r; must be evaluated? If we look to
the right-hand side of the W(a, t) equation, we can easily understand that its value
does only changes at k™ T;+D; —D; steps. Thus,

al {7, +D,- b,k1 Alclo.L] ®

where L; is the maximum length of the deadline busy periods, as defined in [32].

The worst-case response time analysis for the non pre-emptive EDF scheduling
was introduced in [31]. The main difference to the analysis made for the pre-emptive
case is that atask instance with a later absolute deadline can possibly cause a priority
inversion. Thus, instead of analysing the busy period preceding its completion time,
we must analyse the busy period preceding the execution start time of the task’s
instance. Consequently, the response time of thet; ‘sinstance released at time a is:

r(a)=max{C,L (a)+C - a} 9)

where L;(a) is now the length of the busy period (preceding execution).

Thus, ri(a) can be evaluated by means of the following iterative computation (also
starting with L° = 0): L™ (@) = maxpjsa+ni { G =1} + W "(a, Li"(a)) + &a/T; O C; , with
W (@, 1) = & oy o (Min 1+&/T,0, 1+&(@+D-D;)/T; 0} * C).

Again, a should be evaluated in the following set of values:

al [J{' 7,+D,- D, kT A}G[o.L] (10)
j=1

where, in this case, L is the length of the sychrounous busy period, which can be
evaluated by (starting with L° = &.,_,C): L™ = W(L™), with W(t)=4 ., &/T,ti G,
which is solved by reoccurrence.

3. PROFIBUSTiming Analysis

3.1 PROFIBUSTimed Token Protocol

The PROFIBUS MAC protocol is based on atoken passing procedure, used by master
stations to grant the bus access to each one of them, and a master-slave procedure
used by master stations to communicate with slave stations. One of the PROFIBUS

MAC main functions is the control of the token cycle time, which will now be briefly
explained.

After receiving the token, the measurement of the token rotation time begins. This
measurement expires at the next token arrival and results in the real token rotation
time (Tggr). A target token rotation time (Ttr) must be defined in a PROFIBUS
network. The value of this parameter is common to all masters, and is used as follows.
When a station receives the token, the token holding time (T+4) timer is given the
value corresponding to the difference, if positive, between T.r and Tgr. PROFIBUS
defines two categories of messages. high priority and low priority. These two
categories of messages use two independent outgoing queues. If at the arrival, the
token is late, that is, the real token rotation time (Trg) Was greater than the target
rotation time (T+1gr), the master station may execute, at most, one high priority message
cycle. Otherwise, the master station may execute high priority message cycles while
Ty > 0. Ty is aways tested at the beginning of the message cycle execution. This
means that once a message cycle is started it is aways completed, including any
required retries, even if Ty expires during the execution. We denote this occurrence
as a Ty overrun. The low priority message cycles are executed if there are no high
priority messages pending, and while Tty >0 (also evaluated at the start of the
message cycle execution, thus leading to a possible Tty overrun).

Below is a description of the PROFIBUS token passing algorithm:

/* initialisation procedure */

At each station k, DO

T = 0

TRR_‘ 0,

Start Tge ; /* count-up tiner */

/* run-time procedure */
At each station k, at the Token arrival, DO
T~ Trr- Ter s
T = 0,
Start T ; /* count-up timer */
IF Ty > 0 THEN
Start Ty /* count-down tiner */
ENDI F;
IF waiting High priority nessages THEN:
Execute one High priority nessage cycle
ENDI F;
WH LE Tty > O AND pending High priority nmessage cycles DO
Execute High priority nessage cycles
ENDVWHI LE;
VWH LE Tty > O AND pendi ng Low priority message cycles DO
Execute Low priority nessage cycles
ENDVWHI LE;
Pass the token to station (k + 1) (nodulo n);

As mentioned in section 1, in PROFIBUS, a message cycle consists on a master's
action frame (request or send/request frame) and the responder's immediate
acknowledgement or response frame. User data may be transmitted in the action
frame or in the response frame. Note that in PROFIBUS a master station is allowed to
send up to a limited number of retries, if the response does not come within a

predefined time. Hence, the message cycle time length must also include the time
needed to process the allowed retries.

