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Abstract 

In this paper, we consider the use of a team of multiple unmanned aerial vehicles (UAVs) to accomplish a search 
and rescue (SAR) mission in the minimum time possible while saving the maximum number of people. A novel 
technique for the SAR problem is proposed and referred to as the layered search and rescue (LSAR) algorithm. 
The novelty of LSAR involves simulating real disasters to distribute SAR tasks among UAVs. The performance of 
LSAR is compared, in terms of percentage of rescued survivors and rescue and execution times, with the max-
sum, auction-based, and locust-inspired approaches for multi UAV task allocation (LIAM) and opportunistic task 
allocation (OTA) schemes. The simulation results show that UAVs running the LSAR algorithm on average rescue 
approximately 74% of the survivors, which is 8% higher than next best algorithm (LIAM). Moreover, this percentage 
increases with the number of UAVs, almost linearly with the least slope, which means more scalability and 
coverage is obtained in comparison to other algorithms. In addition, the empirical cumulative distribution function 
of LSAR results shows that the percentages of rescued survivors clustered around the [78%-100%] range under 
an exponential curve, meaning most results are above 50%. In comparison, all other algorithms have almost equal 
distributions of their percentage of rescued survivor results. Furthermore, because the LSAR algorithm focuses on 
the center of the disaster, it finds more survivors and rescues them faster than the other algorithms, with an 
average of 55%~77%. Moreover, most registered times to rescue survivors by LSAR are bounded by a time of 
04:50:02 with 95% confidence for a one-month mission time. 

 



2169-3536 (c) 2018 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See

http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2019.2912306, IEEE Access

Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier 10.1109/ACCESS.2017.DOI

LSAR: Multi-UAV Collaboration for

Search and Rescue Missions

EBTEHAL TURKI ALOTAIBI1, SHAHAD SALEH ALQEFARI2, AND ANIS KOUBAA.3,4

1
Computer Science Department, Al-Imam Mohammad Ibn Saud Islamic University, Riyadh, Saudi Arabia (e-mail: e.t.otaibi@gmail.com,

etalotaibi@imamu.edu.sa)
2
Computer Science Department, Al-Imam Mohammad Ibn Saud Islamic University, Riyadh, Saudi Arabia (e-mail: ssalqefari@imamu.edu.sa)

3
Prince Sultan University, Saudi Arabia (e-mail: akoubaa@psu.edu.sa)

4
CISTER Research Center, Portugal

Corresponding author: Ebtehal Turki Alotaibi (e-mail: etalotaibi@imamu.edu.sa).

This work is supported by the Robotics and Internet of Things Lab at Prince Sultan University

ABSTRACT In this paper, we consider the use of a team of multiple unmanned aerial vehicles (UAVs) to

accomplish a search and rescue (SAR) mission in the minimum time possible while saving the maximum

number of people. A novel technique for the SAR problem is proposed and referred to as the layered search

and rescue (LSAR) algorithm. The novelty of LSAR involves simulating real disasters to distribute SAR

tasks among UAVs. The performance of LSAR is compared, in terms of percentage of rescued survivors

and rescue and execution times, with the max-sum, auction-based, and locust-inspired approaches for multi

UAV task allocation (LIAM) and opportunistic task allocation (OTA) schemes. The simulation results show

that UAVs running the LSAR algorithm on average rescue approximately 74% of the survivors, which is

8% higher than next best algorithm (LIAM). Moreover, this percentage increases with the number of UAVs,

almost linearly with the least slope, which means more scalability and coverage is obtained in comparison

to other algorithms. In addition, the empirical cumulative distribution function of LSAR results shows that

the percentages of rescued survivors clustered around the [78%-100%] range under an exponential curve,

meaning most results are above 50%. In comparison, all other algorithms have almost equal distributions

of their percentage of rescued survivor results. Furthermore, because the LSAR algorithm focuses on the

center of the disaster, it finds more survivors and rescues them faster than the other algorithms, with an

average of 55%∼77%. Moreover, most registered times to rescue survivors by LSAR are bounded by a time

of 04:50:02 with 95% confidence for a one-month mission time.

INDEX TERMS Autonomous Agents, Drones, Search and Rescue, Unmanned Aerial Vehicles.

I. INTRODUCTION

R
ECENTLY, unmanned aerial vehicles (UAVs), known

as drones, have been shown to be quite effective in sev-

eral applications such as smart agriculture [1], surveillance

[2], [3], survey and mapping [4], delivery [5], and search and

rescue (SAR) [5]–[8] (Figure 1).

In this paper, we focus on the SAR problem by employing

a team of multiple UAVs. In natural disasters (such as earth-

quakes, floods, and fires), it becomes crucially important to

retrieve survivors in the minimum amount of time possible.

Using UAVs with multi-model sensors (such as high quality

cameras and gas detectors) helps to reduce the search time,

because UAVs can provide aerial images that allow people

needing assistance to be identified in an unprecedented and

efficient manner.

The control of UAVs can be accomplished manually by

FIGURE 1: UAVs’ Real Life Applications

an expert pilot. However, this approach may not achieve

the highest efficiency, as the coordination between pilots
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during a disaster is not straightforward, considering such

environments are subject to dynamic critical events.

A more efficient approach is to deploy a team of au-

tonomous UAVs that coordinate between each other to ac-

complish SAR tasks in the minimum amount of time while

saving the maximum number of survivors. This problem is

rather challenging and is mapped to the multi-robot task allo-

cation (MRTA) problem [9], known as an NP-hard problem

[10], [11], [12]. As the robots employed in this case are UAV

robots, Kurdi et al. in [12] refer to this problem as multi-

UAV task allocation (MUTA). The SAR application MUTA

consists of finding an unknown number of survivors in a

planar search area. It should be noted that the location of

the survivors is also not known in advance. Further, because

the robots are flying, this complicates MUTA compared to

regular MRTA; hence, a highly dynamic search in different

dimensions is required. Due to such complexity, several

heuristic-based approaches have been proposed.

