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Abstract

In general computing systems, a job (process/task) may suspend itself whilst it is
waiting for some activity to complete, e.g., an accelerator to return data. In real-
time systems, such self-suspension can cause substantial performance/schedulability
degradation. This observation, brst made in 1988, has led to the investigation of the
impact of self-suspension on timing predictability, and many relevant results have
been published since. Unfortunately, as it has recently come to light, a number of the
existing results are Rawed. To provide a correct platform on which future research can
be built, this paper reviews the state of the art in the design and analysis of scheduling
algorithms and schedulability tests for self-suspending tasks in real-time systems. We
provide (1) a systematic description of how self-suspending tasks can be handled in
both soft and hard real-time systems; (2) an explanation of the existing misconceptions
and their potential remedies; (3) an assessment of the inBuence of such Rawed analyses
on partitioned multiprocessor bxed-priority scheduling when tasks synchronize access
to shared resources; and (4) a discussion of the computational complexity of analyses
for different self-suspension task models.

Keywords Self-suspensionSchedulability testsReal-time systems
Multiprocessor synchronization

1 Introduction

Complex cyber-physical systems (i.e., advanced embedded real-time computing sys-
tems) havetimelinessrequirements such that deadlines associated with individual
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Real-Time Systems

computations must be met (e.g., in safetyBcritical control systems). Appropriate ana-
lytical techniques have been developed that enable a priori guarantees to be established
on timing behavior at run-time regarding computation deadlines. The seminal work
by Liu and Layland {973 considers the scheduling of periodically triggered com-
putations, which are usually terméaisks The analysis they presented enables the
schedulabilityof a set of such tasks to be established, i.e., whether their deadlines will
be met at run-time. This initial analysis has been extended to incorporate many other
task characteristics, e.g., sporadic activations (l18&3.

One underlying assumption of the majority of these schedulability analyses is that
a task does not voluntarily suspend its executionNonce executing, a task ceases to
execute only as a result of either a preemption by a higher-priority task, becoming
blocked on a shared resource thatis held by a lower-priority task on the same processor,
or completing its execution (for the current activation of the task). This is a strong
assumption that lies at the root of Liu and LaylandOs seminal analysis (Liu and Layland
1973, as it implies that the processor is contributing some useful work (i.e., the
system progresses) whenever there exist incomplete jobs in the system (i.e., if some
computations have been triggered, but not yet completed).

Allowing tasks toself-suspendmeaning that computations can cease to progress
despite being incomplete, conversely has the effect that key insights underpinning the
analysis of non-self-suspending tasks no longer hold. As an example, consider the
execution scenario in Fid.. Figurela illustrates the worst-case execution scenario
for non-self-suspending tasks, i.e., where the longest interval between the arrival time
and the Pnishing time of an instance of a task occurs. This worst case, tenitrezd
instant occurs when a job release coincides with the release of all higher priority
tasks and all followup jobs of the higher-priority tasks are released as early as possible
by satisfying the inter-arrival-time constraint. However, if a higher-priority task is
allowed to suspend its execution, Figp. shows that it is possible that a lower-priority
task missesits deadline evenifits deadline can be met under the critical-instant scenario
debned above. The classical critical instant theorem (Liu and Laylang thus does
not apply to self-suspending task systems.

Self-suspension has become increasingly important to model accurately within
schedulability analysis. For example, atask that utilizes an accelerator or external phys-
ical device (Kang et aR007 Kato et al.2011) can be modelled as a self-suspending
task, where the resulting suspension delays range from a few microseconds (e.g., a
write operation on a Rash drive, Kang et2007) to a few hundreds of milliseconds
(e.g., ofBoading computation to GPUs, Kato el8l11; Liu et al.2014h. Whilst the
maximum self-suspension time could be included as additional execution time, this
would be pessimistic and potentially under-utilize the processor at run-time. If the
self-suspension time is substantial, exploiting the self-suspension time effectively by
executing other tasks properly would lead to a performance increase. Therefore, the
scheduling strategies and the timing analyses should consider such features to make
the best use of the potential self-suspension time.

This paper seeks to provide the brst survey of existing analyses for tasks that may
self-suspend, highlighting the debciencies within these analyses. The remainder of
this section provides more background and motivation of general self-suspension and
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Fig. 1 Twotasks 1 (higher priority, period 5, relative deadline 5, computation time 3) ar{tbwer priority,
period 7, relative deadline 7, computation time 2) meet their deadlinas@onventional schedulability
analysis predicts maximum response times of 3 and 5 respectivddyt&isk 1 suspends itself, with the
result that task, misses its deadline at time 14

t

the issues it causes for analysis, followed by a thorough outline of the remainder of
this survey paper.

1.1 Impact of self-suspending behavior

When periodic or sporadic tasks may self-suspend, the scheduling problem becomes
much harder to handle.

For the ordinary periodic task model (without self-suspensions), Liu and Layland
(1973 studied the earliest-deadline-brst (EDF) scheduling algorithm and bxed-
priority (FP) scheduling. They showed EDF to be optimal (with respect to the
satisfaction of deadlines), and established that, among FP scheduling algorithms, the
rate-monotonic (RM) scheduling algorithm is optimal (Liu and Laylae@3.

In contrast, the introduction of suspension behavior has a negative impact on the
timing predictability and causes intractability in hard real-time systems (Ridouard
et al.2004. It was shown by Ridouard et ak@04) that bPnding an optimal schedule
(to meet all deadlines) iBIP -hard in the strong sense even when the suspending
behavior is known a priori.

One specibc problem due to self-suspending behavior idaferableexecution
phenomenon. In the ordinary sporadic and periodic task model, the critical instant
theorem by Liu and Laylandl@73 provides concrete worst-case scenarios for bxed-
priority scheduling. That is, the critical instant of a task dePnes an instant at which,
considering the state of the system, an execution request for the task will generate
the worst-case response time (if the job completes before next jobs of the task are
released). However, with self-suspensions, no critical instant theorem has yet been
established. This makes it difbcult to efpciently test the schedulability. Even worse,
the effective scheduling strategies for non-self-suspending tasks may not work very
well for self-suspending tasks. For example, it is known that EDF (RM, respectively)
has a 100% (68%, respectively) utilization bound for ordinary periodic real-time task
systems on uniprocessor systems, as provided by Liu and Layl&7@( However,
with self suspensions, it was shown in Ridouard et2fl0¢) and Chen and Liua014
that most existing scheduling strategies, including EDF and RM, do not provide any
bounded performance guarantees.