3.2 Message Worst-Case Response Time

As amaster station is able to transmit, at |east, one high priority message per received
token (no matter if there is enough token holding time left), a maximum queuing
delay can be guaranteed for PROFIBUS messages. Defining T,qe as the upper bound
between two consecutive token arrivals to a particular master, the maximum queuing
delay of a single message request (Q) is equal to Teye. Note that this only guarantees
a maximum transmission delay for the first high priority message in the outgoing
queue. If there are m pending messages in the outgoing queue it will take, in the
worst-case, m token visits to execute all those high priority messages.

It is obvious that the queuing delay depends on the outgoing high priority queue
implementation. PROFIBUS implements First-Come-First-Served (FCFS) outgoing
queues. Consequently, if nh* represents the number of high priority message streams®
in a master k, then the maximum number of pending messages will be nh¥,
corresponding to one message per each high priority message stream (Sh" (two
messages from the same stream would mean that a deadline for that message stream
was missed). Thus, an upper bound for the message queuing delay in a master k is:
Q*=nh* Teue—Ch¥, where Ch denotes the maximum length (request, response,
turnaround time and maximum allowable retries) of a message from stream Sh*. The
worst-case response time for a message cycle is given by:

R =Q‘+Chf=nh"" T (11)

cle
Thus, a set of PROFIBUS high priority message streams is guaranteed if the
following pre-run-time schedul ability condition is verified:

Dh 3 R, " (12)

master k, stream Sh¥
that is, if relative deadlines of all high priority message streams are greater than or
equal to their worst-case communication response time. If (12) is not satisfied, the
high priority traffic is not schedulable. In order to solve inequality (12), we need to
evaluate Teyge.

3.3 Cycle TimeEvaluation

Asshown in [13,14], Ty Can be expressed as a function of Trr. Thus, having defined
Teye it IS possible to set the T parameter in order to setisfy the pre-run-time
schedulability condition (12).

Considering that Te,qe is the upper bound of the real token rotation time (Tgg), We
must reason about Tgg in order to evaluate the value of Tge The Trs value will be

6 A message stream corresponds to a temporal sequence of message cycles related, for
instance, with the reading of a process sensor or the updating of a process actuator.

smaller than Ty (that is, the token will always be in advance to its schedul€), except if
one or more masters in the logical ring cause the token to be late. The main cause for
the token lateness (Tqq) is the Ty overrun. Such token lateness may be worsened if
the following masters, having received a late token, still transmit, each one, one high
priority message.

Considering the worst-case scenario in which a master k overruns its Tyy and the
following masters until master k—1 (modulo n) receive and use a late token, Ty can be
evaluated as follows:

T = éz. (Cv\kn) (13)

k=1

where C,* stands for the longest message cycle associated to each master k:
Cv=max{ max.._+{Ch}, CI"}, and Cl* is the longest low priority message cyclein a
master k. Thus, Tgyqe can be evaluated as follows:
Tcycle = TTR + Tdd (14)

Toillustrate the Tq,qe evaluation, assume the following scenario: after atoken cycle
without message transmissions, master k receives the token (Tr® = Tqr - t, since
Ter = t)7. This master can actually hold the token during T plus the duration of
its longest message. In this situation all the following masters in the logical ring will
receive a late token, thus only being able to process, at most, one high priority
message cycle.

A more accurate definition for T, can be found in [14], where factors such as the
different message cycle lengths and the relative position of each master in the logical
ring are taken into consideration for the definition of Teyge.

34 Setting the PROFIBUS T+g Parameter

We can now update the pre-run-time schedulability condition: Dh/® nh* (Trr+Tge).
Therefore, the Ty parameter can be set as follows:

k
0E T, £ 00 7k (15)

K k
nh master k, stream Sy

4 Adding Priority-Based M essage Scheduling

The first-come-first-served (FCFS) dispatching of the PROFIBUS outgoing queue
may induce in a “priority inversion” with the length ns-1 as, in the worst-case, a
message request with a more stringent deadline may be placed in the outgoing queue
after the other ns‘~1message requests of the same master station.

7 The parameter t includes the ring latency and other protocol and network overheads.

A priority-based queue would solve this problem: more stringent messages would
have lower worst-case response times whereas less stringent messages would have
higher worst-case response times (as compared to the FCFS dispatching policy).

Without changing the PROFIBUS FCFS implementation, a priority-based queue
may be implemented at the application process level, provided that the
communication stack outgoing queue (FCFS based) is limited to one pending request.
In PROFIBUS, this length control of the communication stack outgoing queue can be
trivially achieved by the proper use of alocal management service.

