

HopliteRT*: Real-Time NoC for FPGA

This article was presented in part at the International Conference on Embedded

Software 2020 and appears as part of the ESWEEK-TCAD special issue.

Journal Paper

CISTER-TR-201102

Yilian Ribot; Geoffrey Nelissen

Journal Paper CISTER-TR-201102 HopliteRT*: Real-Time NoC for FPGA

© 2020 CISTER Research Center
www.cister-labs.pt

1

HopliteRT*: Real-Time NoC for FPGA

Yilian Ribot; Geoffrey Nelissen

CISTER Research Centre

Rua Dr. António Bernardino de Almeida, 431

4200-072 Porto

Portugal

Tel.: +351.22.8340509, Fax: +351.22.8321159

E-mail:

https://www.cister-labs.pt

Abstract

With the increasing number of computation nodes integrated in multi and many-core platforms, network-on-chips
(NoCs) emerged as a new communication medium in systems-on-chips (SoCs). HopliteRT is a new NoC design that
was recently proposed to address the needs of real-time systems whilst respecting the constraints of field-
programmable gate array (FPGA) platforms. In this article, we: 1) introduce priority-based routing in HopliteRT; 2)
change the network topology in order to improve the packets 19 worst-case traversal time (WCTT); 3) identify a
flaw in the existing timing analysis of HopliteRT; and 4) develop a new timing analysis that is proven correct. We
also show by means of experiments that the modifications of HopliteRT proposed in this article allows for at least
2× improvement on the worst and average case traversal time of high priority packets, without impacting the
quality of service of low-priority packets. The timing properties of high priority flows are greatly improved for
negligible additional hardware costs. The proposed NoC has been implemented in Verilog and synthesized for a
Xilinx Virtex-7 FPGA platform.

3650 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 39, NO. 11, NOVEMBER 2020

HopliteRT*: Real-Time NoC for FPGA
Yilian Ribot González and Geoffrey Nelissen

Abstract—With the increasing number of computation nodes
integrated in multi and many-core platforms, network-on-chips
(NoCs) emerged as a new communication medium in systems-on-
chips (SoCs). HopliteRT is a new NoC design that was recently
proposed to address the needs of real-time systems whilst respect-
ing the constraints of field-programmable gate array (FPGA)
platforms. In this article, we: 1) introduce priority-based routing
in HopliteRT; 2) change the network topology in order to improve
the packets’ worst-case traversal time (WCTT); 3) identify a flaw
in the existing timing analysis of HopliteRT; and 4) develop a new
timing analysis that is proven correct. We also show by means
of experiments that the modifications of HopliteRT proposed in
this article allows for at least 2× improvement on the worst
and average case traversal time of high priority packets, with-
out impacting the quality of service of low-priority packets. The
timing properties of high priority flows are greatly improved
for negligible additional hardware costs. The proposed NoC has
been implemented in Verilog and synthesized for a Xilinx Virtex-7
FPGA platform.

Index Terms—Field programmable gate array, network-on-
chips, real-time embedded systems, systems-on-chips, timing
analysis.

I. INTRODUCTION

S
YSTEMS-ON-CHIPS (SoCs) are usually composed of
several, possibly heterogeneous, processing elements

(PEs). In order to communicate, PEs used to rely on shared
busses. However, due to the large increase of on-chip ele-
ments during the last decade, communication through shared
busses is not an appropriate solution for such platforms any-
more. Indeed, at most one node can take control of a bus and
transmit data at each cycle. This causes a bottleneck for the
overall system. Network-on-chips (NoCs) have been identified
as a good alternative to palliate this issue. NoCs are router-
based packet switching networks and hence allow several PEs
to transmit messages in parallel. As discussed in [1] and [2],
NoCs have remarkable scalability, parallelism, and reusability
properties, and help meet system-wide power requirements.
Nevertheless, the use of NoCs in real-time systems requires
also that their transmissions respect timing constraints.

Manuscript received April 17, 2020; revised June 17, 2020; accepted
July 6, 2020. Date of publication October 2, 2020; date of current ver-
sion October 27, 2020. This work was supported by National Funds through
FCT/MCTES (Portuguese Foundation for Science and Technology), within
the CISTER Research Unit under Grant UIDB/04234/2020. This article was
presented in part at the International Conference on Embedded Software 2020
and appears as part of the ESWEEK-TCAD special issue. (Corresponding

author: Yilian Ribot González.)

Yilian Ribot González is with the CISTER Research Centre, ISEP,
Polytechnic Institute of Porto, 4200-465 Porto, Portugal (e-mail:
ribot@isep.ipp.pt).

Geoffrey Nelissen is with the Department of Mathematics and Computer
Science, Eindhoven University of Technology, 5612 AZ Eindhoven, The
Netherlands.

Digital Object Identifier 10.1109/TCAD.2020.3012748

Concurrently to the growing complexity of SoCs, the capa-
bility improvements of field-programmable gate array (FPGA)
platforms, and their flexibility to implement any digital func-
tionality by programming reconfigurable elements, have pro-
moted FPGAs as a valid alternative to application-specific
integrated circuits (ASICs) for the development of custom-
made SoCs. FPGAs allow designing systems with a high
degree of parallelism and high data processing rate at a
relatively low cost. A complete SoC composed of multiple
soft-core processors [i.e., multiprocessor SoC (MPSoC)] may
be implemented on an advanced FPGA (e.g., [3]). However,
the number of soft-core processors that may be embedded is
limited by the capacity of such platforms (i.e., limited by the
number of FPGA’ reconfigurable elements, called LCs). Most
FPGAs do not supply enough resources to embed complex
NoCs together with a large number of PEs.

The literature on NoCs is extensive. NoCs can differ con-
siderably depending on their design features. Most of the
proposed solutions that present suitable properties for real-
time systems (i.e., those with deterministic behaviors and
bounded worst-case timing properties) with dynamic traffic
rely on wormhole switching [4] with virtual channels (VCs),
and often implement some sort of priority-driven routing arbi-
tration. VCs are buffers located in the input or output ports of
each router. They allow storing flits (identically sized elements
into which packets are divided) coming from different ports
in a parallel fashion and then decide which one should be sent
based on their priority. VCs are the backbone of the most com-
mon real-time NoCs arbitration policies that have been studied
in the real-time systems, e.g., [5] and [6]. These strategies
develop powerful NoC infrastructures with bounded WCTT
but: 1) they are expensive to implement in terms of hardware
surface requirements (especially in FPGA platforms); 2) their
buffers and VCs increase the overall power consumption of the
platform; and 3) their complexity renders their analysis com-
plex as evidenced by the number of issues that were recently
discovered and exposed in [7]–[10].

Most prominently, NoCs based on VCs such as those men-
tioned above require around 100 000 LCs to implement an 8×8
NoC, that is, between 20% and 150% of the total number of
LCs that can be found in typical mid-range FPGAs. Therefore,
VC-based NoCs are not suitable for systems implemented over
FPGAs. In complete opposition, Hoplite is a newly proposed
NoC infrastructure [11]. It is bufferless, does not use VCs,
and each router is composed of only a few LCs. An 8×8
NoC requires 1%–8.5% of the total number of LCs offered
in a mid-range FPGA. Nevertheless, Hoplite does not provide
WCTT bounds and hence is not suitable for real-time systems.

Introduced by Wasly et al. [12], HopliteRT is a variation
of Hoplite that makes it compatible with real-time systems’

0278-0070 c© 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: b-on: Instituto Politecnico do Porto. Downloaded on November 04,2020 at 14:39:32 UTC from IEEE Xplore. Restrictions apply.

RIBOT GONZÁLEZ AND NELISSEN: HopliteRT*: REAL-TIME NOC FOR FPGA 3651

requirements. However, even though it bounds the packets
WCTT, in the worst-case scenario it may still require a flit
to travel through every router in the network before reaching
its destination. HopliteRT also treats all packets identically,
i.e., it does not allow to associate different priorities, and thus
the quality of services to different packets.

Contribution: In this article, we propose a new NoC design
called HopliteRT* that keeps the advantages of HopliteRT
while improving its real-time capabilities. The main contri-
butions of this article are as follows.

1) To propose a solution to reduce the WCTT of a packet.
2) To introduce a notion of quality of service in the routing

policy.
3) We identified a flaw in the timing analysis of HopliteRT

and present a counter example.
4) We propose a worst-case communication time (WCCT)

analysis of HopliteRT*.
5) We implemented our NoC in Verilog (a hardware

description language) that can be instantiated on a real
FPGA platform.

6) We present evaluation results of our new design against
related work in terms of hardware requirements and
computed WCCT bounds.

As discussed later in Section VI, contribution 4) shows
that the changes introduced by contributions 1) and 2) allow
the transmission of high priority packets to be, in the worst-
case, twice as fast as in the original HopliteRT design without
impacting the quality of service of low-priority packets, and
in the average case, to be up to four times faster.

