
  

 

 

 

 

Leverage Variational Graph Representation 

for Model Poisoning on Federated Learning  

 

 
 

 

Journal Paper 

*CISTER Research Centre  

CISTER-TR-240507 

 

2024/05/03 

Kai Li* 

Xin Yuan 

Jingjing Zheng* 

Wei Ni 

Falko Dressler 

Abbas Jamalipour  

 



Journal Paper CISTER-TR-240507 Leverage Variational Graph Representation for Model  ... 

© 2024 CISTER Research Center 
www.cister-labs.pt   

1 

 

Leverage Variational Graph Representation for Model Poisoning on Federated 

Learning 

Kai Li*, Xin Yuan, Jingjing Zheng*, Wei Ni, Falko Dressler, Abbas Jamalipour 

*CISTER Research Centre 

Polytechnic Institute of Porto (ISEP P.Porto) 

Rua Dr. António Bernardino de Almeida, 431 

4200-072 Porto 

Portugal 

Tel.: +351.22.8340509, Fax: +351.22.8321159 

E-mail: kai@isep.ipp.pt, xin.yuan@data61.csiro.au, zheng@isep.ipp.pt, Wei.Ni@data61.csiro.au, dressler@ccs-labs.org 

https://www.cister-labs.pt 

 

Abstract 

This article puts forth a new training data-untethered model poisoning (MP) attack on federated learning (FL). The 

new MP attack extends an adversarial variational graph autoencoder (VGAE) to create malicious local models 
based solely on the benign local models overheard without any access to the training data of FL. Such an 

advancement leads to the VGAE-MP attack that is not only efficacious but also remains elusive to detection. VGAE-
MP attack extracts graph structural correlations among the benign local models and the training data features, 

adversarially regenerates the graph structure, and generates malicious local models using the adversarial graph 
structure and benign models 19 features. Moreover, a new attacking algorithm is presented to train the malicious 

local models using VGAE and sub-gradient descent, while enabling an optimal selection of the benign local models 
for training the VGAE. Experiments demonstrate a gradual drop in FL accuracy under the proposed VGAE-MP 

attack and the ineffectiveness of existing defense mechanisms in detecting the attack, posing a severe threat to 
FL. 
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Abstract—This paper puts forth a new training data-
untethered model poisoning (MP) attack on federated learning
(FL). The new MP attack extends an adversarial variational
graph autoencoder (VGAE) to create malicious local models
based solely on the benign local models overheard without
any access to the training data of FL. Such an advancement
leads to the VGAE-MP attack that is not only efficacious but
also remains elusive to detection. VGAE-MP attack extracts
graph structural correlations among the benign local models
and the training data features, adversarially regenerates the
graph structure, and generates malicious local models using
the adversarial graph structure and benign models’ features.
Moreover, a new attacking algorithm is presented to train
the malicious local models using VGAE and sub-gradient
descent, while enabling an optimal selection of the benign local
models for training the VGAE. Experiments demonstrate a
gradual drop in FL accuracy under the proposed VGAE-MP
attack and the ineffectiveness of existing defense mechanisms
in detecting the attack, posing a severe threat to FL.

Index Terms—Federated learning, variational graph auto-
encoders, data-untethered model poisoning

I. INTRODUCTION

Federated learning (FL) has attracted significant atten-

tion recently, and emerged as a distributed deep learning

paradigm. With FL, each user device trains its local model

with its private data to generate local updates sent to the

edge server without sharing the device’s private data. The

edge server then aggregates the local updates to train a

global model, which is sent back to the user devices for

the next round of FL training. Based on FL, individual data

privacy is protected as no private data is shared [1].

Despite the fact that FL offers a protective measure for

the data privacy of user devices, it remains susceptible

to cyber-epidemic attacks. In these attacks, malevolent

entities, such as compromised user devices, execute model
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or data poisoning strategies. These tactics are designed

to manipulate the FL process and proliferate across other

innocuous user devices. Consequently, this leads to the

derailment of the training process and a subsequent degra-

dation in the accuracy of the learning outcomes [2]. For

the model poisoning attacks, the attacker aims to manip-

ulate the hyperparameters of the benign local model. In

contrast, data poisoning attacks involve manipulating the

training dataset of benign user devices. To launch effective

model or data poisoning attacks [3], the attackers need to

access the knowledge of the dataset used for FL training,

which helps to minimize the detectability of malicious local

models. FL could be manipulated if an attacker launches

model poisoning attacks based solely on the benign local

and global models overheard without access to the data.

Nevertheless, it is challenging for the attacker to achieve

effectiveness and undetectability without knowledge of the

data. This type of attack is new, has not yet been discussed

in the existing literature, and requires further research to

develop effective detection and prevention methods. This

new attack underscores the importance of securing FL from

local and global training threats.

This paper investigates a new adversarial varia-

tional graph autoencoder (VGAE)-based model poisoning

(VGAE-MP) attack on FL. VGAE-MP is a new data-

untethered cyber-epidemic attack, where malicious local

models are generated solely based on the benign local

models overheard by attackers and the correlation features

of the benign local and global models. This attack could be

particularly severe in FL systems under wireless settings,

due to the broadcast nature of radio. The attacker starts

the VGAE-MP attack by overhearing (or eavesdropping

on) the transmissions of local model updates from the

benign clients in a communication round. The attacker

also has the global model that the server shared in the

previous communication round. Then, the attacker executes

the VGAE-MP model to craftily generate its malicious local

model update that, when aggregated, subtly distorts the

global model in the current round.

Specifically, the attacker manipulates its malicious model

update to introduce erroneous gradients or patterns. This

is done by running the adversarial VGAE to capture the

correlation of the benign local models and then regenerate

the graph structure to create malicious local models that can

effectively compromise the global and benign local models

while remaining indistinguishable from the benign local

models. Over time, this insidious injection of inaccuracies
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shifts the global model away from its optimal learning

trajectory, leading to a gradual but significant decline in

overall FL accuracy.

