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Abstract. Hybrid programs combine classical program constructs with
differential equations, and thus naturally appear in a wide range of ap-
plication domains, from biology and control theory to software engineer-
ing. This ability to entangle discrete and continuous behaviour, however,
yields aspects unusual to computer science and renders the formal design
of hybrid programs a difficult task, not properly handled by the current
programming theory and practices.
As a stepping stone for closing this gap, here we develop the theoretical
foundations for an interpreter of hybrid programs and present a corre-
sponding implementation – Lince. These results serve not only as basis
for the implementation of typical tools of programming (e.g. debuggers
and refactoring systems) but also tools specific to the hybrid domain,
such as the detection of chaotic or Zeno behaviour. We also summarise
Lince’s most distinctive features and illustrate its relevance for detecting
design errors in hybrid programs at early development phases.

Keywords: Hybrid System, Program Semantics, Elgot Iteration

1 Introduction

1.1 Hybrid programming

Hybrid programming [32,30,38] is a rapidly emerging computational paradigm
that aims at using principles and techniques from programming theory (e.g.
compositionality [14,30] and Hoare calculus [32,38]) to engineer computational
objects that closely interact with physical processes. Cruise controllers are a typ-
ical example of this pattern, illustrated by by the hybrid program below.

while true do { if v ≤ 10 then (v′ = 1 for 1) else (v′ = −1 for 1) }

In a nutshell, the program specifies a digital controller that periodically measures
and regulates a vehicle’s velocity (v): if the latter is less or equal than 10 the
controller accelerates during 1 time unit, as dictated by the program statement
v′ = 1 for 1 (v′ = 1 is a differential equation representing the velocity’s rate of
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Fig. 1. Velocity’s vehicle over time (on the left); Signal and its sample (on the right).

change over time). Otherwise, it decelerates during the same amount of time
(v′ = −1 for 1). Figure 1 (left image) shows the output respective to this hybrid
program for an initial velocity of 5.

In contrast to standard programming, the previous cruise controller involves
not only classical constructs (namely while-loops and conditional statements)
but also differential constructs, used for describing physical processes such as
velocity, movement, energy, and time. This cross-disciplinary combination is the
core feature of hybrid programming and has a notably wide range of application
domains (see e.g. [32,33]; we will also see a sample of these throughout the paper).
However, it also brings new challenges to the area of programming: issues range
from the lack of suitable semantics to the lack of computational tools for the
rigorous design and analysis of hybrid programs.

Lince. As a stepping stone for closing this gap, in this paper we develop the
theoretical foundations and corresponding implementation of an interpreter—
Lince–for a classical while-language extended with a notion of differential equa-
tion. Lince serves as a practical framework to formally specify and analyse
hybrid programs, such as the cruise controller presented before and relevant
properties regarding its behaviour: e.g. what is the maximum velocity that the
vehicle will attain? Does it ever reach an unsafe velocity? And if so for how long?
Moreover, Lince and its foundations are a solid basis for the implementation of
programming tools oriented to the hybrid domain, such as refactoring systems,
equivalence checking, and program verification tools.

1.2 Related work

We emphasise the distinction between a hybrid system and a hybrid program:
the former are those systems whose behaviour has both discrete and continuous
components [42,17]; whilst the latter are specifications of hybrid systems writ-
ten in a programming-oriented style [32,30,38]. The cruise controller described
before is a typical example of a hybrid program; sampling algorithms (used in
signal processing) form another interesting class of examples. The following hy-
brid program describes a simplistic sampling algorithm.

x := 0 ; s := 0 ; while true do { (x′ = 2 for 1) ; s := x }
The algorithm uses the variable s to sample, with a frequency of 1 per time
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unit, the signal represented by the differential equation x′ = 2. The trajectory
produced by the sampling algorithm, depicted in Figure 1, was calculated by our
tool. Other examples of hybrid systems can be typically found in the areas of con-
trol theory, impact-based mechanics, embedded software, and biology (including
e.g. disease propagation [25] and personalised treatments against cancer [24]).

There are several formalisms of hybrid systems. Currently, the de facto one
is hybrid automata [17]: briefly, an extension of classic automata with state vari-
ables that evolve continuously whilst in a state and change discretely at state
transitions. Hybrid automata possess a rich theory and powerful tools, both
typically focused on reachability analysis [10,34,18,3]. Closer to a programming-
oriented style, and thus to our work, differential dynamic logic [32] is another
well-known formalism. Its underlying action algebra is a relational Kleene al-
gebra that interprets differential equations as the set of points that the respec-
tive solutions intersect. The logic possesses a semi-automated theorem prover—
KeyMaera—and, as hybrid automata, focuses mainly on reachability analysis.

The tools Simulink [19] and Modelica [11] are the industrial standards for
the design and analysis of hybrid systems, but lack a well-established, formal
semantics. Following traditions of control theory, Simulink consists of a circuit-
like, block-based language for describing hybrid systems, and moreover supports
their simulation via numerical approximation methods. Modelica, on the other
hand, is an acausal, specification language, and thus particularly useful for mod-
elling purely physical systems such as electric circuits and the like which are
traditionally modelled by systems of equations. There have been efforts on pro-
viding formal semantics to subsets of Simulink and Modelica e.g. [4,9], and
avoiding simulation errors caused by numerical approximation methods e.g. [7,5].

