

Intra-Type Migrative Scheduling of
Implicit-Deadline Sporadic Tasks on Two-
Type Heterogeneous Multiprocessor

www.hurray.isep.ipp.pt

Technical Report

HURRAY-TR-110402

Version:

Date: 04-01-2011

Gurulingesh Raravi

Björn Andersson

Konstantinos Bletsas

Technical Report HURRAY-TR-110402 Intra-Type Migrative Scheduling of Implicit-Deadline Sporadic Tasks

 on Two-Type Heterogeneous Multiprocessor

© IPP Hurray! Research Group
www.hurray.isep.ipp.pt

1

Intra-Type Migrative Scheduling of Implicit-Deadline Sporadic Tasks on Two-
Type Heterogeneous Multiprocessor
Gurulingesh Raravi, Björn Andersson, Konstantinos Bletsas

IPP-HURRAY!

Polytechnic Institute of Porto (ISEP-IPP)

Rua Dr. António Bernardino de Almeida, 431

4200-072 Porto

Portugal

Tel.: +351.22.8340509, Fax: +351.22.8340509

E-mail:

http://www.hurray.isep.ipp.pt

Abstract
Consider the problem of scheduling a set of implicit-deadline sporadic tasks to meet all deadlines on a two-type
heterogeneous multiprocessor platform. Each processor is either of type-1 or type-2 with each task having different
execution time on each processor type. Jobs can migrate between processors of same type (referred to as intra-type
migration) but cannot migrate between processors of different types. We present a new scheduling algorithm namely,
LP-Relax(THR) which offers a guarantee that if a task set can be scheduled to meet deadlines by an optimal task
assignment scheme that allows intra-type migration then LP-Relax(THR) meets deadlines as well with intra-type
migration if given processors 1/THR as fast (referred to as speed competitive ratio) where THR <= 2/3.

Intra-Type Migrative Scheduling of Implicit-Deadline

Sporadic Tasks on Two-Type Heterogeneous Multiprocessor

Gurulingesh Raravi (Speaker)1, Björn Andersson21 and Konstantinos Bletsas1

1 Introduction

Consider the problem of scheduling a set of implicit-deadline sporadic tasks to meet all
deadlines on a two-type heterogeneous multiprocessor platform. Each processor is either
of type-1 or type-2 with each task having different execution time on each processor type.
Jobs can migrate between processors of same type (referred to as intra-type migration)
but cannot migrate between processors of different types. We present a new scheduling
algorithm namely, LP-Relax(THR) which offers a guarantee that if a task set can be
scheduled to meet deadlines by an optimal task assignment scheme that allows intra-
type migration then LP-Relax(THR) meets deadlines as well with intra-type migration
if given processors 1

THR as fast (referred to as speed competitive ratio) where THR ≤ 2

3
.

2 LP-Relax Algorithm

The system considered in this paper is as follows: (i) Tasks (denoted as τ): n implicit-
deadline sporadic tasks, i.e., for each task, its deadline = its minimum inter-arrival time
(denoted as Ti) (ii) Utilization: The utilization of a task τi ∈ τ on a processor of type-t

(where t ∈ {1, 2}) is given by U t
i where U t

i =
Ct

i
Ti

(Ct
i denotes the worst-case execution

time of a task τi on a processor of type-t) and (iii) Processors: The platform consists of
m processors of which mP 1 processors are of type-1 and mP 2 processors are of type-2.
The following assumptions are made: (i) Intra-Type Migrative: The jobs released by
tasks can only migrate between processors of the same type but not between processors
of different types, (ii) No job parallelism: A job can be executing on at most one
processor at any given point in time and (iii) Independent tasks: The execution of
jobs are independent, i.e., they neither share any resources nor have data dependency.

Let THR denote a real number number in the range (0, 2/3], selectable by the algo-
rithm designer. Based on THR, let us define the following disjoint sets:

H12 = {τi ∈ τ : U1

i > THR ∧ U2

i > THR} (1)

H1 = {τi ∈ τ : U1

i ≤ THR ∧ U2

i > THR} (2)

H2 = {τi ∈ τ : U1

i > THR ∧ U2

i ≤ THR} (3)

L = {τi ∈ τ : U1

i ≤ THR ∧ U2

i ≤ THR} (4)

1 {ghri, baa, ksbs}@isep.ipp.pt. CISTER-ISEP Research Center, Polytechnic Institute of Porto, Rua
Dr. António Bernardino de Almeida 431, 4200-072 Porto, Portugal.

