

Hard real-time multiprocessor scheduling

resilient to core failures

Technical Report

CISTER-TR-150405

2015/04/15

Borislav Nikolic

Konstantinos Bletsas

Stefan M. Petters

Technical Report CISTER-TR-150405 Hard real-time multiprocessor scheduling resilient to core ...

© CISTER Research Center
www.cister.isep.ipp.pt

1

Hard real-time multiprocessor scheduling resilient to core failures

Borislav Nikolic, Konstantinos Bletsas, Stefan M. Petters

CISTER Research Center

Polytechnic Institute of Porto (ISEP-IPP)

Rua Dr. António Bernardino de Almeida, 431

4200-072 Porto

Portugal

Tel.: +351.22.8340509, Fax: +351.22.8321159

E-mail: borni@isep.ipp.pt, ksbs@isep.ipp.pt, smp@isep.ipp.pt

http://www.cister.isep.ipp.pt

Abstract

Most multiprocessor scheduling theory overlooks the possibility of hardware failures that entirely nullify the

computation carried out by a task instance, and potentially also make the respective processor henceforth

unusable. Yet, such failures may occur, causing the system to fail. Motivated by this reality, we introduce a new

concept of hard real-time schedulability guarantees for critical multiprocessor systems and analysis for their

derivation. Namely, all deadlines must be met, even in the event of a core failure. A scheduling approach, based

on global fixed priorities, and accompanying analysis, for achieving such guarantees are then formulated.

Hard real-time multiprocessor scheduling
resilient to core failures

Borislav Nikolić, Konstantinos Bletsas and Stefan M. Petters
CISTER/INESC-TEC, ISEP, IPP, Porto, Portugal

Email: {borni, ksbs, smp}@isep.ipp.pt

Abstract—Most multiprocessor scheduling theory overlooks
the possibility of hardware failures that entirely nullify the
computation carried out by a task instance, and potentially
also make the respective processor henceforth unusable. Yet,
such failures may occur, causing the system to fail. Motivated
by this reality, we introduce a new concept of hard real-time
schedulability guarantees for critical multiprocessor systems and
analysis for their derivation. Namely, all deadlines must be met,
even in the event of a core failure. A scheduling approach,
based on global fixed priorities, and accompanying analysis, for
achieving such guarantees are then formulated.

I. INTRODUCTION

Hard-real-time multiprocessor scheduling requires offline
guarantees of schedulability. Its critical systems subdomain
though, requires even stricter schedulability guarantees, in
the presence of unlikely events like execution overruns and
hardware faults.

For dealing with the former kind of events (execution
overruns), and in the context of mixed-criticality systems, a
comprehensive toolset of analysis and design techniques is
gradually being assembled [11]. However, another kind of rare
event endangering a system involves a core failing, temporarily
or permanently. This causes whichever task instance (job) was
executing on the respective processor to be terminated short
of completion as a result, and all the computation performed
by it since its arrival to be wasted. Additionally, if this
failure is permanent, rather than just temporary, it leaves the
system with one usable core less. Even if such a failure is
detected immediately, and the terminated task restarted, the
schedulability of the system may be compromised because
(i) the job restarted from the beginning still has to meet the
absolute deadline of the original terminated job, which may
be too close, and, if the failure is permanent, (ii) the same
workload as before has to be scheduled on fewer cores.

Motivational example 1: A multiprocessor system with 100
cores has a single task with an execution time of 6 time units
and a deadline of 10. It arrives at time t = 0 but at t = 5 the
task is killed due to the core failure. And even if it is restarted
immediately, it will miss its deadline at t = 10.

Adding processors, in this example, does not help meet
deadlines. What would help, would be to speculatively launch
a redundant copy of the task, in case the original one is killed.
But such duplication wastes processing capacity in the general
case and even so, does not always bring the desired resilience,
as demonstrated with the following example:

Motivational example 2: Consider a multiprocessor system
with three cores and two sporadic tasks τ1 = (10, 10, 10) and

τ2 = (2ε, 10, 10), where τ1 has a higher priority, and the values
in brackets denote the execution time, the deadline and the
period, respectively. This workload is schedulable (e.g. with
global fixed-priorities) even if two copies of each task are
released at each arrival. But if both tasks arrive at t = 0 and the
core where τ2 runs fails permanently immediately afterwards,
a deadline is missed (Figure 1).

Fig. 1: Accompanying graphic for Motivational example 2.

So ideally, we seek both minimal execution redundancy
and also offline-provable resilience in case of a core failure. To
that end, we propose an approach for scheduling hard-real time
tasks resiliently with respect to core failures, based on global
fixed priorities. Global scheduling is a natural choice because
the single run-queue tends to balance the load on the available
processors, smoothing out any transient load due to the failure.
It also makes it irrelevant, which is the core that fails, since
cores are interchangeable and pooled together – unlike (semi-
or full) partitioning. As for fixed-priority scheduling, it is a
well-understood widely supported policy.

Core failure semantics: We disregard other kinds of faults
(e.g., corruption of main memory) and only consider hardware
failures specific to each core (i.e. its ALUs, registers, private
caches) and failures in its core-specific software layers (OS,
workload). We assume a hardware facility exists for immediate
fault detection e.g., the contents of a write-back L1 cache
cannot be trusted or the ALU output written to a register is
suspect. How this is implemented is beyond the scope of this
work, but engineering reality offers examples1.

Regardless of the failure type (i.e. a transient or a perma-
nent one), a fault indicates that the state of whichever task
was executing on the affected processor at detection time, is
corrupted. Hence, the task should be aborted, but the original
deadline associated with it must still be met – either by a
newly launched instance of the task or by a redundant instance
already launched speculatively (to cover for a potential failure,

1For example, parity bits in L1 caches. Also, in critical systems, pairs of
cores are sometimes set to operate in lockstep, with the same inputs [15],
effectively being used as a single processor; mismatching core outputs then
indicate a fault in one of the two.

and prevent the situation described in Motivational example 1).
Conversely, we assume that the state of all other tasks in the
system can be trusted, either because they currently execute
on non-faulty cores or (if not currently running) because their
state resides entirely in main memory, which can be trusted.
So all other tasks, except the one currently executing on the
processor that failed, are unaffected.

Depending on the criticality of the system, as well as the
nature of the fault, it may be reasonable to treat the fault
as transient and reuse the core after the task in question has
been killed, or alternatively, immediately take the faulty core
permanently offline, which leaves the system with one core
less. In this work, we consider both possibilities. In any case
though, if the system is critical at all, we assume that the
operator will seek to take it offline at the first convenient
opportunity for doing so in an orderly manner. Therefore,
although resilience guarantees under multiple core failures are
theoretically interesting, in this work we only consider a single
failure and believe that this captures most practical scenarios,
even if not all. To illustrate, if the mean-time-before-failure
(MTBF) for a typical core used in critical systems is hundreds
of thousands of hours, the probability of a second core failing
within the few minutes needed for safely shutting down the
system in a controlled manner, would be too low to be of
practical concern in most contexts.

In order for the above semantics and process model to be
applicable to a real system, some requirements exist both for
the platform and O/S and also in the application design. We
already mentioned the need for a facility for detecting failures
as soon as they occur. A software facility for starting (and stop-
ping) job copies, as needed, is also required. However, the mere
fact that our approach may force a task to, effectively, execute
in parallel with itself, may introduce, in the absence of design
safeguards against this, synchronisation hazards (i.e., when
performing I/O or when accessing variables/manipulating ap-
plication state) where there were previously none. These and
other practical aspects and challenges are discussed again later,
in more detail, in Section V.