Max-sum [13]–[16] is a centralized optimization approach

applied to several UAV applications, including MUTA in

SAR applications [15]. Max-sum uses message passing that

can be configured to work in an approximate mode. The

main drawback of max-sum algorithms is the need to re-

plan the whole assignment for each time period to optimize

the assignment. Thus, it may not be effective for real-time

applications with high dynamicity; in addition, it may not

scale well with a large number of UAVs due to the increase

in communication overheads.

On the other hand, auction-based approaches are decen-

tralized and are based on a bidding-auctioning process [17]–

[24]. The key point is to apply an auctioneer to announce

tasks for bids, and a robot with the best bid will win the

task. In the context of the multi-UAV SAR problem, the

auction-based approach assigns the most suitable UAV to

a survivor according to the bidding value calculated as the

distance between a UAV and a survivor. However, the bidding

negotiation overhead consumes more time and computational

resources compared to other approaches [25], [26].

The opportunistic task allocation (OTA) strategy was pro-

posed in [27]. In OTA, a UAV selects a random block in

the search area that has not yet been explored. If a survivor

is found, the UAV will rescue them immediately. OTA is

based on a random search strategy, which may produce good

results; however, there is no guarantee that this will occur.

The fourth closely related algorithm is the locust-inspired

approach (LIAM) [12], [27], [28], which is a problem-

dependent heuristic, tailored to the task allocation problem

in multi-UAV SAR missions. In LIAM, the UAVs switch

between three operational modes according to the mission

time. In each mode, the UAV flies with a different speed and

different battery consumption rates. LIAM is a decentralized

approach that requires heavy communication between indi-

vidual UAVs, which mostly have limited computational and

energy capabilities. In addition, LIAM considers all search

regions equally without prioritizing particular regions.

In natural disasters, there is a center in which most of the

survivors are located, which is a key factor in this work.

Therefore, SAR missions should be planned in a way that

focuses more on the center itself, with decreasing importance

given with increasing distance from this location (Figure 2).

We refer to this as the layered SAR (LSAR) algorithm.

FIGURE 2: Disasters’ Forms

In addition, with the emergence of cloud robotics and

the possible connectivity of drones over the Internet [29]–

[32], the LSAR algorithm is centralized in the sense that it

assumes that UAVs communicate with a cloud server that

coordinates the SAR missions among them. This assumption

is realistic, as a cloud-based management system for the

Internet of Drones (Dronemap) has already been developed

and implemented in [29].

This paper is organized as follows: after this brief intro-

duction, the details of closely related work are described in

Section II. The LSAR algorithm is discussed in Section III,

followed by a theoretical comparison of candidate algorithms

in Section IV. The experimental results and discussions on

different performance measurements are contained in Section

V. Finally, the concluding remarks and future works are

presented in Section VI.

II. LITERATURE REVIEW

There are four types of SAR problem, according to their

application: maritime, combat, urban, and wilderness [33].

Maritime SAR refers to incidents where people are lost

at sea. In [34], Lee et al., provided a mixed integer linear

program for application to maritime SAR problems. In such

problems, the probability of locating survivors changes due

to wind and currents. They summarized maritime SAR chal-

lenges as follows:

• limited fuel capacity of commercial UAVs,

• uncertainty and dynamicity of survivor locations,

• autonomous control of fuel service stations.

Their mixed integer linear program (MILP) model addressed

these three challenges and worked efficiently on different

numerical examples. Ghazali et al. [33], employed UAVs

with rotary wings for maritime SAR operations, hovering

around disaster areas to locate survivor locations. Moreover,

the authors provided an algorithm for this purpose whereby

photographs were taken of areas that may contain survivors,

2 VOLUME 4, 2016
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then the photographs were divided into four quarters, and

process was repeated until a survivor was found.

Authors in [35] addressed the maritime SAR problem us-

ing cognitive and automated UAVs. They applied cooperative

game theory to enable cognitive multi-UAVs, and tried to

achieve their goal based on UAVs with on-board computers

and with pre-knowledge of victims last seen locations. These

two factors were obviously the main weakness of this work

for the following reasons: First, UAVs have limited capacity

for an onboard computer, and second, the paper violated the

main constraints of an SAR problem-having unknown victim

locations. They assumed the last location of survivors would

be known.

When there is a disaster, such as an earthquake or terrorist

attack, human teams start looking for survivors manually

using dogs, which is termed urban SAR (USAR). More

recently, human teams have begun to use robots, because

they can perform more successfully than humans in such

situations. Mainly, this is because they are able to squeeze

into spaces too small for people and reach very dangerous

areas. The attack on the World Trade Center (September 11)

provided an unfortunate opportunity to analyze data collected

during human-robot interactions [36]. This study reported on

most of aspects related to USAR missions and human-robot

interactions. Therefore, it provided a set of recommendations

in the form of more research studies, a call for organization,

construction of models for robot states, and statements and

feedback on received observations.

In [37], the paper presented autonomous USAR robots

from the perspective of achievements in research and tech-

nical aspects. The proposed solution attempted to handle two

aspects of the SAR problem: First, for survivor search and

detection, the system needs to be as close as possible to the

survivors so they can be detected, even if the sensor only

covers a very small portion of survivor′s body. This will lead

to difficulties in detecting most survivor locations. Second,

for navigation towards goal poses, they rely on the fact that

the robot can only observe the position of the survivor when

they are directly in front, which requires the robot to turn

around each side for detection.

In [38], the authors developed different algorithms that

deployed multiple cooperative MAVs for SAR missions after

disasters. Their solution included real-time image stitching,

indoor navigation, digit-detection, and vision-based pose es-

timation. The implemented method has two phases: First,

aerial photography and map stitching are used by MAVs to

explore the search area. Second, MAVs search and identify

each house and its street in the city. However, this proposed

solution is not fully autonomous, because initially (before

MAVs start the rescue mission) the human operator must

manually use the stitched map to identify routes with no

obstacles for MAVs to enter the city. Further, in the second

phase, the operator also needs to manually identify the num-

ber of victims in each house, based on the received feedback

from the MAVs built-in camera.