Since the user devices possessing large datasets could

improve the learning accuracy of FL, the server selects

a portion of the collected local models for the global

aggregation. Likewise, the VGAE-MP, as a white-box at-

tack, also selects the benign local models in the training

of the VGAE. For example, the user device selection at

the attacker ensures that the selected local models have

sufficient data features for retrieving the correlation in the

VGAE, while the generated malicious local model is within

proximity to the global model in Euclidean distance.

The key contributions of this paper are as follows:

• A new data-untethered model poisoning attack, i.e.,

VGAE-MP, is proposed to manipulate the correlations

of multiple data features in the selected benign local

models and maintain the genuine data features sub-

stantiating the benign local models;

• A new adversarial VGAE, which is trained together

with sub-gradient descent to regenerate the correla-

tions of the local models manipulatively while keeping

the malicious local models undetectable.

• The proposed VGAE-MP attack is implemented in Py-

Torch, showing experimentally that VGAE-MP grad-

ually reduces the accuracy of FL and bypasses the

detection of existing poisoning defense mechanisms.

This attack can propagate across all benign user

devices, which leads to an epidemic infection. The

source code of the VGAE-MP attack has been released

on GitHub.

The remaining of this paper is structured as follows.

Section II introduces the background of adversarial attacks

against wireless systems and FL. Section III investigates

the FL system model with malicious agents. The proposed

VGAE-MP attack is described in Section IV. Section V

discusses the performance analysis. Section VI concludes

the paper. Table I lists the notation used in the paper.

II. RELATED WORK

This section reviews the literature on adversarial attacks

and security threats to FL, e.g., model poisoning, data

poisoning, inference, and backdoor attacks.

The periodic model updates in FL bear a discriminative

ability that reflects changes in data distribution, including

sensitive properties, making it possible for an attacker to

infer unintended information. In [4], the authors introduce a

poisoning-assisted property inference attack, which injects

malicious data into the training dataset to infer a targeted

property of the FL model. The attack modifies the training

data labels, thereby distorting the decision boundary of

the shared global model in FL, resulting in the disclosure

of sensitive property information by benign user devices.

In [5], the authors present that the attacker can infer the

presence or absence of a particular category in the data by

carefully crafting a malicious training dataset, despite the

secure aggregation methods. A category inference attack

TABLE I: Notation and definition

Notation Definition

I number of benign devices
J number of attackers
Di(t) datasets of the benign device i at the t-th commu-

nication round
D total datasets of I number of benign devices
D0(t) the claimed data size of the attacker
wwwi(t) local model weight parameters of the benign de-

vice i

www0

j(t) training parameters of the malicious model at at-
tacker j

www0

G(t) the global model of FL under attack
β0

i,j(t) the binary indicator for selecting benign local
model weights

λ, ρ the Lagrangian dual variables
τi(t) the training delay of wwwi(t) at device i

M total number of model parameters in wwwi

wwwm
i (t) the m-th feature in wwwi

AAA the adjacency matrix formulated by attacker
FFF the feature matrix in VGAE of attacker
LLL the Laplacian matrix based on AAA
LLLk the rank-k SVD approximation of LLL
ηloss the reconstruction loss of the decoder in VGAE
bAAA the reconstructed adjacency matrix generated at the

decoder of attacker
bFFF the reconstructed feature matrix at attacker

is developed, which iteratively generates malicious training

data and utilizes them to update the global model in FL. The

vulnerability of FL to label inference attacks is presented

in [6], where a malicious user device can infer the private

labels of other benign devices. With the observed aggregate

model updates, three label inference attacks have been

developed to infer private labels with the benign devices,

including direct, passive, and active label inference attacks.

In [7], a coordinated backdoor attack on FL is designed

using model-dependent triggers, where an attacker can

inject a backdoor trigger into a target model and then

train the models in FL to perform coordinated attacks.

The trigger uses the model dependency in FL to activate

the backdoor when the target client uses the compromised

model. A distributed attacking algorithm is also provided

to enable the attackers to select their respective backdoor

models for a high attack success rate while maintaining a

low impact on the overall training accuracy of FL.

The authors of [8] focus on data poisoning attacks in

both sequential and parallel FL settings. These attacks could

weaken the performance of trained models by injecting ma-

licious data into the training datasets used in FL. Sequential

FL involves user devices training successively, using the

output model from the previous device. In contrast, parallel

FL involves each user device simultaneously training a local

model before sending updates to the server for aggregation.

An attacker can later trigger malicious behavior during the

prediction phase by modifying specific training inputs using

a specific pattern. In [9], it is argued that FL based on

weighted averaging and trimmed averaging for mitigating

Byzantine faults is still vulnerable to data poisoning attacks.

These attacks can lead to considerable reductions in training

accuracy, highlighting a critical vulnerability in the current

mitigation strategies within FL. A data poisoning attack is
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(a) FL with benign user devices (b) The proposed VGAE-MP attack

Fig. 1: (a) Illustration of FL, where a local model update is trained at each benign user device based on its datasets. The

edge server aggregates the benign local model updates to train a global model that will be broadcast to the user devices

to update the training parameters of their local models. (b) By eavesdropping on the benign local model updates, the

attacker performs the proposed VGAE-MP attack to create a malicious poisoning model that is sent to the server. The

malicious model deviates the FL in the opposite direction, thereby falsifying the local model updates of the devices.

studied, which targets the FL system designed to be robust

against Byzantine attacks. The data poisoning attack can

exploit the characteristics of FL and the Byzantine-robust

mechanisms to insert malicious data into the system.

In [10], a model poisoning attack is introduced, which

accounts for the characteristics of FL, such as variability in

the training data and randomness of the training process.

The model poisoning attack uses a transfer learning strategy

to improve the attack efficiency. A model poisoning attack

on FL based on fake user devices added to the system

and operating as legitimate devices is presented in [11].

This fake device can manipulate its data to influence the

global model and potentially insert a backdoor or degrade

the FL performance. In [12], the authors study a perception

poisoning attack in which the attacker manipulates the FL

model’s perception by altering the training data. The attack

can be captured by building a poison perception model for

measuring a perception poisoning rate.