4.1 Message' s Release Jitter

In the analysis we made in section 3, the periods of the messages were not relevant for
the evaluation of the worst-case message' s response time. Independently of the model
of the tasks that generate the message requests, the worst-case queuing delay occurs
when ns‘ requests are placed at the outgoing queue just before master k passes the
token to the subsequent station.

If, in each master, messages are dispatched using a priority-based scheduling
policy (either DM or EDF can be considered), then, by using similar worst-case
response time analysis as for the case of non pre-emptive® task scheduling in single
processor environments, periods of the message request are now relevant. In fact, both
equation (1) (for the case of pre-run-time schedulability analysis of non pre-emptive
DM) and eguation (9) (for the case of pre-run-time schedulability analysis of non pre-
-emptive EDF) very much depend on the periods of the tasks (now message requests).

This rises the problem of message release jitter, which in the context of
communication networks has been addressed in severa studies such as by Tindell and
Clark [33] and by Spuri [34].

In the case of PROFIBUS we can assume that message requests are placed in the
priority-ordered application process queue by an application task, and a task’'s
instance will generate a message stream request. In this sense we can say that
messages inherit from sending tasks both their period and priority level (if fixed
priorities are used). It is implicit that tasks at the application process level are
scheduled according to a priority-based policy, most probably in a preemptive
context. It results from this inheritance approach that the message requests generated
by tasks will have a minimum inter-arrival time smaller than the period of the tasks,
which generate them.

In PROFIBUS, the sending task and the response’s receiving task are in the same
host processor. In fact, they can even be the same task. There is an initia part of the
task responsible for placing the request in the priority-based AP queue (during this
process, this task competes with the other tasks for the processor). Then the task auto-
suspends itself until the response arrives. Finally, after receiving the response, it
processes it the task until completion (again in this phase competing with other
running tasks). If this is the case, the messages's release jitter is the worst-case

8 The pre-emptive schedulability analysis is not useful for message scheduling in PROFIBUS
networks, as a message cycle is non pre-emptable.

response time of the first part of the task (which includes placing the request in the
priority ordered queue).

We can think also about a model where sending and receiving tasks are separate
tasks (in fact each pair of sending/receiving tasks do not correspond to independent
tasks, since if one is runnable the other is not in the runnable queue). In this case, the
release jitter for a message request corresponds to the worst-case response time of the
sending task. That is, in a particular instance of the task, the message can be released
close to the worst-case response time of the task; and in the subsequent release of the
task, the message can be released as soon as the arrival of that new task’ s instance.

Independently of the task model adopted for the apL)Iication level, we denote the
release jitter of a message stream i in a master k as J“. The evaluation of its value
depends on the adopted task model and also on the scheduling policy of the tasks.
Both task models demand some careful for analysing tasks worst-case response
times.

4.2 End-To-End Communication Delay

The inclusion of an application process task model motivates the definition of the
end-to-end communication delay [35]. With this concept, we associate timing
requirements to tasks, and messages inherit periods, priorities and release jitter from
tasks. If we use EDF scheduling, messages will be placed in the priority-based queue
according to the earliness of the absolute deadline of the message’s generating task.
Note that the AP priority-based queue should only be re-ordered when a new request
is generated (this stands for both DM and EDF).

The end-to-end communication delay (E) can be generically defined as:
E=g+Q+C+d. g represents the worst-case generation delay for the master application
task to generate and queue a specific message request. This would also corresponds to
the message release jitter, which will be used for computing Q. The term Q
corresponds to the worst-case delay for that request to gain access to the
communications device after being queued. As previoudy mentioned, using a
priority-based dispatching, this parameter would depend on the release jitter of each
message stream. The term C corresponds not only to the worst-case for transmitting
the request, but also to the time needed to receive the response from the slave
(including processing at the slave side, slave turnaround time, propagation delay and
other network latencies). Finally, d represents the delivery delay, that is, the time
needed to process the response before finally delivering it to the destination task,
which in the case of PROFIBUS is in the same host processor as the sending task.
Variation to this results from whether separated sending and receiving tasks are
considered.

In the next sub-section we will simply focus on the Q (or Q+C) parameter, and
redefine the worst-case message’s response time. Basically we are going to update
equation (11) for embodying a priority-based dispatching policy.