Wilderness SAR (WiSAR) is the search process for people

who are lost (or in distress) in the wilderness. Because the

rescue team may also be infected when they reach the disaster

area, medical UAV helicopters may help in wilderness SAR

operations by reaching distant disaster areas quickly and

safely, by providing urgent medical care, and by transferring

injured patients as quickly as possible. The actual rescue can

be carried out either by landing the helicopter on uncontrolled

terrain, or by evacuating the patient and delivering them to

the helicopter staff at the nearest safe landing area. Moreover,

UAVs can offer detailed information about the area, which

can help in future explorations [39]. In [40], the authors

developed a camera-based position-detection system for SAR

operations and integrated these into UAV plans. This system

has been proven to identify real-time targets and post-targets,

and to collect photographs of disaster areas for subsequent

applications.

In [41], the WiSAR problem was handled using UAVs,

which protect human life from risks during work in complex

and unsafe environments. They presented human body detec-

tion and tracking algorithm, by using an onboard sensor on

the UAV that can capture color and depth data. The paper

validated the system with real and simulated environments,

and proved its ability to detect multiple survivors.

The authors of [42] discussed SAR problems after an

earthquake, and what kind of multi-robot coverage algo-

rithms could handle the problem. The authors surveyed and

compared the performance of a set of real time multicopter

algorithms, which developed autonomous multi-drone strate-

gies for SAR after earthquakes. The paper classified algo-

rithms based on consumed energy and the time required for

accomplishing the mission. The paper presented different

coverage algorithms: Edge Counting [43], Node Count [44],

Learning RealTime A* (LRTA*) [45], and PatrolGRAPH

[46]. All of these can be used during search missions to cover

the disaster area. Their experimental results demonstrated

that the Node Count algorithm is the most efficient solution

in multi-robot searches. For example, LRTA* suffers from

drawbacks due to the increased complexity of the heuristics

implemented to choose the next vertex to be visited. Further,

Edge Counting and PatrolGRAPH* are less efficient, both in

single- and multi-robot cases.

Combat SAR is an operation carried out during war. In

[47], the authors presented an auction-based approach and a

novel prediction approach to address the SAR problem for

dynamic allocation. The auction-based algorithm assigned

tasks for each robot by using techniques for determining

winner tasks. Further, when the robot was inoperative, the

prediction approach only has to allocate a task for the idle

robot to perform. They measured the completion time and

the required steps, indicating the level of consumed energy.

The drawback of this approach is that they assumed to have

previous knowledge of possible tasks and the initial locations

of survivors; hence, the robots would only search these areas.

However, this is opposed to the main condition in SAR-

survivor locations are unknown.

VOLUME 4, 2016 3



2169-3536 (c) 2018 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See

http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2019.2912306, IEEE Access

III. THE LSAR ALGORITHM

The key idea of the LSAR algorithm is that in natural disas-

ters there is a center where most of the survivors are located.

Assuming that these centers can be detected [48]–[50], the

SAR mission should be planned in a way that focuses more

attention on the center, and gradually less attention with

increasing distance from the center [51].

The LSAR algorithm is proposed as a centralized algo-

rithm based on using a Cloud server for the Internet-based

drone mission Controller. Accordingly, dronemap planner

cloud (Cloud Server) is a possible structure that can be used

for this task [29]–[32], which can control UAVs through

the Internet (Figure 3). The limited capabilities of UAVs

(such as battery power, processing unit, and memory) makes

offloading all computation from UAVs (and transferring them

to the cloud server) beneficial for improving the overall

performance. The dronemap planner cloud controls UAVs

through the cloud, can schedule their mission, and manage

communications between UAVs remotely. Further, dronemap

planner cloud supports the MAVLink protocol that manages

communication between the dronemap planner cloud, the

user, and the UAVs. This protocol is supported by most

commercial UAVs.

A. SYSTEM MODEL

The system architecture is presented in Figure 3.

FIGURE 3: System Architecture

We consider a team of drones connected through a cloud

server and collaborating to accomplish an SAR mission.

Dronemap planner [29]–[32] is a cloud-based management

system that was recently proposed, and can be used to ensure

communication and collaboration between a team of drones.

The proposed LSAR algorithm is a centralized approach.

The cloud server receives information on the disaster center

[48]–[50], as an emergency call from the area that has a

number of survivors in unknown locations (Figure 4 (a)).

In addition, the cloud server running the LSAR algorithm

divides the disaster area into a set of incremental, numbered,

square shaped layers L (Figure 4 (b)). Layer number x has

a survivor list denoted as Lx[SurvivorList], which

records the locations of found survivors as pair of latitude and

longitude co-ordinates in that layer during a search mission.

These layer lists are located and updated on the cloud server.

Moreover, the cloud server running the LSAR algorithm

employs a set of UAV aircraft (denoted as P) to search for

missing survivors and rescue them. Therefore, each UAV

aircraft running the LSAR algorithm can switch between two

(a) (b)

FIGURE 4: Partitioning to Layers

(a) (b)

FIGURE 5: UAVs Planes Assignment

different modes: searcher and rescuer. As shown in Figure 5

(a), generally the cloud server only assigns one UAV for each

layer. However, there are some cases where the cloud server

assigns multiple UAVs to one layer (Figure 5 (b)).

B. ALGORITHMS

The LSAR system has two phases: (i.) the environment

partitioning phase, which is a pre-process that samples the

disaster area, and (ii.), the SAR phase, which is the SAR

process coordinated by the cloud server.

1) Partitioning Algorithm

Given the disaster area specified by its coordinates in Figure

6 (a), in addition to the center of the disaster specified by its

latitude and longitude coordinates, the cloud server running

the LSAR algorithm divides the disaster area into a set of

incremental, numbered, square shape layers L. Initially, the

cloud server unifies a standard unit for a region; the smallest

location unit specified by its coordinates. For example, these

regions sizes could be 1 m, 1 km, or 1 ft. (Algorithm.1:

line.1). Then, the cloud server determines how many regions

are contained in the disaster area (Algorithm.1: line.2, Figure

6 (b)), According to this information, a disaster matrix is

created whereby the real environment is sampled as a set of

regions (Algorithm.1: line.5).