In [13], the authors focus on a generative poisoning

attack against FL, which generates malicious data us-

ing generative adversarial networks (GAN) to target user

devices in FL. The attack can introduce bias into the

aggregated model by injecting poisoned data generated by

the GANs. Another GAN-based poisoning attack against

FL is presented in [14]. The GANs-based poisoning attack

creates a set of malicious samples by generating poisoned

data samples to attack the local models of benign user

devices. To degrade the training accuracy of FL, the attacker

deceives the aggregation process at the server by strategi-

cally altering the models of the benign user devices. The

GAN-based poisoning attack is evaluated based on image

classification datasets.

The existing data or model poisoning attacks against FL

lack the description of the implicit relationship between

different local models, which can be detected by recent

poisoning defense frameworks based on the probabilistic

graph model, e.g., [15], [16]. Additionally, convolutional

layers at the aggregator can excessively smooth out the

output features of the attacks, resulting in distinguishable

discrepancies between the malicious local model and the

benign ones. In contrast, the proposed VGAE-MP attack

is a new attacking method for model poisoning, which is

independent of the data. The VGAE-MP attack manipulates

the correlations among multiple data features in selected

benign local models while preserving the genuine data fea-

tures that support those models, thus keeping the malicious

local models undetectable.

III. SYSTEM MODEL AND PROBLEM STATEMENT

This section presents the training of the local and global

models of FL in mobile edge computing for image classi-

fication as an example. Figure 1(a) presents an FL training

process with I benign user devices. Each benign device

i 2 [1, I] has Di(t) data samples at the t-th communication

round of FL. Let x(di) denote a data sample captured at the

i-th benign device, and y(di) the local model update trained

at the i-th benign device, where di 2 [1, Di(t)] [17].

The training loss function of a benign device i, denoted

by f(wwwi(t);x(di), y(di)), measures approximation errors

based on the inputs x(di) and outputs y(di) in the t-
th communication round, where wwwi(t) 2 R

1⇥M denotes

the local model obtained in the communication round.

For example, the loss function can be modeled as linear

regression, i.e., f(wwwi(t);x(di), y(di)) = 1
2 (www

T
i (t)x(di) �

y(di))
2, or logistic regression, i.e., f(wwwi(t);x(di), y(di)) =
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y(di) log
⇣
1+exp

�
�wwwT

i (t)x(di)
�⌘
� (1�y(di)) log

⇣
1�

1

1+exp
�
�wwwT

i
(t)x(di)

�
⌘

. Here, (·)T denotes transpose.

Given Di(t), the local loss function of the FL at device i
for the t-th communication round is

F(wwwi(t))=
1

Di(t)

Di(t)X

i=1

f
�
wwwi(t);x(di),y(di)

�
+αζ

�
wwwi(t)

�
,

(1)

where ζ(·) is a regularizer function capturing the effect of

local training noise; α 2 [0, 1] is a given coefficient [18].

With the learning rate µ, the local model of device

i is updated for TL local iterations throughout the t-th
communication round by

wwwi(t) wwwi(t)� µrF (wwwi(t)), (2)

After the TL local iterations, all devices upload their local

models wwwi(t), 8i to the server. The server aggregates the

local models to train a global model denoted by wwwG(t) for

the t-th communication round. Then, wwwG(t) is broadcast to

all user devices for their training of wwwi(t + 1), 8i in the

(t+ 1)-th communication round.

Figure 1(b) shows the FL of the benign user devices

under the proposed VGAE-MP attack, where an attacker

overhears wwwi(t) uploaded by the benign devices. The

attacker, who may appear as a legitimate device, can

progressively contaminate the global model represented by

wwwG(t) and the local models of the benign users, i.e., wwwi(t),
8i 2 [1, I], by creating and uploading malicious local

models during each communication round t. The malicious

local model at the attacker’s device j is represented by

www0

j(t). It is constructed based on the parameters of the

benign local models overheard by the attacker during each

communication round t. The server aggregates the local

models of the user devices, including both benign and

malicious models, without realizing the attacker’s presence.

This creates a contaminated global model, ωωω0

G(t). The total

size of the local training data reported to the server, D(t), is

calculated as the sum of the data size of all devices, Di(t),
and the claimed data size of the attacker, D0(t).

Some FL systems allow the server to select a portion

of the collected wwwi(t) to train wwwG(t). For example, the

authors of [19] considered a selection scheme in which the

total bandwidth of the selected devices needs to be smaller

than the bandwidth capacity. We define a binary indicator

β0

i,j(t) at the attacker. If wwwi(t) is selected by the attacker

to train its adversarial and contaminating local model, then

β0

i,j(t) = 1; otherwise, β0

i,j(t) = 0. Thus, the contaminated

global model can be written as

www0

G(t) =

IX

i=1

Di(t)

D(t)
β0

i,j(t)wwwi(t) +
D0(t)

D(t)
www0

j(t), (3)

where www0

j(t) is the weight parameter of the malicious model

trained at attacker j. Then, the server broadcasts www0

G(t) to

all I devices.

The FL trains the global model based on the local

datasets of all user devices, including the non-existent

dataset claimed by the attacker, by minimizing the global

loss function:

min
www0

G
(t)
F (www0

G(t))=
IX

i=1

Di(t)

D(t)
β0

i,j(t)Fi(wwwi(t))+

D0(t)

D(t)
F 0

j(www
0

j(t)), (4)

where the attacker’s claimed local loss function, represented

by F 0

j(·), is in accordance with (1).

The optimization of the proposed VGAE-MP attack aims

to construct an optimal www0

j(t) based on the overheard

wwwi(t) to maximize F (www0

G(t)) in (4), while maintaining a

reasonably small Euclidean distance between www0

j and www0

G.

This helps www0

j(t) remain undetectable by the server, because

the server could evaluate similarities among local models

and eliminate those differing significantly using, e.g., Krum

or multi-Krum [20]. Consequently, www0

G(t) deviates the most

in the opposite direction that the benign global model would

change in the absence of the attack.