Self-suspending tasks can be classibed into two models:dyinamic self-
suspension angegmentedor multi-segmentself-suspension models. The dynamic
self-suspension task model characterizes each tagikh predePnetbtal worst-case
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execution time andotal worst-case self-suspension time bounds, such that a job of
task j can exhibit any number of self-suspensions of arbitrary duration as long as the
sum of the suspension (respectively, execution) intervals does not exceed the specibed
total worst-case self-suspension (respectively, execution) time bounds. The segmented
self-suspending sporadic task model debPnes the execution behavior of a job of atask as
a known sequence of predebned computation segments and self-suspension intervals.
The models will be explained in Se&.

1.2 Purpose and organization of this paper

Much prior work has explored the design of scheduling algorithms and schedulability
analyses of task systems when self-suspending tasks are present. Motivated by the
proliferation of self-suspending scenarios in modern real-time systems, the topic has
received renewed attention in recent years and several results have been re-examined.
Unfortunately, we have found that large parts of the literature on real-time scheduling
with self-suspensions has been seriously Rawed by misconceptions. Several errors
were discovered, including:

b Incorrect quantibcation of jitter for dynamic self-suspending task systems (Aud-
sley and Bletsa2004ab; Kim et al. 1995 Ming 1994. This misconception was
unfortunately carried forward in Zeng and di Nat&2©11), BrandenburgZ013,

Yang et al. 2013, Kim et al. 2014, Han et al. 2014, Carminati et al. 2014,
Yang et al. 2014, and Lakshmanan et aR@09 in the analysis of worst-case
response times under partitioned multiprocessor real-time locking protocols.

b Incorrect quantibcation of jitter for segmented self-suspending task systems (Blet-
sas and Audsle2005.

b Incorrect assumptions on the critical instant as debPned in Lakshmanan and Rajku-
mar 010.

b Incorrectly counting highest-priority self-suspension time to reduce the interfer-
ence on the lower-priority tasks (Kim et 2013.

b Incorrect segmented bxed-priority scheduling with period enforcement (Kim et al.
2013 Ding et al.2009.

b Incorrect conversion of higher-priority self-suspending tasks into sporadic tasks
with release jitter (Nelissen et &015.

Due to the above misconceptions and the lack of a survey of this research area, the
authors, who have been active in this area in the past years, have jointly worked together
to review the existing results in this area. This review paper serves to

b summarize the existing self-suspending task models @ect.

b provide the general methodologies to handle self-suspending task systems in hard
real-time systems (Seat) and soft real-time systems (Set};

b explain the misconceptions in the literature, their consequences, and potential
solutions to bx those Raws (SeB;

b examine the inherited Raws in multiprocessor synchronization, due to a Rawed
analysis in self-suspending task models (Séxt.

b provide the summary of the computational complexity classes of different self-
suspending task models and systems (S)ct.
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Further, some results in the literature are listed in Settvith openissues thatrequire
further detailed examination to conbrm their correctness.

During the preparation of this review paper, several reports (Chen 2056h
Chen and Brandenbu17, Liu and Andersor2015 Bletsas et al2018 have been
pled to discuss the Raws, limits, and proofs of individual papers and results. In the
interest of brevity, these reports are summarized here only at a high level, as including
them in full detail is beyond the scope of this already long paper. The purpose of this
review is thus not to present the individual discussions, evaluations and comparisons
of the results in the literature. Rather, our focus is to provide a systematic picture of this
research area, common misconceptions, and the state of the art of self-suspending task
scheduling. Although it is unfortunate that many of the early results in this area were
Bawed, we hope that this review will serve as a solid foundation for future research
on self-suspensions in real-time systems.

2 Examples of self-suspending task systems

Self-suspensions arise in real-time systems for a range of reasons. To motivate the
need for suspension-aware analysis, we initially review three common causes.

Example 1: 1/0- or memory-intensive tasksAn I/O-intensive task may have to use
DMA (direct memory access) to transfer a large amount of data to or from peripheral
devices. This can take from a few microseconds up to milliseconds. In such cases, a
job of a task executes for a certain amount of time, then initiates an 1/O activity, and
suspends itself. When the 1/0 activity completes, the job can be moved back to the
ready queue to be (re)-eligible for execution.

This also applies to systems with scratchpad memories, where the scratchpad mem-
ory allocated to a task is dynamically updated during its execution. In such a case, a
job of a task executes for a certain amount of time, then initiates a scratchpad memory
update to push its content from the scratchpad memory to the main memory and to pull
some content from the main memory to the scratchpad memory, often using DMA.
During the DMA transfers to update the scratchpad memory, the job suspends itself.
Such memory access latency can become much more dynamic and larger when we
consider multicore platforms with shared memory, due to bus contention and compe-
tition for memory resources.

Example 2: multiprocessor synchronizationUnder a suspension-based locking
protocol, tasks that are denied access to a shared resource (i.e., that block on a lock) are
suspended. Interestingly, on uniprocessors, the resulting suspensions can be accounted
for more efbciently than general self-suspensions by considering the blocking time due
to the lower-priority job(s) that hold(s) the required shared resource(s). More detailed
discussions about the reason why uniprocessor synchronization does not have to be
considered to be self-suspension can be found in 86ctn multiprocessor systems,
self-suspensions can arise (for instance) under partitioned scheduling (in which each
task is assigned statically on a dedicated processor) when the tasks have to synchronize
their access to shared resources (e.g., shared I/O devices, communication buffers, or
scheduler locks) with suspension-based locks (e.g., binary semaphores).
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We use a binary semaphore shared by two tasks assigned on two different processors
as an example. Suppose each of these two tasks has a critical section protected by the
semaphore. If one of them, say tagkis using the semaphore on the brst processor
and another task, say, executing on the second processor intends to enter its critical
section, then task has to wait until the critical section of task Pnishes on the brst
processor. During the execution of taglds critical section, task suspendéself.