The layer thickness describes how thick a layer will be in

terms of the number of adjacent regions. Because the layers

have an incremental square shape, each layer should have

two rows (upper and lower rows) and two columns (right

and left columns). Hence, the cloud server calculates the

thickness of layers according to the width/2 or height/2 and

4 VOLUME 4, 2016
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(a) (b)

(c) (d)

FIGURE 6: Partitioning Disaster’s area

the number of available UAV aircraft (Algorithm.1: line.6). In

Figure 6, the height and width are 12 units and it is assumed

that the system has 7 UAV aircraft; hence, the thickness is

⌈(12/2)/7⌉ = one unit, as shown in Figure 6 (c). Moreover,

number of layers is also calculated according to the number

of UAV aircraft (Algorithm.1: line.7-8). In this case, number

of layers is 6 and the cloud server will subsequently assign

many UAV aircraft to one layer (Figure 5 (b)).

However, if the system has a limited number of UAV

aircraft (such as 3), compared to the minimum thickness in

Algorithm.1: line.7, the thickness of a layer is ⌈(12/2)/3⌉=
two units, as shown in Figure 6 (d). Further, the number of

layers is equal to the number of UAV aircraft. The cloud

server will subsequently assign one UAV aircraft to each

layer, as shown in Figure 5 (a).

Once the environment is sampled as a matrix of regions,

the cloud server fills each layer list with the region indexes

with which it is assigned. For example, Algorithm.1 line.17

fills the matrix with regions in the upper border of a layer,

line.18 fills it regions in the right border, line.19 fills it with

regions in the left border, and line.20 fills the layer with

regions in the lower border of a layer. This process repeats

many times equal to the calculated thickness (Algorithm.1:

line.23). Subsequently, the algorithm moves to fill the next

layer (Algorithm.1: lines.24-26). Therefore, the output is a

list of layers, and each one records a set of region coordinates

to which it is assigned.

2) LSAR Algorithm

Given the disaster area and center coordinates, the cloud

server calls the partitioning algorithm to create set of layers

(Algorithm1: line.1). According to this strategy, survivors

closer to the center have a higher rescue priority than sur-

vivors in the outer layers, because most of them are located

closer to the disaster center. Moreover, the cloud server

defines a special way to distribute the aircraft over layers

Algorithm 1: Partitioning

Input : The disaster area is described by its latitude and

longitudes (x11, y11) (x12, y12) (x21, y21)

(x22, y22), disaster’s center latitude and

longitude (xc.yc)

Output: Set of layers L
1 region← 1 x 1 unit

2 regions← area / region

3 width← number of adjacent regions horizontally

4 height← number of adjacent regions vertically

5 Matrix[width][height]← regions

6 Layer thickness←
⌈

(width/2)/|P |
⌉

7 if |P | > width / 2 then

8 layer number← width/2

9 else

10 layer number← |P|
11 end

12 t← 0
13 x← 0
14 while x < layer number do

15 for i← 0, height do

16 for j ← i, width− i do

17 Lx ←Matrix[i][j]
18 Lx ←Matrix[j][i]
19 Lx ←Matrix[j][width− i]
20 Lx ←Matrix[width− i][j]
21 end

22 end

23 t← t+ 1
24 if t = thickness then

25 x← x+ 1
26 t← 0
27 end

28 end

to reflect the LSAR argument (Algorithm.1: line.2-9). Here,

assuming the number of aircraft |P | equals the number of

layers, it sets every UAV aircraft as a searcher and assigns it

to each layer in a one-to-one manner (e.g. it assigns plane x

to layer x). This starts from layer number zero (center layer)

towards the outer layers. When the number of aircraft |P |
is larger than the number of defined layers |L| the cloud

server reassigns the remaining aircraft to layers (starting with

layer number zero) towards the outer layers, until they are

assigned completely. In this way, any extra UAV planes are

assigned to layers with higher probability to locate survivors.

According to the UAV aircraft distribution in Figure 5 (a)

and (b), the LSAR algorithm has two executions (a and b)

described below.

a: One UAV plane for each layer

When there is a small number of UAV aircraft, the LSAR

algorithm assigns only one for each layer, as shown in Figure

5 (a). Initially, the UAV aircraft executes its searcher mode;

VOLUME 4, 2016 5
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(a) (b) (c)

(d) (e)

FIGURE 7: LSAR Execution: One UAV Plane for Each

Layer

it searches for survivors in its assigned layer (Algorithm.3:

line.3). If a survivor is found, the searcher UAV aircraft adds

its location (defined by its latitude and longitude) to survivor

list Lx[SurvivorList] of layer number x (Algorithm.3:

line.4-5). At the same time, the searcher UAV aircraft

checks the survivors list Lx[SurvivorList] periodically

whether or not it reaches a predefined threshold. If so, the

searcher UAV aircraft sends a helping call to the cloud server

(Algorithm.3: line.7-8). Then, the server makes an inward

shift starting from the caller layer, because the probability

of locating survivors on the inner layers higher than in outer

layers, i.e., the second layer shown in Figure 7 (b) sends a

helping call. The server interrupts UAV aircraft missions and

makes an inward shift starting from the third layer and outer

layers, one step toward layer two. The searcher UAV aircraft

that was in layer three becomes a rescuer UAV aircraft in

layer two (Algorithm.2: line.13-14), while all other shifted

UAV aircraft continue as searchers in their new hosting layers

(Figure 7 (c), (Algorithm.2: line.15-17). The rescuer UAV

aircraft then starts rescuing all survivors, according to their

locations recorded in L2[SurvivorList] (Algorithm.3:

line 11-12). Then, the rescuer UAV aircraft sends a notifi-

cation call to the server reporting that the rescue mission

is complete (Algorithm.3: Line.13-14). When the server

receives a notification call coming from layer two (Algo-

rithm.2: line.23), it recovers the rescuer UAV aircraft mode in

layer two to the searcher mode (Figure 7 (c) and Algorithm.2:

line.24). Then, it moves all UAV aircraft (starting from layer

two) to their original layer to continue their interrupted search

mission (Figure 7 (d-e)). Note that the interrupted missions

could be recovered using the list of survivors attached to each

layer; Lx[SurvivorList] (Algorithm.2: line.26-28).