The optimization of VGAE-MP launched by the at-

tacker j, 8j 2 [1, J ], in the communication round t is

formulated as

max
www0

j
(t),β0

i,j
(t)

F (www0

G(t)) (5a)

s.t. d(www0

j(t),www
0

G(t))  dT , (5b)

IX

i=1

β0

i,j(t)d(wwwi(t), w̄ww(t))  Υ, (5c)

β0

i,j(t) 2 {0, 1}, (5d)

where d(·, ·) calculates the Euclidean distance between www0

j

and www0

G, dT is a threshold of the Euclidean distance, w̄ww(t) =PI

i=1
Di(t)
D(t) wwwi(t), and Υ is a predefined upper bound of the

overall distance between the selected local models and the

aggregated model of the local models.

Constraint (5b) guarantees that the j-th attacker’s mali-

cious local model www0

j is in proximity to the global model in

terms of Euclidean distance, while constraint (5c) ensures

the overall distance between the selected local models

and their aggregated model is below the upper bound Υ,

i.e.,
PI

i=1 β
0

i,j(t)d(wwwi(t), w̄ww(t))  Υ. This is because the

defense mechanism at the FL server, e.g., Krum or multi-

Krum, may perform local model selection to rule out those

dissimilar to the rest. Constraint (5d) defines β0

i,j(t) as a

binary indicator.

IV. VARIATIONAL GRAPH AUTO-ENCODERS-BASED

MODEL POISONING ATTACK ON FL

Due to a lack of correlation between the arbitrary features

in www0

j(t) and wwwi(t), the malicious local model www0

j(t) could

be detected by the server. For example, recent graph neural

network (GNN)-based FL privacy protection schemes [21],

[22] can classify the local model weights based on their

features. To tackle this issue, we develop a new adversarial

VGAE model in this section to generate www0

j(t) in such

a way the individual feature correlation in wwwi(t), 8i is

captured in www0

j(t). As a result, the server can hardly detect
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Fig. 2: The proposed VGAE-MP attack creates www0

j(t) based on learning the correlation among the parameters of the

models being trained in FL, i.e., wwwi(t), 8i. A graph encoder trains FFF j and AAAj to build a feature representation matrix

ZZZ . The output of the encoder inputs to the decoder for the reconstruction of AAAj . The VGAE-MP attack is designed to

adjust www0

j to maximize the reconstruction loss ηloss, according to (19).

www0

j(t). For the brevity of notation, we omit the subscript j

for the attacker in the following discussions.

The optimization of VGAE-MP in (5) is a non-convex

combinatorial problem intractable for conventional opti-

mization techniques. We decouple the VGAE-MP problem

in (5) between the model attack and the bandwidth selection

using the Lagrangian-dual method [23]. A new approach

is developed to iteratively optimize the adversarial local

models by running graph autoencoder and subgradient

descent, as depicted in Fig. 2.

Let λ and ρ denote the dual variables. The Lagrange

function of (5) is given by

L(β0

i,j(t),λ, ρ) = F (www0

G(t)) + λ(dT � d(www0

j(t),www
0

G(t)))

+ ρ

 
Υ�

IX

i=1

β0

i,j(t)d(wwwi(t), w̄ww(t))

!
.

(6)

The Lagrange dual function is

D(λ, ρ) = max
www0

j
(t),β0

i,j
(t)

L(β0

i,j(t),λ, ρ). (7)

The dual problem of the primary problem in (5) is

min
λ,ρ

D(λ, ρ). (8)

A. Client Selection

At communication round t, given λ = λ(t) and ρ = ρ(t),
the primary variable β0

i,j(t) of the bandwidth selection can

be optimized by solving

β0

i,j(t)
⇤ = arg min

β0

i,j
(t)

(
IX

i=1

β0

i,j(t)d(wwwi(t), w̄ww(t))

)
, s.t. (5d),

(9)

which is a standard 0/1 knapsack problem and can be

readily solved using dynamic programming.

B. Generation of Adversarial Local Models

A new adversarial VGAE model, leveraging unsuper-

vised learning on graph-structured data according to the

variational auto-encoder [24], is proposed to maximize the

Lagrange function (6). For given β0

i,j(t)
⇤, λ(t) and ρ(t),

we optimize www0

j(t) by solving

www0

j(t)
⇤=argmax

www0

j
(t)

⇢
F (www0

G(t))�λ(t)d(www
0

j(t),www
0

G(t)))

+ ρ(t)

IX

i=1

β0

i,j(t)
⇤d(wwwi(t), w̄ww(t))

�
.

(10)

An attacker positioned within the effective range of the

benign device’s wireless signal can overhear the transmit-

ted wwwi(t) to the server. The level of access an attacker

might have depends on the eavesdropping capabilities.

For example, standard wireless signals are broadcast in

a spherical radius around the transmitting device. This

means that the attacker within that radius can have access

to the broadcasted signal, where the attacker can capture

the traffic and observe the transmitted information. More

advanced attackers might employ methods that allow them

to extend the range of their eavesdropping capabilities or

to focus on specific directions, allowing them to intercept

communications from further away. For example, a highly

directional antenna can pick up wireless signals from a

much greater distance than a standard antenna.

An attacker, i.e., the j-th attacker, can observe the local

model parameters of the benign devices to establish the

intrinsic correlation between the different parameters of

the local models. A graph can be used to characterize the

correlation. The graph is then regenerated manipulatively

with the VGAE, and used to produce the malicious local

model www0

j(t). By this means, we can maximize (10) while

preventing the convergence of www0

G(t). Constraints (5b)-(5d)

are satisfied by designing the decoder of the VGAE to

reproduce the correlations. This approach reduces structural

dissimilarity between wwwi(t) and www0

j(t), which invalidates

the existing defense mechanisms. The VGAE is tailored to

ensure those constraints and hinder the convergence of the

global model by extracting the correlation features between

benign local models and embedding the correlation features

in graphs for malicious local model generation.