1.3 Overview of Lince and contributions

Lince is an interpreter of hybrid programs. More specifically, a tool that, given
a hybrid program and a time instant t, returns the value to which the program
evaluates to at t. We regard this as a basic block not only for developing the
usual tools of programming oriented to the hybrid setting but also for simulating
hybrid systems’ executions, in the spirit of Simulink and Modelica. To the
best of our knowledge Lince is the first tool of its kind:

1. Its underlying language is the classical while-language extended with the
notion of differential equation, thus promoting a compositional view and
keeping in touch with classical programming theory. This contrasts with
hybrid automata which are not amenable to a compositional approach [32,
page 16] nor are they as close to a programming-oriented style.

2. Lince differs from the theorem prover KeyMaera in that it provides more
lightweight verification methods at the cost of not being able to ensure that
a program behaves as expected under all possible scenarios.4

4 In principle, both tools could form a tool-chain: program properties would first be
tested on Lince and only then validated in heavier, costlier tools, such as KeyMaera
(a common practice in software verification).
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Moreover, recall that the underlying semantics of KeyMaera interprets
a differential equation as the set of points that the corresponding solution
intersects in lieu of the solution (i.e. the trajectory) itself. This provides
a more incisive focus on reachability properties, but renders more difficult
to analyse certain aspects of trajectories: e.g. the total time during which
a property holds or the velocity of approximation to a desired value [6,8].
Since we want our tool to be applicable to different domains we do interpret
differential equations as the corresponding solutions.

3. Lince has simulation capabilities in the spirit of Simulink and Modelica,
but unlike the latter it also has an established semantics. Actually, we will
see below that one of the major challenges in our work was to ensure that
the interpretation of hybrid programs at the implementation level coincided
precisely with the intended semantics.

Semantics. In order to formally interpret hybrid programs, we furnish Lince’s
language with a small-step operational semantics that underlies Lince’s inter-
pretation process: given a hybrid program and a time instant the semantics tells
how to convert, via a sequence of reduction steps, the given pair into a value—the
latter representing the output of the program at the given time. Furthermore,
we provide a compositional, denotational counterpart and a soundness/adequacy
result linking both styles of semantics. The denotational semantics is based on a
monad [28,29], which facilitates the extension of our language with new features
such as non-deterministic, state-based, or probabilistic effects.

The challenge of finite precision. The fact that computers only support
finite-precision numerical systems was a main challenge in our work:

1. In our operational semantics we could not treat solutions of differential equa-
tions as maps of the type φ : Rn × [0,∞)→ Rn, due to the presence of real
numbers which require infinite precision. Instead, the semantics uses sym-
bolic representations of these solutions. Lince obtains such representations
by invoking the free computer algebra tool SageMath [37]. Note that Lince
is web-based, thus it does not require any installation from the user.5

2. In the interpretation of hybrid programs, if-then-else statements require test-
ing whether certain conditions are true. However, here we could not test
such conditions by merely invoking predicate functions – such as equality
(==): Eq a ⇒ a → a → Bool – from a common programming language.

Consider for example the equation e−10
3 ∗ e103

= 1, where e is Euler’s num-
ber. Scala and JavaScript (which were used to implement Lince) wrongly
evaluate this equation to false. Other programming languages suffer from the
same problem, including Haskell and OCaml. This discrepancy causes
highly spurious evaluations. Consider, for example, the program below.

x : = 1 ; (x′ = −x for 103) ; (x′ = x for 103) ; if x = 1 then p else q

5 https://github.com/arcalab/lince – it can also be downloaded, compiled, and
executed locally (instructions in the website).

https://github.com/arcalab/lince
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Fig. 2. Velocity and altitude of the spacecraft over time with an initial velocity of
3600km/h (plot on the left); spacecraft crashing with a velocity around 720km/h as a
consequence of increasing the initial velocity to 4680km/h (plot on the right).

As explained later in the paper, e−10
3 ∗ e103 = 1 will be tested in the evalua-

tion of the conditional statement above. If the test wrongly yields false then
the program q will execute instead of p. Note that increasing the precision
of the underlying numerical system does not suffice, since increasing the du-
rations of the differential statements would wrongly lead to the execution
of program q instead of p again. In order to overcome this obstacle Lince,
tests such conditions via SageMath which gives preference to algebraic laws
rather than numerical approximations.

Illustration: Spacecraft landing. Let us illustrate Lince as lightweight tool
for engineering hybrid programs, in particular to test early design choices and
ideas. Consider the following scenario (described in [43]): a spacecraft is descend-
ing with high velocity into a planet, and we need to make it land smoothly by
means of a vertical thrust vector. The spacecraft is inhabited by humans, so
we need to restrict the maximum acceleration of the thrust vector to 100m/s2

(roughly, the acceleration force that a jet fighter pilot is subjected to). We as-
sume that our task starts at 10km of altitude with an initial velocity of 3600km/h
(i.e. 1000m/s). For simplicity purposes, we consider a constant gravitation pull g
and assume that the planet has no atmosphere (no frictions forces are involved).
We then divide our task into three smaller ones in the form of while-loops (code
available the tool’s website). Each of these tasks corresponds to a different phase
of the descent process, marked by the altitude of the spacecraft: the first task is
active whilst at an altitude equal or above 1km; the goal is to rapidly decrease
the spacecraft’s velocity by applying the maximum thrust force. The third task
is active whilst at an altitude less or equal than 25m; here the computer controls
the descent much more precisely and uses much less thrust force. The second
task serves as a transition between the two previous tasks, allowing to correct
possible deviations from the starting altitude and velocity. The corresponding
trajectory is presented in Figure 2 (on the left). A natural question to ask is
whether our algorithm is robust against higher starting velocities. We can test
this in Lince: changing the starting velocity to e.g. 4500km/h, we can observe
that the crew is still going to survive the descent. However, if we slightly increase
the velocity up to e.g. 4680km/h then the spacecraft will crash at high speed.
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Document structure. Section 2 introduces Lince’s while-language and its
operational semantics. As mentioned before, this semantics is the core engine of
hybrid program evaluation. Section 3 overviews Lince’s architecture, in partic-
ular its components and relations with one another. Then, Section 4 provides
the aforementioned denotational counterpart to our operational semantics. As
usual, the denotational semantics is compositional and abstracts from how the
program is evaluated to focus on what values it outputs. Finally, Section 5 briefly
discusses research lines opened up by our work.