II. RELATED WORK

Several NoC designs based on time-triggered routing arbi-
tration protocols have been proposed over the years to address
real-time systems requirements (e.g., [13] and [14]). It allows
to isolate the timing properties of different flows by allocat-
ing precalculated transmission slots to them. This approach
is extremely reliable and especially suited to critical systems.
However, they require to know the complete system specifi-
cation at configuration time and does not allow to adapt to
changes in the system workload at runtime.

Several works [15], [16] have been published on the
analysis of wormhole switching NoC with shared VCs as
found in many COTS multi/many-core platforms, e.g., Kalray
MPPA [17] and Tilera Tile [18].

Shi and Burns [19] proposed a WCTT analysis for a real-
time NoC adopting a fixed priority preemptive routing protocol
in which each priority level is assigned its own VC. Several
variations of that NoC and its analysis were proposed over
the years, for instance, handling the case where several flows
share the same priority [20], changing the routing policy to
EDF [21], or supporting communication flows with different
criticality levels [22], [23]. However, the complexity of the
NoC design and its routing policy led to several issues in
their analysis [7]–[10]. To try to avoid the problematic cases
mentioned in those publications, Nikolic et al. [24] recently
proposed a new type of NoC relying on a global arbitra-
tion protocol centered around a CAN bus shared between
all routers. Theoretical results are promising but one must

still implement such NoC in a real platform. Alternatively,
Giroudot and Mifdaoui [25], [26] addressed most of the
limitations of the previous work by proposing a worst-case
timing analysis of wormhole NoCs using network calculus.
IDAMC [5] is another wormhole-based NoC designed specif-
ically for mixed-criticality systems that use the back suction
flow-control to implement service guarantees.

Hoplite is an inexpensive NoC design first proposed in [11]
and [27]. Its routing policy is built upon the concept of deflec-
tion to avoid the cost of packet buffering, which makes it
compact but does not allow to provide a bounded WCCT.
Thus, it is not suited to real-time systems. Introduced in [12],
HopliteRT is a variant of Hoplite that introduces: 1) a new
routing protocol to prevent unbounded traversal times and
2) implements a traffic injection regulation protocol at each PE
in order to avoid resource starvation. Thus, HopliteRT keeps
the simplicity of Hoplite while ensuring bounded communi-
cation times for all communication flows. Finally, HopliteBuf
is an evolution of HopliteRT that completely eliminates the
notion of deflections and provides in-order packet deliv-
ery [28]. However, it requires to add large buffers in each
router and hence increases the resource and power require-
ments of the NoC. The WCTT guaranteed by HopliteBuf is
identical to that of HopliteRT.

III. SYSTEM MODEL

In this article, we assume a system composed of m PEs
{π1, . . . , πm} organized in a torus of size Sx × Sy. Each PE
πk is connected to a different router Rk. The coordinates of
the PE πk (and its router Rk) in the torus are (xk, yk) with
0 ≤ xk < Sx and 0 ≤ yk < Sy.

Each PE πk injects a set of nk communication flows
Fk = {f1, f2, . . . , fnk

} into the network. A communication flow
fi is defined by the tuple {xi

o, yi
o, xi

d, yi
d, prioi, Ci, Ti}. A com-

munication flow fi generates a potentially infinite number of
packets that are injected at coordinates (xi

o, yi
o) of the NoC

and must reach the PE at coordinates (xi
d, yi

d). fi respects a
minimum interarrival time Ti between the generation of every
two packets. Each packet sent by flow fi is divided in Ci flits
that are sequentially injected in the network. Each flit has a
size Sflit (in bits). We assume that all the routing information
is encoded in each flit of the packet, i.e., there is no distinction
between header, body, or tail flits. The routing information is
composed of the coordinates of the destination PE, and 1 bit
encoding the priority prioi (equal to high or low) of the asso-
ciated flow. We denote the sets of high and low priority flows
as hp = {fi | prioi = high} and lp = {fi | prioi = low}.

IV. BACKGROUND

In this section, we recall useful properties of HopliteRT and
prove that its published timing analysis is incorrect.

A. HopliteRT Routing Protocol

Introduced in [12], HopliteRT is a variant of Hoplite that
provides an upper bound on the WCTT of packets. HopliteRT
implements a modified version of X-Y routing [a type of
dimension ordered routing (DOR)]. Packets first travel east
along the x-axis until they reach a router with the same X

Authorized licensed use limited to: b-on: Instituto Politecnico do Porto. Downloaded on November 04,2020 at 14:39:32 UTC from IEEE Xplore. Restrictions apply.

3652 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 39, NO. 11, NOVEMBER 2020

Fig. 1. Hoplite and HopliteRT designs. (a) HopliteRT router. (b) HopliteRT’s
routing policy.

TABLE I
ROUTING TABLE OF HOPLITERT

coordinate than their destination. The packet then turns south
to travel along the y-axis until their destination. HopliteRT’s
routing policy differs from X-Y routing in that it allows pack-
ets to be “deflected” east while traveling south. A deflected
packet must then travel along the x-axis again until reaching
the same router where it was deflected and resume its journey
south. Specifically, a packet may enter in a router by its N, W,
or PE port [see Fig. 1(a)]. Packets entering by the W or PE
port may request to go to the S or E output port. Packets enter-
ing by the N port may only request the S port. The packets
injected by a programming element through the PE port always
have the lowest priority and must wait for the requested port
to be free. If both a packet entering by W and another entering
by the N port request the S port at the same time, HopliteRT
always gives the highest priority to the packet entering by the
W port and deflects the packet entering by the N port toward
the E port instead (see Table I).

Example: In Fig. 1(b), both the red packet (entering by the
N port) and the green packet (entering by the W port) request
to go south. Since the W port is given higher priority in the
routing policy, the green packet pursues its route to the S port
while the red packet is deflected toward the E port.

Note that because deflected packets travel along the x-axis,
they will always enter by the W port, and hence will have the
highest priority the next time they will require to go south.
Therefore, the maximum number of deflections suffered by a
packet can be upper bounded as discussed in Section IV-C.
Nonetheless, a packet may be deflected after each and every
hop on the y-axis, thereby leading to possibly large WCTTs.

Additionally, HopliteRT implements a traffic injection regu-
lation protocol at each PE port in order to avoid programming
elements to limit the number of packets that it may send in
bursts when the output ports are available. This avoids some

PEs to be indefinitely blocked because of unfair use of the
bandwidth by other PEs.

B. HopliteRT Router Architecture

In HopliteRT, a router is implemented using two mul-
tiplexers of three inputs [see Fig. 1(a)]. HopliteRT takes
advantage of the possibility of fracturing the lookup tables
(LUTs) of modern FPGAs (i.e., the possibility to use a sin-
gle LUT to implement two functions that would normally
require two different LUTs) to reduce the implementation cost
of the expensive crossbar multiplexers. The modern families of
Xilinx FPGAs present 6-inputs LUTs that can be fractured in
two 5-inputs LUTs sharing the same five input signals. Since
each 3:1 multiplexer can be implemented with a 5-inputs LUT,
the two multiplexers of the router can be implemented with a
single 6-inputs LUT.

C. HopliteRT Worst-Case Traversal Time

The WCTT wctt of a flit transmitted with HopliteRT
between two nodes with coordinates (xo, yo) and (xd, yd) in
a torus of size Sx × Sy is given by (1) (in clock cycles) [12]

wctt = hx + hy +
(

hy × Sx

)

+ 2 (1)

where hx and hy are the distances traveled by the packet on
the x- and y-axes, respectively, when it does not contend with
any other packet (i.e., without any deflection). Then

hx = (xd − xo + Sx) mod Sx (2)

hy =
(

yd − yo + Sy

)

mod Sy (3)

where mod is the modulo operator.
The term (hy × Sx) in (1) accounts for the total cost of

potential deflections; according to HopliteRT’s routing policy,
a packet can be deflected at most hy times and each such
deflection increases the packet’s traversal time by Sx hops.
The two additional hops in (1) represent the injection of the
flit into the network by the PE and its exit at its destination.

A bound on the worst-case injection time (i.e., worst-case
delay before a PE may be able to inject a packet into the NoC)
is also proposed in [12]. However, as shown below by means
of a counterexample that bound is incorrect as it may return
optimistic and hence unsafe results.

D. Counterexample to the WCIT Bound of [12]

The traffic injection regulation protocol of HopliteRT is
implemented using a leaky bucket implemented with two cas-
caded counter at each PE πk: 1) a rate counter and 2) a token
counter. The first counter overflows every θk cycles, where θk

is the flit injection period of the programming element πk.
Then, the second counter is incremented on each overflow
until it reaches a maximal value σk. The value of the token
counters determines the maximum number of flits that the pro-
gramming element can inject consecutively. The value of the
token counter is decremented whenever a flit is injected in the
network by πk.

Let ŴC
p denote the set of flows that conflict with the injec-

tion of a packet p of flow fi by πk. Then, σ(ŴC
p) and ρ(ŴC

p)

Authorized licensed use limited to: b-on: Instituto Politecnico do Porto. Downloaded on November 04,2020 at 14:39:32 UTC from IEEE Xplore. Restrictions apply.