II. RELATED WORK

The multiprocessor scheduling theory has lately received a
lot of attention from the real-time community. All state-of-the-
art approaches can be broadly classified into several categories.

The fully-partitioned approaches are migration-less. Each
task is, at design-time, mapped to a particular core, and all
its computations have to be performed on that core. Each core
has an independent scheduler, which is responsible to schedule
the workload located on its respective core in a uni-processor
fashion, by implementing one of the scheduling algorithms for
uni-processors (e.g. [21]).

In the semi-partitioned approaches (e.g. [10], [19]), the
tasks are allowed to migrate, however, the migration decisions
are derived at design-time. That is, in each iteration, a migra-
tive task must perform a prescribed amount of work on each
of the cores where it migrates, and that has to be performed
in an already defined order.

The global approaches (e.g. [4], [6]) allow unconstrained
workload migrations, which means that each task has the

possibility to migrate at any time to any core within the
platform. All migration decisions are made at runtime, by a
single global scheduler.

The clustered approaches (e.g. [12]) present a concept
which combines the properties of the fully-partitioned and
global approaches. Specifically, all cores are divided into dis-
joint groups, where each group forms one cluster. A cluster is
perceived and treated as an independent system, with the global
scheduling policy applied on the cluster-level. Moreover, each
task is assigned to exactly one cluster, and it has the possibility
to freely migrate within its respective cluster.

In recent years, the researchers focused on another type
of approaches, which we refer to as the arbitrary-partitioned
approaches (e.g. LMM [23], APA [18]). In these approaches,
each task has a set of cores where it is allowed to migrate to.
Note that fully-partitioned and global approaches are only a
special case of arbitrary-partitioned approaches, where, in the
former case, the core-candidate-set of each task has only one
element (core), while, in the latter case, the core-candidate-set
contains all elements (cores).

As already mentioned, the focus of this work is on multi-
processors with global fixed priorities. For such a model, Lund-
berg [22] proposed the response-time analysis. Subsequently,
Bertogna and Cirinei [8] proposed an analysis which improves
the above result. The improvement is twofold. First, the authors
derived a tighter upper-bound on the workload that higher-
priority tasks can generate within the analysed time interval.
Second, they observed that if an interfering task is ”too large”,
not all its workload will necessarily cause interference, as some
parts of it might be executed in parallel with the analysed task.

Guan et al. [17] further improve the above result. Their
analysis is inspired by the aforementioned method of Bertogna
and Cirinei [8], upon which they apply concepts similar to
the window analysis framework proposed by Baruah [5].
Specifically, this approach allows to derive even tighter upper-
bounds on the workload generated by higher-priority tasks,
and consequently derive tighter response-time estimates. This
is achieved by proving an upper-bound on the number of
interfering tasks that can have carry-in workload (defined as
workload from jobs released earlier than the start of the time
window in consideration) in the worst-case scenario. Recently,
Sun et al. [26] proposed an improvement over the analysis of
Guan et al. [17], which is applicable to task sets with arbitrary
deadlines.

Until now, core failures and their implications on the
schedulability analysis have received very little attention from
the real-time community. In the uniprocessor domain, one
notable work addressing transient core failures is that of
Pathan [25]. Specifically, in order to recover from task errors,
caused by transient hardware or software faults, the author pro-
poses the release of backup jobs. Understandably, permanent
processor failures are not covered therein, simply because they
are impossible to recover from on a uniprocessor. However, on
multiprocessors, this is a possibility. Ghosh et al. [16] proposed
a method which allows for multiple core failures, but it is
applicable only to task-sets with low-utilised tasks, whereas in
our work such a restriction does not exist. Moreover, the works
of Pathan [24] and Cirinei et al. [13] consider only transient
faults in the multiprocessor setup.

Note that the schedulability analysis with core failures
can be also studied from the perspective of mode changes
(e.g. [20]), whereas the functioning of the system, before and
after a core failure, can be perceived as distinctive system
modes. Also note that any potentially different workload
requirements, before and after a failure, can be analysed
with the mixed-criticality computational model (e.g. [27]). The
state-of-the-art methods from the aforementioned areas indeed
efficiently take into account potential workload variations,
associated to different system states. However, none of the
existing works allows the possibility of variations in available
hardware resources, which is an essential requirement for the
integration of core failure events in the schedulability analysis.
Partly, an exception is the work of Baruah and Guo [7],
in the context of mixed-criticality scheduling, which allows
degradation in the processor speed. Still, that problem differs
from ours in the sense that Baruah and Guo [7] focus on
uniprocessors, while in this work we consider multiprocessors.
Additionally, in the aforementioned study, the workload is
comprised of a finite sequence of independent jobs, whereas
we target sporadically recurring tasks.

III. OVERVIEW

A. System model

We assume a multiprocessor system with m identical cores
and a task-set τ with n sporadic tasks {τ1, τ2, . . . , τn−1, τn}.
Each task τi has a worst-case execution time (WCET) Ci, a
relative deadline Di and a minimum inter-arrival time Ti. We
assume constrained deadlines (Di ≤ Ti). Tasks are indepen-
dent, share no resources and are to be scheduled according to
a fully preemptive global fixed-priority scheme. Each task has
an associated unique priority, assigned at design time, i.e. not
given a priori as a part of the problem instance.

We use the terms “processor” and “core” interchangeably.
We refer to the currently executing job affected by a core
failure, and aborted with no salvageable state, as the wasted
job. A job launched after the detection of a failure, as a
replacement instance of the wasted job is termed its copy job,
with the wasted job being referred to as its corresponding main
job. For a task that requires redundancy, in order to meet its
deadline, even in the case of a core failure, the respective copy
jobs may need to be launched speculatively, just in case the
corresponding main job is wasted too close to its deadline; then
the two may concurrently co-exist in the system. We refer to
that co-existence as “overlap” and to tasks for which overlap
is possible at run-time as “overlapping”. Once a main job by
an overlapping task completes, its corresponding copy job is
immediately terminated, as it no longer serves any purpose.

Whether a task is overlapping or not, is known offline. It is
not part of the input to the design process though; it is simply
an arrangement reached at the design stage itself, in order to
ensure schedulability.

B. Problem refinement

As mentioned, the system is restricted to global fixed task
priority scheduling, with the actual priority assignment origi-
nally unspecified. The objective is for all tasks to meet their
deadlines, assuming at most one core failure event (whether

temporary or permanent). From an abstracted scheduling per-
spective, the only difference between these two failure types is
the number of processors m′ that are available after a failure,
which is m after a temporary failure, and m − 1 after a
permanent one. Resilience to a core failure is achieved via
the use of copy jobs, as described earlier. However, the fact
that we only require the system to survive a single core failure
event means that, from the perspective of providing such a
guarantee, it is no longer beneficial to use copy jobs after
“surviving” that single failure. Thenceforth, only main jobs
are released, as in conventional scheduling, and no more copy
jobs are ever released. For the same reason, all active copy
jobs of unaffected tasks, are also dropped, when the core fails.

Under these semantics, the problem amounts to specifying
(i) a task priority assignment and (ii) the conditions that trigger
the release of copy jobs at run-time, such that the system is
provably schedulable even in the event of a core failure.

These decisions are intertwined, since, for example,
whether some task needs to be overlapping or not may depend
on the set of its higher-priority tasks. To simplify both the
decision problem and the dispatching at run-time, we adopt
the following arrangement:
– For a non-overlapping task τi, a copy job is released at the
time of failure of its corresponding main job.
– If τi is overlapping, then its copy jobs are released at a fixed
(designer-set) offset Oi relative to the arrival of their corre-
sponding main jobs – unless the main job already completes
before that time. For tie-breaking, a copy job always has a
lower priority than its main job.