1) Graph Construction and Feature Extraction: As illus-

trated in Fig. 2, the graph represented by G = (V, E,F) is
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utilized to characterize the correlations among the parame-

ters of the models being trained in FL, i.e., wwwi(t), 8i [25].

The vertexes, edges, and feature matrix of the graph are

represented by V , E, and F , respectively. The VGAE

comprises a graph convolutional network (GCN) encoder

and an inner product decoder. The encoder encodes the

graph data using its features, and the decoder takes the

encoded output as input to reconstruct the original graph

G = (V, E,F) [26].

Let FFF(t) = [www1(t), · · · ,wwwI(t)]
T 2 R

I⇥M be the feature

matrix containing all I benign local models at communica-

tion round t, where M is the dimension of the local model.

Let ωm(t) 2 R
I⇥1 be the m-th column of FFF(t). We use

δm,m0(t) to denote the cosine similarity between the ωm(t)
and ωm0(t) at communication round t. m,m0 2 [1,M ].
δm,m0(t) is defined as [27]

δm,m0(t) =
(ωm(t))Tωm0

(t)

kωm(t)k · kωm(t)k
. (11)

The adjacency matrix, denoted by AAA(t) = [δm,m0(t)] 2
R

M⇥M , is one of the inputs to the encoder of the VGAE

model at the attacker. According to AAA(t), the topological

structure of the graph G can be constructed at the attacker.

The feature matrix FFF(t) is the other input to the encoder

of the VGAE model at the attacker.

2) Encoder design of the VGAE model: The encoder

in the proposed VGAE maps G to a lower-dimensional

representation. We build the encoder based on the GCN ar-

chitecture, which learns a latent representation that captures

the underlying features of G. The encoded representation is

then used as input to the decoder to reconstruct the original

graph from the lower-dimensional representation to obtain

the malicious local model www0

j(t) in (9). For the brevity of

notation, we omit the index of communication rounds “t”
in the following discussions.

A graph encoder is defined as

ZZZ1 = frelu(FFF ,AAA, |WWW 0); (12)

ZZZ2 = flinear(ZZZ1,AAA|WWW 1), (13)

where frelu(·) is the Rectified Linear Unit (ReLU) activa-

tion function employed for the first layer, while flinear(·)
is the Linear activation function used for the second layer;

and WWW l is the learnable parameters specific to the l-th layer

of the neural networks.

Since determining the probability distribution of the

latent representation of vertexes ZZZ in G is difficult and

intractable [28], we approximate the true posterior by using

a Gaussian distribution N (·), while the encoder takes FFF
and AAA as its input to an inference model parameterized by

a two-layer GCN. Thus, we have

q(ZZZ|AAA,FFF) = Π
M
m=1q(zzzm|AAA,FFF), (14)

and

q(zzzm|AAA,FFF) = N (zzzm|µµµm, diag(σσσ2)), (15)

where µµµ = ZZZ2 builds the matrix of mean vectors µµµm.

Likewise, we have logσσσ = flinear(ZZZ1,AAA|WWW 1) that shares

the first-layer parameters WWW 0.

With the identity matrix I 2 R
M⇥M , we define

eAAA = AAA + I with the (m,m0)-th element eAAAm,m0 , and the

(diagonal) degree matrix DDD with the (m,m)-th element

DDDm,m =
PM

m0=1
eAAAm,m0 . Each layer of the GCN can be

written as

fG(ZZZ l�1,AAA|Wl) = φ(DDD�
1

2 eAAADDD�
1

2ZZZ l�1Wl), (16)

where φ(·) is the activation function such as relu(·).
3) Decoder design of the VGAE model: The input to the

decoder of the proposed VGAE model is ZZZ , which is the

output of the GCN in the encoder. The decoder aims to

reconstruct AAA, denoted by bAAA, predicting whether there is

a link between two vertexes by an inner product between

latent variables, which is designed as

p(bAAA|ZZZ) =

MX

m=1

MX

m0=1

p(δ̂m,m0 |zzzm, zzzm0); (17)

p(δ̂m,m0 = 1|zzzm, zzzm0) = sigmoid(zzzTmzzzm0), (18)

where zzzm 2 R
M⇥1 is the m-th column of ZZZ ,

and sigmoid(·) is the logistic sigmoid function, i.e.,

sigmoid(x) = 1/(1 + exp�x). Here, the larger the inner

product (zzzTmzzzm0) in the embedding, the more likely ver-

texes m and m0 are connected in the graph, according to
bAAA = [δ̂m,m0 ] 2 R

M⇥M in the autoencoder [29].

We can view (17) as the inverse operation of the encoder

for constructing a reconstructed adjacency matrix bAAA as the

output of the decoder. A reconstruction loss function ηloss
is defined at the decoder to measure the difference between

AAA and bAAA. Given (14) and (17), ηloss is given as

ηloss=Eq(ZZZ|AAA,FFF)

h
log p(bAAA|ZZZ)

i
�Φ[q(ZZZ|AAA,FFF)|p(ZZZ)],

(19)

where p(ZZZ)=Πmp(zzzm)=ΠmN (zzzm|0, I) provides a Gaus-

sian prior, and Φ[q(ZZZ|AAA,FFF)|p(ZZZ)] provides the Kullback-

Leibler divergence [30] between q(ZZZ|AAA,FFF) and p(ZZZ).
4) Generation of adversarial local models www0

j(t): The

Laplacian matrix of G [31] is built based on the adjacency

matrix of the benign models, i.e., AAA, as given by

L = diag(AAA)�AAA. (20)

By applying singular value decomposition (SVD) [32] to L,

i.e., L = BΣBT , we can obtain a complex unitary matrix

B 2 R
J⇥J , also known as graph Fourier transform (GFT)

basis, that is used to transform graph data, e.g., FFF , to its

spectral-domain representation. Σ 2 R
J⇥J is a diagonal

matrix with the eigenvalues of L along its main diagonal.