RIBOT GONZÁLEZ AND NELISSEN: HopliteRT*: REAL-TIME NOC FOR FPGA 3653

Fig. 2. Counter-example to the WCIT bound of [12] and [29].

define the cumulative burst length and injection rate of the
conflicting flows, respectively. Wasly et al. [12], [28], [29]
proved that if ρ(ŴC

p) < 1 (i.e., the cumulative injection rate of
conflicting flows is less than 1 packet/cycle) eventually there
will be available clock cycles, hence the injection of p will
not be infinitely blocked. Then, (4) is presented as a bound
on the WCIT of a flow fi injected by πk, assuming that the
condition ρ(ŴC

p) < 1 is satisfied

wcit = (θk − 1) + B(p) (4)

with

B(p) =

⎡

⎢

⎢

⎢

σ

(

ŴC
p

)

1 − ρ

(

ŴC
p

)

⎤

⎥

⎥

⎥

(5)

where σ(ŴC
p) =

∑

fl∈ŴC
p

σl and ρ(ŴC
p) =

∑

fl∈ŴC
p
(1/θl).

Note (5) above assumes that a conflicting flow inherits the
burst length and injection period of its origin router, i.e., σl

and θl refer to the burst length and regulation period of the
origin router of flow fl.

Now, consider the system presented in Fig. 2. It consists
of three flows f1, f2, and f3. f1 is injected in router (1, 0) and
has for destination (1, 6). f2 is injected at (0, 1) and has for
destination (1, 2). f3 is injected at (0, 3) and has for destination
router (1, 4).

We are interested about the maximum blocking delay B(p)

suffered by a packet p injected to the S port of the router (1, 5).
The set of conflicting flows ŴC

p = {f1}, i.e., only f1 may pass
through the S port of router (1, 5) and block packet p.

Assume that the burst length σ1 = 1 and the regulation
period θ1 = 4 at f1’s origin router. Then, according to (5),
the maximum amount of time the S port of the router (1, 5)

may be kept busy by conflicting flows is given by B(p) =

⌈(σ (ŴC
p))/(1 − ρ(ŴC

p))⌉ = ⌈1/(1 − (1/4))⌉ = 2.
However, let us now assume that f1 injects three packets at

times 0, 4, and 8 (note that those times respect the regulation
period of 4 at f1’s origin router). Then, assume that f2 injects
packets at times 0 and 4. This means that the two first packets
of f1 will be deflected by packets of f2 in router (1, 1) while
the third packet of f1 will not be deflected. Therefore, the

Fig. 3. HopliteRT* priority-based routing example. (a) Packet route requests.
(b) Situation after routing arbitration.

three packets of f1 will reach router (1, 2) at times 5, 9, and
10, respectively. Now, suppose that flow f3 injects a packet
at time 5. Then, the first packet of f1 will be deflected for a
second time in router (1, 3). That is, the three packets of f1 will
reach router (1, 5) at times 11, 12, and 13, respectively. Since
they all arrive at one clock cycle of the interval, this means that
the S port of router (1, 5) will be kept busy by the conflicting
flow f1 during three clock cycles, thereby contradicting (5).

We conclude that the analysis in [12], [28], and [29] is
incorrect because it forgot to account for the fact that differ-
ent packets of the same flow may suffer different numbers of
deflections on their route to their destination.

V. IMPROVING HOPLITERT’S REAL-TIME CAPABILITIES

In this section, we present HopliteRT*, a variant of
HopliteRT designed to: 1) introduce priorities in the routing
policy and 2) decrease the WCTT of high-priority packets
while keeping the WCTT of low-priority packets bounded.
We prove a new WCTT and WCIT analysis in Section VI.

A. Introducing Priority Levels

A requirement of many real-time embedded systems is to
provide different quality of service to different classes of traf-
fic. It is classically done by assigning different priorities to
those classes. Thus, we add a notion of packet priority in the
arbitration mechanism of HopliteRT*. It is based on two prior-
ity levels (low and high) routing scheme. Our main objective
is to ensure that low priority packets cannot interfere with the
WCTT of high priority packets.

In HopliteRT, the packets coming from the W port always
have the highest priority. Instead, in HopliteRT*, low priority
packets coming from the W port will never be permitted to
deflect high priority packets coming from the N port (see Fig. 3
for an example). That is, if a high priority packet coming from
the N port [red packet in Fig. 3(a)] and a low priority packet
coming from the W port [green packet in Fig. 3(a)] conflict
for the S port, then the N packet wins the right to use the
S port, and the W packet is deflected toward the E port [see
Fig. 3(b)]. In any other case, the routing policy is the same as
in HopliteRT (refer to Section IV-A and Table I). To implement
this new routing policy, the packet priority is encoded in its
most significant bit. Table II summarizes the routing policy of
HopliteRT*.

Authorized licensed use limited to: b-on: Instituto Politecnico do Porto. Downloaded on November 04,2020 at 14:39:32 UTC from IEEE Xplore. Restrictions apply.

3654 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 39, NO. 11, NOVEMBER 2020

TABLE II
ROUTING TABLE OF HOPLITERT*

B. Ensuring Progress

Even though it looks beneficial, the new priority-based rout-
ing policy described in Section V-A is in fact extremely inef-
ficient; the WCTT of high priority packets remains unchanged
(only their average-case traversal time is potentially reduced),
but more importantly, the WCTT of low priority packets is not
bounded anymore.

Consider the red packet in Fig. 1(b). Since that packet was
deflected, it will hop through Sx routers (where Sx is the num-
ber of routers on the x-axis) before entering again in the same
router in which it was initially deflected. That is, the packet
did not progress at all toward its destination after those Sx

additional hops. If the red packet has a low priority, it may
again be deflected in the same router, and again, it will not
experience any progress during the next Sx hops.

We prevent the lack of progress discussed above by chang-
ing the network topology. We connect the routers together
considering a circulant topology as shown in Fig. 4(a). In that
topology, all routers are connected by a single unidirectional
ring (red links in Fig. 4). Then, every pair of routers that are Sx

positions apart on the ring are connected by a bypass (green
and black links in Fig. 4). Equivalently, if we look at the
network as a grid [see Fig. 4(b)], the main unidirectional ring
(in red) corresponds to the rows of the torus where the E port
of the last router in row number y is connected to the W port
of the first router in row number (y + 1) mod Sy. Similarly,
the bypasses (green and black in the figure) correspond to the
links on the columns of the torus, where the last router in a
column is connected to the first router in that same column.
That is, in Fig. 4, the green links in the inset (a) correspond
to the green links in the inset (b).

Thanks to this new topology, when a packet is deflected,
then Sx hops later, it reaches the same router as it would have
if it was not deflected. That is, the packet always progresses
toward its destination even when deflected. Consequently, the
WCTT of all packets is: 1) bounded and 2) decreases in
comparison to HopliteRT (see Section VI).

Note that the circulant topology does not suffer from the
same limitations as the traditional ring topology as it is fully
scalable. Indeed, the bypasses allow the NoC to have as much
bandwidth as with a torus topology.

Fig. 4. Circulant topology of HopliteRT* and its router architecture.
(a) Circulant topology C(16;1,4). (b) Equiv. grid representation. (c) Router
microarchitecture.

C. Modification to the Router Architecture

The new topology of HopliteRT* requires to slightly mod-
ify the router design. Indeed, originally, in the particular case
where two packets arrive at the same instant in the same router
(via the W and N ports) and that router is their destination,
HopliteRT would send one packet to the programming element
and would deflect the other to the E port. Then, the deflected
packet would travel around the whole row in order to reach
its destination router once more and finally be sent to the PE.
If the same approach was adopted in HopliteRT*, because of
the change of topology, the deflected packet may have had
to travel around the entire network (instead of just the current
row) before reaching its destination router for the second time.
This situation causes a remarkable and unacceptable increase
in the WCTT of the deflected packet. We aim at solving this
issue by allowing the programming element connected to the
router to read both packets simultaneously. For this reason, we
connect inputs of the programming element to both the E and S

ports of the router (instead of just the S port as in HopliteRT).
We call those PEo1 and PEo2 in Fig. 4(c). That is, PEo1 shares
its wires with the S port and PEo2 share its wires with the E

port. Additionally, a new wire is used to signal the availability
of a message to the PE on the E port. Sharing output ports
with the inputs of the PE slightly increases the complexity
of the logic in the router, but it avoids the implementation of
expensive multiplexers.

To accommodate the arrival of packets on a PE’s output
ports, we consider that each PE has two FIFO queues, one per
output port. By connecting PEo1 and PEo2 to these buffers,
we ensure that each PE will be able to serve two petitions
per cycle (i.e., one from PEo1 and PEo2) and, therefore, no
backpressure is created in the network.

Authorized licensed use limited to: b-on: Instituto Politecnico do Porto. Downloaded on November 04,2020 at 14:39:32 UTC from IEEE Xplore. Restrictions apply.