b: Multiple UAV planes for each layer

When there is a large number of UAV aircraft, the LSAR

algorithm assigns many for each layer, as shown in Figure

(a) (b) (c)

FIGURE 8: LSAR execution: Multiple UAV Planes

8 (a). The UAV aircraft initially work in the same way

described earlier, and a different interaction only happens

when the cloud server receives a helping call. In this case,

the server changes one of the UAV aircraft from searcher to

rescuer, i.e., the second layer shown in Figure 8 (b) sends

a helping call. The server interrupts a searcher UAV aircraft

mission in that layer; hence, a searcher UAV aircraft becomes

a rescuer in the same layer (Algorithm 2: lines.19-20). The

rescuer UAV aircraft then starts rescuing all survivors ac-

cording to their locations recorded in L2[SurvivorList]

(Algorithm.3: lines.11-12). When the rescuer UAV aircraft

sends a notification call to the server reporting that the rescue

mission is complete, and the server receives a notification call

coming from layer two, it recovers the rescuer UAV aircraft

mode in layer two to the searcher mode (Figure 8 (c) and

Algorithm.2: line.24). When the layer has been fully explored

and all survivors on this layer have been rescued, the cloud

server reassigns the UAV aircraft of that layer to the outer

layer (Algorithm.2: line.17-19). The interaction between the

cloud server and UAV aircraft is summarized in the sequence

diagram shown in Figure 9.

FIGURE 9: The LSAR Sequence Diagram

IV. THEORETICAL COMPARISON OF CANDIDATE

ALGORITHMS

The research problem addressed in this paper is to find an

efficient optimization algorithm for the SAR problem. In this

section, we theoretically compare the LSAR algorithm with

other candidate algorithms by considering the differences

between their techniques. Table I presents the main charac-
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Algorithm 2: Cloud Server

Input : Planes set P,disaster area described by its

latitudes and longitudes (x11, y11) (x12, y12)

(x21, y21) (x22, y22), disaster’s center latitude

and longitude (xc.yc)

Output: Online schedule

1 Layers set (L)← Partitioning Algorithm (x11, y11),(x12,

y12),(x21, y21),(x22, y22),(xc.yc)

2 for i← 0,|P | and x← 0,|L| do

3 Pi[type] = SEARCHER
4 if i > |L| then

5 t=i mod |L| Assign Pi to layer Lt

6 else

7 Assign Pi to layer Lx

8 end

9 end

10 if call(x) is received then

11 if call[type] is helpCall at layer Lx then

12 if |P | at layer Lx = 1 then

13 Px+1 [type] = RESCUER
14 Assign Px+1 to layer Lx

15 for i← x+ 1,|P | do

16 Pi[type] = SEARCHER
17 Assign Pi to layer Li−1

18 end

19 else

20 Px [type] = RESCUER
21 end

22 end

23 if call[type] is notificationCall at layer Lx then

24 Px+1 [type] = SEARCHER
25 if |P | at layer Lx = 1 then

26 for i← x,|P | do

27 Pi[type] = SEARCHER
28 Assign Pi to layer Li+1

29 end

30 end

31 end

32 end

teristics affecting the performance of LSAR, LIAM, auction-

based, and OTA algorithms.

The theoretical comparison between the LSAR and other

algorithms involves to test a hypothesis which may be proven

or contradicted by the empirical results.

The differences (D1, D4, D7, and D9 in the table) should

be reflected by the increased number of rescued survivors by

LSAR compared with the number of survivors rescued by

LIAM, auction-based, Max-sum and OTA algorithms. This

is because UAV aircraft in the LSAR algorithm search for

survivors in the area where there is a higher probability of

locating them. In terms of battery consumption, the differ-

ence (D2) may reduce the time needed to rescue a survivor

by the LIAM algorithm more than the LSAR algorithm. In

Algorithm 3: Plane

Input : Assigned Layer Lx

Output: Online search and rescue missions

1 while time ≤ mission time do

2 if Pi[type] is SEARCHER for layer Lx then

3 Search for a survivor in the layer Lx

4 if a survivor s is found then

5 Lx[SurvivorList]← s
6 end

7 if |Lx[SurvivorList] | ≥ survivorThreshold then

8 Call (helpCall, cloud server, x)

9 end

10 end

11 if Px[type] is RESCUER for layer Ly then

12 Rescue all survivors ∈ Ly[SurvivorList]

13 if Ly[SurvivorList] = Φ then

14 Call (notificationCall, cloud server, y)

15 end

16 end

17 if Ly is fully explored ∧ Ly is not last layer then

18 Assign Py to layer Ly + 1
19 end

20 end

addition, according to the differences (D3, D6, and D11), the

centralized LSAR is expected to produce better coverage than

the decentralized LIAM, auction-based, and OTA algorithms.

However, it requires more coordination time.

The auction-based algorithm is similar to the LSAR, ac-

cording to similarity (S1). However, the difference in the

responding technique described in difference (D5) concludes

that the bidding negotiation in the auction-based algorithm

may consume more time than the LSAR algorithm. This

may contradict the results concluded earlier based on (D6).

Hence, the empirical results will decide whether the coordi-

nation in the centralized approach consumes more time than

the negotiation in the decentralized approaches. Difference

(D8) assumes that max-sum produces an optimal assignment,

which should improve the overall performance metrics. How-

ever, due to their computation overhead, such algorithms may

be unsuitable for dynamic SAR environments; these may

produce lower throughput and higher rescue times.

The random SAR strategy in the OTA algorithm may

achieve some good results; however, this is not guaranteed.

The searcher UAV aircraft in areas around the center of

disasters should continue their roles and other rescuer UAV

aircraft should help to balance the two missions, to benefit the

greatest number of survivors. Hence, according to difference

(D10), the LSAR may produce better throughput, time, and

coverage than the OTA algorithm when the center of the

disaster is detected.

V. EXPERIMENTAL EVALUATION

VOLUME 4, 2016 7
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TABLE 1: Theoretical comparison between LIAM and

benchmark algorithms.

LIAM algorithm

Difference (D1)

The LIAM divides the searching area into
equal priority regions while LSAR divides it
into varying priority regions.