Due to the abundance of local training data at a client,

wwwm
i (t) typically contains numerous model parameters, i.e.,

M � 1, which leads to a large size of AAA = {δm,m0} 2
R

M⇥M . The exact SVD of L that has an M⇥M matrix has

time complexity O(M3), which is infeasible in the presence

of a large AAA. To reduce the dimensionality of AAA while

preserving the features, we consider a fast low-rank SVD

approximation [33], which retains the k singular values and

their corresponding singular vectors, where k ⌧ M3. In
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particular, a truncated SVD of L can be formulated as Lk ⇡
BkΣkB

T
k , where Bk is an m⇥k matrix with columns being

the first k left singular vectors of L, Σk is a k⇥k diagonal

matrix with entries being the first k singular values of L,

and Bk is an n⇥ k matrix with columns being the first k
right singular vectors of L.

With B (or more explicitly, Bk), an attacker, i.e., attacker

j, can obtain a matrix S that contains the spectral-domain

data features of all ωm(t), 8m by removing the correlations

among the models and subsequently focusing on the data

features substantiating the local models. S is given by [34]

S = B�1
k FFF . (21)

Likewise, the attacker can produce a Laplacian matrix

based on the output of the VGAE, as given by

bL = diag(bAAA)� bAAA. (22)

The corresponding GFT basis, denoted by bBk, can be

obtained by applying the fast low-rank SVD approximation

to bL. With reference to (21), the malicious local model that

follows AAA in the VGAE can be determined by

bFFF = bBkS, (23)

where bFFF 2 R
I⇥M . The j-th row vector of bFFF is selected as

the malicious local model www0

j(t) and uploaded by the j-th

attacker to the aggregator for global model aggregation in

communication round t.

C. Update of Dual Variables

Given the attack model www0

j(t), with the obtained β0

i,j(t)
⇤,

the sub-gradient descent method can be taken to update

λ(t) and ρ(t) by solving the dual problem (8). Specifically,

λ(t)and ρ(t) are updated by [35]

λ (t+ 1)=
⇥
λ(t)� ε

�
d(www0

j(t),www
0

G(t))� dT
�⇤+

; (24a)

ρ (t+ 1)=

"
ρ(t)�ε

 
IX

i=1

β0

i,j(t)
⇤d(wwwi(t), w̄ww(t))�Υ

!#+
,

(24b)

where ε is the step size, and [x]
+

= max (0, x). At

initialization, λ(t) and ρ(t) are non-negative, i.e., λ(1) � 0
and ρ(1) � 0, to ensure (24) converges.

Since the attacker aims to generate the malicious local

models to disorient FL, the proposed VGAE is constructed

and trained to maximize ηloss. As a consequence, www0

j(t) pro-

gressively and increasingly contaminates the FL training, as

global model aggregations increase, i.e., t = 1, 2, 3, · · · .

D. Algorithm Design of The VGAE-MP Attack

According to the design of the new VGAE-MP attack

in Figure 2, Algorithm 1 is developed along with the FL

training of the benign user devices and the FL server.

Specifically, the FL server broadcasts www0

G in every com-

munication round. Each benign node i (1  i  I) applies

the LocalTraining start(www0

G) function for training the local

model wwwi. Each attacker, i.e., the j-th attacker (1  j  J),

Algorithm 1 The proposed VGAE-MP attack algorithm

1: 1. Initialize: G = (V, E,F), TL, I , J , dT , www0

G(t),
wwwm

i (t), and λ(1) � 0.

% Adversarial FL:

2: for round t = 1, 2, 3, · · · do

3: for Local iteration number l = 1, · · · , TL do

4: All benign user devices train their benign local

model ωωωi(t), i = 1, · · · , I .

5: end for

6: All benign user devices upload their benign local

models wwwi(t), i = 1, · · · , I to the server, and the

attackers overhear the benign local models.

7: The attacker j carries out the proposed VGAE, i.e.,

VGAE(ωm(t), 8m,FFF ,λ(t)), and obtains www0

j(t):
8: · Build the adjacency matrix AAA = [δm,m0 ] 2

R
M⇥M according to (11), and input AAA and FFF

into the VGAE.

9: · Train the VGAE to maximize the reconstruction

loss ηloss to obtain bAAA.

10: · Obtain S based on (20) and (21), next obtain
bFFF based on (22) and (23), and then determine

ω
m(t) based on bFFF .

11: Update λ(t), according to (24).

12: The attacker uploads the malicious local model www0

j(t)
to the server.

13: The server aggregates selected local models to obtain

the global model under attack www0

G(t) by (3), and

broadcasts www0

G(t).
14: All benign user devices update their local models

with the global model, i.e., wwwi(t) www0

G(t), 8i.
15: end for

overhears the global model www0

G and the local model wwwi

from the benign nodes. The GAE is trained to maximize

the reconstruction loss with AAA and FFF . At the output of

the GAE, the attacker achieves the optimal malicious local

model, i.e., www0

j . Then, www0

j is uploaded to the FL server for

aggregation. As www0

j is highly correlated with wwwi from the

benign user devices, the FL server is unlikely to detect and

identify the attacker.

Note that an attacker positioned in proximity to be-

nign devices and equipped with radio transceivers has the

potential to passively eavesdrop on the transmitted local

models from one or more benign devices. This allows the

attacker to discern their characteristics and subsequently

devise a malicious local model. The more benign local

models are overheard, the more profound the exploration

into the feature correlation between the benign local and

global models, and the more unlikely the malicious local

models are detected by the server. The VGAE-MP attack

remains operational even if only a single benign local

model is overheard, though its effectiveness is diminished

compared to scenarios where multiple benign local models

are eavesdropped upon.