RIBOT GONZÁLEZ AND NELISSEN: HopliteRT*: REAL-TIME NOC FOR FPGA 3655

We also consider that each PE has two FIFO queues (which
may be implemented in software or hardware), one per priority
level, for flits that are pending to be injected into the network.
High priority packets are injected first in the network. Flits
of low priority flows are injected only when the high priority
FIFO queue is empty. That is, high priority packets do not
suffer delay due to low priority packets sent by the same PE.

Additionally, in this article, we assume that there is no traffic
injection regulator at PEs, that is, PEs can inject flits as fast
as possible. However, we assume that each flow may have at
most one packet in the FIFO queue pending to be injected
in the network at any time instant. After injecting a packet,
a new packet from the same flow can be stored in the FIFO
to be injected in the network. In other words, we assume that
∀fi, Ti ≥ wciti.

VI. BOUND ON THE WORST-CASE COMMUNICATION TIME

In the previous section, we described HopliteRT*. In this
section, we propose an analysis of the worst-case commu-
nication time (WCCT) between two PEs connected with
HopliteRT*. The WCCT of a packet is defined as the sum
of the maximum amount of time wcit during which the last
flit of the packet must wait in the PE before to be injected
in the network, and the maximum amount of time wctt taken
by any flit of the packet to traverse the network and reach its
destination. Thus, the WCCT of a packet pertaining to flow fi
is defined as

wccti = wciti + wctti (6)

where wciti is the worst-case injection time and wctti is the
WCTT of flow fi. To avoid notation clutter, we omit to specify
the index of the flow when referring to their WCTT and WCIT
when there is no ambiguity.

A. Worst-Case Traversal Time

We start by deriving a bound on the WCTT of any flit
of a packet p. A bound on the WCIT will be proven in
Section VI-C.

We decompose the WCTT of a flit of flow fi in two terms

wctti = ni
hops(xd, yd) + ni

def(xd, yd) × cdef (7)

where ni
hops(xd, yd) is the number of hops in a network with

zero load (i.e., when the flit does not suffer any deflection)
until its destination (xd, yd), ni

def(xd, yd) is the maximum num-
ber of deflections suffered by the flit on its route until its
destination, and cdef is the cost of a deflection. As for WCTT
and WCIT, in the following, we omit the superscript i of
ni

hops(xd, yd) and ni
def(xd, yd) when there is no ambiguity on

the flow to which it refers.
The term nhops is defined as

nhops(xd, yd) = hr(xd, yd) + hb(xd, yd) + 2 (8)

where hr(xd, yd) and hb(xd, yd) are the number of hops on the
ring and bypasses, respectively, until the destination (xd, yd).
The additional two hops account for the injection (at the source
node) and exit (at the destination node) of the flit into and
from the network. In the following, we prove upper bounds

for hr(xd, yd) (Lemma 1), hb(xd, yd) (Lemma 2), ndef(xd, yd)

(Lemmas 3 and 5), and cdef(xd, yd) (Lemma 6).
Lemma 1: The number of hops on the ring by a flit of flow

fi to reach a destination (x, y) in a zero-load network is given
by hi

r(x, y) = (x − xi
o + Sx) mod Sx.

Proof: According to our routing policy, each flit travels first
through the ring from the origin router at coordinate (xi

o, yi
o)

until it reaches a router with the same X coordinate x as the
destination. According to the topology presented in Fig. 4(b),
the number of hops hi

r(x, y) on the ring is thus, (x − xi
o) when

x ≥ xo and (x − xi
o + Sx) when x < xo. That is, hi

r(x, y) =

(x − xi
o + Sx) mod Sx.

Lemma 2: The number of hops on bypasses by a flit of flow
fi to reach a destination (x, y) in a zero-load network is given
by hi

b(x, y) = (y − yi′

o + Sy) mod Sy, where

yi′

o =

{

yi
o, when x ≥ xi

o

yi
o + 1, when x < xi

o.
(9)

Proof: Remember that a bypass in Fig. 4(a) corresponds to
a link of a column of the modified torus in Fig. 4(b). Let Sy be
the number of routers in a column, and yi′

o be the Y coordinate
of the router at which the packet stops traveling on the ring
and starts using bypasses (i.e., the first router with the same
X coordinate as the destination). Then, according to the router
numbering shown in Fig. 4(b), yi′

o = yi
o when x ≥ xi

o and
yi′

o = yi
o + 1 when x < xi

o, and the number of hops hi
b(x, y) on

the y-axis of the torus is y − yi′

o when y ≥ yi′

o and y − yi′

o + Sy

otherwise. That is, hi
b(x, y) = (y − yi′

o + Sy) mod Sy.
The maximum number of deflections ndef(x, y) that a flit

may suffer until its destination (x, y) differ for high and low
priority packets. We analyze both cases in Lemmas 3 and 5.

Lemma 3: The maximum number of deflections suffered by
a flit of a low priority packet with destination (x, y) is bounded
by ndef(x, y) ≤ hb(x, y).

Proof: According to HopliteRT*’s routing policy, a low
priority flit entering from the W or N port may always be
deflected. Therefore, a low-priority packet may be deflected
as many times as it may try to use a bypass, i.e., hb times.

Lemma 4: A flit of a high priority packet cannot be
deflected in two successive routers on the same column (i.e.,
two routers directly connected to one another by their S and
N ports).

Proof: We prove this lemma by contradiction. Consider that
the high priority flit is deflected in two successive routers Rk

and Rl on the same column of the modified torus (i.e., the
S port of Rk is connected to the N port of Rl). Because the
flit is deflected in Rl, then, according to the routing policy of
HopliteRT*, it must have entered by the N port of Rl. That is,
it must have exited Rk by the S port. Since the flit left Rk by
the S port, it means that it was not deflected in Rk, thereby
leading to a contradiction.

Lemma 5: The maximum number of deflections suffered
by a flit of a high priority packet with destination (x, y) is
bounded by ndef(x, y) ≤ ⌊hb(x, y)/2⌋.

Proof: According to the routing policy of HopliteRT*, a
high priority flit can only be deflected when it enters by the
N port of a router. That is, it can only be deflected when it

Authorized licensed use limited to: b-on: Instituto Politecnico do Porto. Downloaded on November 04,2020 at 14:39:32 UTC from IEEE Xplore. Restrictions apply.

3656 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 39, NO. 11, NOVEMBER 2020

travels along bypasses. Moreover, a flit can only use bypasses
that belong to the same column (i.e., same Y-coordinate).

By definition of hb(x, y), the flit under analysis does at
most hb(x, y) hops through bypasses, all of which are con-
secutive links of the same column of the modified torus, and
at most (hb(x, y) − 1) of those hops can be made by enter-
ing by the N port of a router. Furthermore, by Lemma 4, a
high priority flit cannot be deflected in two successive routers
on the same column of the modified torus. Therefore, the flit
under analysis may be deflected in at most half of the routers,
i.e., in ⌈(hb(x, y) − 1)/2⌉ = ⌊hb(x, y)/2⌋ routers, which
proves the lemma. Note that the last equality holds because
hb(x, y) ∈ N.

The additional cost in terms of hops introduced by each
deflection is analyzed in Lemma 6.

Lemma 6: The cost of a deflection is cdef = Sx − 1.
Proof: When a flit is deflected, it must hop through Sx

routers on the ring to reach the same router as it would have
if it could have used the bypass instead, i.e., though Sx routers
instead of 1, thus leading to an additional cost of Sx − 1.

Injecting all the bounds proven in Lemmas 3, 5, and 6 into
(7), we can compute the WCTT of any flit of any flow fi.

B. Improved Analysis for the WCTT

The analysis proposed in Section VI-A only uses
information on the packet under analysis and does not rely
on any information related to other communication flows that
may be transmitted in the system. That analysis is thus useful
for dynamic systems where the set of communication flows
may vary over time. However, it may also be pessimistic if
more information on the system is known. Indeed, the analysis
of Section VI-A always assumes that the packet under anal-
ysis will suffer the maximum number of possible deflections.
This may never happen in the real network if, for instance,
there are no other flows using the same route than p. In this
section, we derive more precise bounds on ndef based on the
knowledge of the actual set of flows that can interfere with
the transmission of the packet under analysis.

To derive the sets of flows that may interfere with a packet
p under analysis, we first define the sets ŴN→S

k , ŴW→S
k , and

ŴE→S
k as the sets of flows that traverse a router Rk from the

N to S ports, from W to S, and from W to E, respectively,
assuming that no deflection ever happens in the network.

Lemma 7: ŴN→S
k = {fi | (xi

d = xk) ∧ hi
b(xk, yk) > 0 ∧

hi
b(x

i
d, yi

d) ≥ hi
b(xk, yk)}.

Proof: According to the modified DOR routing policy
adopted by HopliteRT*, a flow fi may request to leave by the
S port of Rk only if its destination is on the same column of
the modified torus than Rk (i.e., xi

d = xk) and its destination is
either Rk or further south than Rk [i.e., hi

b(x
i
d, yi

d) ≥ hi
b(xk, yk)].