Effectively then, in the context of a particular priority
assignment, we need to:
(i) Identify the tasks that require speculative copy job execution
(i.e. the overlapping tasks) and
(ii) pick appropriate copy job offsets (Oi) for them.

As will be demonstrated with experimental evaluations
(Section VI), offsets entail a tradeoff: A small Oi gives
the copy job a greater deadline (Di − Oi) within which to
complete, hence it facilitates the schedulability of τi. How-
ever, it increases the interference from speculative redundant
computation onto lower-priority tasks.

IV. SCHEDULABILITY ANALYSIS, OFFSET ASSIGNMENT
AND PRIORITY ASSIGNMEMT

This section describes our proposed approach for schedul-
ing with core-failure-resilience guarantees. First, we introduce
an appropriate schedulability analysis, assuming a given prior-
ity assignment and a given offset assignment. This analysis is
then used to pick the tasks that execute speculatively and their
copy job offsets. It can also guide the priority assignment.

Note that the following analysis is general enough to
cover either permanent or transitional core fault semantics.
The only distinguishing aspect for the two scenarios, from the
perspective of the analysis, is the number of available cores
post-failure.

A. System mode coverage in analysis

The system operation can be viewed in terms of two
modes, S and D. The system starts in Mode S (standard)

and immediately switches to Mode D (degraded) when a core
failure occurs. Recall that if the failure affected some main job,
upon the transition to Mode D, all copy jobs, except the one
“backing up” the affected main job, are dropped. Afterwards,
no further copy jobs are released. Conversely, if the failure
affected some copy job, all copy jobs are dropped.

The schedulability of each task τi must be guaranteed
in both modes, also covering the possibility that a mode
switch occurs during the busy period of τi. Therefore, τi must
be provably schedulable under all the following scenarios,
depending on what mode the system is in at the time of the
task’s absolute deadline:

• Case 1: Before any core fails (i.e. with the system in
Mode S throughout the entire activation of τi).

• Case 2: In Mode D, triggered by a core failure
affecting some higher priority task τk.

• Case 3: In Mode D, triggered by a core failure
affecting τi itself.

• Case 4: In Mode D, triggered by a core failure
affecting some lower priority task.

Case 1 can be covered by adapting the state-of-the-art
analysis for global fixed-priority scheduling [17] and our
model to each other, as we will describe. In Cases 2-4, we
need to additionally account for the mode change (potentially
also involving a reduction in the number of cores, if the core
failure is permanent). But we note that Case 4 is dominated by
Case 2, since lower-priority tasks cannot interfere with τi; and
the reduction in the number of cores (in the case of permanent
failure) is already captured by Case 2. In other words, all other
things being equal, a failure of a higher-priority task τk (Case
2) causes both an immediate reduction in the number of cores
and an increase in the workload by τk, which interferes with
τi. By comparison, when a lower-priority task fails (Case 4),
this only reduces the number of cores but it does not increase
the higher-priority workload interfering with τi.

Hence, we only consider Cases 1-3 and use the superscripts
∅, �k and �i to differentiate among them in our notation. But
first we briefly present the state-of-the-art analysis [17] for
standard global fixed-priority scheduling, that we build upon.

B. The state-of-the art analysis by Guan et al. [17] for
standard global fixed-priority scheduling

Under that analysis [17], τi is deemed schedulable if Ri ≤
Di, where Ri is an upper bound on its worst-case response
time (WCRT), computed as

Ri =

{
Ci, if |hp(i)| < m

Ci + Ii(Ri), otherwise
(1)

where Ii(Ri) is an upper bound on the interference that τi
suffers from higher priority tasks during any interval of length
Ri. This is computed as follows:

If a higher-priority task τj ∈ hp(i) has no carry-in
workload within the busy-period of τi, its workload over an
interval of length t is bounded by the expression

WNC
j (t) =

⌊
t

Tj

⌋
· Cj + Jt mod TjKCj (2)

where the term t mod Tj
def
= t −

⌊
t
Tj

⌋
(intuitively, the

remainder of the division of t by Tj) corresponds to the length
of the carry-out interval and the operator J·K·· is defined as

JxKmax
min

def
=


min if x < min

x if min ≤ x ≤ max

max if x > max

with the arguments min and max being optional and
defaulting to −∞ and +∞ respectively, if omitted (Figure 2).

Fig. 2: Plot of JxKmax
min as a function of x.

However, in the general case, τj may also have carry-in
workload. Then, its workload has the following upper-bound:

WCI
j (t) =

body︷ ︸︸ ︷⌊
Jt− CjK0

Tj

⌋
· Cj +

carry-out︷︸︸︷
Cj

+ JJt− CjK0 mod Tj − (Tj −Rj)K
Cj−1
0︸ ︷︷ ︸

carry-in

(3)

In Appendix A, we provide some intuition on how Guan
et al. [17] derived these equations.

It is always the case that WCI
j (t) ≥WNC

j (t). However, as
Guan et al. [17] showed, improving on the work of Bertogna
and Cirinei [8], at most m − 1 tasks can have carry-in.
Accordingly, an upper bound on the interference suffered by
τi within the time interval Ri can then be computed as

Ii(Ri) =

⌊
1

m

(∑
j∈hpCI(i)

JWCI
j (Ri)KRi−Ci+1

+
∑

j∈hpNC(i)

JWNC
j (Ri)KRi−Ci+1

)⌋
(4)

where hpCI(i) is the subset, of cardinality m−1, of hp(i)
for which

∑
j∈hpCI(i)

(
JWCI

j (Ri)KRi−Ci+1 − JWNC
j (Ri)KRi−Ci+1

)

is maximised; and hpNC(i) def
= hp(i) \ hpCI(i).

Due to Ri appearing in both sides, Equation 1 is solved via
a recurrence relation, as in uniprocessor WCRT analysis [3].
Note however that hpCI(i) and hpNC(i) need to be computed
anew at every iteration.

C. Analysis for the failure-resilient model

1) Schedulability analysis for Mode S (Case 1): Our model
differs from that of Guan et al. [17] mainly because of the copy
jobs which, in the case of overlapping tasks, may concurrently
exist with the corresponding main jobs. However, via a few key
observations and transformations, we will adapt our model and
the equations of Guan et al. [17] to each other.

Let R∅
i denote an upper bound on the WCRT of the main

job of τi under our model, under Case 1 (i.e. when the system
is in Mode S).

Lemma 1: Under core-failure-resilient global fixed-priority
scheduling with copy jobs, any copy job of task τj , whose
corresponding main job is not directly affected by a core
failure, executes for at most:
– zero time units, if τj is non-overlapping;
– no more than min(Cj , R

∅
j −Oj), if τj is overlapping.

Proof: If τj is non-overlapping, it never even releases a
copy job unless its corresponding main job has failed – which
would contradict the initial assumption.

If τj is overlapping, no copy job by it can execute for
more than Cj time units, by definition. But it cannot execute
for more than R∅

j − Oj time units either, because, according
to the initial assumption, at most R∅

j −Oj time units after the
release of the copy job, its corresponding main job will have
completed. And the copy job is terminated early at the same
instant that its corresponding main job completes.

Remark 1: The copy jobs by an overlapping task τj have
an inter-arrival time of Tj .

Proof: Follows directly from the fact that copy jobs are
released at a fixed offset Oj , relative to the respective main
jobs (which have an inter-arrival time of Tj), or not at all.

Lemma 1 and Remark 1 allow us to conveniently model, in
Mode S, each overlapping task τj as two distinct tasks (main
and copy), conforming to the semantics of classical scheduling
(a single job per activation) and released at an offset Oj , with
the main task τj having a WCET of Ci and the copy task τ ′j
a WCET of C ′j

def
= min(Cj , R

∅
j − Oj) time units2. Figure 3

illustrates the relationship between copy offset Oj and C ′j .