Although cryptography can prevent eavesdropping at-

tacks to some extent, existing techniques, such as those
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TABLE II: The setting of parameters in PyTorch

Parameters Values

number of benign devices (I) 5 ∼ 30
number of attackers (J) 1 ∼ 5
communication rounds of the FL 100
number of local iterations (TL) 10
model parameters in wwwi(t) (M ) 100, 200, or 300
1st hidden layer size of the VGAE 32
2nd hidden layer size of the VGAE 16
learning rate of the VGAE 0.01
batch size of the SVM 30
learning rate of the SVM 0.001
regularization of the SVM loss function 0.01
k-Fold cross-validation 5

developed in [36] and [37], have demonstrated the pos-

sibility of deciphering encrypted information with limited

initial data. This risk is even more threatening with the

rapid advancement of Quantum computing. The proposed

data-untethered VGAE-MP attack could potentially work

in compiling with these attack techniques to evade crypto-

graphic protection of the benign local models and poison

the training of FL.

V. PERFORMANCE EVALUATION

This section demonstrates the implementation of the pro-

posed new VGAE-MP attack in PyTorch. Based on MNIST

handwritten digits [38], FashionMNIST and CIFAR-10

datasets [39], the training accuracy of the local and global

models under the attack is evaluated. The detection rate

of the VGAE-MP attack is also presented, which is mea-

sured according to the Euclidean distance between the

malicious local model and the benign one. The source

code of the proposed VGAE-MP attack is available on

GitHub: https://github.com/jjzgeeks/VGAE-based Model

Poisoning Attack FL.

A. Implementation of The VGAE-MP Attack

The benign FL is designed to improve image classifica-

tion accuracy, while the proposed VGAE-MP attack aims

to reduce accuracy and cause label misclassification. The

number of benign devices I increases from 5 to 30, while

the number of attackers J increases from 1 to 5. The global

model www0

G(t) in FL is trained with 100 communication

rounds, and training of the local model wwwi(t) is carried

out in 10 iterations. For building the adjacency matrix AAA
at the attacker, the number of selected model parameters

in wwwi(t), i.e., M , is set to 100, 200, or 300. The VGAE

encoder is a two-layer GCN network with a dropout layer to

prevent overfitting. The VGAE decoder is an inner product.

The Adam optimizer with a learning rate of 0.01 is adopted

to optimize the network. For all datasets, we use the same

encoder, decoder and SVM models. Table II lists the setting

of parameters in PyTorch.

The proposed VGAE-MP attack is implemented on an

SVM model using PyTorch 1.12.1, Python 3.9.12 on a

Linux workstation with an Intel(R) Core(TM) i7-9700K

CPU@3.60GHz (8 cores) and 16 GB of DDR4 mem-

ory@2400 MHz. The experiments are carried out on three

datasets:

• The standard MNIST dataset, comprising 60,000 train-

ing and 10,000 testing grayscale images of handwritten

digits from 1 to 10;

• The FashionMNIST dataset, comprising Zalando’s ar-

ticle grayscale images with the size of 28 ⇥ 28 in

ten classes, including 60,000 and 10,000 images for

training and testing, respectively;

• The CIFAR-10 dataset, consisting of 60,000 images

with the size of 32 ⇥ 32 in ten classes (6,000 per

class), 50,000 for training and 10,000 for testing.

At each benign user device, a standard quadratic

optimization algorithm is utilized to train the SVM

models with the three datasets. The loss function

of the SVM models is Fi(wwwi(t)) = 1
2 kwwwi(t)k

2
2 +

1
Di

PI

i=1 max
n
0, 1� ydi

i (βi +ωωωT
i (t)x

di

i )
o

, where βi is a

parameter that can be obtained based on wwwi(t).
In addition, the proposed VGAE-MP attack is compared

with an existent data-agnostic model poisoning (MP) attack

that produces malicious local models by mimicking other

benign devices’ training samples to degrade the learning

accuracy. The MP attack considered for comparison has

been used in several existing studies, e.g., [40], [41], where

the attacker manipulates the training process by injecting

a fake device and sending fake local models to the server.

Moreover, we implemented another existing attack on FL,

i.e., a random MP (RMP) attack considered in [9], [11].

Specifically, RMP generates the malicious local model by

injecting a Gaussian random noise into the received global

model, which can enlarge the magnitudes of the random

local model updates using a scaling factor.

B. Attacking Performance

In Fig. 3, we plot the local model’s testing accuracy

with 100 FL communication rounds under the proposed

VGAE-MP attack on the MNIST, FashionMNIST, and

CIFAR-10. When M of VGAE-MP increases from 100 to

300, the FL accuracy fluctuates dramatically, successfully

restraining the convergence of the testing accuracy. Using

FashionMNIST as an example, the FL accuracy of the

five benign devices converges to 80% in 3(d) under the

VGAE-MP attack with M = 100. Once M increases to 300

in 3(f), the FL accuracy of the five benign devices consis-

tently experiences fluctuations between 50% and 80%. This

confirms that M determines the size of features in ωωωm(t)
whose correlation in AAA is learned to generate the malicious

poisoning model www0

j(t). Therefore, a large M leads to a

more complete graph trained by the VGAE model.

In Figs. 3(a) to 3(i), we interestingly observe that VGAE-

MP demonstrates more prominent attacking performance on

the FL with the FashionMNIST and CIFAR-10 than the one

with the MNIST. This might be attributed to the variances

in the MNIST, FashionMNIST, and CIFAR-10. MNIST

comprises grayscale images of handwritten digits, whereas

FashionMNIST houses grayscale images of apparel and

accessories. CIFAR-10, on the other hand, has 10 distinct

categories of objects, including animals, vehicles, among

others. The simplicity of the MNIST’s handwritten digits

https://github.com/jjzgeeks/VGAE-based_Model_Poisoning_Attack_FL
https://github.com/jjzgeeks/VGAE-based_Model_Poisoning_Attack_FL
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Fig. 3: Given 100 FL communication rounds, I = 5 and J = 2, we study the local model’s testing accuracy under the

proposed VGAE-MP attack on the MNIST, FashionMNIST, and CIFAR-10 datasets.
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Fig. 4: The global model’s testing accuracy (“avg” means the average value and “std” stands for the standard deviation)

under the VGAE-MP attack on the MNIST, FashionMNIST, and CIFAR-10 datasets.
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Fig. 5: Given the MNIST, FashionMNIST, and CIFAR-10 datasets, the average testing accuracy of the local models under

the VGAE-MP attack when J increases from 1 to 5.

may make them more easily classified by FL compared

to the more complex images found in FashionMNIST or

CIFAR-10.