Furthermore, a flow cannot enter by the N port of Rk if it must
not perform at least one hop on a bypass to reach Rk, i.e., we
must have hi

b(xk, yk) > 0.
Lemma 8: ŴW→S

k = {fi : (xi
d = xk) ∧ hi

b(xk, yk) = 0}.
Proof: According to the modified DOR routing policy

adopted by HopliteRT*, a nondeflected flow fi may enter by
the W port only if it does not need to use any bypass to reach

Rk [i.e., hi
b(xk, yk) = 0]. Furthermore, it may request leav-

ing by the S port of Rk only if its destination is on the same
column of the modified torus than Rk (i.e., xi

d = xk).
Lemma 9: ŴW→E

k = {fi : hi
b(xk, yk) = 0 ∧ hi

r(x
i
d, yi

d) >

hi
r(xk, yk)}.

Proof: According to the modified DOR routing policy
adopted by HopliteRT*, a nondeflected flow fi may enter by
the W port only if it does not need to use any bypass to reach
Rk [i.e., hi

b(xk, yk) = 0]. Furthermore, it may request to exit by
the E port only if the number of hops it must do on the ring to
reach its destination is larger than the number of hops it must
do on the ring to reach Rk [i.e., hi

r(x
i
d, yi

d) > hi
r(xk, yk)].

We define defhp

k and deflp

k as binary functions that return 1
if high and low priority flows may be deflected in the router
Rk, respectively.

Lemma 10: Let Rn be the router directly north to Rk, then

defhp

k =

⎧

⎪

⎨

⎪

⎩

1, ŴN→S
k ∩ hp �= ∅

∧
(

ŴW→S
k ∩ hp �= ∅ ∨ defhp

n = 1
)

0, otherwise.

(10)

Proof: According to HopliteRT*’s routing policy, a high
priority flow can be deflected to the E port only if it is a flow
incoming by the N port that conflicts for the S port (i.e., there
must be ŴN→S

k ∩hp �= ∅). Furthermore, conflicting flows must
be of high priority too and must be incoming by the W port.
Since the flows that were deflected in Rn are the only deflected

flows that may enter by the W port and request the S port of
Rk, there must either be defhp

n = 1 or there is at least one
nondeflected flow entering by the W port and requesting the S

port (i.e., ŴW→S
k ∩ hp �= ∅).

Lemma 11: Let Rn be the router directly north to Rk, then

deflp

k =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

1, ŴN→S
k ∩ hp �= ∅

∧
(

ŴW→S
k ∩ lp �= ∅ ∨ deflp

n = 1
)

1, ŴN→S
k ∩ lp �= ∅

∧
(

ŴW→S
k �= ∅ ∨ deflp

n = 1 ∨ defhp
n = 1

)

0, otherwise.

(11)

Proof: According to HopliteRT*’s routing policy, a low pri-
ority flow can be deflected to the E port under two possible
scenarios: 1) it is a flow entering by the W port that conflicts
for the S port (i.e., ŴW→S

k ∩ lp �= ∅) with a high priority flow
coming from the N port (i.e., ŴN→S

k ∩ hp �= ∅); or 2) if it is a
flow coming from the N port that conflicts for the S port (i.e.,
ŴN→S

k ∩ lp �= ∅) with any flow coming from the W port. We
remind that the flows that were deflected in Rn are the only
deflected flows that may enter by the W port and request the
S port of Rk. Therefore, for scenario 2) to happen, there must
be deflp

n = 1 or defhp
n = 1, or there is at least one nondeflected

flow entering by the W port and requesting the S port (i.e.,
ŴW→S

k �= ∅). Scenarios 1) and 2) directly correspond to the
first and second case in (11), respectively.

The functions defhp

k and deflp

k allows us to identify the set of
routers in which a flit may be deflected. Therefore, thanks to
them, we can now compute the maximum number of deflec-
tions a flit may suffer on its route to its destination. We first
derive such bound for low priority flits in Lemma 12.

Authorized licensed use limited to: b-on: Instituto Politecnico do Porto. Downloaded on November 04,2020 at 14:39:32 UTC from IEEE Xplore. Restrictions apply.

RIBOT GONZÁLEZ AND NELISSEN: HopliteRT*: REAL-TIME NOC FOR FPGA 3657

Lemma 12: The maximum number of deflections suffered
by a flit of a low priority packet p of flow fi with destination
(x, y) is

ndef(x, y) =
∑

Rk∈R
b(p)

deflp

k (12)

where Rb(p) = {Rk | xk = x ∧ yk = (yi′

o + j) mod Sy∀j =

0, . . . , hb(x, y) − 1}.
Proof: The set Rb(p) contains all the routers on the same

column x than the destination of flow fi and that are on its
route to its destination. That is, those routers between the Y

coordinate yi′

o and the destination y of the flow. Therefore, it
contains all the routers in which a packet of fi may be deflected
(since a packet can only be deflected in a router on the same
column of its destination and that is on its route to its desti-
nation). Since, by Lemma 11, deflp

k returns 1 if a low priority
packet may be deflected in router Rk, and 0 otherwise, the sum
∑

Rk∈R
b(p) deflp

k returns the total number of routers in which
a packet of fi may be deflected.

The procedure to compute the maximum number of deflec-
tions for a flit of a high priority packet p is a bit more complex.
Let us first define the set Rdef(p) as the set of routers in
which a flit of the high priority packet p under analysis may
be deflected. That is, Rdef(p) = {Rk | Rk ∈ Rb(p)∧defhp

k = 1},
where Rb(p) is defined as in Lemma 12. The size of that set
is obviously an upper bound on the number of deflections that
may be suffered by a flit of p. However, that value would
be very pessimistic. Indeed, according to Lemma 4, the same
high priority flit cannot be deflected in two successive routers
in the same column of the modified torus. Lemma 13 integrates
that information to compute a tighter bound on the maximum
number of deflections suffered by a flit of p.

Lemma 13: Let Gdef(p) be a graph that contains one vertex
per router in Rdef(p), and such that any two vertices Vi and
Vj of G

def(p) are connected by an edge if the routers Ri and
Rj corresponding to those vertices are direct neighbors (i.e.,
they are connected by a S → N link). The maximum number
of deflections suffered by a flit of the high priority packet p

is the size of the maximum independent set of Gdef(p).
Proof: The maximum independent set of a graph G

def(p) is
the largest subset S of vertices of G

def(p) such that any two
vertices in S is not connected by an edge in G

def(p).
Since vertices in G

def(p) are connected by an edge if and
only if they are neighbors in the NoC (i.e., they are connected
by a N → S link), the maximum independent set S of Gdef(p)

contains the largest possible number of routers from Rdef(p)

that are not connected by a S → N link. That is, it contains
the largest number of routers in which a flit of packet p may
be deflected and that are not successive routers in the same
column of the network. Therefore, it contains the maximum
number of routers in which a flit of p may be deflected while
respecting the constraint set by Lemma 4.

The new bounds on the number of deflections provided
in Lemmas 12 and 13 can then be used instead of those in
Lemmas 3 and 5 to compute the WCTT with (7).

C. Worst-Case Injection Time

In the previous sections, we derived upper bounds on the
maximum traversal time of any flit of a packet p. In this sec-
tion, we provide an analysis for the worst-case injection time
of p.

We first discuss the best case injection scenario (Lemma 14)
for flow fi. The worst-case injection scenario is then discussed
in Lemma 15.

Lemma 14: In any time interval of length t, the flow fi can
transmit at most λi(t) = min{t, ⌈(t + wciti)/Ti⌉Ci} flits.

Proof: Since at most one flit can be sent by fi every clock
cycle, it holds that

λi(t) ≤ t. (13)

Moreover, let wciti be the WCIT suffered by any packet of
flow fi. Then, fi injects the most flits in an interval of length
t when one of its packet was kept from being injected during
wciti cycles before the beginning of the interval that packet
starts to be injected right at the start of the interval, new pack-
ets are generated with their minimum interarrival time Ti and
no flit of fi suffers blocking during the interval of length t.
Under such conditions, we have

λi(t) ≤

⌈

t + wciti

Ti

⌉

Ci. (14)

Since the minimum of two upper bounds is an upper bound,
the minimum of (13) and (14) is an upper bound on λi(t).

Now that we discussed the best case scenario, we consider
the worst-case delay that a flow may experience to inject a
packet in the network. To ease the discussion, we denote by
ŴC

k the set of flows that conflict with the injection of a packet
p at router Rk. Let us assume that the set of conflicting flows
ŴC

k is known. We can upper bound wciti as in Lemma 15.
Lemma 15: Let p be a packet of flow fi injected at router

Rk with coordinates (xk, yk). The WCIT wciti caused by flows
conflicting with packet p is given by the smallest positive
solution to the recursive equation

wciti ≥
∑

∀fl∈Ik

Cl +
∑

∀fj∈ŴC
k

λj

(

wciti + Jj + 1
)

(15)

where Jj = n
j

def(xk, yk) × cdef and

Ik =

{

Fk, if prioi = low
Fk ∩ hp, if prioi = high.