In this paper, we will specibcally examine the existing results for multiprocessor
synchronization protocols in Seé.

Example 3: hardware acceleration by using co-processors and computation
of3oading In many embedded systems, selected portions of programs are preferably
(or even necessarily) executed on dedicated hardware co-processors to satisfy per-
formance requirements. Such co-processors include for instance application-specibc
integrated circuits (ASICs), digital signal processors (DSPs), beld-programmable gate
arrays (FPGAS), graphics processing units (GPUSs), etc. There are two typical strate-
gies for utilizing hardware co-processors. One strategy is busy-waiting, in which the
software task does not give up its privilege on the processor and has to wait by spin-
ning on the processor until the co-processor Pnishes the requested work (sge Fig.
for an example). Another strategy is to suspend the software task. This strategy frees
the processor so that it can be used by other ready tasks. Therefore, even in single-
CPU systems more than one task may be simultaneously executed in computation:
one task executing on the processor and others on each of the available co-processors.
This arrangement is calldimited parallelism(Audsley and Bletsa20041, which
improves the performance by effectively utilizing the processor and the co-processors,
as shown in Fig2a.

Since modern embedded systems are designed to execute complicated applica-
tions, the limited resources, such as the battery capacity, the memory size, and the
processor speed, may not satisfy the required computation demand. Of3oading heavy
computation to some powerful computing servers has been shown as an attractive solu-
tion, including optimizations for system performance and energy saving. Computation
offdoading with real-time constraints has been specibcally studied in two categories.
In the brst category, computation offoading always takes place at the end of a job and
the post-processing time to process the result from the computing server is negligi-
ble. Such ofoading scenarios do not incur self-suspending behavior (Nimmagadda
etal.201Q Toma and CheR013. In the second category, non-negligible computation
time after computation offoading is needed. For example, the computation ofRoading
model studied in Liu et al.2014h debnes three segments of a task: (1) the brst seg-
ment is the local computation time to encrypt, extract, or compress the data, (2) the
second segment is the worst-case waiting time to receive the result from the computing
server, and (3) the third segment is either the local compensation if the result from the
computing server is not received in time or the post processing if the result from the
computing server is received in time.

Other examplesSelf-suspension behavior has been observed in other applications.
Examples are scheduling of parallel tasks where each subtask is statically assigned on
one designated processor (Fonseca 2@l9, real-time tasks in multicore systems
with shared memory (Huang et 2016, timing analysis of deferrable servers (Chen
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Fig. 2 An example of using FPGA for acceleratioa.Using several FPGAs in parallel (with self-
suspensionsp Serialized FPGA use (busy waiting)

t

et al. 2015, and dynamic reconbgurable FPGAs for real-time applications (Biondi
et al.2016.

3 Real-time sporadic self-suspending task models

We now recall the debnition of the classic sporadic task model (without self-
suspensions) (Liu and Layladi®73 Mok 1983 and then introduce the main models
of self-suspensions.

The sporadic task model characterizes a tasls a three-tupléC;, T, D;j). Each
sporadic task; can release an inbPnite number of jobs (also called task instances)
under the given minimum inter-arrival time (also called period) constrRinEach
job released by a sporadic taskhas a relative deadlinB;. That is, if a job of task

i arrives at timet, it must (in hard real-time systems), or should (in soft real-time
systems) be Pnished before its absolute deadline attmB;, and the next instance
of the task must arrive no earlier than timme T;. Theworst-case execution tinud
task j isC;. Thatis, the execution time of a job of tagkis at mos(C;. The utilization
of task ; is debPned abl; = G/ T;.

Throughout this paper, we will uSeto denote the task set and ust denote the
number of tasks iff.

If the relative deadline of each taskThis equal to its deadline, then the tasks in
T are said to havenplicit deadlinesIf the relative deadline of each taskThis no
larger than its period, then the taskslirhaveconstrained deadline®therwise, the
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tasks inT havearbitrary deadlineslin this paper, unless explicitly noted otherwise (for
instance in some parts of Set}, we consider only constrained- and implicit-deadline
task systems.

Two main models of self-suspending tasks exist:diieamicself-suspension and
segmentedor multi-segmentself-suspension models. These two models have been
recently augmented by hybrid self-suspension models (von der BrYgge2@i 2.

An additional model, using directed acyclic grapfiDAG) representation of the task
control Bow, can be reduced to an instance of the former two models, for analysis
purposes (Bletsa2007).

Dynamic self-suspension modehe dynamic self-suspension sporadic task model
characterizes a task as a four-tuplgC;i, S, T;, Dj). Similar to the sporadic task
model, T; denotes the minimum inter-arrival time (or period) ¢f D; denotes the
relative deadline of; andC; is an upper bound on the total execution time of each
job of ;. The new parameted denotes an upper bound on the total suspension time
of each job of ;.

The dynamic self-suspension model is convenient when it is not possible to know a
priori the number and/or the location of self-suspension intervals for a task, e.g., when
these may vary for different jobs of the same task.

For example, in the general case, a task may have several possible control Bows,
where the actual execution path depends on the values of the program and/or system
variables at run-time. Each of those paths may have a different humber of self-
suspension intervals. Additionally, during the execution of a job of a task, one control
Bow may have a self-suspension interval at the beginning of the job and another one
may self-suspend shortly before its completion. Under such circumstances, it is con-
venient to be able to collapse all these possibilities by modelling the task according
to the dynamic self-suspension model using just two parameters: the worst-case exe-
cution time of the task in consideration and an upper bound for the time spent in
self-suspension by any job of the task.

Segmented self-suspension mdded segmented self-suspension sporadic task model
extends the four-tuple of the dynamic model by further characterizing the computation
segments and suspension intervals using an §8AySt, C2, &2,..., S"°*, c™).

Each job of ; is assumed to be composednyf computation segments separated by
mi S 1 suspension intervals. The execution time of tRecomputation segment is
upper bounded b¢, , and the length of the'" suspension interval is upper bounded

by § . For a segmented sporadic tagkwe haveC; = "%, C; and§ = ”l?l .