Fig. 4 shows the global model’s testing accuracy mea-

sured at the server based on the MNIST, FashionMNIST,

and CIFAR-10. Under the VGAE-MP attack, the steady

convergence of FL accuracy is inhibited. In particular, for

the CIFAR-10 with M = 300, the FL accuracy maintains

around 58% under the VGAE-MP attack. Moreover, the

VGAE-MP attack doesn’t lead to a considerable decrease

in the testing accuracy of the global model. This is because

that a significant performance dip could potentially reveal

the presence of the attacker.

Fig. 5 plots the average testing accuracy of the local
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Fig. 6: Given J = 5, the average testing accuracy under the VGAE-MP attack on the MNIST, FashionMNIST, and

CIFAR-10 datasets, where I increases from 5 to 30.

models under the VGAE-MP attack when J increases from

1 to 5. Since the number of benign devices is fixed at 3,

the FL accuracy falls with the growth of the number of

attackers. This is because the proposed VGAE-MP attack

hinders the training convergence of FL. In particular, when

M = 300, the average testing accuracy under the VGAE-

MP attack drops about 5%, 12%, and 4% according to

the MNIST, FashionMNIST, and CIFAR-10, respectively.

When J = 5, the VGAE-MP attack outperforms the MP

attack 10% and 20% given the FashionMNIST and CIFAR-

10, respectively. The reason is the new VGAE-MP attack

reconstructs the adversarial adjacency matrix according to

the individual features of the devices. Consequently, the

attacker falsifies the local models to maximize the FL loss.

Fig. 6 depicts the average testing accuracy of FL without

the attack and FL under the VGAE-MP, MP or RMP

attack, where J is set to 5 and I ranges from 5 to 30.

As the benign devices increase, the FL accuracy under

the VGAE-MP, MP and RMP attacks improves, given that

the FL can quickly converge when the ratio of wwwi(t) to

www0

j(t) is heightened. On the three considered datasets, the

FL accuracy is 6%, 5%, and 5% under the VGAE-MP

attack lower than it is under the MP attack, respectively,

when M = 300 and I = 5. The RMP attack has lower

FL accuracy than the VGAE-MP and MP attacks. This

is because the malicious local model update of the RMP

attack is generated according to a Gaussian random noise,

which is not correlated with any benign local models.

However, this can make the malicious local models more

easily detected and subsequently eliminated, as will be

shown in Fig. 7.

Existing MP attacks in FL result in a high training loss

of the FL model. One way to detect these malicious attacks

is to compare the distance between the malicious local

and global models with the distance between the benign

local and global models. Suppose the distance between the

malicious local and global models is larger. In such case,

it can indicate a malicious attack, and the server can detect

it accordingly.

To evaluate the invisibility of the proposed VGAE-MP

attack, we study the distance between the local and the

global models based on the CIFAR-10 datasets in Fig. 7,

where I = 5 and J = 3. As shown in Figs. 7(a), 7(b),

and 7(c), the Euclidean distances between the malicious

local models generated by the new VGAE-MP attack and

the corresponding global models are below that of the

benign local models. This makes it difficult for the server

to detect and defend against the attacker. In contrast, as

shown in Figs. 7(d) and 7(e), the MP attack and the RMP

attack result in a significantly larger distance between the

malicious local and global models, making them easier to

detect. This highlights the key strength of the proposed

VGAE-MP attack, that is, VGAE-MP generates malicious

local models based on the feature correlation between the

benign local and global models, and hence makes the

differences between the malicious and benign local models

indistinguishable.

Fig. 8 shows the average testing accuracy under the

proposed VGAE-MP attack on the MNIST, FashionMNIST,

or CIFAR-10 dataset. This is observed as the attacker

eavesdrops on an increasing number of benign user devices,

ranging from 1 to 25. Generally, a noticeable fall in the

local model updates’ average accuracy is observed as the

number of eavesdropped benign devices escalates. This

trend is attributed to the attacker’s ability to intercept

more benign local models, thereby acquiring a broader

range of correlation features. Such extensive data aids

in crafting a more potent malicious model for effective

system poisoning. In particular, the average accuracy on

the MNIST, FashionMNIST, and CIFAR-10 datasets drops

about 27.4%, 32.3%, and 24.9%, respectively.

VI. CONCLUSION AND FUTURE WORK

In this paper, a new data-untethered VGAE-MP attack

against FL was proposed, where the adversarial VGAE was

developed to create malicious local models based solely on

the benign local models overheard without access to the

training data of FL. The proposed adversarial VGAE allows

the attacker to extract the common underlying data features

of the benign local models and their correlations to generate

the malicious model with which the FL training loss is

maximized. The VGAE-MP attack maintains the feature

correlation between the benign local and global models,

making the differences between the malicious and benign

local models indistinguishable. The VGAE-MP attack on

the FL was implemented using PyTorch with the source

code released on GitHub. The performances were evaluated

using the MNIST, fashionMNIST, and CIFAR-10 datasets.

The proposed data-untethered VGAE-MP attack involves

a single poisoning objective, which aims to degrade the
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Fig. 7: Based on the CIFAR-10 training datasets, the Euclidean distances of the local models are measured at the server

in order to detect a poisoning attack, where we set I = 5 and J = 3.
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Fig. 8: The number of eavesdropped benign local model

updates increases from 1 to 25, based on the MNIST,

FashionMNIST, or CIFAR-10 datasets.

training accuracy of FL. In our future work, multiple per-

formance metrics of FL will be considered in the poisoning,

such as training fairness, robustness, and model utility.

A multi-objective optimization will be formulated while

the VGAE will be further studied to extract the graph

representation.
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