2 baandersson@sei.cmu.edu. Software Engineering Institute, Carnegie Mellon University, 4500 Fifth
Avenue Pittsburgh, PA 15213-2612, USA.

1

function: LP-Relax(THR)
1 Form sets H12, H1, H2, L as defined by Eq. 1-4 21 if (∃i such that 0 < xi,1 < 1 and 0 < xi,2 < 1) then
2 if (H12 %= φ) then declare FAILURE end if 22 Let τf denote that task and t1 denote its favorite

3 UP1 := UP2 := 0 //used capacities of two processor types and t2 its non-favorite type, i.e., Ut1
i ≤ Ut2

i
4 τp1 := assign(H1, UP1, 1) (where t1 = 1, t2 = 2 or t1 = 2, t2 = 1)
5 if (τp1 %= H1) then declare FAILURE end if 23 UP t1 := UP t1 + xf,t1 · Ut1

f

6 τp2 := assign(H2, UP2, 2) 24 UP t2 := UP t2 + xf,t2 · Ut2
f

7 if (τp2 %= H2) then declare FAILURE end if 25 if (UP t1 − xf,t1 · Ut1
f + Ut1

f ≤ mP t1) then

8 LPR := formulate LP(L,UP1, UP2,mP1,mP2) 26 UP t1 := (UP t1 − xf,t1 · Ut1
f + Ut1

f)

9 (Z, X) = LP-Solver(LPR) //Solve LPR using an LP-Solver 27 τpt1 := τpt1 ∪ {τf}
10 if (Z > 1) then declare FAILURE 28 declare SUCCESS
11 for each task τi ∈ L do //xi,1, xi,2 ∈ X 29 end if

12 if (xi,1 = 1 ∧ xi,2 = 0) then 30 if (UP t2 − xf,t2 · Ut2
f + Ut2

f ≤ mP t2) then

13 τp1 := τp1 ∪ {τi} //assign τi to processor type-1 31 UP t2 := (UP t2 − xf,t2 · Ut2
f + Ut2

f)

14 UP1 := UP1 + U1
i 32 τpt2 := τpt2 ∪ {τf}

15 end if 33 declare SUCCESS
16 if (xi,1 = 0 ∧ xi,2 = 1) then 34 end if

17 τp2 := τp2 ∪ {τi} //assign τi to processor type-2 35 declare FAILURE
18 UP2 := UP2 + U2

i 36 else
19 end if 37 declare SUCCESS
20 end for 38 end if

Figure 1: The LP-Relax(THR) algorithm for assigning tasks on to a two-type heteroge-
neous multiprocessor platform.

function assign(ts: set of tasks; U: out current utilization
of processors; k: favorite processor type of ts)
return set of tasks

1 assigned tasks := ∅
2 Use any order for tasks ts, but maintain it

during the execution of the function assign.
3 τi := first task in ts

4 if (U + Uk
i ≤ mPk) then

5 U := U + Uk
i

6 assigned tasks := assigned tasks ∪ {τi}
7 if (remaining tasks exist in ts) then
8 τi := next task in ts
9 go to line 4.

10 end if
11 end if
12 return assigned tasks

(a) Assigning heavy tasks to type-k processors

function formulate LP(L,UP1, UP2)
return the formulation

1 Let myLP denote the following linear program
2 Minimize Z subject to:
3 ∀τi ∈ L : xi,1 + xi,2 = 1

4
(

∑

τi∈L xi,1 · U1
i

)

+ UP1 ≤ mP1 · Z

5
(

∑

τi∈L xi,2 · U2
i

)

+ UP2 ≤ mP2 · Z

6 ∀τi ∈ L : xi,1 and xi,2 are non-negative real
numbers

7 return myLP

(b) LP formulation for assigning light tasks to
processors

Figure 2: Sub-routines used by LP-Relax(THR) algorithm while assigning the task set.