The segmented self-suspension model is a natural choice when the code structure
of a task exhibits a certain linearity, i.e., there is a deterministic number of self-
suspension intervals interleaved with portions of processor-based code with single-
entry single-exit control-Bow semantics. Such tasks can always be modeled according
to the dynamic self-suspension model, but this would discard the information about
the constraints in the location of self-suspensions intervals of a job, i.e., in the control
Bow. The segmented self-suspension model preserves this information, which can be
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potentially used to derive tighter bounds on worst-case response times or exploited
for designing better scheduling strategies.

Hybrid self-suspension modehe dynamic self-suspension model is very Rexible but
inaccurate, whilst the segmented self-suspension model is very restrictive but very
accurate. The hybrid self-suspension task models proposed in von der BrYggen et al.
(2017 assume that in addition ®, each task; has at most a known numberrof S 1
suspension intervals. This means that the execution of each jplisafomposed of at
mostm; computatiorsegments separatedioyS 1 suspensiointervals, similar to the
segmented self-suspension model. The sum of the execution times of the computation
segments of a job of taskis at most its WCETC;, while the sum of the lengths of the
self-suspension intervals of a job of tagks at most its worst-case suspension tisne
Depending on the known information, different hybrid self-suspension models were
proposed in von der BrYggen et &0(7) with different trade-offs between Rexibility

and accuracy.

DAG-based self-suspension motfethe DAG-based self-suspension model (Bletsas
2007, each node represents either a self-suspension interval or a computation segment
with single-entrybsingle-exit control Row semantics. Each possible path from the
source node to the sink node represents a different program execution path. Note that
a linear graph is already an instance of the segmented self-suspension model. An
arbitrary task graph can be reduced with some information loss (pessimism) to an
instance of the dynamic self-suspension model.

A simple and safe method is to use

Ci = max C; and§ = max S .

where denotes a control Bow (path), i.e., a set of nodes traversed during the execution
of a job (Audsley and Bletsa®004h Bletsas2007). However, it is unnecessarily
pessimistic, since the maximum execution time and maximum self-suspension time
may be observed in different node paths. A more efpcient conversion would use

S = max C+ § SG

whereC; is still computed as explained above. We will explain the underlying intuition
(partial modeling of self-suspension as computation, which is a safe transformation)
in Sect.4.1.1(see also Audsley and Blets2804h Bletsas et al2018.

Remarks on self-suspension moddédse that all of the above models can additionally
be augmented witlower boundgor segment execution times and suspension lengths;
when absent, these are implicitly assumed to be zero.

From the system designerOs perspective, the dynamic self-suspension model pro-
vides an easy way to specify self-suspending systems without considering the control
Bow surrounding 1/0O accesses, computation ofoading, or synchronization. However,
from an analysis perspective, such a dynamic model may lead to quite pessimistic
results in terms of schedulability since the occurrence of suspensions within a job is
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unspecibed. By contrast, if the suspension patterns are well-debPned and characterized
with known suspension intervals, the segmented self-suspension task model is more
appropriate. Note that it is possible to employ both the dynamic self-suspension model
and the segmented self-suspension model simultaneously in one task set. The hybrid
self-suspension models can be adopted with different trade-offs between Rexibility
and accuracy. Further note that the DAG self-suspension model is a representational
model without its own scheduling analysis. For analysis purposes, it is converted to
an instance of either the dynamic or the segmented self-suspension model, which may
then serve as input to existing analysis techniques.

3.1 Assumptions and terminology
3.1.1 Scheduling

Implicitly, we will assume that the system schedules jobs preemptivemanner,

unless specibed otherwise. We will mainly focus on uniprocessor systems; however
some results for multiprocessor systems will be discussed in Sedtand7. We
assume that the cost of preemption has been subsumed into the worst-case execution
time of each task. In uniprocessor systems, i.e., in Séaad5 (except Sect4.4),

we will consider both earliest-deadline-prst (EDF) and bxed-priority (FP) scheduling
as well as some of their variants.

Under EDF, a task may change its priority at run-time; the highest priority being
given to the job (in the ready queue) with the earliest absolute deadline. Variants of
EDF scheduling for self-suspending tasks have been explored in Chen ar2® L, (

Liu et al. (20140, Devi (2003, Huang and Cher2016, and von der BrYggen et al.
(20189.

For bxed-priority scheduling, in general, a task is assigned a unique priority level,
and all the jobs generated by the task have the same priority level. Examples are rate-
monotonic (RM) scheduling (Liu and Laylaid®73), i.e., a task with a shorter period
has a higher-priority level, and deadline-monotonic (DM) scheduling, i.e., atask with a
shorter relative deadline has a higher-priority level. In this paper, if we consider bxed-
priority scheduling, we will also implicitly assume that taskhas higher priority
thantask j if i < j. Such task-level bxed-priority scheduling strategies for the self-
suspension task models have been explored in Rajkub®&1), Kim et al. (1995,

Ming (1994, Palencia and Harboud 998, Audsley and Bletsas20043, Audsley

and BletsasZ004h, Bletsas and Audsley (005, Lakshmanan and Rajkuma&Qq10),
Kimetal. 2013, Liu and Chen2014, Huang et al.Z015, Huang and Cher2Q15h),

Huang and Chen2016, and Chen et al.20169. Moreover, in some results in the
literature, e.g., Kim et al.2013 and Ding et al. 2009, each computation segment

in the segmented self-suspending task model has its own unique priority level. Such a
scheduling policy is referred to a@gmented bxed-priority scheduling

For hard real-timetasks, each job should be Pnished before its absolute deadline.
For soft real-timetasks, deadline misses are allowed. We will mainly focus on hard
real-time tasks. Soft real-time tasks will be brie3y considered in Sect.
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3.1.2 Analysis

Theresponse timef a job is debPned as the difference between its Pnishing time and
its arrival time. Thewvorst-case response tinf@&/CRT) of a real-time task in a task
setT is debPned as an upper bound on the response times of all the jobs of tagk
for any legal sequencef jobs of T. A sequence of jobs of the task systdiis a
legal sequence if any two consecutive jobs of task T are separated kst least T
and the self-suspension and computation behavior are upper bounded by the debned
parameters. The goal of response time analysis is to analyze the worst-case response
time of a certain tasky in the task seT or all the tasks ifT.