Proof: According to HopliteRT*’s routing policy, PE πk will
be able to inject the last flit of packet p as soon as: 1) all
flits previously pending in the FIFO queues of πk have been
injected and 2) there is one clock cycle where no packet from
other PEs conflicts for the same output port than p. This hap-
pens as soon as the length of the interval is larger than the
maximum number of pending flits that must be injected by
πk and the maximum number of flits generated by conflicting
flows injected by other PEs that conflict to access the same
output port during the interval.

The term referred to in point 1) is given by the maximum
number of flits that may be generated by flows on πk that
are ahead of p in the FIFO queues of πk. Since each flow

Authorized licensed use limited to: b-on: Instituto Politecnico do Porto. Downloaded on November 04,2020 at 14:39:32 UTC from IEEE Xplore. Restrictions apply.

3658 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 39, NO. 11, NOVEMBER 2020

may have at most one packet in the FIFO queue at a time
(see Section V-C), we have that the maximum number of flits
ahead of p is strictly smaller than

∑

∀fl∈Fk
Cl. Furthermore,

according to Section V-C, low priority flows injected by πk

cannot block high priority ones. Therefore, if the priority prioi

of fi is high, then strictly less than
∑

∀fl∈Fk∩hp Cl flits may be
sent ahead of p in πk. Summarizing, at most

⎛

⎝

∑

∀fl∈Ik

Cl

⎞

⎠ − 1 (16)

flits generated by πk (with Ik defined as in the claim) may
interfere with the transmission of the last flit of the packet p

under analysis.
To compute the term referred by point 2) in the explanation

above, consider the flow fj that may conflict with the packet p

under analysis (i.e., fj ∈ ŴC
k). By definition of n

j

hops(xk, yk),
flits from fj will reach the router (xk, yk) in no less than
n

j

hops(xk, yk) clock cycles. That is, the last flit generated by
fj that may conflict with the injection of p must have been
injected in the NoC no later than n

j

hops(xk, yk) clock cycles
before the end of the period during which p is interfered with.
Similarly, according to (7), flits from flow fj will reach the
router (xk, yk) in no more than (n

j

hops(xk, yk) + n
j

def(xk, yk) ×

cdef) clock cycles. Thus, the first flit generated by fj that may
conflict with the injection of p must have been injected no ear-

lier than n
j

hops(xk, yk) + n
j

def(xk, yk) × cdef clock cycles before

the start of the interference with p. Therefore, the length of
the interval during which fj may inject flits that conflict with
the packet p under analysis is given by �t = wciti + 1 −

nhops(xk, yk) + nhops(xk, yk) + n
j

def(xk, yk) × cdef = wciti + Jj,
where Jj = n

j

def(xk, yk) × cdef and (wciti + 1) is the duration
of the time interval starting when p is inserted in Rk’s FIFO
queue and finishing when the last flit of p is injected in the
network.

As proven in Lemma 14, a flow fj can inject at most λj(�t)

packets in the network in any time interval of length �t.
Therefore, all the flows that may interfere with the injection
of packet p can inject at most

∑

∀fj∈ŴC
k

λj

(

wciti + Jj + 1
)

(17)

flits that may conflict with p.
Combining (16) and (17), we get that p may inject its last

flit as soon as

wciti + 1 ≥

⎛

⎝

∑

∀fl∈Ik

Cl

⎞

⎠ − 1 +
∑

∀fj∈ŴC
k

λj

(

wciti + Jj + 1
)

.

Hence proving the lemma.
The set of flows ŴC

k conflicting with the injection of a packet
p at a router Rk is composed of all the flows injected by other
PEs that may request the E or S port of Rk. That is

ŴC
k = ŴS

k ∪ ŴE
k (18)

where ŴS
k and ŴE

k are the set of flows that may request the
S and E port of Rk, respectively. We define ŴS

k and ŴE
k in

Lemmas 18 and 19. However, to compute ŴS
k and ŴE

k , we
must first define the set Ŵdef

k of flows that may be deflected

in router Rk. We further divide that set in Ŵ
def_hp
k and Ŵ

def_lp
k

such that Ŵ
def_hp
k is the set of high priority flows that may be

deflected in Rk, and Ŵ
def_lp
k is the set of low priority flows that

may be deflected in Rk. By definition, Ŵdef
k = Ŵ

def_hp
k ∪Ŵ

def_lp
k .

Lemma 16:

Ŵ
def_hp
k =

{

ŴN→S
k ∩ hp, if defhp

k = 1
∅, otherwise.

Proof: According to HopliteRT*’s routing policy, only high
priority flows entering by the N port and contending for the S

port can be deflected (i.e., all flows in ŴN→S
k ∩hp). Therefore,

Ŵ
def_hp
k = ŴN→S

k ∩ hp when deflections may happen in router
Rk (i.e., when defhp

k = 1). If no deflection may happen in
Rk (i.e., defhp

k = 0), then the set of deflected flows in Rk is
obviously empty.

Lemma 17:

Ŵ
def_lp
k =

{
{

ŴW→S
k ∪ ŴN→S

k ∪ Ŵdef
n

}

∩ lp, if deflp

k = 1
∅, otherwise

with Rn being the router directly north to Rk.
Proof: First, remember that according to HopliteRT*’s rout-

ing policy, any flow that is deflected in Rn (i.e., flows in
Ŵdef

n) will enter in Rk by the W port and compete for the
S port. Furthermore, any low priority flow entering by the
N or W port and contending for the S port can be deflected
(i.e., all flows in {ŴW→S

k ∪ ŴN→S
k ∪ Ŵdef

n } ∩ lp). Therefore,

Ŵ
def_hp
k = {ŴW→S

k ∪ ŴN→S
k ∪ Ŵdef

n } ∩ lp when deflections may
happen in the router Rk (i.e., when deflp

k = 1). If no deflection
may happen in Rk (i.e., deflp

k = 0), then the set of deflected
flows in Rk is obviously empty.

Now, we can define ŴS
k and ŴE

k .
Lemma 18: The set of flows coming from other routers that

conflict on the S port of router Rk is given by ŴS
k = ŴN→S

k ∪

ŴW→S
k ∪ Ŵdef

n where Rn is the router directly north to Rk.
Proof: The S port of the router Rk may be kept busy by

any flow entering by the N or W port of Rk and requesting
the S port. Since according to HopliteRT*’s routing policy,
the only deflected flows that may enter by the W port of Rk

and request the S port are those deflected in Rn (i.e., flows in
Ŵdef

n), the set of all flows that may request the S port of Rk is
ŴN→S

k ∪ ŴW→S
k ∪ Ŵdef

n (where ŴN→S
k ∪ ŴW→S

k is the set of all
flows that were not deflected that may enter Rk and request
the S port).

Lemma 19: The set of flows coming from other routers that
conflict on the E port of the router Rk is given by ŴE

k =

ŴW→E
k ∪ Ŵdef

ring ∪ ŴW→S
k ∪ Ŵdef

n , where Rn is the router directly
north to Rk and

Ŵdef
ring =

⋃

∀Rl: (xl>xk∧yl=yk−1)∨(xl<xk∧yl=yk)

{

Ŵdef
l

}

. (19)

Proof: Let Rn be the router that is directly north to Rk

[i.e., router at coordinates (xk, yk − 1)]. Then, according to
HopliteRT*’s routing policy, the only deflected flows that
may enter by the W port of Rk and request the E port are

Authorized licensed use limited to: b-on: Instituto Politecnico do Porto. Downloaded on November 04,2020 at 14:39:32 UTC from IEEE Xplore. Restrictions apply.

RIBOT GONZÁLEZ AND NELISSEN: HopliteRT*: REAL-TIME NOC FOR FPGA 3659

TABLE III
RESOURCES UTILIZATION OF 8 × 8 NOCS IN MID-RANGE FPGA

those that were deflected in routers located between Rn and
Rk on the ring of the NoC [i.e., any router Rl such that
(xl > xk ∧ yl = yk − 1) ∨ (xl < xk ∧ yl = yk)]. The set
of all those flows is provided by Ŵdef

ring. Therefore, the E port

of Rk may only be requested by the flows in Ŵdef
ring ∪ ŴW→E

k ,
where ŴW→E

k is the set of flows that are not deflected in any
router and request the E port of Rk (note that there is no
flow that may enter by the N port and request the E port).
Finally, the routing table of HopliteRT* (see Table II) does
not allow a packet p to be injected by the PE toward the E

port whenever there is packet entering Rk by the W port and
requesting the S port. Thus, the set of all flows entering by
the W port and requesting the S port (i.e., ŴW→S

k ∪ Ŵdef
n as

proven in Lemma 18) must be added to the set of conflicting
flows, proving the lemma.

The results of Lemmas 18 and 19 can then be used to
compute the WCIT using Lemma 15 and (18).

VII. EXPERIMENTAL RESULTS

A. Implementation of HopliteRT*

We implemented HopliteRT* with the hardware descrip-
tion language Verilog taking advantage of the possibility of
fracturing the look-up tables in recent FPGA platforms. A
64-bits HopliteRT* router synthesized for a Xilinx Virtex-7
485T FPGA requires 88 LUTs and 139 Flip-Flops (FFs). It is
only three additional LUTs (after fracturation) in comparison
to HopliteRT. Note that a single HopliteRT* router requires
only 0.03% and 0.02% of the total number of LUTs and FFs
available in the Xilinx Virtex-7, respectively.