By treating the main and the copy jobs as two independent
tasks, we can then safely apply the existing analysis of Guan
et al. [17] for global fixed-priority scheduled systems, at the
cost of a bit of pessimism. For symmetry let us also model
every non-overlapping task as a main/copy task pair, τj and
τ ′j , with the copy task having C ′j = 0.

2It is possible that, instead of a main job, it is the copy job of some
overlapping task that is affected by a core failure. Yet, this case is always
dominated by the case that the main job is the one wasted – simply because
it is impossible for a copy job to have received more execution time than its
corresponding main job, at the time of the failure. Hence, we only need to
consider the main job being wasted.

0

C ′
j

Cj

0 R∅
j −Cj

Release offset Oj

R∅
j

Dj

Overlapping tasks
Non−overlapping tasks

Fig. 3: The relationship between Oj and C ′j .

Then, a task τi is deemed schedulable under Case 1 if
R∅
i ≤ Di where

R∅
i =

{
Ci, if |hp(i)|+ |hpov(i)| < m

Ci + I∅i (R
∅
i), otherwise

(5)

where hpov(i) ⊆ hp(i) is the subset of higher-priority tasks
that are overlapping.

To simplify the notation when computing I∅i let τn+j
denote τ ′j and hp∗(i) def

= ∪j∈hp(i){τj , τ ′j}. (Since the following
equations do not differentiate between main/copy tasks, this
allows us to refer to the members of hp∗(i) using a single
non-ambiguous index.)

To compute I∅i , we calculate W∅|NC
j (t) and W

∅|CI
j (t),

for each j ∈ hp∗(i), similarly as before:

W
∅|NC
j (t) =

⌊
t

Tj

⌋
· Cj + Jt mod TjKCj (6)

W
∅|CI
j (t) =

body︷ ︸︸ ︷⌊
Jt− CjK0

Tj

⌋
· Cj +

carry-out︷︸︸︷
Cj

+ JJt− CjK0 mod Tj − (Tj −R∅
j)K

Cj−1
0︸ ︷︷ ︸

carry-in

(7)

Specifically for tasks in hp∗(i) that are copy tasks of the
original task set, we need to define R∅, for use in the above
equations. Since a copy job, under Case 1 (i.e. in Mode S),
is terminated short of completion, upon the completion of its
corresponding main job, then as response time of a copy task τ ′j
(also denoted by τn+j), we can consider the quantity R∅

n+j
def
=

R∅
j −Oj . As for non-overlapping tasks, the workload of their

copies is, by definition for Case 1, equal to zero.

Then, reasoning similarly as before

I∅i (R
∅
i) =

⌊
1

m

(∑
j∈hp∅|CI(i)

JW∅|CI
j (R∅

i)K
R∅

i −Ci+1

+
∑

j∈hp∅|NC(i)

JW∅|NC
j (R∅

i)K
R∅

i −Ci+1
)⌋

(8)

where hp∅|CI(i) is the subset, of cardinality m − 1, of
hp∗(i) for which

∑
j∈hp∅|CI(i)

(
JW∅|CI

j (R∅
i)K

R∅
i −Ci+1

− JW∅|NC
j (R∅

i)K
R∅

i −Ci+1

)
is maximised; and hp∅|NC(i) def

= hp∗(i) \ hp∅|CI(i).

Similarly to the original analysis [17], hp∅|CI(i) and
hp∅|NC(i) need to be computed anew at every iteration of the
recurrence relation when solving the response time equation.

2) Schedulability analysis for the case of a core failure
affecting some higher priority task τk (Case 2): A core failure
by affecting some τk ∈ hp(i) creates additional interference on
τi in the short term. In the worst case, when τk fails just before
completion, its main and copy jobs combined could execute
for up to 2Ck − ε time units within its period of Tk (with
ε arbitrarily small). Additionally, in the case of a permanent
core failure, the system would be left with one core less (m′ =
m − 1) with which to process the workload, making it even
harder to meet deadlines. On the other hand, dropping any
other copy jobs currently executing and no longer releasing
any of them in the future, after a core failure, eases up on the
workload, especially on the longer term. In practice, this means
that Case 2 has to be analysed separately for each higher-
priority task and also that schedulability cannot be inferred
from Case 1 either.

Let us now try to bound the interference onto τi both from
τk (the task affected by the failure) and also from every other
higher-priority task.

Higher-priority task activations whose deadlines fall
before the core failure: This includes all activations whose
deadlines fall earlier than the time instant of a core failure.
Given that these activations complete at a time when the
system is still in Mode S, our earlier reasoning for Case 1
applies. Hence, the respective main and copy jobs of the same
task τj can be modelled as originating from distinct tasks τj
and τ ′j , with the latter’s execution time being

C ′j =

{
0 if τj is non-overlapping

min(Cj , R
∅
j −Oj) if τj is overlapping

(9)

Note that the above derivation requires the value of R∅
j

(from Case 1) to have been already computed for each higher-
priority task τj . This has implications for the order in which the
task WCRTs need to be computed for the different cases (1-3)

under consideration. We revisit this subject in Sections IV-D
and IV-E.

Again each copy task τ ′j is mapped to a task τn+j , for ease

of referencing in equations, and hp�k(i) def
= ∪j∈hp(i){τj , τ ′j}.

Higher-priority task activations whose deadlines fall
after the core failure: When considering the higher-priority
task activations whose deadlines fall after the core failure, we
need to distinguish between the task τk directly affected by
the failure and every other higher-priority task τj 6= τk.

For some higher-priority task τj 6= τk, we note that all
activations released after the time instant of failure tf exert
workload of up to Cj time units (i.e. from their main job only),
since copy jobs are no longer released. However, activations
released before tf have workload both from the main and the
copy job, in the general case. Then, it is safe to use Equation 9
to upper-bound for the respective per-job workloads. To further
simplify the analysis (at the cost of some additional pessimism)
let us use Equation 9 to also bound the workloads of jobs
released after tf , for every higher-priority job not directly
affected by the failure. This approach allows us to obtain a safe
upper-bound on the workload, without the need to identify the
time instant tf , which leads to the worst-case scenario.

As for the task τk that was directly affected by the failure,
the same reasoning as for τj 6= τk applies, albeit with one
crucial difference. The last interfering copy job by τk, i.e.
the one that completes filling in for the main job that was
terminated early by the failure, may execute up to the entire
Ck – not C ′k, if smaller. This effect can be incorporated in the
modelling of workload as follows:
– If τ ′k (the copy task of τk) has carry-in workload, we set
in the equations its carry-out workload equal to Ck, not C ′k.
Note that this may have a “knock-on” effect on the length of
the body and carry-in intervals.
– If it has no carry-in workload, exactly one of the jobs
contributing to the workload within the interval in consid-
eration is modelled as having execution requirement of Ck
and all other jobs are modelled with an execution requirement
of C ′k. To simplify the derivation, potentially at the cost of
some pessimism, we shift the execution requirement Ck to the
instance at the start of the “body”.

Based on the above reasoning we get:

For every τj ∈ hp∗(i), j 6∈ {k, n+ k}:

W�k|NC
j (t) =

⌊
t

Tj

⌋
· Cj + Jt mod TjKCj (10)

W�k|CI
j (t) =

body︷ ︸︸ ︷⌊
Jt− CjK0

Tj

⌋
· Cj +

carry-out︷︸︸︷
Cj

+ JJt− CjK0 mod Tj − (Tj −R∅
j)K

Cj−1
0︸ ︷︷ ︸

carry-in

(11)

Analogously as in Case 1, for each τn+j ∈ hp∗(i), (i.e. the
copy task of τj ∈ hp(i)), we assume R∅

n+j
def
= R∅

j −Oj , if τj
is overlapping.