A task sefT is said to beschedulabldby a scheduling algorithm if the worst-
case response time of each tagkn T is no more than its relative deadliriz. A
schedulability tesfor a scheduling algorithm is a test checking whether a task set
T is schedulable witth. There are two usual types of schedulability tests:

b Utilization-based schedulability tests. Examples of such tests are the utilization
bounds by Liu and Laylandl@73 and the hyperbolic bound by Bini et aR{03.

b Time-demand analysis (TDA) or response time analysis (RTA) (Lehoczky et al.
1989. Several exact tests exist for periodic and sporadic tasks without suspension
(e.g., Liu and Laylandl973 Spuri 1996 Goossens and Devillers997, 1999
Zhang and Burn2009.

We consider both types of analyses in this paper.

To solve the computational complexity issues of many scheduling problems in
real-time systems, approximation algorithms basedesiource augmentatiowith
respect tospeedup factorkiave attracted much attention. If an algoritmhas a
speedup factor , then any task set that is schedulable (under the optimal scheduling
policy) at the original platform speed is also schedulable by algorihwhen all the
processors have speedimes the original platform speed.

3.1.3 Platform

Most of this paper focuses on single processor systems. However, the multiprocessor
case is discussed in Sects#and7. When addressing the scheduling of tasks on mul-
tiprocessor systems, we distinguish between two major categories of multiprocessor
real-time schedulers: (i) partitioned scheduling and (ii) global scheduling.

Under partitioned scheduling, tasks are statically partitioned among processors, i.e.,
each task is bound to execute on a specibc processor and never migrates to another pro-
cessor. An often used multiprocessor partitioned scheduling algorithm is partitioned
EDF (P-EDF), which applies EDF on each processor individually. Partitioned bxed-
priority (P-FP) scheduling is another widespread choice in practice due to the wide
supportinindustrial standards such as AUTOSAR, and in many RTOSs like VxWorks,
RTEMS, ThreadX, etc. Under P-FP scheduling, each task has a bxed-priority level
and is statically assigned to a specibc processor, and each processor is scheduled
independently as a uniprocessor. In contrast to partitioned scheduling, under global
scheduling, jobs that are ready to be executed are dynamically dispatched to available
processors, i.e., jobs are allowed to migrate from one processor to another at any time.
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For example, global EDF (G-EDF) is a global scheduling algorithm under which jobs
are EDF-scheduled using a single ready queue.

4 General design and analysis strategies

Self-suspending task systems have been widely studied in the literature and sev-
eral solutions have been proposed over the years for analyzing their schedulability
and building effective suspension-aware scheduling algorithms. In this section, we
provide an overview of the different strategies commonly adopted in the state-of-
the-art approaches to analyze and solve the self-suspending task scheduling problem.
Although such strategies are correct in essence, many previously-proposed strategies
for handling self-suspending tasks rely upon incorrect assumptions or misconceptions
regarding the computation demand induced by self-suspension, leading to incorrect
results. Fortunately, once these misconceptions are identiped and corrected, these
general strategies can still be applied. A detailed description of the various misun-
derstandings of the self-suspending task model, together with the demonstration of
counterintuitive results, is provided in SeBt.

As to be discussed in details in Se8f.performing the timing analysis of a set
of self-suspending tasks has been proven to be intractable in the general case. For
that reason, most work adopts some common strategies to simplify the worst-case
response time analysis of self-suspending tasks. Instead of reviewing and summarizing
individual research results in the literature, e.g., Rajkurh@89); Kim et al. (1995;
Ming (1994); Palencia and Harboud998; Audsley and Bletsas2004ab); Bletsas
and Audsley 2009; Lakshmanan and Rajkumaz(10; Kim et al. 2013; Liu and
Chen 014; Huang et al.2019; Huang and Cher2015h 2016, we will present the
high-level analyses and modeling strategies commonly adopted across those works.
Specibcally, we will present those strategies in Setfisand4.2 by decoupling the
modeling of the task under analysis and the task interfering with the analyzed task,
respectively. In Sectd.1and4.2 both the segmented and the dynamic self-suspending
task models are considered, where Tallland2 provide a summary to show how the
methods explained in Sects1and2 are linked to the existing results in the literature.
Moreover, Sect4.3 presents release enforcement mechanisms to reduce the impact
due to self-suspension.

We will implicitly assume uniprocessor systems in Seti%.4.2, and4.3. Further-
more, in most cases, we will use pPxed-priority scheduling to explain the strategies.
Therefore, we implicitly consider the timing analysis for a tagkin which hp(k) is
the set of higher-priority tasks, if Pxed-priority scheduling is considered.

Section4.4 will shortly discuss how to handle self-suspending tasks in multipro-
cessor systems.
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Table 1 Summary of existing methods without any enforcement mechanisms (chronological order)

Papers/methods Suspension and Interfered task () Interfering tasksHp(k)
scheduling model under FP)
Ming (1994 Dynamic, FP Suspension-oblivious,  As release jitter,
Sect4.1.1 Sect4.2.3
Kimetal. @995  Dynamic, FP Suspension-oblivious,  As release jitter,
Sect4.1.1 Sect4.2.3

Palencia and
Harbour (998

Liu (200Q pp.
164D165)

Devi (2003 Sect.
4.5)

Audsley and

Bletsas
(20044ab)

Bletsas and
Audsley 005

Bletsas 2007,
Chapter 5.4)

Lakshmanan and
Rajkumar
(2010

Liu and Anderson
(2013

Liu et al. 20149

Liu and Chen
(2019

Huang and Chen
(20159

Huang et al.
(2015

Nelissen et al.
(2015

Chen et al.
(20169

Segmented, FP

Dynamic, FP
Dynamic, EDF
Dynamic, FP

Segmented, FP

Dynamic or segmented,

FP

Segmented, FP

Split (see footnote 1),
Sect4.1.2

Suspension-oblivious,
Sect4.1.1

Suspension-oblivious,
Sect4.1.1

Suspension-oblivious,
Sect4.1.1

Suspension-oblivious,
Sect4.1.1

Hybrid, Sect4.1.3

Revised critical instant,
Sect4.1.4

Multiprocessor, global FP Suspension-oblivious,

and EDF
Dynamic, FP (harmonic)
Dynamic, FP

Segmented, FP

Dynamic, FP

Segmented, FP

Dynamic, FP

Sect4.1.1

Suspension-oblivious,
Sect4.1.1

suspension-oblivious,
Sect4.1.1

Hybrid, Sedt1.1-4.1.3

Suspension-oblivious,
Sect4.1.1

Segmented structures
with dynamic offsets,
Sect.4.2.6

As blocking, Sect4.2.4
As blocking, Sect4.2.4

As release jitter,
Sect4.2.3

Segmented structures
with bxed offsets,
Sect4.2.6

Segmented structures
with Pxed offsets,
Sect4.2.6

(Only ordinary sporadic
tasks)