2 A Hybrid While-Language

2.1 Syntax and semantics

We now introduce the syntax of Lince’s while-language. We fix a finite stock of
variables X , over which we build atomic programs according to the grammar:

At(X ) 3 x := t | x′1 = t, . . . , x′n = t for d

t, s 3 r | r · x | t + s

where x, xi ∈ X , r ∈ Q, and d ∈ [0,∞) ∩ Q. An atomic program is thus either
a classical assignment x := t or a differential equation x′1 = t, . . . , x′n = t for d;
the latter reads as “run the system of differential equations x′1 = t, . . . , x′n = t

for d time units”. Next, we build our while-language via the grammar,

p, q 3 a | p ; q | if b then p else q | while b do { p }
where a ∈ At(X ) and b is an element of the free Boolean algebra generated by
the terms t ≤ s and t ≥ s.

Remark 1. The systems of differential equations that the language allows are
always linear. We could easily extend the language with more general systems,
because its semantics (presented below) only requires that they have a solution.
We refrain from doing this, however, because the usual examples of a hybrid
program only require linear systems and deciding which classes of differential
equation to allow would distract us from building the core features of Lince.

Notation. We abbreviate differential statements x′1 = t1, . . . , x
′
n = tn for d to

the expression x′ = t for d, where x′ and t abbreviate the corresponding vectors
of variables x1

′ . . . xn
′ and terms t1 . . . tn.

The cruise controller, sampling algorithm, and spacecraft that were presented
before are examples of programs written in this while-language. Let us briefly
analyse another class of examples.

Example 2 (Real-Time Computation). Hybrid programs are closely related
to real-time computation [21]; e.g., one can introduce wait calls via the program:

x′1 = 0, . . . , x′n = 0 for d

meaning that the computer’s execution will halt for d time units (we abbreviate
this instruction by the expression wait d). This allows to consider oscillators
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which are present in e.g. musical synthesisers and traffic lights [12]. The hybrid
program below is a simple example of an oscillator.

a := 1 ; while true do { a := −a ; (wait 1) }

We will now introduce the aforementioned small-step, operational semantics
for our while-language. Intuitively, the semantics establishes a set of rules for
reducing triples 〈program statement, variables’ values, time instant〉 to values,
via a sequence of reduction steps. This semantics is inspired by the big-step,
operational semantics presented in [15], but with the following crucial differences:

1. Our semantics does not involve rules with infinitely many premises, which
would render a computational implementation impossible to achieve.

2. Moreover, our semantics does not require calculating the total duration of
programs: this would yield infinite reduction sequences in the presence of
infinite while-loops and thus would hinder the computational evaluation of
such programs.

3. In order to be able to exactly evaluate hybrid programs, our semantics does
not interpret solutions of systems of differential equations paired with initial
values σ as functions of the type φσ : [0,∞) → Rn. Instead, it interprets
solutions as n-tuples u of terms built from the grammar,

u, v 3 r | t | sin (u) | cos (u) | u · v | u + v | eu | −u |
√
u

where r ∈ Q and t is what we call a time variable. For example, the solution
of x′ = x with x = 2 as the initial condition is φx7→2 = 2 · et.

Remark 3. Suenaga and Hasuo [38] also developed a while-language for hybrid
systems, but differently from us their approach is based on a constant that repre-
sents an infinitesimal. In particular, their semantics is defined via nonstandard
analysis and is therefore not amenable to implementation.

Next, we denote the set of closed terms u (i.e. with no variable t) by CTerm

and call functions of type σ : X → CTerm environments; these functions map
program variables to their respective closed terms, the latter being symbolic
representations of real numbers. For every linear term t (defined in the beginning
of the section), we use the notation tσ to refer to the closed term obtained by
substituting the free variables in t by the respective closed terms according to
σ. We use the notation σO[ū/x̄] to denote the environment that maps each xi in
x̄ to ui and the rest of variables in the same way as σ. Finally, we denote by φσ
the solution of a system of differential equations with σ as the initial condition,
and subsequently denote by φσ(r) the expression that results from substituting t
by r in φσ where r is a non-negative rational number.

The small-step rules are presented in Figure 3. Contrary to standard opera-
tional semantics, they are not defined on program statements and environments
but on triples comprised of a program statement, an environment, and a time
instant. The terminal configuration skip, σ, t represents a successful end of a
computation, which can then be fed into another computation (via rule (seq-
skip→)). On the other hand, stop, σ, t represents an abnormally terminating
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computation, which cannot be composed with a following one. The latter case
is reflected in rules (diff-stop→) and (seq-stop→) which tell that, depending
on the chosen time instant, we do not need to evaluate the whole program, but
merely a part of it – consequently, infinite while-loops do not necessarily yield
infinite reduction sequences (as explained in Remark 4). The rules (seq) and
(seq-skip→) correspond to the the standard rules of operational semantics for
while languages over an imperative store [41].