Difference (D2)

LIAM UAV aircraft switch between three
modes according to the mission time. In each
mode, the UAV aircraft fly with different
speeds and different battery consumptions.
The LSAR does not deploy any battery con-
sumption strategies.

Difference (D3)
The LIAM is decentralized but LSAR is a
centralized algorithm.

Auction-based algorithm

Difference (D4)

The auction-based divides the searching area
into equal priority regions, while LSAR di-
vides it into varying priority regions. Sim-
ilarity (S1) They divide the SAR missions
into two different types and create a deci-
sion between them. Every UAV aircraft is a
searcher at the beginning.

Difference (D5)

When a survivor is found by a searcher UAV
aircraft running auction-based algorithm, it
should send the survivor’s location to each
plane, they calculate the bidding value and
send it back to the searcher plane who will
take a decision to assign the survivor to
the winner plane. Under the same situation,
an LSAR searcher UAV aircraft will send
a helping message to the central operator.
The operator will then take a direct decision
in the form of shifting-in all UAV aircraft.
Auction-based is decentralized, but LSAR is
a centralized algorithm.

Difference (D6)

The auction-based divides the searching area
into equal priority regions while LSAR di-
vides it into varying priority regions. Sim-
ilarity (S1) They divide SAR missions into
two different types and create a decision be-
tween them. Every UAV aircraft is a searcher
at the beginning.

Max-sum algorithm

Difference (D7)

The max-sum algorithm divides the search-
ing area into equal priority regions while
LSAR divides it into varying priority re-
gions.

Difference (D8)

The max-sum searches for the optimal as-
signment while LSAR does not. The max-
sum re-plans the assignment for each period
to optimize the assignment while LSAR does
not re-plan the assignment.

OTA

Difference (D9)

The OTA algorithm divides the searching
area into equal priority regions, while the
LSAR divides it into varying priority re-
gions. OTA regions have the same probabil-
ity of having SAR UAV searcher and res-
cuer aircraft. However, LSAR regions have
a different probability of having SAR UAV
searcher and rescuer aircraft nearer to the
center.

Difference (D10)

The OTA algorithm divides the searching
area into equal priority regions, while LSAR
divides it into varying priority regions. OTA
regions have the same probability of having
UAV searcher and rescuer aircraft. However,
LSAR regions have different probabilities
of having UAV searcher and rescuer aircraft
nearer to the center.

Difference (D11)
The OTA is decentralized, but LSAR is a
centralized algorithm.

A. SIMULATION MODEL

We used the MASPlanes++ [52] simulator to conduct an

extensive comparative simulation study among the LSAR

approach and the other candidate algorithms. MASPlanes++

is a simulation environment geared towards testing the dy-

namic coordination and task allocation methods in SAR

problems. MASPlanes++ implements four well-established

benchmark algorithms: theLIAM, auction-based, max-sum,

and OTA schemes. Three main performance measurements

are evaluated, as follows:

1) Scalability: We evaluate the impact of increasing the

number of UAV aircraft.

2) Sustainability: We aim to evaluate how the algorithms

perform in more complicated environments.

3) Responsiveness: We evaluate the time taken to rescue

all the survivors.

The parameters used to control each scenario are listed in

Table II. The total number of created scenarios was 492 [ (i.e.

5×7×12+6×12)]. In other words, number of algorithms to

be tested × number of values for the number of UAV aircraft

× number of values for the number of survivors + number

of values for the number of survivors × number of values

for survivor life expectancy ranges. Each scenario was run

several times to ensure the neutrality of the results [51].

TABLE 2: Parameters and Scenarios

Performance

Measurements

Number of

UAVs

Number of sur-

vivors

Survivors

lifetime ranges

Salability and

Sustainability

2
k , k=1...7 2

k , for

k=1...12,

one fixed range

[10-72 hours]

Responsiveness Fixed to 4 UAVs 2
k , for

k=1...12,

[<10, 10-20, 20-

30, 30-40, 40-50,

50-60] minutes.

MASplanes++ calculated three performance metrics that

are related to our performance measurements as net through-

put, mean time to find and rescue a survivor, and total running

time. Survivor locations were generated in a way to simulate

real-life disasters, where most survivors were located around

the center of the disaster, decreasing gradually further away

from the center. The parameter settings of the evaluation

environment are detailed in Table III. In the following sec-

tion, we will discuss the results for the three scenarios: (1)

scalability, (2) sustainability, and (3) responsiveness.

B. SCALABILITY AND SUSTAINABILITY

In this section, we evaluate both system scalability and sus-

tainability when changing the number of UAV aircraft and

survivors. According to [12], each result was averaged and

presented in graphs defined by the following: a logarithmic

base 2 scale for the number of UAV aircraft on the x-axis,

and by a linear scale for the performance measurement on

the y-axis. The value of the critical variables that control this

evaluation are listed in Table II.
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TABLE 3: Parameter Settings of Evaluation Environment

Parameter Settings

Plane Max Speed 1 40 miles/hour

Search Area Size

999m × 999m,
111 Regions ×

111 Regions,
3m × 3m
blocks

Hotspots

10 (Radius:
200m, DOF:
2.5)

Block Search

Power
Consumption
Penalty

5 units of power

Time Penalty 10 seconds

Survivor Rescue Power Consumption Penalty
10 units of
power

Time Penalty 60 seconds

Power Consumption Idle
1 unit of
power per 300
milliseconds

Standard
1 unit of
power per 100
milliseconds

1 Most of the settings in [12] are followed here with some changes

1) Percentage of Rescued Survivors (Net Throughput)

To measure the net throughput of the system, we collected

the total number of rescued survivors in each scenario. The

percentages of rescued survivors were calculated and plotted

against the number of UAV aircraft in the line-log graphs

(Figure 10). As the graphs level from top-left to bottom-

right (in Figure 10), the number of survivors increases, and

the problem becomes more difficult. However, as the number

of UAV aircraft on the x-axes in each graph increases, the

problem becomes less difficult.