Carry-in jobs in
multiprocessor
scheduling, Sect.4

No additional impact due
to self-suspension

As carry-in, Sect4.2.2

Segmented structures
with dynamic offsets,
Sect.4.2.6

As carry-in, Sect4.2.2

Based on a revised critic8luspension by modeling

instant, Sec4.1.4

Suspension-oblivious,
Sect4.1.1

proper release jitter
(Sect4.2.3 and
enumerating the
worst-case interferences

A unifying framework
based on more precise
release jitter, Sectt.2.5
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Table 3 A segmented 1 @ ~2 ] ]

self-suspending task set, used in (G 5.6 Di Ti

Examplesl andZ, tq compare @,0,0) 5 5

the suspension-oblivious and

split approaches 2 (2,0,0 10 10
3 (1,5,1) 15 15

4.1 Modeling the interfered task

Two main strategies have been proposed in the literature to simplify the modeling of
a self-suspending task during its schedulability test or worst-case response time
analysis:

b the suspensiaobliviousapproach, which models the suspension intervalg of
as if they were usual execution time (Sektl.]);

b thesplit approach, which computes the worst-case response time of each compu-
tation segment ofy as if they were independent tasks (Sdct.2.

Strategies combining both approaches have also been investigated and are discussed
in Sect.4.1.3 To the best of the authorsO knowledge, to date, no tractable solution
has been found to compute the exact worst-case interference suffered by a segmented
self-suspending task.

4.1.1 Modeling suspension as computation

This strategy is often referred to as gwespension-obliviouspproach in the literature,

but sometimes also called OjointO Blet2887). It assumes that the self-suspending
task g continues executing on the processor when it self-suspends. Its suspension
intervals are thus considered as being preemptible. From an analysis perspective, it is
equivalent to replacing the self-suspending tasky an ordinary sporadic (non-self-
suspending) task, with worst-case execution time equal@ + S and the same
relative deadline/period as those of tagki.e., a three-tupléCy + &, Tk, Dk).

Converting the suspension time of tagkinto computation time can become very
pessimistic forsegmentedelf-suspending tasks. This is especially true when (i) its
total self-suspension tim& is much larger than its worst-case execution tiGe
and/or (ii) the lengths ofOs suspension intervals are larger than the periods of (some
of) the interfering tasks.

Example 1Consider the task set in TabBunder FP scheduling. Task would be
transformed into a non-self-suspending tagk (7, 15, 15). Task , is obviously not
schedulable since the total utilization af 2and jisgivenbyZ+ &+ == 12 > 1.

Yet, the self-suspending taskis schedulable as it will be shown in Seétl.2

Nevertheless, for one special case, this modeling strategy exactsolution to
compute the WCRT adynamicself-suspending tasks under bxed-priority scheduling,
i.e., if theonly self-suspending task is the lowest-priority task. For better illustrating
this situation, consider two sporadic real-time taskand », in whichCy = 2, T; =
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D;=5andC,= 3, $ =633, T, = D, = 10 for aninbnitesimal> 0. Task 1
does not suspend itself and has a higher priority than taskuppose that both tasks
release their brst jobs at time 0 and both request to be executed on the processor. Task
1 Pnishes its brst job at time 2. Attimetr2 |, task » suspends itself after executing
amount of time. Tasks, resumes at time 5 and again competes with the second job

oftask 1. Attime 7+ ,task » suspends itself after executingmount of time until
time 10S . Task , then Pnishes its lastamount of execution time at time 10. In
this example, task,Os suspension time is effectively converted into computation time
without any loss of accuracy.

As a result, if the computation segments and suspension intervaldraerleave
such that k self-suspends only between the arrival of higher-priority jobs (i.e., a
computation segment of, is started whenever a higher-priority job is released), then
the resulting schedule would be similar if was indeed executing on the processor
during its self-suspensions. Therefore, when there is no knowledge about how many
times, when, and for how long; may self-suspend in each self-suspension interval
(but is still upper bounded by the suspension ti&g modeling the self-suspension
time of k as execution time provides the exact worst-case response timeuoder
FP scheduling.

Theorem 3 by Huang et al2Q15 provides the followinghecessary conditiofor
scheduling dynamic self-suspending tasks under any bxed-priority scheduling:

If there exists a feasible bxed-priority preemptive schedule for scheduling dynamic
self-suspending tasks, then, for each tagkhere exists t witld < t Dy such that

Ck+ &K+ T G t, 1)
i hpk)

where hi§ k) is the set of the tasks with higher-priority levels than task

Itis also clear that Eq.1j is a sufbcient analysis Dy~ Tk and all the tasks in
hp(k) are ordinary sporadic real-time tasks without any suspensions. To achieve this
sufpcient analysis, one has to repeat the proof of the classical critical instant theorem.
Since there is no self-suspension after the suspension is converted into computation
effectively, the classical results of real-time systems can be directly applied. Therefore,
this analysis is exact ifi is a dynamic self-suspending task witliy ~ Tk and all the
tasks inhp(k) are ordinary sporadic real-time tasks without any suspensions.

By Eqg. (), itis necessary to model the suspension time of the task under analysis as
computation time if we consider dynamic self-suspending tasks under bxed-priority
scheduling. Such a modeling strategy to consider suspension as computation for the
task under analysis is widely used in all the existing analyses for the dynamic self-
suspension task model under bxed-priority scheduling, e.g., (Liu and 20ikh
Huang et al2015 Ming 1994 Kim et al. 1995 Audsley and Bletsa0044ab; Liu
2000 (see Tableg and2, in which some multiprocessor cases from Liu and Anderson
2013 Liu et al. 2014aare also covered). However, such a modeling strategy is not
always exact for the dynamic self-suspension task model if other scheduling strategies
(instead of bxed-priority scheduling) are applied.
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4.1.2 Modeling each computation segment as an independent task

An alternative is to individually compute the WCRT of each of the computation seg-
ments of tasky (Bletsa2007 Palencia and Harbot998 Huang and Cheﬁ0~15t).l
The WCRT of g is then upper-bounded by the sum of the segmentsO worst-case
response times added &, the maximum length of the overall self-suspension inter-
vals. .