Let →? be the transitive closure of the reduction relation → that was
previously presented. Then we say that a triple p , t , σ evaluates into a value σ′

iff p , t , σ →? s, σ′ , 0 where s is either skip or stop.

Remark 4. Infinite while-loops do not necessarily yield infinite reduction steps:
take for example the while-loop

x := 0 ; while true do { x := x + 1 ; wait 1 } (1)

whose iterations always have duration 1. It yields a finite reduction sequence for
the time instant 1

2 , as shown by the following calculation:

x := 0 ; while true do { x := x + 1 ; wait 1 } , σ , 1
2 →

{by the rules (asg→) and (seq-skip→)}
while true do { x := x + 1 ; wait 1 } , σO[0/x] , 1

2 →
{by the rule (wh-true→)}

x := x + 1 ; wait 1 ; while true do { x := x + 1 ; wait 1 } , σO[0/x] , 1
2 →

{by the rules (asg→) and (seq-skip→)}
wait 1 ; while true do { x := x + 1 ; wait 1 } , σO[0 + 1/x] , 1

2 →
{by the rules (diff-stop→) and (seq-stop→)}

stop , σO[0 + 1/x] , 0

The gist here is that to evaluate the program (1) at time instant 1
2 we only

need to unfold the infinite while-loop once, because the time instant 1
2 occurs

before the end of the first iteration. On the other hand, if the wait statement is
removed from the program then the reduction of the resulting program would not
terminate, intuitively because all iterations would be instantaneous and thus no
finite number of unfoldings of the loop would have duration greater than 1

2 .

The following theorem entails that our semantics is deterministic; moreover,
the corresponding proof details the algorithm behind Lince for deciding which
rule to apply in a reduction step.

Theorem 5. For every program p, environment σ, and time instant t there is
at most one applicable reduction rule.

Proof. The proof follows by inspecting the structure of program terms: first, for
atomic programs the proof follows directly, because the corresponding premises
are mutually exclusive. For conditionals, the proof also follows directly due to
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the same reason. For sequential composition p ; q, we need to proceed by case
distinction: if p is atomic then the only applicable rules are (seq-stop→) and
(seq-skip→) but then it is easy to see that the corresponding premises are
mutually exclusive. If p is non-atomic then the only applicable rules are (seq→)
and (seq-skip→). But in this context, the application of (seq-skip→) requires
that p is a while-loop with bσ = ⊥ which forbids the application of (seq→).
Conversely, the application of (seq→) requires that p is not a while-loop with
bσ = ⊥ and thus we cannot apply (seq-skip→). The proof for while-loops is
direct because the relevant premises are mutually disjoint. ut

Corollary 6. For every program term p, environments σ, σ′, σ′′, time instants
t, t′, t′′, and termination flags s, s′ ∈ {skip, stop}, if p , σ , t →? s, σ′, t′ and p ,
σ , t →? s′ , σ′′ , t′′, then the equations s = s′, σ′ = σ′′ and t′ = t′′ must hold.

Proof. Follows by induction on the number of reduction steps and Theorem 5. ut

Note that operational semantics treats time as a resource formalised below.

Proposition 7. For all program terms p and q, environments σ and σ′, and
time instants t, t′ and s, if p , σ , t → q , σ′ , t′ then p , σ , t + s → q , σ′ ,
t′ + s; and if p , σ , t → skip , σ′ , t′ then p , σ , t+ s → skip , σ′ , t′ + s.

Note that Proposition 7 does not apply to stop, however, it is easy to see that p ,
σ , t → stop , σ′ , 0 implies p , σ , s → stop , σ′ , 0 for any s < t.

2.2 Event-triggered programs

The differential statements x′1 = t, . . . , x′n = t for d are time-triggered: i.e. they
terminate precisely when the instant of time d is achieved. In the area of hybrid
systems, it is also usual to consider event-triggered programs: i.e. programs that
terminate as soon as a specified condition ψ becomes true [42,7,13]. We thus
next consider atomic programs of this type,

x′1 = t, . . . , x′n = t until ψ

where ψ is an element of the free Boolean algebra generated by t ≤ s and t ≥ s.
We will show that it is generally very hard to provide a semantics for these pro-
grams such that it can be precisely implemented; take the program,

x := 0 ; y := 1 ; z := 0 ; (x′ = y, y′ = −x, z′ = 1 + y until z = 1)

Consider the system x′ = y, y′ = −x with x = 0, y = 1 as the initial condi-
tion. Then, the solution for the variable y is the function t 7→ sin(t). Hence, by
linearity, the solution of the differential system x′ = y, y′ = −x, z′ = 1 + y and
initial condition x = 0, y = 1, z = 0 for the variable z is t 7→ t + sin(t). Conse-
quently, to determine the program’s total duration we need to solve the equation
t+ sin(t) = 1, but there is no known method in the literature that provides the
exact solution for this.
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(asg→) x := t , σ , t → skip , σO[tσ/x] , t

(diff-stop→) x
′ = u for d , σ , t → stop , σO[φσ(t)/x] , 0 (if t < d)

(diff-skip→) x
′ = u for d , σ , t → skip , σO[φσ(d)/x] , t− d (if t ≥ d)

(if-true→) if b then p else q , σ , t → p , σ , t (if bσ = >)

(if-false→) if b then p else q , σ , t → q , σ , t (if bσ = ⊥)

(wh-true→) while b do { p } , σ , t → p ; while b do { p } , σ , t (if bσ = >)

(wh-false→) while b do { p } , σ , t → skip , σ , t (if bσ = ⊥)