4.3 Priority-Based Message' s Response Time

Basically, the Cs in equations (1) and (9) will be replaced by Tgqe and for
considering one “blocking” the requests can appear marginally after receiving the
token and marginaly before passing the token. Assume also that all message cycles
are equal. Hence, considering DM, equation (11) can be updated to:

&R +J] 9 16
R cycle+ a ge’T—kU T cle - ()
" jine(i) 8@] g ﬂ
where 'I'*cyde—TcyC.e except for the case of the message with the lowest priority (in this
case T cyde=0).
Considering EDF, equation (11) can be updated to:
Rk (a) = maX{Tcycle1 L| () +Tcyc|e } (17)

where (starting with L%(a)=0):

)(‘D)
QD

m+. —_ m u
Li 1(3)— Dg%k{ cycle ~ 1}+W (a’ LI ()) gﬁg T, cycle? with
o) (18)
& i k . k(G 0
Wat)= & Sminji+e Hl+§a+D 2t w Ty
& 1 eTig e T b

D¥£a+DF

5 Conclusions

In this paper we have drawn a comprehensive study on how to use PROFIBUS to
support real-time communications. We surveyed previous relevant work on how to
evaluate the worst-case response time of tasks in a single processor environment.
Particular relevance was devoted to the non pre-emptive case.

As in PROFIBUS the message requests are processed in a first-come-first-served
basis, we reasoned about the possibility of supporting priority-based scheduling of
message requests at the application process level of PROFIBUS.

Finally, we have derived the worst-case response time of PROFIBUS message
requests for both the cases of message requests dispatched using a DM priority
assignment and an EDF priority assignment.

The relevance of this work results from the obvious conclusion that the use of
priority-based dispatching mechanism at the application process level alows the
support of messages with more tight deadlines.

Acknowledgements

This work was partially supported by FLAD under the project SISTER 471/97 and by
| SEP under the project REMETER.

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

Stankovic, J.: “Real-Time Computing Systems: the Next Generation”, in STANKOVIC J,
RAMAMRITHAM, K. (Eds) “Tutoria: Hard Rea-Time Systems’ (IEEE, 1988), pp.
14-38, 1988.

Normes FIP NF C46-601 to NF C46-607, Union Technique de I'Electricité, AFNOR, 1990.
Profibus Standard DIN 19245 part | and Il. Transdated from German, Profibus
Nutzerorganisation e.V., 1992.

SAE J1583, Controller Area Network (CAN), an In-Vehicle Serial Communication
Protocol. SAE Handbook, Vol. 1, 1992.

The P-NET Standard. International P-NET User Organisation ApS, 1994.

Genera Purpose Field Communication System, Vol. /3 (P-NET), Vol. 2/3 (Profibus), Vol.
3/3 (FIP), CENELEC, 1996.

Tindell, K., Hansson, H., Wellings, A.: “Analysing Real-Time Communications: Controller
Area Network (CAN)”. Proceedings of the |IEEE Real Time Systems Symposium
(RTSS' 94), S.Juan, Puerto Rico, pp. 259-263, IEEE Press, 1994.

Tindell, K., Burns, A., Wellings, A.: “Calculating Controller Area Network (CAN)
Message Response Times’. Control Engineering Practice, Vol. 3, No. 8, pp. 1163-11609,
Pergamon, 1995.

Raja, P., Ruiz, L., Decotignie, J-D.: “On the Necessary Real-Time Conditions for the
Producer-Distributer-Consumer Model”. Proceedings of 1% IEEE Workshop on Factory
Communication Systems (WFCS'95), Leysin, Switzerland, 1995.

Pedro, P., Burns, A.: “Worst Case Response Time Analysis of Hard Real-Time Sporadic
Traffic in FIP Networks’. Proceedings of 9th Euromicro Workshop on Real-time Systems,
Toledo, Spain, pp. 5-12, 1997.

Tovar, E., Vasgues, F.: “Pre-run-time Schedulability Analysis of P-NET Networks’.
Proceedings of 24th Annual Conference of the IEEE Industrial Electronics Society
(IECON'98), Aachen, Germany, pp. 236-241, 1998.

Tovar, E., Vasques, F., Burns, A.: “Rea-Time Communications in Multihop P-NET
Networks’. Submitted to Control Engineering Practice, 1998.

Tovar, E., Vasques, F.: “Rea-Time Fieldbus Communications Using Profibus Networks'.
To appear in the |IEEE Transactions on Industrial Electronics, 1998.