For the main task τk:

W�k|NC
k (t) =

⌊
t

Tk

⌋
· Ck + Jt mod TkKCk (12)

W�k|CI
k (t) =

body︷ ︸︸ ︷⌊
Jt− CkK0

Tk

⌋
· Ck +

carry-out︷︸︸︷
Ck

+ JJt− CkK0 mod Tk − (Tk −R∅
k)K

Ck−1
0︸ ︷︷ ︸

carry-in

(13)

For its copy, denoted as τ ′k or equivalently as τn+k:

W�k|NC
n+k (t) = JtKCk

0 +
⌊
t−Tk

Tk

⌋
0
· C ′k

+
r

Jt− TkK0 mod Tk
zC′

k

(14)

W�k|CI
n+k (t) =

body︷ ︸︸ ︷⌊
Jt−CkK0

Tk

⌋
· C ′k +

carry-out︷︸︸︷
Ck

+ JJt−CkK0 mod Tk − (Tk −R∅
n+k)K

C′
k−1

0︸ ︷︷ ︸
carry-in

(15)

Note the use of Ck and C ′k in Equation 15. Specifically,
for the jobs of τ ′k contributing to the carry-out part of the
workload, the entire Ck is assumed, which is necessary, due to
the failure that affected τk. Conversely, for the jobs constituting
the body and the carry-in parts, only C ′k is used.

Putting this all together, we have

I�ki (R�
k
i) =

⌊
1

m′

(∑
j∈hp�k|CI(i)

JW�k|CI
j (R�ki)K

R�ki−Ci+1

+
∑

j∈hp�k|NC(i)

JW�k|NC
j (R�ki)K

R�ki−Ci+1
)⌋

(16)

where hp�k|CI(i) is the subset, of cardinality m − 1, of
hp∗(i) for which

∑
j∈hp�k|CI(i)

(
JW�k|CI

j (R�ki)K
R�ki−Ci+1

− JW�k|NC
j (R�ki)K

R�ki−Ci+1

)
is maximised; and hp�k|NC(i) def

= hp∗(i) \ hp�k|CI(i).
Accordingly

R�ki =

{
Ci, if |hp(i)|+|hpov(i)|<m′

Ci + I�ki (R�
k
i) otherwise

(17)

Note the use of term m′ rather than m in Equations 16
and 17. The symbol m′ refers to the number of available cores
after the failure, namely

m′ =

{
m, in case of a non-permanent core failure
m− 1, in case of a permanent core failure

We pessimistically assume that the number of usable cores
is m′ throughout the activation of τi in the WCRT equations,
to be on the safe side without having to identify the instant
of failure tf leading to the worst-case scenario. Similarly,
although the number of higher-priority tasks with carry-in can
be at most m′−1 in Mode D, consistent with the reasoning of
Guan et al. [17], we pessimistically assume m− 1 such tasks
throughout (i.e. in the definition of hp�k|CI(i)), in order to be
on the safe side.

3) Schedulability analysis for the case of a core failure
affecting the task τi under analysis (Case 3): This case con-
cerns the schedulability of some task τi, when its main job is
terminated early, due to a core failure. Then its corresponding
copy job must complete within the same absolute deadline.
The condition for schedulability is:

R�in+i ≤
{
Di −Oi, if τi is overlapping
Di −R∅

i , if τi is non-overlapping
(18)

where R�in+i is the worst-case response time of a job by
the copy task τn+i (equivalently denoted as τ ′i) assuming that
its corresponding main job was directly affected by the core
failure. The latest that this copy job can be released is Oi time
units after the release of its corresponding main job, if τi is
overlapping, or respectively, R∅

i time units, if non-overlapping.
This reduces accordingly the effective relative deadline for the
copy job, leading to the condition of Equation 18.

Bounding the workloads by higher-priority jobs is analo-
gous to the previous cases. For every τj ∈ hp∗(i):

W �i|NC
j (t) =

⌊
t

Tj

⌋
· Cj + Jt mod TjKCj (19)

W �i|CI
j (t) =

body︷ ︸︸ ︷⌊
Jt− CjK0

Tj

⌋
· Cj +

carry-out︷︸︸︷
Cj

+ JJt− CjK0 mod Tj − (Tj −R∅
j)K

Cj−1
0︸ ︷︷ ︸

carry-in

(20)

However, we also need to consider the potential interfer-
ence from the main job of τi.

Lemma 2: The interfering workload that some copy job τ ′i
can suffer by its corresponding main job, assuming that no
higher-priority task τj has been affected by a core failure, is
at most C ′i.

Proof: If τi is non-overlapping, its main and copy jobs can
never concurrently exist. Otherwise, if τi is overlapping, the
main can execute for at most min(Ci, R

∅
i −Oi) time units after

the release of its copy before it completes (or is terminated due

to failure). Given the definition of C ′i (Equation 9), the claim
then holds in both cases.

Lemma 2 forms an upper-bound on interfering workload
upon τ ′i from any job by τi including the one affected by the
core failure. Additionally, we know that at most one job by
τi (i.e. the one terminated early due to the failure) interferes
with the copy job τ ′i under analysis. Therefore the interfering
workload from τi is C ′i and

I �in+i(R�
i
n+i) =

⌊
1

m′

(∑
j∈hp�i|CI(i)

JW �i|CI
j (R�in+i)K

R�in+i−Ci+1

+
∑

j∈hp�i|NC(i)

JW �i|NC
j (R�in+i)K

R�in+i−Ci+1+C′i

)⌋
(21)

where hp�k|CI(i) and hp�k|NC(i) are computed analogously
as before. Note that the copy job (τ ′i), in this case, needs
to execute for the entire Ci – not just C ′i, because it is not
terminated early. Thus:

R�in+i =

{
Ci, if |hp(i)|+|hpov(i)|+is ov(i)<m′

Ci + I �in+i(R�
i
n+i) otherwise

(22)

where is ov(i) = 1 if and only if τi is overlapping;
otherwise it is zero.

D. Offset selection for copy tasks

To test the schedulability of some τi, we need as inputs
the R∅

j of each τj ∈ hp(i) and knowledge of whether that τj
is overlapping (and if so, its copy job offset Oj). This means
that tasks have to be analysed for schedulability in a top-down
priority order, assuming a given priority assignment (which
itself is being tested for feasibility). By inspecting the WCRT
equations, we also note that, R∅

i of each task τi serves as input
for the calculation of R�ki s, ∀k ∈ hp(i) and also R�in+i; so it
has to be computed before those.

It is only at the stage of testing the schedulability of τ ′i
(Case 3) that we need to consider whether or not τi is overlap-
ping – and if so, what its copy offset Oi is. For the purposes of
schedulability testing, a non-overlapping τi can be equivalently
modelled as having a fixed offset of Oi = R∅

i . Given that the
selection of Oi entails a tradeoff, as earlier discussed, its value
is thus best decided in tandem with the schedulability testing
at Case 3 for the task in consideration. A task should be non-
overlapping, if possible, to avoid interference from redundant
execution onto lower priority tasks. But if a non-overlapping
arrangement is not schedulable, then it is desirable to set Oi
to the highest value that makes τ ′ schedulable, in order to
minimise the overlap-related interference onto lower-priority
tasks. We optimally identify this value using the algorithm of
Figure 5, as proven by Theorem 1.

Theorem 1: The algorithm of Figure 5 optimally selects
the copy offset Oi.