(seq-stop→)
p , σ , t → stop , σ′ , t′

p ; q , σ , t → stop , σ′ , t′
(seq-skip→)

p , σ , t → skip , σ′ , t′

p ; q , σ , t → q , σ′ , t′

(seq→)
p , σ , t → p′ , σ′ , t′

p ; q , σ , t → p′; q , σ′ , t′

Fig. 3. Small-step Operational Semantics

The simulation engines behind Simulink and Modelica tackle this prob-
lem by checking the condition ψ periodically, which essentially reduces event-
triggered programs into time-triggered ones. The cost is that the simulation of
a specification might greatly diverge from the nominal behaviour, as discussed
for instance in documents [5,7]. Here we also follow the strategy of periodically
checking the condition ψ, but avoid the aforementioned cost in the following
way: rather than simply allowing event-triggered programs, we allow programs
of the form,

x′1 = t, . . . , x′n = t untilε ψ

where ε is a non-negative rational number. In words, we explicitly write the
period for checking the condition ψ in the specification rather than hiding it in
the evaluation engine of our tool. A program of this form then abbreviates the
while-loop,

while ¬ψ do { x′1 = t, . . . , x′n = t for ε }

which, as discussed before, Lince can precisely evaluate.

Remark 8. A limitation of our approach is that explicitly writing the period ε
for checking ψ might distract the programmer from what he or she wishes to
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Fig. 4. Position of the bouncing ball over time (plot on the left); zoomed in position
of the bouncing ball at the first bounce (plot on the right).

analyse. One interesting way of overcoming this issue is to study methods for
automatically calculating suitable values for ε.

Example 9 (Bouncing Ball). In order to illustrate our approach to event-
triggered programs, consider a bouncing ball dropped at a positive height p and
with no initial velocity v. Due to the gravitational acceleration g, it falls into
the ground and then bounces back up, losing part of its kinetic energy in the
process. This can be approximated by the following hybrid program.

(p′ = v, v′ = g until0.01 p ≤ 0 ∧ v ≤ 0) ; (v := v×−0.5)

where 0.5 is the dampening factor of the ball. We now want to drop the ball from
a specific height (e.g. 5 meters) and let it bounce until it stops. Abbreviating
the previous program into b, this behaviour can be approximated by,

p := 5 ; v := 0 ; while true do { b }

Figure 4 on the left presents the trajectory generated by the bouncing ball (cal-
culated by our tool Lince). Note that since ε = 0.01 the bouncing ball reaches
below ground, as shown in Figure 4 on the right.

Other examples of a event-triggered program can be seen in Lince’s website.

3 Architecture

Lince’s architecture is depicted in Figure 5; it uses an example of a bouncing
ball to illustrate user interactions. The dashed rectangles correspond to the two
main components of Lince: the one on the left parses and evaluates hybrid
programs according to the previously presented operational semantics (Core en-
gine); whilst the one on the right depicts the trajectories produced by hybrid
programs according to parameters specified by the user (Interactive output). In-
coming arrows in the figure denote an input relation and analogously outgoing
arrows denote an output relation. These components are further explained below.

User interaction. The user interacts with Lince at two different stages: (a)
when inputting a hybrid program for analysis and (b) when interacting with
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Parser
Interpreter

(Oper. semantics)
Plot

generator

Plot visualiser
(plotly.js)

Core engine Interactive output

Comp. algebra tools
(SageMath)

Symbolic Evaluator

Fig. 5. Depiction of Lince’s architecture

Lince’s output interfaces. The latter case consists of adjusting different param-
eters for observing the generated plots in an optimal way, and selecting a time
instant for precisely evaluating the program at hand. Plot parameters include
the time range of observation, visibility of variable’s trajectories, and options to
display additional information about the trajectory (more details below).

Core engine. Lince’s parser and interpreter were developed in Scala, an
object-oriented programming language with functional features [31]. We chose
Scala because (1) it is fully interoperable with Java and its many existing
libraries, (2) it has a functional core that facilitates code maintenance, and (3)
it can be directly translated into JavaScript using ScalaJS,6 which facilitates
the use of web technologies.

The interpreter implements the small-step operational semantics introduced
in Figure 3. A key feature of our implementation is that it extensively uses the
computer algebra tool SageMath [37]. This serves two purposes: (1) to solve
systems of differential equations present in hybrid programs; and (2) to correctly
evaluate if-then-else statements, as discussed before. Regarding the latter, recall
from the introduction that we cannot simply use Scala’s predicate functions
for evaluating Boolean conditions, because such functions tend to give wrong
results in the presence of real numbers (due to the finite precision problem).
Instead, Lince uses SageMath, and its ability to perform advanced symbolic
manipulation, to check whether a Boolean condition is true or not. This approach
prioritises the correct evaluation of trajectories over the tool’s performance.

Interactive output. Plots in Lince are generated by repeatedly asking the
interpreter to evaluate a given hybrid program at different time instants. These
evaluations are then fed to the plot generation tool, which generates a plot from
this data set. The plot generator actually provides more information than just
the values obtained from the interpreter: it also tells the boundary times of
differential constructs, and where in time conditional statements are evaluated
(together with their underlying Boolean condition)

Users can interact with the plot visualiser in different ways. They can (1)
adjust the time range for observation; (2) increase the data set obtained from the
interpreter (button “resample”), (3) toggle the highlighting of the termination
of differential constructs and the evaluation of conditional statements (button

6 https://www.scala-js.org

https://www.scala-js.org
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“show/hide jumps”), (4) and toggle the visibility of variable’s trajectories (by
clicking on the respective label). These features are handled by a JavaScript
library Plotly.js,7 which interacts with our plot generator.