Let R} denote the worst-case response time of the computation se@’beﬁhe

schedulability test for task succeeds if %, R+ mkSl S Dk

Example 2Consider the task set presented in TaébhlEhe usual RTA for bxed-priority
sporadic real-time tasks without self-suspension (Liu and Layl®7® tells us that
the WCRT of a task is upper bounded by the smallest positive solutionRpf
satisfying the condition that

R«

= C,+
R« k T

G, 2
i hp(k)

wherehp(k) is the set of the tasks with higher-priorities than
Therefore, the WCRT o andC2 are both 5. Hence, we know that the WCRT of
task 3 is at mostR} + R3 + 53— 5+ 5+ 5= 15.

The idea of the above test is based on a safe but rather pessimistic approach where
each computation segment of tagkalways suffers from the worst-case interference.
However, it may not be possible to construct such worst-case interference for every
computation segment of a job of tagksince the release patterns of the higher pri-
ority tasks are also constrained by their temporal properties, shown in the following
example:

Example 3Consider the same task set presented in Exagipyedecreasings from 5
to 1. This analysis still considers that both computation segments suffer from the worst-
case interference from the two higher-priority tasks. It then retE?éns R% + S =
5+ 5+ 1 = 11 as the (upper bound on the) worst-case response timg okt
the suspension-oblivious approach discussed in 8ekctlshows that the worst-case
response time of is at most 9. The reason why considerRig+ R3+ Ssis pessimistic
is that a job of task, under such an analysis, is considered to interfere with both the
prst and the second computation segments of a job of taskowever, a job of task

2 can only interfere with one of the two segments of a job of task any possible
release patterns.

This strategy is not widely used alone, but can be used as part of hybrid approaches,
explained as follows.

1 It was not explicitly explained in Palencia and Harbal®98 how to model the task under analysis. Our
interpretation was based on the conditions in Egs. (36) and (37) in Palencia and HAGR8ur (
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4.1.3 Hybrid approaches

Both methods discussed in Seatsl.1and4.1.2have their pros and cons. Thant

(i.e., suspension-obliviojsapproach has the advantage of respecting the minimum
inter-arrival times (or periods) of the higher-priority tasks during the schedulability
analysis of k. However, it has the disadvantage of assuming that the task under analysis
can be delayed by preemptions during suspension intervals since they are treated as
computation intervals. This renders the analytical pessimism as it accounts for non-
existing interference. Theplit approach does not assume preemptible suspension
intervals but considers a worst-case response time for each computation segment
independently. Yet, the respective release patterns of interfering tasks leading to the
worst-case response time of each computation segment may not be compatible with
each other.

As shown with the above examples, the joint and split approaches are not compa-
rable in the sense that none of them dominates the other. Yet, since both provide an
upper bound on the worst-case response timg,aine can simply take the minimum
response time value obtained with any of them. However, as proposed in (2@e0sas
Chapter 5.4) and Huang and Ch@01{5h, it is also possible to combine their respec-
tive advantages and hence reduce the overall pessimism of the analysis. The technique
proposed in Bletsa2007, for tasks of thesegmentednodel, consists in dividing
the self-suspending task (that is under analysis) into several blocks of consecutive
computation segments. The suspension intervals between computation segments per-
taining to the same block are modeled as execution time like in the OjointO approach.
The suspension intervals situated between blocks are OsplitO. The worst-case response
time is then computed for each block independently s WCRT is upper-bounded
by the sum of the blockOs WCRTs added to the length of the split suspension intervals.
This provides a tighter bound on the WCRT, especially if we consider all possible
block sequence decompositions @f which has exponential-time complexity.

4.1.4 Exact schedulability analysis

As already mentioned in Se@.1.1, under bxed-priority scheduling, the suspension-
oblivious approach is an exact analysis for dynamic self-suspending tasks assuming
that there is only one self-suspending tagland all the interfering tasks do not self-
suspend. There is no work providing an exact schedulability analysis for any other
cases under the dynamic self-suspending task model.

The problem of the schedulability analysis of segmented self-suspending tasks has
been treated in Lakshmanan and Rajkun28¥1() and Nelissen et al2015, again
assuming only one self-suspending tagkThe proposed solutions are based on the
notion of the critical instant. That is, they aim to bnd an instant at which, considering
the state of the system, an execution requestavill generate the largest response
time. Unfortunately, the analysis in Lakshmanan and Rajkugtdr@ has been proven
to be Rawed in Nelissen et aR{15. Further details are provided in Sebt3. It has

2 In Nelissen et al.2015 Sections IV and V) and Lakshmanan and Rajkun2&1Q Section IlI), the
higher-priority tasks are assumed to be ordinary sporadic real-time tasks without any self-suspension.
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been recently shown by Che2(16 that the schedulability analysis for FP scheduling
(even with only one segmented self-suspending task as the lowest-priority task) is
coN P -hard in the strong sense when there are at least two self-suspension intervals
in task .

4.2 Modeling the interfering tasks

After presenting how to model the interfered self-suspending task, i.e. iask will
summarize the existing analyses for modeling the interfering tasks. For analyzing the
interfering tasks in the dynamic self-suspending task model, we classify the existing
approaches into

b suspension-oblivious analysis in Sdc?.1,

b interference analysis based on carry-in jobs in Se212

b interference analysis based on release jitter in 8&c8

b modeling self-suspensions as blocking in S&et4 and

b unifying interference analysis based on more precise jitter in &2c5.

Since the dynamic self-suspending task model is more general than the segmented
self-suspending task model, any schedulability analysis and scheduling algorithms
that can be used for the dynamic self-suspending task model can also be applied to
the segmented self-suspending task model. However, ignoring the known segmented
suspension structures can also be too pessimistic, as explained ir8.S&kt.will

explain in Sect4.2.6how to account for the workload from the interfering tasks more
precisely by exploiting the segmented self-suspension structure.