Proof: If the task is schedulable without overlap, then the
loop is never entered and SUCCESS is declared. But if it is

1. int calculate_O(τi) //in tandem with R�in+i

2. {Oi:=R
∅
i ; //initialisation

3. calculate R�in+i;

4. while (Oi+R�in+i >Di)

5. {Oi:=Di-R�in+i; //adjusting offset
6. if (Oi<0) return FAILURE;

7. calculate R�in+i; //using new Oi

8. }
9. return SUCCESS;

10. }

Fig. 5: Calculation of Oi and R�in+i in tandem.

unschedulable without overlap, then let Ov denote the value
that Oi is updated to within the vth loop iteration and Rv

denote the R�in+i calculated using Ov during the same iteration.
Ov−1 and Rv−1 then refer to the respective previous values.

Then, in line 5, Ov+1 = Ov − ((Ov +Rv)−Di), i.e., the
offset is decreased by the amount of time that the deadline
is exceeded. And since, by inspection R�in+i cannot decrease
when Oi decreases, this means that all offsets in the range
[Ov+1, Ov) would have been infeasible. Hence, each iteration
disqualifies an infeasible subrange of [0, R∅

i], from right to
left. And if a feasible offset is identified, then this will be the
greatest such offset. Moreover, because task parameters are
integers, after a finite number of iterations, either a feasible
offset is found or the entire range for the offset [0, R∅

i] is
found infeasible (line 6).

Note that, although all candidate offsets greater than the
one derived (in case of success) by the algorithm of Figure 5
are provably infeasible (according to Theorem 1), not all
smaller offsets will be feasible in the general case, because for
some offset ranges, R�in+i may increase more than the amount
by which the offset is decreased. Therefore, the optimal offset
could not have been identified, e.g., by simpler approaches
such as iterative binary (dichotomic) search. Applying binary
search would either result in false negatives regarding the
schedulability of the copy task or in suboptimal offsets (i.e.,
unnecessarily big overlap).

E. Priority assignment

For sporadic global fixed-priority scheduling, no exact
schedulability tests are known. Therefore, it makes sense to
speak of an optimal priority assignment scheme only in the
context of a given, sufficient schedulability test [14]. Then
a priority assignment scheme is optimal in the context of
a test T if it always finds a priority assignment for which
the task is proven schedulable using the test T , if such an
assignment exists at all. An obvious but often intractable
(O(n!)) optimal priority assignment scheme, for any test T
is exhaustive enumeration.

Davis and Burns [14] demonstrated that Audsley’s OPA [2],
a bottom-up scheme with pseudo-polynomial O(n2) complex-
ity, is optimal in the above sense for global scheduling if
the schedulability test fulfils some conditions. One of those
requirements is that the schedulability of a task, using the test
in consideration, must depend only on the set of higher-priority
tasks – but not their relative priorities. Our schedulability
analysis does not meet this condition because, as discussed

1. int test_task_schedulability(int i, int p)
2. {if !(τi is not schedulable at priority p when no core fails) return FAILURE;
3. if !(τi is not schedulable at priority p when a core fails and τk is killed, ∀τk ∈ hp(i)) return FAILURE;
4. if !(τi is not schedulable at priority p when a core fails and τi itself is killed) return FAILURE;
5. // The test of the above line also computes Oi, in the process, if successful.

6. return SUCCESS;
7. }

Fig. 4: Pseudocode for testing the core-failure-resilient schedulability of a task τi at a priority level p. This assumes that the
set hp(i) of higher-priority tasks, and their priorities and copy jobs offets are specified, and also and that every τj ∈ hp(i) is
core-failure-resiliently schedulable, according to the same test.

earlier, to test the schedulability of τi at a given priority
(Figure 4) it requires R∅

j ,∀j ∈ hp∗(i) – i.e. it depends on
the relative priorities of higher-priority tasks.3 Hence the most
practical optimal priority assignment scheme for our test is top-
down, branch-and-bound enumeration, which is still intractable
in the general case (O(n!)).

Fortunately, our experiments showed that suboptimal
tractable heuristics exist that in practice perform very close to
optimal. Namely, the DkC scheme [1], which assigns priorities
(high to low) in order of increasing Di−k·Ci, where k is a tun-
able constant. In particular, a value of k = 1.1, which roughly
corresponds to a Slack Monotonic priority assignment, seemed
to work best and significantly outperformed Deadline Mono-
tonic (DM), in the context of our scheduling approach. Trying
a few different DkC priority assignments, corresponding to
different values of k, until success, barely underperformed the
optimal branch-and-bound exhaustive enumeration. Figure 8
in Appendix B shows how (i) DM, (ii) DkC with k = 1.1,
(iii) DkC ∀ k ∈ {0, 0.1, . . . 2.0} and (iv) the optimal priority
assignment perform, in a small-scale experiment, with m = 4
processors and only n = 7 tasks. Note that the relatively small
values for the parameters m and n were deliberately chosen,
so that the optimal branch-and-bound enumeration terminates
within a reasonable computation time. For further explanations,
please refer to Section VI and Appendix B.

V. PRACTICAL CONSIDERATIONS

In this chapter we discuss some challenges related to
the implementation of the process model assumed by our
approach, and offer some suggestions on how to overcome
them:

Race conditions/synchronisation hazards resulting of
the coexistence of jobs (main and copy) by the same task:
In this work we assumed that tasks share no resources with
each other; this is an unrealistic assumption but we plan to
remove it in our future work by leveraging the existing results
on resource sharing protocols and introducing appropriate
safe blocking terms to the schedulability analysis. However,
specifically in the case of overlapping tasks, another challenge
arises. When the main job and the copy job of the same
task coexist in the system, they may both access resources
for which the programmer never expected any concurrent
access by different processes. Namely, if the development was
done obliviously to the fact that our scheduling arrangement,
with job copies, would be employed, for resilience against

3Modifying the test to use Dj instead of R∅
j as input would make OPA

optimal in its context but would be counter-productive due to the resulting
pessimism in the WCRT derivations.

core failures. For this reason, we assume a task structure
design whereunder (i) upon its release each job copies its
input variables into its private address space; (ii) during its
execution, it only updates/manipulates its own local variables;
and (iii) it only produces its output (i.e. as I/O, or by updating
persisten variables in the system memory) as a final commit
stage, before completing. Such a model might indeed cover
many applications (for example: read sensor value/do compu-
tation/emit output to control actuator) but not all. Additionally,
some buffering mechanism which stores dequeued inputs for
the copy job might be needed. On the other hand, for tasks
which require I/O halfway through their execution, the afore-
mentioned approach may not be practical or enforceable. But
it may still be possible to accommodate such tasks, i.e. via
appropriate priority assignment, which ensures that they will
be non-overlapping.

Transient/permanent core failure detection: We assumed
earlier that core failures are detected instantaneously. However,
in practice, even with hardware support, failure detection
will still require some degree of software support and this
means that it will have some latency and associated scheduling
overheads. These would have to be incorporated into the model
and the schedulability analysis, taking into account exactly
how the failure detection facility is implemented.

Launching and early termination of copy jobs: Obvi-
ously, a software facility is required for tracking the arrivals of
the main jobs and launching the copy jobs at the appropriate
offsets. However, the same facility should keep track of job
completions in order to immediately also terminate short of
completion the corresponding job copies. Note that it is pos-
sible (i.e., in case of different control flow) for an overlapping
copy job to complete before its corresponding main job, in
which case it is then the main job that should be terminated
short of completion.