4 Denotational Semantics and Adequacy

We now complement our operational semantics with a denotational semantics
by resorting to Moggi’s computational monads [28,29]. Specifically, we base on
a variant of the writer monad [40] to provide a denotational semantics to our
while-language. We start by briefly recalling the definition of a monad.

Definition 10 (Monad). A monad (T, η, (−)?) on a category C is an en-
domap T on |C|, together with a |C|-indexed class of morphisms ηX : X → TX
and a so-called Kleisli lifting sending each f : X → TY to f? : TX → TY and
obeying monad laws: η? = id, f?η = f , (f?g)? = f?g? (it follows from this
definition that T extends to a functor and η to a natural transformation).

We will mostly work in the category Set of sets and functions.

Definition 11 (Generalised Writer Monad). Given a monoid (M, ·, 1) in
a category C, a monoid module is a C-object E equipped with a morphism
• : M ×E → E that obeys the laws 1 • e = e and (m · n) • e = m • (n • e). Every
monoid-module pair (M,E) induces a monad, which we call the generalised
writer monad. Concretely, on Set, we obtain: T = M × (−) ∪ E, the unit is
defined as ηX(x) = (1, x) and Kleisli lifting is defined as follows:

f?(x) = (m · n, z) if f(x) = (m, y), f(y) = (n, z)

f?(x) = m • e if f(x) = (m, y), f(y) = e

f?(x) = e if f(x) = e

This yields a joint generalisation of the writer monad (E = ∅) and the exception
monad (M = 1).

Example 12 (Duration Monad [15]). By taking M = [0,∞) and E = [0,∞]
in Definition 11, we obtain what we call the duration monad. Intuitively, the
carrier TX = [0,∞)×X ∪ [0,∞] keeps track of durations of computations and
their terminal values if they terminate – if they do not terminate then there is
no terminal value and the respective duration is allowed to be infinite.

In order to give a semantics to while-loops we will also need the following notion.

Definition 13 (Elgot Monad). A monad (T, η, (−)?) on a category C with
coproducts is called Elgot if it is equipped with an iteration operator (−)† that
sends each morphism f : X → T (Y +X) to a specified morphism f† : X → TY
in such a way that certain coherence conditions are satisfied [2,16].

7 https://plot.ly/javascript/

https://plot.ly/javascript/


14 Sergey Goncharov, Renato Neves, and José Proença

Using general results [39], we will start by building a monad with a partially de-
fined iteration operator. Then we will quotient this monad suitably to obtain the
desired monad, and to which the partial iteration operator will transfer along the
quotient morphism. Intuitively, this quotiening procedure builds an extensional
semantics from an intensional one [1]: whilst the former monad distinguishes
programs such as wait 1 ; wait 1 and wait 2 (intensionality), the latter monad
regards them as equal (extensionality). In other words, the quotiented monad
abstracts from the possible ways a specific program can be built via sequential
composition. The strategy just described is inspired by [15], where an analogous
procedure was used for providing a duration semantics to a while-language.

Let us fix a set S, which we regard as a set of possible contents of a global
store. We will later instantiate S with the function space of environments X →
CTerm, but for the time being a specific choice of S is not relevant.

We introduce the following instance of the generalised writer monad in Set:

ĤX =
(∑

r∈[0,∞)
S[0,r)

)∗
×X ∪

(∑
r∈[0,∞)

S[0,r)
)ω

This involves sets S[0,r) of trajectories valued in S, in particular we identify
the empty function ! : [0, 0) → S as the empty trajectory. An element of ĤX is
thus either a finite sequence of trajectories followed by an element of X or an
infinite sequence of trajectories. The involved monoid is simply the free monoid
over M =

∑
r∈[0,∞) S

[0,r) and Mω is the corresponding monoid module under
concatenation with finite words.

Next, by 〈x1, . . . , xn〉 we will denote a finite list of elements x1, . . . , xn and
by 〈x1, . . . , xn, . . .〉, an infinite list of elements x1, . . . , xn, . . . By u ++ w we will
denote list concatenation (equal to u if u is infinite).

Definition 14 (Guardedness). A morphism f : X → Ĥ(Y +X) is guarded if
f(x) = (w, inr x′) implies that w is a non-empty list.

Proposition 15. For every guarded map f : X → Ĥ(Y +X), there is a unique
function f† : X → ĤY that satisfies the fixpoint equation f† = [η, f†]?f .

Proof. We use the fact that ĤX is isomorphic to the following final coalgebra:

νγ.
(
X +

∑
r∈[0,∞)

S[0,r) × γ
)

and that the monad structure on Ĥ is canonically induced by the final coalgebra
structure. In this form the desired statement is shown more generally in [39]. ut

Note that the map f : X → Ĥ(Y + X) sending x to (ε, inr x), where ε is the
empty word and inr : X → Y +X is the right injection, is not guarded. Hence,
the iteration operator of Ĥ is properly partial. By general results [39], Ĥ satisfies
the laws of iteration and is thus a guarded Elgot monad [22]. The next step is to



Lince: Lightweight Prototyping of Hybrid Programs 15

quotient the monad (Ĥ, η, (−)?) to enforce extensionality. To that end, we will
resort to the operation,Û :

∑
r∈[0,∞)

S[0,r) ×
∑

r∈[0,∞]
S[0,r) →

∑
r∈[0,∞]

S[0,r)

for concatenating trajectories: given f : [0, r)→ S and g : [0, s)→ S with finite r,
f Ûg : [0, r + s)→ S is defined as follows:

t 7→

{
f(t) if t < r

g(t− r) otherwise

We then define a “weak bisimulation” relation ≈ on ĤX generated by the
clauses,

(〈f1, . . . , fn〉, x) ≈ (〈g1, . . . , gm〉, x) (f1Û · · ·Ûfn = g1Û · · ·Ûgm)