In the earlier results described in Figure 10 (a-c), the LSAR

algorithm found most of the survivors using a smaller number

of UAV aircraft than other algorithms. For example, Figure

10 (a) shows that the LSAR only needs 4 UAV aircraft to

find 100% of the survivors, while the LIAM needs 8 UAV

aircraft to achieve the same percentage. Moreover, the other

algorithms need even more UAV aircraft to find the same

percentage of survivors. However, in the same results set, it

is notable that the general behavior of LSAR is closer to the

behavior of the LIAM algorithm.

Moreover, there are some differences in the general behav-

ior of the LSAR graph between Figure 10 (a), (b) and (c). For

example, LSAR found approximately 50% of the survivors

when there were 2 UAV aircraft, approximately 25% when

there were 4 UAV aircraft, and 50% (again) when there were

8 UAV aircraft. This is because when the number of survivors

is small, they would not be concentrated around a center.

Hence, the power of LSAR could not be shown clearly when

the problem contained a small number of survivors. Due to

the same reason, when the number of survivors increases

in Figure 10 (g- l), the percentage of rescued survivors

by the LSAR algorithm significantly outperforms the other

algorithms.

Moreover, the performance shown in the LSAR graph is

almost linear with an increasing number of UAV aircraft

and has the least slope, which means more scalability and

coverage than the other algorithms. To sum up, the empirical

results confirm the hypothesis. They show that the LSAR

algorithm found more survivors than the other algorithms

in highly constrained problems, with better scalability and

coverage factors.

2) Mean Rescue Time

The rescue time of a survivor is calculated as the difference

between the simulation start-time to the time taken for a

survivor to be found by any UAV aircraft. This time is

calculated for each survivor and averaged in Figure 11. The

behavior of the LSAR algorithm is not clear in Figure 11

(a) due to the same reason described earlier; in problems

with a low number of survivors, the LSAR displays random

behavior. However, when the number of survivors is large,

the behavior of LSAR should improve as the number of UAV

aircraft increases. This is shown clearly in Figure 11 (b-

l), where the average rescue time decreases with increasing

UAV aircraft numbers.

Because the LSAR algorithm focuses on the center of

the disaster more than other algorithms, it finds more sur-

vivors and rescues them quicker (Figure 11(b-l)), which was

expected in the hypothesis. Finally, most LSAR graphs in

Figure 11 (b-l) exhibit a linear behavior. In addition, they

show too low a slope line (almost constant line) which means

high scalability and coverage.

3) Execution Time Performance

The execution of each simulation scenario was recorded and

displayed in Figure 12. The earlier results (Figure 12 (a-f))

show that the execution times of LSAR was higher than other

algorithms. This is because when the number of survivors is

small, LSAR selects one survivor as a center randomly, then

distributes the probability among other layers according to

their distance away from the center. However, this center may

be the furthest survivor from other survivors.

Even though the behavior of the LSAR graph in Figure 12

(a-f) is too high, it displays a more constant linear behavior

than the other algorithms, which means high scalability and

coverage.

In the later results in Figure 12 (g-l), LSAR takes less time,

almost the same as the LIAM and OTA algorithms, because

most of the survivors concentrate around disaster centers in

such highly constrained problems, which makes, an earlier

decision.

The average results for the percentage of rescued sur-

vivors, the mean time to rescue a survivor, and the execution

times are summarized in Figs. 13-15, respectively.

Table IV presents the statistical results of all the above

experiments in terms of the mean and standard deviation for

each performance measurement. The UAV aircraft running

the LSAR algorithm consume the least mean time to rescue

VOLUME 4, 2016 9
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(b) 4 survivors
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(c) 8 survivors
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(d) 16 survivors
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(e) 32 survivors
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(f) 64 survivors
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(g) 128 survivors
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(h) 256 survivors
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(i) 512 survivors
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(j) 1024 survivors
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(k) 2048 survivors
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FIGURE 10: Percentage of Rescued Survivors
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(b) 4 survivors
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(c) 8 survivors
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FIGURE 11: Mean Time to Rescue a Survivor
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FIGURE 12: Execution Time
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FIGURE 13: Average of Results for the Percentage of Rescued Survivors
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FIGURE 14: Average of Results for the Mean Time to Rescue a Survivor
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FIGURE 15: Average of Results for the Execution Time

a survivor; they require 68 min (on average) to rescue a sur-

vivor. Moreover, most of the recorded results are very close

to that average as the standard deviation is too low. The UAV

aircraft running the OTA algorithm consume between 15-240

min (on average) to rescue a survivor, which is the highest

average among other algorithms, with most of the recorded

results also being close to that average. Regarding the metric

of percentage of rescued survivors, the UAV aircraft running

the LSAR algorithm were able to rescue approximately 74%

of survivors, and most of the results were around this per-

centage. However, UAV aircraft running the OTA algorithms

only rescued 45% of survivors, whilst requiring the lowest

execution time to finish the SAR missions (16 s on average).

The UAV aircraft running the max-sum algorithm required

too much time, as the max-sum algorithm is not applicable

to dynamic environments. This is clearly shown, as they

required an average execution time of approximately 7.5 h.

Figures 16 and 17 present the distribution of empir-

ical results for the LSAR, LIAM, OTA, auction-based,

and max-sum algorithms. As shown in Figure 16, the

range of the mean time for a UAV aircraft to rescue

a survivor was 0:00:00.0-16:48:00.0 running the LSAR

algorithm, 0:00:00.0-13:08:00.0 running the LIAM algo-

rithm, 0:00:00.0-19:49:00.0 running the OTA algorithm,

0:00:00.0-18:14:00.0 running the auction-based algorithm,

and 0:00:00.0-15:45:00.0 running the max-sum algorithm.