Note that H12 ∪H1 ∪H2 ∪ L = τ .
A task is termed heavy on a processor type if its utilization on that processor type

is greater than THR. The set H12 represents those tasks that are heavy on both types
of processors and hence these tasks cannot be assigned to any processor type to meet
deadlines if the processor speed would be scaled by THR. H1 and H2 represent those
tasks that are heavy on processors of type-2 and type-1 respectively and hence they
must be assigned to processors of type-1 and type-2 respectively. L represents those
tasks that are not heavy (termed light) on both the processor types and hence they can
be assigned to processors of any type.

The new algorithm is shown in Figure 1 which uses sub-routines assign() and for-
mulate LP() shown in Figure 2(a) and Figure 2(b) respectively.

The algorithm first assigns tasks that are heavy on a certain processor type say,
type-1 to processors of type-2 and vice versa (if the schedulability test permits). We can
formulate the problem of assigning light tasks to processors as an Integer Linear Program
(ILP) and then relax it to Linear Program (LP). For assigning light tasks, LP-Relax
solves this relaxed LP formulation using an LP-solver which gives the optimal solution
at the vertex of the convex region. This vertex solution gives the assignment (if the
schedulability test permits) of all the light tasks to unique processor type except at most

2

one task say, τfract, which may be assigned to both the processor types – see Lemma 6
in [5]. Finally, if τfract was assigned to two processor types then LP-Relax algorithm
(re-)assigns τfract to a single processor type (if the schedulability test permits). Once the
task assignment is done, an optimal scheduling algorithm for identical multiprocessors,
such as Pfair [1] can be used on each processor type to schedule the tasks.

We now list some important properties about the performance guarantee offered
by LP-Relax algorithm. The proofs of these properties are omitted here due to space
constraint and can be found in Section 4 in [5].

Theorem 1 The speed competitive ratio of LP-Relax(2/3) is at most 1.5.

The following theorem states the speed competitive ratio of LP-Relax algorithm when
the maximum utilization of any task on any type of processor (type-1 or type-2) is upper
bounded by α, i.e., ∀τi ∈ τ : U1

i ≤ α ∧ U2
i ≤ α where 0 < α ≤ 2

3
.

Theorem 2 The speed competitive ratio of LP-Relax(m−α
m) is at most (m

m−α).

Corollary 1 If a task set τ is schedulable by any algorithm that allows intra-type migra-
tion on a computing platform Π of m processors (having mP 1 processors of type-1 and
mP 2 processors of type-2) then LP-Relax(2

3
) also schedules τ on a computing platform

Π
′
of at most m + 1 processors (having either mP 1 + 1 processors of type-1 and mP 2

processors of type-2 or mP 1 processors of type-1 and mP 2 + 1 processors of type-2).

Corollary 2 If migration of tasks is allowed between processors of different types (i.e.,
fractional assignment of tasks is allowed – for a task τi, 0 < xi,1 < 1 and 0 < xi,2 < 1)
then LP-Relax (with THR=1) is optimal.

Note: Though Corollary 2 is an important result, we would like to mention that it is
not the first of its kind. A feasibility condition exists [3] for checking the schedulability
of a task set on a heterogeneous multiprocessor platform (having more than two types
of processors) that allows task migration between processors of any type.

Acknowledgments

This work was partially funded by the Portuguese Science and Technology Foundation (Fundação

para a Ciência e a Tecnologia - FCT), REHEAT and REJOIN projects.

References

[1] J. Anderson and A. Srinivasan, Pfair Scheduling: Beyond Periodic Task Systems, 7th IEEE
International Conference on Embedded and Real-Time Computing Systems and Applica-
tions (2000).

[2] S. Baruah, Task partitioning upon heterogeneous multiprocessor platforms, 10th IEEE In-
ternational Real-Time and Embedded Technology and Applications Symposium (2004).

[3] S. Baruah, Feasibility Analysis of Preemptive Real-Time Systems upon Heterogeneous Mul-
tiprocessor Platforms, 25th IEEE International Real-Time Systems Symposium (2004).

[4] C. N. Potts, Analysis of a linear programming heuristic for scheduling unrelated parallel
machines, Discrete Applied Mathematics (1985).

[5] G. Raravi, B. Andersson and K. Bletsas, Scheduling Implicit-Deadline Sporadic Tasks on

Two-Type Heterogeneous Multiprocessor Platform with Restricted Migration, Tech. Report,

CISTER/ISEP, Polytechnic Institute of Porto, HURRAY-TR-110109, (2011).

3