〈f1, f2, . . . 〉 ≈ 〈g1, g2, . . . 〉 (f1Ûf2Û · · · = g1Ûg2Û . . . )
Let HX = ĤX/≈. This yields the following functor H : Set→ Set:

HX =
∑

r∈[0,∞)
S[0,r) ×X ∪

∑
r∈[0,∞]

S[0,r) (2)

together with a surjective natural transformation ρ : Ĥ → H. Consider the
map ! : [0, 0) → S, and for every function f : [0,∞) → S denote by f|A its
restriction to a domain A ⊆ [0,∞). We fix the following right-inverse of ρ:
υX(f, x) = (〈f〉, x), υX(f : [0, r)→ S) = 〈f, ! , ! , . . . 〉, and υX(f : [0,∞)→ S) =
〈f|[0,1), f|[1,2), . . . 〉. It is easy to see that υ is natural in X.

Theorem 16. H is a generalised writer monad with
(∑

r∈[0,∞) S
[0,r), ! ,Û) as

the monoid and
(∑

r∈[0,∞] S
[0,r),Û) as the corresponding monoid module. More-

over, ρ : Ĥ → H is a monad morphism.

Proof. The monoid and the monoid module laws are easy to check. The fact
that ρ is a monad morphism follows directly by case distinction. ut

We next use the retraction (ρ, υ) to transfer the guarded Elgot monad structure
from Ĥ to H as follows.

Lemma 17. The following statements hold.

1. For every f : X → HY , the map υf : X → ĤY is guarded.
2. For every guarded f : X → ĤY the equation ρf† = ρ(υρf)† holds.

Proof. The first clause is obvious by definition. Let us stick to the second one.
Let M =

∑
r∈[0,∞) S

[0,r), and note the following concrete description of f† : X →
M? × Y ∪Mω for a given guarded f† : X →M? × (Y +X) ∪Mω:

f†(x) = (w1 ++ . . . ++ wn, y) if f(x) = (w1, inr x1), . . . , f(xn) = (wn, inl y)

f†(x) = w1 ++ . . . ++ wn if f(x) = (w1, inr x1), . . . , f(xn) = wn

f†(x) = w1 ++ . . . if f(x) = (w1, inr x1), . . .
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Jx := tK(σ) = (! , σO[tσ/x])

Jx′ = u for dK(σ) = (λt ∈ [0, d). σO[φσ(t)/x], σO[φσ(d)/x])

Jp ; qK(σ) = JqK?(JpK(σ))

Jif b then p else qK(σ) = if bσ then JpK(σ) else JqK(σ)

Jwhile b do { p }K(σ) = (λσ. if bσ then (H inr)JpK(σ) else η(inlσ))†(σ)

Fig. 6. Denotational semantics.

In the first scenario, we unfold the fixpoint finitely many times and succeed; in
the second scenario, we unfold the fixpoint finitely many times and hit diver-
gence; in the third scenario, we unfold the fixpoint indefinitely. The guardedness
assumption is crucial for the last scenario, for otherwise we could potentially
have an infinite sequence of empty lists w1, w2, . . . from which we would not be
able to obtain an infinite list by concatenation.

Now, the effect of applying the quotienting morphism ρ to f†(x) amounts to
converting the lists of trajectories w1++ . . .++wn and w1++ . . . to single trajectories
via the Û and ! operators. Contrastingly, in ρ(υρf)†(x) we first flatten the lists
wi via Û and ! , then calculate the iteration and then apply Û and ! again. It is
thus clear that both ρf†(x) and ρ(υρf)†(x) produce the same result. ut

From Lemma 17 and [16, Theorem 20] we automatically obtain,

Theorem 18. (H, η, (−)?) is an Elgot monad with the Elgot iteration sending
f : X → H(Y +X) to ρ(υf)† : X → HY .

Lemma 17 ensures that ρ is an iteration congruence, which allows to transfer
iteration from Ĥ to H using [16, Theorem 20].

Now, let us fix S = CTermX (2) and proceed by defining the denotational
semantics of our while-language. Intuitively, a program p will be interpreted as
a map JpK : CTermX → H(CTermX ) that given an environment, providing values
for program variables, returns a trajectory valued on CTermX . This trajectory
is either successful i.e. an element of the set

∑
r∈[0,∞)(CTerm

X )[0,r) × CTermX ,
where the element on the right represents the last value of the trajectory, or
divergent i.e. an element of the set

∑
r∈[0,∞](CTerm

X )[0,r). The definition of JpK
is inductive over the structure of p and is given in Figure 6.

In order to establish soundness and adequacy between the small-step op-
erational semantics and the denotational one, we will use an auxiliary device.
Namely, we will introduce a big-step operational semantics that will serve as a
midpoint between the two previously introduced semantics. We will show that
the small-step semantics is equivalent to the big-step one and then establish
soundness and adequacy between the big-step semantics and the denotational
one. The desired result then follows by transitivity.
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The big-step rules are presented in Figure 7 and follow the same reasoning
than the small-step ones. Next, we need the following result to formally connect
these two styles of semantics.