VI. EVALUATION

We evaluate our approach by testing the schedulability of
thousands of task sets, generated using UUnifast-Discard [14]
(extension of [9])4. We plot the scheduling success ratios as a

function of the system utilisation (Us
def
= 1

m

n∑
i=1

Ci

Ti
) for:

OursH/OursS: Our approach, assuming permanent/transient
core failures, respectively.
Guan: The state-of-the-art test [17] for global fixed priorities
without provision for fault resilience, purely for reference.
Dupl-Part-FP: A fault-resilient partitioned arrangement, with

4Each percentage point represents 200 implicit-deadline (D=T) task sets.
Task periods were chosen uniformly over [30000, 100000] µsec.

full task duplication, that assigns the two copies of the same
task to different cores, via Best-Fit bin-packing5, and uses
Deadline Monotonic (DM) priority assignment (optimal, on
each core).
Dupl-Part-EDF: The same, but using partitioned EDF.

Different configurations of the above approaches:
ZO: Forcing full overlap for all tasks, i.e., Oi = 0, ∀τ ′i .
DkC: Using DkC priority assignment, and trying all k ∈
{0, 0.1, . . . , 1.9, 2} until success.

Figure 6a contains the plots for systems with m = 8 cores
and sets of n = 16 tasks. The schedulability improvement from
optimally picking copy task offsets is considerable. OursH-
DkC outperforms the duplicated partitioned fixed-priority ar-
rangement and in case of transient core failures (OursS-DkC)
the lead increases, as expected. In the experiment of Figure 6b
(n=40), we note that the Ours-* curves improve, whereas for
the other curves for fixed priorities, this is not the case or
even a slight performance deteriotation is noted. The trend is
amplified for n=80 (Figure 6c), which shows that our approach
tends to be more efficient, for higher n/m. A higher n/m
ratio means smaller average task utilisations, which one might
expect would improve schedulability for all approaches, since
it would mean smaller bin-packing-related fragmentation on
average. However, no such effect occurs for the approaches
with full duplication, because the average processor utilisation
is twice the nominal system utilisation, so there is little room
for improvement anyway. Additionally, the subset of tasks that
never suffer any interference (i.e., because they are always
guarranteed a processor due to their high priority) becomes
a smaller fraction of the overall task set, for higher n/m;
this increases the potential pessimism in the schedulability
test, which explains our observations. In the case of OursH-
DkC and OursS-DkC however, the performance improves for
higher n/m, because the smaller per-task average utilisation
allows more tasks to be accommodated without overlap. The
scheduling performace gains from the low overlap can be
assessed by comparing with OursH-ZO (the naive approach
with full overlap), whose performace does not improve with
higher n/m. The results for m = 16 cores were similar, so
we do not include them.

Dupl-Part-EDF outperforms our approach for task sets with
lower n/m, which we attribute to the better scheduling poten-
tial associated with EDF, but this reverses for higher n/m.
This reversal occurs, because, as noted earlier, the amount
of redundant execution under our approach tends to decrease
when the average task utilisation is smaller. Additionally, there
is no room for better performance by Dupl-Part-EDF anyway,
because neither this nor any other approach that employs full
task duplication is capable of scheduling any task set with
utilisation above half the system capacity, hence the sharp
cutoff at 50%.

Next, we inspect the scheduling arrangements resulting
from the application of our approach. We consider m = 8
cores, implicit-deadline tasks and permanent core failures.
Figure 7a plots the average “effective” utilisation (U∗ def

=
(1/m)

∑n
i=1(Ci + C ′i)/Ti) in Mode S for schedulable tasks

sets, according to the nominal system utilisation Us. Higher
U∗/Us indicates more overlap. We note that hardly any overlap

5In our experiments it outperforms First-Fit.

20 30 40 50 60 70 80 90 100
0

20

40

60

80

100

System utilisation (in %)

S
ch

ed
ul

ab
le

 ta
sk

−
se

ts
 (

in
 %

)

OursH−ZO−DkC
Dupl−Part−FP
Dupl−Part−EDF
OursH−DkC
OursS−DkC
Guan−DkC

(a) m = 8, n = 16

20 30 40 50 60 70 80 90 100
0

20

40

60

80

100

System utilisation (in %)

S
ch

ed
ul

ab
le

 ta
sk

−
se

ts
 (

in
 %

)

OursH−ZO−DkC
Dupl−Part−FP
Dupl−Part−EDF
OursH−DkC
OursS−DkC
Guan−DkC

(b) m = 8, n = 40

20 30 40 50 60 70 80 90 100
0

20

40

60

80

100

System utilisation (in %)

S
ch

ed
ul

ab
le

 ta
sk

−
se

ts
 (

in
 %

)

OursH−ZO−DkC
Dupl−Part−FP
Dupl−Part−EDF
OursH−DkC
OursS−DkC
Guan−DkC

(c) m = 8, n = 80

Fig. 6: Experimental evaluation (part 1 of 2)

is needed to schedule low-utilisation task sets. This means that
there is capacity for additional background soft-real time tasks
without resilience guarantees. But even for high utilisations,
the additional utilisation taken up by copies (U∗ − Us), does
not exceed 40% of Us on average.

Figure 7b, assuming n = 40 tasks plots the average degree
of overlap C ′j/Cj according to the task priority. Three different
system utilisations were considered. We note that middle-
priority tasks barely require any overlap to be schedulable.
For higher-utilised systems there may be some overlap in the
higher or lower spectrum. High-priority tasks with overlap
are mostly tasks that must have overlap (i.e., tasks with
uj>0.5), but which also can tolerate very little interference.
Obviously, such tasks are rarer in lower-utilisation task sets
(line U = 20%). In any case, DkC does a good job at
assigning high priorities to those. At the other end, it is
natural that overlap tends to be higher at lower priorities,
because these tasks suffer more interference and their copies
need a commensurate “head start” (small Oj) to complete on
time. Moreover, overlap at higher priorities tends to penalise
schedulability because the additional interference is exerted
onto more lower-priority tasks, in a cascade effect. Therefore,

an efficient priority assignment would intuitively “shift” the
overlap to the lower priorities. By inspection, DkC does that.

Figure 7c, examines the degree of overlap according to the
task utilisation. By inspection, lower-utilisation tasks tend to
require little overlap. Past 40%, the utilisation correlates pos-
itively with overlap. This behaviour matches our observations
for the previous two graphs, especially with respect to the
priority assignment output by DkC, and also explains why an
approximate Slack Monotonic usually performs well.

1 5 10 15 20 25 30 35 40 45 50
1

10

20

30

40

50

60

70

U
∗

System utilisation (in %)

slope 1.0

slope 1.4

n = 16
n = 40
n = 80

(a) Effective utilisation U∗ def
=

n∑
i=1

Ci+C′
i

Ti
vs nominal utilisation.

1 5 10 15 20 25 30 35 40
0

0.1

0.2

0.3

0.4

0.5

0.6

C ′

j

Cj

pj

lower priorities higher priorities

← →

U = 20%
U = 35%
U = 50%

(b) Degree of overlap
C′

j

Cj
according to the task priority.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C ′

j

Cj

uj

U = 20%
U = 35%
U = 50%

(c) Degree of overlap
C′

j

Cj
according to task utilisation uj

def
=

Cj

Tj
.

Fig. 7: Experimental evaluation (part 2 of 2)

VII. CONCLUSION

We introduced a new form of schedulability guarantees (for
surviving a transient or permanent core failure), a global fixed-
priority-based scheduling arrangement for achieving them and
novel analysis for their derivation. The preliminary evaluation
indicates the efficiency of our approach. Many directions for
future work exist, such as: (i) to consider a global EDF policy,

(ii) to augment the model with arbitrary deadlines and shared
resources (including surviving a failure during the resource
access), (iii) to reduce the analysis pessimism, and (iv) to
extend the approach, so as to make it also applicable to
scenarios with deferred (delayed) fault detection.