TOVAR, E., VASQUES, F.: “Cycle Time Properties of the Profibus Timed Token
Protocol”, submitted to |EE Proceedings - Software, 1998.

I1SO, Information Processing Systems - Fibre Distributed Data Interface (FDDI) - Part 2:
Token Ring Media Access Control (MAC), 1SO International Standard 9314-2, 1989.

IEEE, |EEE Standard 802.4: token passing bus access method and physical layer
specification, 1985.

Grow, R.: “A Timed Token Protocol for Local Area Networks’. Proceedings of Electro’ 82,
May 1982, Token Access Protocols, Paper 17/3.

Agrawal, G., Chen, B., Zhao, W., Davari, S.: “Guaranteeing Synchronous Message
Deadlines with the Timed Token Protocol”. Proceedings of the 12th IEEE International
Conference on Distributed Computing Systems, June 1992.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31

32.

33.

34.

35.

Montuschi, P., Ciminiera, L., Vaenzano, A.: “Time Characteristics of IEE802.4 Token
Bus Protocol” . |EE Proceedings, January 1992, 139 (1), pp. 81-87.

Burns, A.: “Scheduling Hard Real-Time Systems’. Software Engineering Journal - Specia
Issue on Real-time Systems, pp. 116-128, May 1991.

Liu, C., Layland, J.: “Scheduling Algorithms for Multiprogramming in a Hard-Real-Time
Environment”. Journal of the Association for Computing Machinery (ACM), Vol. 20, NO.
1, pp. 46-61, January 1973.

Sha, L., Raikumar, R., Lehoczky, J.: “Priority Inheritance Protocols: an Approach to Real-
Time Synchronisation”. |EEE Transactions on Computers, Vol. 39, NO. 9, pp. 1175-1185,
September 1990.

Joseph, M., Pandya, P.: “Finding Response Times in a Real-Time System”. The Computer
Journal, Vol. 29, NO. 5, pp. 390-395, 1986.

Audsley, N., Burns, A., Richardson, M., Tindell, K, Wellings, A.: “Applying New
Scheduling Theory to Static Priority Pre-emptive Scheduling”. Software Engineering
Journal, Vol. 8, NO. 5, pp. 285-292, September 1993.

Zheng, Q.: “Real-Time Fault-Tolerant Communication in Computer Networks’. PhD
Thesis, University of Michigan, 1993.

Baruah, S., Howell, R., Rosier, L.: “Algorithms and Complexity Concerning the Pre-
emptive Scheduling of Periodic Real-time Tasks on One Processor”. Real-Time Systems,
2, pp. 301-324, 1990.

Baruah, S., Mok, A., Rosier, L.: “Preemptively Scheduling Hard-Real-Time Sporadic
Tasks on One Processor”. Proceedings of the 11th Real-Time Systems Symposium
(RTSS 90), pp. 182-190, 1990.

Ripoll, I., Crespo, A., Mok, A.: “Improvement in Feasibility Testing for Real-time
Systems”. Real-Time Systems, 11, pp. 19-39, 1996.

Spuri, M.: “Earliest deadline Scheduling in Real-time Systems’. PhD Thesis, Scuola
Superiore Santa Anna, Pisa, 1995.

Zheng, Q., Shin, K.: “On the Ability of Establishing Real-Time Channels in Point-to-Point
Packet-Switched Networks’. |IEEE Transactions on Communications, Vol. 42, no. 2/3/4,
pp. 1096-1105, 1994.

George, L., Rivierre, N., Spuri, M.: “Preemptive and Non-Preemptive Real-Time Uni-
Processor Scheduling”. Technical Report No. 2966, INRIA, September 1996.

Spuri, M.: “Analysis of Deadline Scheduled Real-Time Systems’. Technical Report No.
2772, INRIA, January 1996.

Tindell, K., Clark, J.: “Holistic Schedulability Analysis for Distributed Hard Real-Time
Systems”’, in Microprocessors and Microprogramming, No. 40, 1994.

Spuri, M.: “Holistic Analysis for Deadline Scheduled Real-Time Distributed Systems’.
INRIA, Technical Report no. 2873, April 1996.

Tindell, K., Burns, A., Wellings, A.: “Analysis of Hard Real-Time Communications’.
Real-Time Systems, 1995, 9, pp. 147-171.