(diff-stop⇓) t < d

x′ = t for d , σ , t ⇓ stop , σO[φσ(t)/x]

(diff-skip⇓)
x′ = t for d , σ , d ⇓ skip , σO[φσ(d)/x]

(asg⇓)
x := t , σ , 0 ⇓ skip , σO[tσ/x]

(seq-stop⇓) p , σ , t ⇓ stop , σ′

p ; q , σ , t ⇓ stop , σ′

(seq-skip⇓) p , σ , t ⇓ skip , σ′ q , σ′ , t′ ⇓ r , σ′′

p ; q , σ , t+ t′ ⇓ r , σ′′ (r ∈ {stop, skip})

(if-true⇓) bσ = > p , σ , t ⇓ r , σ′

if b then p else q , σ , t ⇓ r , σ′ (r ∈ {stop, skip})

(if-false⇓) bσ = ⊥ q , σ , t ⇓ r , σ′

if b then p else q , σ , t ⇓ r , σ′ (r ∈ {stop, skip})

(wh-false⇓) bσ = ⊥
while b do { p } , σ , 0 ⇓ skip , σ

(wh-true⇓) bσ = > p ; while b do { p } , σ , t ⇓ r , σ′

while b do { p } , σ , t ⇓ r , σ′ (r ∈ {stop, skip})

Fig. 7. Big-step Operational Semantics

Lemma 19. Given a program p, an environment σ and a time instant t,

1. if p , σ , t → p′ , σ′ , t′ and p′ , σ′ , t′ ⇓ skip , σ′′ then p , σ , t ⇓ skip , σ′′;
2. if p , σ , t → p′ , σ′ , t′ and p′ , σ′ , t′ ⇓ stop , σ′′ then p , σ , t ⇓ stop , σ′′.

Proof. The proofs follows by induction over the derivation of the small step
relation. ut

Theorem 20. The small-step semantics and the big-step semantics are related
as follows. Given a program p, an environment σ and a time instant t,

1. p , σ , t ⇓ skip , σ′ iff p , σ , t →? skip , σ′ , 0;
2. p , σ , t ⇓ stop , σ′ iff p , σ , t →? stop , σ′ , 0.
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Proof. The right-to-left direction is obtained by induction over the length of the
small-step reduction sequence using Lemma 19. The left-to-right direction follows
by induction over the proof of the big-step judgement using Proposition 7. ut

We now can connect the operational and the denotational semantics in the ex-
pected way.

Theorem 21 (Soundness and Adequacy). Given a program p, an environ-
ment σ and a time instant t,

1. p , σ , t →? skip , σ′ , 0 iff JpK(σ) = (h : [0, t)→ CTermX , σ′);
2. p , σ , t →? stop , σ′ , 0 iff either JpK(σ) = (h : [0, t′) → CTermX , σ′′) or

JpK(σ) = h : [0, t′)→ CTermX , and in either case with t′ > t and h(t) = σ′.

Here, “soundness” corresponds to the left-to-right directions of the equivalences
and “adequacy” to the right-to-left ones.

Proof. By Theorem 20, we equivalently replace the goal as follows:

1. p , σ , t ⇓ skip , σ′ iff JpK(σ) = (h : [0, t)→ CTermX , σ′);
2. p , σ , t ⇓ stop , σ′ iff either JpK(σ) = (h : [0, t′) → CTermX , σ′′) or JpK(σ) =
h : [0, t′)→ CTermX , and in either case with t′ > t and h(t) = σ′.

Then the “soundness” direction is obtained by induction over the derivation of
the rules in Fig. 7. The “adequacy” direction follows by structural induction over
p; for while-loops, we call on the fixpoint law [η, f†]?f = f† of Elgot monads. ut

5 Conclusions and future work

We introduced a small-step operational semantics for interpreting hybrid pro-
grams and provided a denotational counterpart via the notion of Elgot monad.
The two semantics were linked by a soundness and adequacy theorem. We regard
these results as a firm stepping stone for developing tools and techniques for hy-
brid systems engineering. We illustrated our results with the implementation of
an interpreter—Lince—and showed its potential for detecting design errors in
hybrid programs at an early development phase.

The development of Lince and its theoretical foundations open up research
lines that we intend to explore in the near future, including the ones below.

Calculi and program equivalence . Our denotational semantics entails a natu-
ral notion of program equivalence (denotational equivalence) which inherently in-
cludes classical laws of iteration and a powerful uniformity principle [36], thanks
to the use of Elgot monads. We intend to further explore the equational theory
of our language so that we can safely refactor/simplify hybrid programs under
consideration. Such a theory should include equations like,

(x := 1 ; x := 2) = x := 2, and (wait 1 ; wait 2) = wait 3
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thus encompassing not only the usual laws of imperative programming but also
axiomatic principles behind the notion of time.

New program constructs. Our while-language is intended to be as simple as
possible whilst harbouring the core, uncontroversial features of hybrid program-
ming. This was decided so that we could use the language as both a theoretical
and practical basis for advancing hybrid programming. A particular case that
we wish to explore, with this language and its semantics as basis, is the intro-
duction of new program constructs, including e.g. the non-deterministic choice
p + q or exception operations raise(exc). Denotationally, this corresponds to
combining the presented monad H with other monads representing the desired
features [26,27].

Robustness. One important aspect of hybrid programming is that programs
should be robust : i.e. small variations in their input should not result in big
changes in their output [35,23,12]. We wish to extend Lince with features for
automatically detecting non-robust programs. A main source of non-robustness
are conditional statements if b then p else q, for which small variations of σ
can change the validity of bσ and consequently can cause a switch between
execution branches. Currently, we are working on the systematic detection of
such conditional statements in hybrid programs, by taking advantage of the
notion of δ-perturbation [20]. The reader can already check a preliminary version
of this feature in Lince (window “Perturbations up-to”).
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