REFERENCES

[1] B. Andersson and J. Jonsson. Fixed-priority preemptive multiprocessor
scheduling: to partition or not to partition. In Proc. RTCSA, 2000.

[2] N. Audsley. On priority assignment in fixed priority scheduling. Inf.
Proc. Letters, 79(1):39–44, 2001.

[3] N. Audsley, A. Burns, M. Richardson, K. Tindell, and A. J. Wellings.
Applying new scheduling theory to static priority pre-emptive schedul-
ing. Software Engineering Journal, 8(5):284–292, 1993.

[4] T. Baker. An analysis of fixed-priority schedulability on a multiproces-
sor. Real-Time Systems, 2006.

[5] S. Baruah. Techniques for multiprocessor global schedulability analysis.
In Proc. RTSS, 2007.

[6] S. Baruah and T. Baker. Schedulability analysis of global edf. Real-Time
Systems, 2008.

[7] S. Baruah and Z. Guo. Mixed-criticality scheduling upon varying-speed
processors. In Proc. RTSS, 2013.

[8] M. Bertogna and M. Cirinei. Response-time analysis for globally
scheduled symmetric multiprocessor platforms. In Proc. RTSS, 2007.

[9] E. Bini and G. Buttazzo. Measuring the performance of schedulability
tests. Real-Time Systems, 30(1-2):129–154, 2009.

[10] K. Bletsas and B. Andersson. Preemption-light multiprocessor schedul-
ing of sporadic tasks with high utilisation bound. In Proc. RTSS, 2009.

[11] A. Burns and R. Davis. Mixed criticality systems: A review. TR.
Computer Science, U. of York, UK, 2013.

[12] J. Calandrino, J. Anderson, and D. Baumberger. A hybrid real-time
scheduling approach for large-scale multicore platforms. In Proc.
ECRTS, 2007.

[13] M. Cirinei, E. Bini, G. Lipari, and A. Ferrari. A flexible scheme for
scheduling fault-tolerant real-time tasks on multiprocessors. In Proc.
IPDPS, 2007.

[14] R. I. Davis and A. Burns. Priority assignment for global fixed priority
pre-emptive scheduling in multiprocessor real-time systems. In Proc.
RTSS, 2009.

[15] Federal Aviation Authority. CAST-32: Multi-core processors.
https://www.faa.gov/, 2014.

[16] S. Ghosh, R. Melhem, and D. Mosse. Fault-tolerant scheduling on a
hard real-time multiprocessor system. In Proc. IPPS, 1994.

[17] N. Guan, M. Stigge, W. Yi, and G. Yu. New response time bounds for
fixed priority multiprocessor scheduling. In Proc. 30th RTSS, 2009.

[18] A. Gujarati, F. Cerqueira, and B. Brandenburg. Schedulability analysis
of the linux push and pull scheduler with arbitrary processor affinities.
In Proc. ECRTS, 2013.

[19] S. Kato, N. Yamasaki, and Y. Ishikawa. Semi-partitioned scheduling of
sporadic task systems on multiprocessors. In Proc. ECRTS, 2009.

[20] J. Lee and K. G. Shin. Schedulability analysis for a mode transition in
real-time multi-core systems. In Proc. RTSS, 2013.

[21] C. Liu and J. Layland. Scheduling algorithms for multiprogramming
in a hard-real-time environment. Journal of the ACM, 1973.

[22] L. Lundberg. Multiprocessor scheduling of age constraint processes. In
Proc. 5th RTCSA, 1998.

[23] B. Nikolić and S. M. Petters. Towards network-on-chip agreement
protocols. In Proc. EMSOFT, 2012.

[24] R. M. Pathan. Fault-tolerant real-time scheduling using chip multipro-
cessors. In Proc. Suppl. vol. EDCC, 2008.

[25] R. M. Pathan. Fault-tolerant and real-time scheduling for mixed-
criticality systems. Real-Time Systems, 50(4):509–547, 2014.

[26] Y. Sun, G. Lipari, N. Guan, and W. Yi. Improving the response time
analysis of global fixed-priority multiprocessor scheduling. In Proc.
RTCSA, 2014.

20 40 60 80 100
0

10

20

30

40

50

60

70

80

90

100

System utilisation (in %)

S
ch

ed
ul

ab
le

 ta
sk

−
se

ts
 (

in
 %

)

OursH−ZO−DM
OursH−ZO−1.1
OursH−ZO−DkC
OursH−ZO−Opt
OursH−DM
OursH−1.1
OursH−DkC
OursH−Opt
OursS−DM
OursS−1.1
OursS−DkC
OursS−Opt
Guan−DM
Guan−1.1
Guan−DkC
Guan−Opt

Fig. 8: Performance of different priority assignment schemes (m = 4, n = 7)

[27] S. Vestal. Preemptive scheduling of multi-criticality systems with
varying degrees of execution time assurance. In Proc. RTSS, 2007.

APPENDIX

A. Computation of interfering workload by Bertogna and
Cirinei [8] and Guan et al. [17]

For rigorous derivation of the WCRT equations by Guan
et al. [17], that extended the previous work of Bertogna and
Cirinei [8], we refer the reader to their respective papers. Here
we only provide intuitive explanations.

Carry-in workload by some task, within a given time
window, is workload from jobs released earlier than the start
of the time window in consideration.

For the case where there is no carry-in, the worst-case
scenario, in terms of workload by some higher-priority task
τj , resembles the “critical instant” which is well-known from
uniprocessor scheduling (Figure 9(a)).

Fig. 9: Example to help understand computation of carry-ins

But, as Bertogna and Cirinei [8] showed, on globally-
scheduled multiprocessors, this is not the worst-case scenario
in the general case. Rather, the correctly identified worst-
case scenario, in terms of workload by τj may involve carry-
in workload. Intuitively, the corresponding execution pattern
(Figure 9(b)) is created by the inverting/“flipping” right-to-left
the workload pattern of Figure 9(a) in the following way:

Carry-out: The last job by τj contributing to the workload
within the interval of observation (which is [0, t), without loss

of generality) arrives at time t− Cj and executes over all Cj
remaining time units of the interval (i.e., its full WCET).

Body: All preceding jobs fully contained in the interval,
arriving exactly Tj units apart, also contribute to the workload,
each with Cj time units.

Carry-in: Finally, the even earlier job (if any) executes
as late as possible, within its busy period (i.e. Cj time units
continuously until its deadline), in order for the time units of its
execution contained within the interval [0, t) to be maximised.

It is this “jittery” effect (shifting the block of execution
of the earliest interfering job of τj by Rj − Cj time units to
the right, compared to subsequent ones) that makes the carry-
in case dominate the non-carry-in case. Obviously, there is
some pessimism in this derivation because not every higher-
priority task τj (if any at all) can have an execution pattern
like this. Fortunately, Guan et al. [17] considerably reduced the
pessimism by noting and proving that at most m−1 tasks can
have carry-in workload (where m is the number of processors).

B. On the choice of priority assignment

Figure 8 shows a small-scale experiment with m = 4 pro-
cessors and n = 7 tasks, for evaluating the choice of different
priority assignments with respect to the success ratio reported
by different schedulability tests (denoted by different colors).
Deadline Monotonic (dotted line) does not perform very well.
DkC with k = 1.1 (mixed line) barely underperforms DkC
∀ k ∈ {0, 0.1, . . . 2.0} (dashed line), which in turn almost
matches the optimal priority assignment (solid line), identified
via top-down branch-and-bound enumeration.