Next, we connected the router to a Microblaze soft core and
synthesized a 4 × 4 network for a Virtex-7 485T using Xilinx
Vivado. We computed the maximum operating frequency and
obtained ≈275 MHz for both HopliteRT and HopliteRT*,
thereby showing no degradation when adopting HopliteRT*.

Table III shows an approximation of the resource utiliza-
tion for the implementation of HopliteRT*, ProNoC [30],
IDAMC [5], and CONNECT [31] in a Xilinx Kirtex-7.
Contrary to the Virtex-7 that is targeting rather high-end
applications, the Xilinx Kirtex-7 is a mid-range product that
exposes approximately between 65 600 and 477 760 LUTs.
When we synthesized a single ProNoC router with two VCs
(equivalent to two priorities), it required 1574 LUTs, and
according to [31] and [32], a router of IDAMC requires ≈1300
LUTs, and one of CONNECT approximately 1500 LUTs.
Thus, as reported in Table III, to implement an 8 × 8 ProNoC
NoC, we need ≈100 000 LUTs (IDAMC: ≈83 000 LUTs and
CONNECT: ≈96 000 LUTs), leaving very little space, if any,
for the computation logic. Those NoCs are thus too expen-
sive for such platforms. Conversely, an 8×8 HopliteRT* NoC
consumes only 5632 LUTs, i.e., between 1.1% and 8.5% of the
Xilinx Kirtex-7 resources. Therefore, HopliteRT* is a suitable

solution for such FPGA platforms unlike virtual-channel-based
NoCs.

B. Analyses Results

In this section, we provide experimental results by comput-
ing the WCTT and WCCT of sets of communication flows
generated under different system configurations, (i.e., distinct
NoC sizes, number of flows, and traffic patterns).

NoC Latency Bounds: We generated sets of flows according
to two traffic patterns: 1) random: the origin and destination
coordinates are randomly generated using a uniform probabil-
ity distribution of a flow to originate and target any router in
the network and 2) all2one: origins are randomly gener-
ated but the same destination coordinates are assigned to all
the flows. A priority level (low or high) is randomly assigned
to each flow. The number of high priority flows was roughly
kept at 50% of the total number of flows in the network. The
number of flits of packets released by a communication flow
was randomly chosen between 1 and 5, and their interarrival
times were generated as in [33].

In Fig. 5(a) and (b), we provide the results computed
by using the analysis of HopliteRT [12], [29], the analy-
sis presented in Section VI-A, and the improved analysis of
Section VI-B. We show the evolution of the maximum and
average packets WCTT for an increasing number of flows in
a 16×16 network considering a random traffic pattern. Each
point in the plot is the result of 100 experiments. We varied
the number of generated flows from 10 to 300 by steps of 10.

The maximum WCTT observed over all flows for both
HopliteRT and HopliteRT* is roughly the same. This can eas-
ily be explained by the fact that HopliteRT* has the same
WCTT bound than HopliteRT for low priority flows. However,
high priority packets see their WCTT drastically reduced in
HopliteRT*. It is even more visible when looking at the results
returned by the improved WCTT analysis, which reduces con-
siderably the analysis pessimism by considering the actual set
of flows that may interfere with each other. We also see that
the improved analysis gain reduces as the number of flows
increases. This is expected since the number of interfering
flows and hence the number of deflections that flows may suf-
fer increases when more packets are injected into the network.
Even though, we show that the average WCTTs of high prior-
ity flows remain considerably lower than that of other flows.
We also show that the modifications of HopliteRT introduced
in this article allow at least a 2× improvement on the worst
and average case traversal time of high priority packets, with-
out impacting the quality of service of low-priority packets,
and up to 5× improvement on the average traversal time when
there are few flows. With a all2one traffic pattern (see [34,
Fig. 7]), the improved WCTT bound of HopliteRT* returns
the same result as the simple bound of Section VI-A. That
can be explained by the fact that most packets compete for
the same resources (i.e., links and routers output ports) since
their destination is the same. Hence, the number of conflicting
flows and the number of deflections increase considerably for
all the packets in comparison to the random traffic pattern.

In Fig. 5(d) and (c), we show the average and maximum
WCCT of a set of flows with the origin and destination

Authorized licensed use limited to: b-on: Instituto Politecnico do Porto. Downloaded on November 04,2020 at 14:39:32 UTC from IEEE Xplore. Restrictions apply.

3660 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 39, NO. 11, NOVEMBER 2020

Fig. 5. Experimental results for a random traffic pattern. (a) Max WCTT 16 × 16 NoC. (b) Average WCTT 16 × 16 NoC. (c) Max WCCT 4 × 4 NoC.
(d) Average WCCT 4 × 4 NoC. (e) Avg. measured WCTT 4 × 4 NoC. (f) Packets WCCT 4 × 4 NoC.

routers randomly chosen in a 4 × 4 NoC. Those results were
obtained by using the improved analysis of HopliteRT* and
that presented in [20] by Liu et al., which is an improved
analysis of that proposed in [33] and [35] by Shi and Burns.
To establish a fair comparison, we assume two VCs (i.e., two
priority levels) for the analysis presented in [20]. We observe
that the analysis by Liu et al. performs better than that of
HopliteRT* in terms of average and maximum worst-case
communication time in most cases. We assume that it happens
because [20] considers that each flow can only have one packet
traversing the network at the same time, while HopliteRT*
supports the transmission of multiple packets from the same
flow simultaneously, leading to more possible contentions, as
well as, more pessimism in the HopliteRT*’s WCIT analy-
sis. However, we recall that a router similar to that assumed
by [20] is likely 10–20 times more costly from a hardware
viewpoint than a HopliteRT* router (see Table III).

We also use an autonomous vehicle application that has
been studied in [6] and [20], to compare the improved anal-
ysis of HopliteRT* and that by Liu et al. The application is
composed of multiple tasks that rely on 38 traffic flows to
communicate. The application is mapped on 16 PE connected
to a 4 × 4 NoC. The parameters of traffic flows and their ori-
gin and destination routers are kept the same as those used
in [6]. The priority was assigned according to their period and
deadline, that is, flows f8−f30 were given the highest priority

Fig. 6. Experimental results for the case study.

since their periods/deadlines are the shortest. In Fig. 6, we
show that the WCCT of 14 flows is noticeably better with
HopliteRT* in comparison to Liu et al.’s analysis [20]. The
WCCT of 12 flows is noticeably better with Liu et al.’s anal-
ysis, and the last 12 flows have comparable results with both
analyses. Therefore, we conclude that on a real use case, there
is no analysis that dominates the other.

RTL Simulations: We performed cycle-accurate simula-
tions of HopliteRT and HopliteRT* using HDL Verilog

Authorized licensed use limited to: b-on: Instituto Politecnico do Porto. Downloaded on November 04,2020 at 14:39:32 UTC from IEEE Xplore. Restrictions apply.

RIBOT GONZÁLEZ AND NELISSEN: HopliteRT*: REAL-TIME NOC FOR FPGA 3661

implementations of 4 × 4 NoCs. We configured each PE to
inject one, two, or three flows in the network. We generated
flows with a random traffic pattern and random priorities. The
interarrival times of flows were randomly chosen within the
set {100, 200, . . . , 1000}. The utilization of each PE was set at
20%, then the utilization of each flow from the same PE was
generated using [36]. The number of flits in a flow is given
by multiplying its utilization by its interarrival time. The flit
size was set to 64 bits.

In Fig. 5(e), we provide the measured average WCTT for
HopliteRT and HopliteRT*. We observe that packets reach
their destination considerably faster with HopliteRT*. Note
that the WCTT of high priority packets is higher than that
measured for low priority ones in HopliteRT. That is due to
HopliteRT not making any distinction between high and low
flows. However, we show that by using HopliteRT*, the qual-
ity of service is guaranteed to flows of high priority, and hence
their WCTT decreases. We provide the measured average
WCIT and WCCT in [34, Fig. 8].

In Fig. 5(f), we present the measured average WCTT in
HopliteRT* for a set of 32 flows against the improved version
of the bound introduced in this article. In this experiment, each
PE can inject packets from two different flows in the network.
We observe that our approach provides safe and mostly tight
upper bounds on the WCTT for high and low priority flows.

VIII. CONCLUSION

We presented HopliteRT*, a new NoC design with improved
timing performances at a marginal increase of the hardware
resource utilization in comparison to HopliteRT. The circu-
lant topology adopted by HopliteRT* reduces the number of
deflections and therefore, the WCTT of high priority pack-
ets. We identified an issue in the analysis of HopliteRT
and proposed a new timing analysis for HopliteRT*. We
also provided a complete implementation of HopliteRT* in
HDL Verilog. Both cycle-accurate emulation of the NoC on
a Xilinx7 FPGA and synthetic experiments show important
performance improvements in comparison to the related work.