Although the range of mean LSAR times to rescue a survivor

was longer than some algorithms (such as LIAM and max-

sum), most of the LSAR mean times were bounded by

04:50:02.00 with 95% confidence. Figure 17 shows that the

percentage of rescued survivors by UAV aircraft running the

LSAR and its comparative algorithms ranged between 0%

and 100%, but with different distributions. The area under the

LSAR curve shows that the results clustered around the 78%-

100% range under an exponential behavior curve, which

means a small number of results were less than 50% and most

VOLUME 4, 2016 13
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TABLE 4: Descriptive statistics

metrics statistics LSAR LIAM OTA Auction Max-

Sum

m
ea

n
-tim

e-

to
-rescu

e-

a
-su

rv
iv

o
r

(h
h

:m
m

:ss.m
s)

Mean 1:08:06.8 2:31:12.2 3:46:35.3 3:34:37.3 2:58:51.9

STEDEV 0.1095 0.1604 0.2259 0.1964 0.17214

P
ercen

ta
g
e-o

f-

rescu
ed

-su
rv

iv
o
rs

(%
)

Mean 74% 66.25% 45.01% 51.52% 47.04%

STEDEV 0.2352 0.3505 0.3147 0.3675 0.37565

E
x
ecu

tio
n

T
im

e

(h
h

:m
m

:ss.m
s)

Mean 0:00:52.0 0:00:19.3 0:00:16.1 0:08:21.5 7:26:35.1

STEDEV 0.00041 0.00014 0.00018 0.00887 0.91813

of the results were above 50%. All the other curves exhibit

almost linear behavior, which means equal distribution of

their results.

FIGURE 16: ECDF for Mean Time to Rescue a Survivor

FIGURE 17: ECDF for Percentage of Rescued Survivors

C. RESPONSIVENESS

In this section, we evaluate how the system responds to

different survivor life expectancies. Three-dimensional (3D)

performance models that illustrate the responsiveness of the

LSAR system (under different running conditions) were gen-

erated and presented. Here, the 3D space is defined by a loga-

rithmic base 2 scale for the number of survivors on the x-axis,

a linear scale for survivor life expectancies on the y-axis, and

by the responsiveness measure in terms of net throughput,

mean time to rescue a survivor, or the algorithm execution

time on the z-axis. The value of the critical variables that

control this evaluation are listed in Table II.

1) Percentage of Rescued Survivors (Net Throughput):

Figure 18 shows that UAV aircraft running the LSAR algo-

rithm rescued the largest percentage of survivors when their

number is too low, and they have highest life expectancy;

for example, more than 80% of survivors were rescued when

there were 8 and their life expectancies were selected ran-

domly between 50 to 60 min. In addition, stable behavior is

apparent when the number of survivors increases, and they

live between 40 to 50 min. Further, approximately 60%-80%

are rescued regardless of the number of survivors. Moreover,

another stable behavior is exhibited when the number of

survivors increases, and they live between 30 to 40 min; here,

approximately 40%-60% are rescued. Therefore, the number

of survivors has less impact on the response of the LSAR than

their life expectancy ranges. However, a gradual decrease is

shown only when the number of survivors increases and they

live for very short time (between 10 to 20 min). It should be

remembered that the mission time is set to be finished in one

month. Further, the lowest percentage of rescued survivors is

0%-20%, which occurs when the number of survivors is 4096

and they only live between 10 to 20 min.

FIGURE 18: Percentage of Rescued Survivors by LSAR

2) Mean Rescue Time

Figure 19 shows that UAV aircraft running the LSAR al-

gorithm rescued survivors faster when they live longer and

their numbers are large. Here, UAV aircraft need less than 1

min to rescue survivors. Even though this result seems to be

14 VOLUME 4, 2016
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unexpectedly natural, it is acceptable according to the LSAR

technique, meaning that when the number of survivors is too

low there will be no center to be detected, which makes the

LSAR algorithm achieve inferior result. The critical factor af-

fecting LSAR time is the range of survivor life expectancies;

as the life expectancy range increases, the surface descends

sharply. When the number of survivors is too low, and they

live for very short time, the UAV aircraft need approximately

5.75 h to find them.

When the number of survivors is too low, and they are in

the highest life expectancy window, more than 80% of sur-

vivors were rescued when there were 8 survivors and their life

expectancies were between 50 and 60 min. In addition, the

surface shows stable behavior when the number of survivors

increases, and they live between 40 and 50 min; then ap-

proximately 60%-80% are rescued. Moreover, another stable

behavior is shown when the number of survivors increases,

and they live between 30 and 40 min.

FIGURE 19: Mean Time to Rescue a Survivor by LSAR

VI. CONCLUSION

This paper has presented a novel task-distribution technique

for SAR scenarios involving multiple autonomous UAV air-

craft. The impact of the proposed techniques has already

been discussed through exhaustive empirical experiments

and statistics. In summary, the following interesting obser-

vations can be deduced from the experiments:

• UAV aircraft running the LSAR algorithm rescue on

average approximately 74% of survivors, which is 8%

higher than next best algorithm (LIAM), followed by the

auction-based and max-sum algorithms, and finally the

OTA algorithm, which is worse than LSAR by 28.9%.

• UAV aircraft running the LSAR algorithm require the

least amount of time to rescue a survivor, which was

55% less than the next fastest algorithm (LIAM), fol-

lowed by the max- sum and auction-based algorithms,

and finally by the OTA algorithm, which is slower than

the LSAR by 77%.

• The empirical cumulative distribution function of the

LSAR results show that the percentages of rescued

survivors clustered around the 78%-100% range under

an exponential curve, which means that most of the

results are above 50%. All other algorithms have almost

equal percentage distributions for rescued survivors.

• Most of the registered times to rescue survivors by the

LSAR algorithm are bounded by 04:50:02 with 95%

confidence for a one-month mission time.

• The main factor to be optimized in the SAR problem

concerns how early the rescue mission commences.

• The SAR problem is not affected by the number of

survivors to be rescued; to be accurate, it is affected by

the way they are clustered.

Although this work proposed a novel technique for the

SAR problem, there are some limitations and open research

problems that still need to be investigated and solved in future

studies. One of the major factors that is clearly limiting the

performance of the LSAR algorithm is the density of the

survivors; in other words, detecting the disaster center in

which most of the survivors are located. Hence, using image

processing techniques for this purpose offers the best practi-

cal results in real-life applications. Moreover, the messages

passed between the server and UAV aircraft (such as survivor

and disaster locations) are not encrypted. This security issue

needs to be addressed. Additionally, deploying the LSAR

algorithm on real UAV aircraft for SAR purposes will be

conducted in our future work.
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