REFERENCES

[1] L. Benini and G. De Micheli, “Networks on chip: A new paradigm
for systems on chip design,” in Proc. Design Autom. Test Europe Conf.
Exhibit., Mar. 2002, pp. 418–419.

[2] J. Henkel, W. Wolf, and S. Chakradhar, “On-chip networks: A scalable,
communication-centric embedded system design paradigm,” in Proc.
IEEE 17th Int. Conf. VLSI Design, 2004, pp. 845–851.

[3] G.-G. Mplemenos and I. Papaefstathiou, “MPLEM: An 80-processor
FPGA based multiprocessor system,” in Proc. IEEE 16th Int. Symp.
Field Program. Custom Comput. Mach., 2008, pp. 273–274.

[4] D. M. Holman and D. C. S. Lee, “A survey of routing techniques in
store-and-forward and wormhole interconnects,” Sandia Nat. Lab., U.S.
Dept. Energy, Washington, DC, USA, Rep. SAND2008-0068, 2008.

[5] S. Tobuschat, P. Axer, R. Ernst, and J. Diemer, “IDAMC: A NoC for
mixed criticality systems,” in Proc. IEEE 19th Int. Conf. Embedded Real
Time Comput. Syst. Appl., 2013, pp. 149–156.

[6] Z. Shi, A. Burns, and L. Indrusiak, “Schedulability analysis for real time
on-chip communication with wormhole switching,” in Proc. IJERTCS,
2010, pp. 1–22.

[7] Q. Xiong, Z. Lu, F. Wu, and C. Xie, “Real-time analysis for wormhole
NoC: Revisited and revised,” in Proc. IEEE Int. Great Lakes Symp.
VLSI, 2016, pp. 75–80.

[8] Q. Xiong, F. Wu, Z. Lu, and C. Xie, “Extending real-time analysis for
wormhole NoCs,” IEEE Trans. Comput., vol. 66, no. 9, pp. 1532–1546,
Sep. 2017.

[9] L. S. Indrusiak, A. Burns, and B. Nikolić, “Buffer-aware bounds to
multi-point progressive blocking in priority-preemptive NoCs,” in Proc.
Design Autom. Test Europe Conf. Exhibit., 2018, pp. 219–224.

[10] B. Nikolić, S. Tobuschat, L. Soares, R. Ernst, and A. Burns, “Real-
time analysis of priority-preemptive nocs with arbitrary buffer sizes and
router delays,” Real Time Syst., vol. 55, no. 1, pp. 63–105, Jan. 2019.

[11] N. Kapre and J. Gray, “Hoplite: Building austere overlay NoCs for
FPGAs,” in Proc. 25th Int. Conf. Field Program. Logic Appl., Sep. 2015,
pp. 1–8.

[12] S. Wasly, R. Pellizzoni, and N. Kapre, “HopliteRT: An efficient FPGA
NoC for real-time applications,” in Proc. Int. Conf. Field Program.
Technol., Dec. 2017, pp. 64–71.

[13] T. Picornell, J. Flich, C. Hernández, and J. Duato, “DCFNoC: A delayed
conflict-free time division multiplexing network on chip,” in Proc. 56th
Annu. Design Autom. Conf., 2019, pp. 1–6.

[14] M. G. Alonso, J. Flich, M. Turki, and D. Bertozzi, “A low-latency and
flexible TDM NoC for strong isolation in security-critical systems,” in
Proc. IEEE 13th Int. Symp. Embedded Multicore Many Core Systems-
on-Chip (MCSoC), 2019, pp. 149–156.

[15] J. Diemer, J. Rox, M. Negrean, S. Stein, and R. Ernst, “Real-time com-
munication analysis for networks with two-stage arbitration,” in Proc.
IEEE 9th ACM Int. Conf. Embedded Softw., 2011, pp. 243–252.

[16] E. A. Rambo and R. Ernst, “Worst-case communication time analysis of
networks-on-chip with shared virtual channels,” in Proc. IEEE Design
Autom. Test Europe Conf. Exhibit., 2015, pp. 537–542.

[17] B. D. De Dinechin, D. Van Amstel, M. Poulhiès, and G. Lager, “Time-
critical computing on a single-chip massively parallel processor,” in
Proc. IEEE Design Autom. Test Europe Conf. Exhibit., 2014, pp. 1–6.

[18] D. Wentzlaff et al., “On-chip interconnection architecture of the tile
processor,” IEEE Micro, vol. 27, no. 5, pp. 15–31, Sep./Oct. 2007.

[19] Z. Shi and A. Burns, “Real-time communication analysis for on-chip
networks with wormhole switching,” in Proc. 2nd ACM/IEEE Int. Symp.
Netw. Chip, 2008, pp. 161–170.

[20] M. Liu, M. Becker, M. Behnam, and T. Nolte, “Tighter time analysis
for real-time traffic in on-chip networks with shared priorities,” in Proc.
10th IEEE/ACM Int. Symp. Netw. Chip, 2016, pp. 1–8.

[21] B. Nikolić and S. M. Petters, “EDF as an arbitration policy for
wormhole-switched priority-preemptive nocs-myth or fact?” in Proc. Int.
Conf. Embedded Softw., Oct 2014, pp. 1–10.

[22] A. Burns, J. Harbin, and L. S. Indrusiak, “A wormhole NoC protocol for
mixed criticality systems,” in Proc. IEEE Real Time Syst. Symp., 2014,
pp. 184–195.

[23] L. S. Indrusiak, J. Harbin, and A. Burns, “Average and worst-case latency
improvements in mixed-criticality wormhole networks-on-chip,” in Proc.
IEEE 27th Euromicro Conf. Real Time Syst., 2015, pp. 1–84.

[24] B. Nikolic, R. Hofmann, and R. Ernst, “Slot-based transmission protocol
for real-time NoCs-SBT-NoC,” in Proc. 31st Euromicro Conf. Real Time
Syst., 2019, pp. 1–22.

[25] F. Giroudot and A. Mifdaoui, “Buffer-aware worst-case timing analysis
of wormhole NoCs using network calculus,” in Proc. IEEE Real Time
Embedded Technol. Appl. Symp., 2018, pp. 37–48.

[26] F. Giroudot and A. Mifdaoui, “Tightness and computation assessment of
worst-case delay bounds in wormhole networks-on-chip,” in Proc. 27th
Int. Conf. Real Time Netw. Syst., 2019, pp. 19–29.

[27] N. Kapre and J. Gray, “Hoplite: A deflection-routed directional torus
NoC for FPGAS,” ACM Trans. Reconfig. Technol. Syst., vol. 10, no. 2,
pp. 1–24, 2017.

[28] T. Garg, S. Wasly, R. Pellizzoni, and N. Kapre, “HopliteBuf: FPGA
NoCs with provably stall-free FIFOs,” in Proc. ACM/SIGDA Int. Symp.
Field Program. Gate Arrays (FPGA), 2019, pp. 222–231.

[29] S. Wasly, R. Pellizzoni, and N. Kapre. (2017). Worst Case Latency
Analysis for Hoplite FPGA-Based NoC. UWSpace. [Online]. Available:
http://hdl.handle.net/10012/12600

[30] A. Monemi, J. Tang, M. Palesi, and M. N. Marsono, “ProNoC: A low
latency network-on-chip based many-core system-on-chip prototyping
platform,” Microprocessors Microsyst., vol. 54, pp. 60–74, Oct. 2017.

[31] M. K. Papamichael and J. C. Hoe, “CONNECT: Re-examining conven-
tional wisdom for designing Nocs in the context of FPGAs,” in Proc.
ACM/SIGDA Int. Symp. Field Program. Gate Arrays (FPGA), 2012,
pp. 37–46.

[32] S. Tobuschat, “Predictable and runtime-adaptable network-on-chip for
mixed-critical real-time systems,” Ph.D. dissertation, Faculty Elect.
Eng. Inf. Technol. Phys., Techn. Univ. Braunschweig, Braunschweig,
Germany, 2019.

[33] Z. Shi and A. Burns, “Real-time communication analysis with a priority
share policy in on-chip networks,” in Proc. IEEE 21st Euromicro Conf.
Real Time Syst., 2009, pp. 3–12.

[34] Y. Ribot González and G. Nelissen, “Hoplitert*: Real-time NoC for
FPGA,” CISTER Res. Centre, ISEP, Polytechnic Inst. Porto, Porto,
Portugal, Rep. CISTER-TR-200702, 2020.

[35] Z. Shi and A. Burns, “Improvement of schedulability analysis with a
priority share policy in on-chip networks,” in Proc. 17th Int. Conf. Real
Time Netw. Syst. (RTNS), 2009, pp. 75–84.

[36] E. Bini and G. C. Buttazzo, “Measuring the performance of schedula-
bility tests,” Real Time Syst., vol. 30, pp. 129–154, May 2005.

Authorized licensed use limited to: b-on: Instituto Politecnico do Porto. Downloaded on November 04,2020 at 14:39:32 UTC from IEEE Xplore. Restrictions apply.