4.2.1 Suspension-oblivious analysis

Similarly to the task under analysis, the simplest modeling strategy for the interfering
tasks is the suspension-oblivious approach, which converts all the suspension times
of those tasks into computation times. Each tasks thus modeled by a non-self-
suspending task = (C;, Dj, Ti) witha WCETC, = C; + §. After that conversion,

the interfering tasks therefore become a set of ordinary non-self-suspending sporadic
real-time tasks. Although the simplest, it is also the most pessimistic approach. This
is commonly used as the baseline of the analysis, for example, Liu and Anderson
(2013 and Brandenburg2011J). It indeed considers that the suspension intervals of
each interfering task; are causing interference on the tagkunder analysis. Yet,
suspension intervals truly model durations during whiclstops executing on the
processor and hence cannot prevent the executiop of any other lower-priority

job.

4.2.2 Modeling self-suspensions with carry-in jobs
If all the higher-priority jobs/tasks are ordinary sporadic jobs/tasks without any self-

suspensions, then the maximum number of interfering jobs that can be released by
an interfering (ordinary) sporadic taskin a window of lengtht, is upper bounded
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by % in bxed-priority scheduling. The interfering workload is then bounded by

© hp(k) TL. C; for bxed priority scheduling. This assumes that each interfering

job asks for the processor as soon as it is released, thereby preventing thetacér
analysis from executing.
With self-suspending tasks however, tbemputation segmerdf an interfering
job may not require an immediate access to the processor as it can be delayed by its
suspension intervals. Hence, a job of taskeleased before the release of a job of task
k may have all its execution timg; delayed by its suspension intervals to entirely
interfere with . This is clearly visible on the example schedule of Rlg.when ; is
the task under analysis. Such a job pfe.g., second job of task in Fig. 1b), which
is released before the job of under analysis, but interfering with the execution of
k, Is called acarry-in job.
In the worst case, each interfering tagkeleases one carry-in job (assuming that
they all respect their deadlines and tliat  T;). This extra-workload, which can
be up toC;, has been integrated in the schedulability test for self-suspending tasks in
Huang et al. 2015 and Liu and Chen2014) (see Table4 and2) by greedily adding
one interfering job to the interfering workload released by each task

4.2.3 Modeling self-suspensions as release jitter

A more accurate way to model the phenomena described above is to use the concept of
release jitter e.g., in Nelissen et al2015, Bletsas et al.018, Huang et al.Z015),
Rajkumar (991, Audsley and Bletsa2004ab), and Kim et al. {9995. It basically
considers that the computation segments of each {aate not released in a purely
periodic manner but are instead subject to release jitter. Hence the brst interfering
job of j may have its computation segment pushed as far as possible from the actual
release of the job due to its suspension behavior, while all the jobs released afterward
may directly start with their computation segments and never self-suspend (see task
1 in Fig. 1 for a simple example or task in Fig. 3in Sect.5 for a more complicated

example). Let); denote that jitter on; Os computation segment release. It was proven
in Nelissen et al.Z015 and Bletsas et al2018 thatJ; is upper-bounded b S C;
whereR; is the WCRT of ;. If an optimal priority assignment must be computed for a
pxed-priority task set using AudsleyOs optimal priority assignment algorithm (Audsley
1997), one can pessimistically assume tlais equal toD; S C; (Huang et al2015
Rajkumarl99]) as long as all the interfering tasks, i.e.; hp(k) in bxed-priority
scheduling, are schedulable, i.B;, D;.

By adopting the suspension-oblivious modeling in Sédt.1for task g in a bxed-
priority task set under the dynamic self-suspension model, the WCR{J isfupper
bounded by the least non-negative vaRie Dy such that

Rq+ J

Rc= Ck+ &+ T

Ci
i hp(k)

The calculation oRy can be done by using the standard bxed-point method by search-
ing the value ofRy iteratively.
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Fig. 3 A counterexample for the response time analysis based oy (sing the task set in Table
a An illustrative schedule based on Ed).(b Another case with larger response time than that from the
schedule based on Edf)(

Example 4Consider the bxed-priority task set presented in Tdble this case, 1 is
the highest-priority task and does not self-suspend. Therefore, its WORT=HSCy
andJ; = Ry S C; = 0. However, the jitterd, is upper bounded b, S C, = 15.
The WCRT of task 3 is thus upper bounded by the minimurdarger than 0 such that

2
t+ Ji t t+ 15
t = C3+ —-l Ci:1+ — 1+

5.
T 2 20

The above equality holds when= 22. Therefore, the WCRT of taslk is upper
bounded by 22.

Note that several solutions proposed in the literature (Audsley and BR8dgb;
Kim et al. 1995 for modeling the self-suspending behavior of the interfering tasks as
release jitter, are Rawed. Those analyses usually assumi taat be upper-bounded
by the total self-suspension tingof ;. This is usually wrong. A detailed discussion
on this matter is provided in Se&.1

Moreover, we should also note that such a treatment is only valid for analyzing the
worst-case response time for tagkunder the assumption th& is converted into
computation, i.eC, = Cx+ . If the analysis considers self-suspending behavior of
task g, such a combination in the analysis can be incorrect. For example, in Sect. VI
of Nelissen et al.Z015), the higher-priority segmented self-suspending tasks are con-
verted into ordinary sporadic tasks with jitters but the suspension time of the task
under analysis is not converted into computation. We will discuss this misconception
in Sect.5.6.
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Table 4 A dynamic

self-suspending task set used in G S : :
Examplest and5 for illu_strating 1 1 0 2 2
the methods by modelling

suspensions as release jitter and 2 5 20 20
blocking 3 1 0 50

4.2.4 Modeling self-suspensions as blocking

In her book (Liu200Q pp. 164D165), Jane W.S. Liu proposed an approach to quantify
the interference of higher-priority tasks by setting up the Oblocking timeO induced
by the self-suspensions of the interfering tasks on the taskder analysis. This
solution, limited to bxed-priority scheduling policies, considers that a job of task

can suffer an extra delay on its completion due to the self-suspending behavior of each
task involved in its response time. This delay, denote@hyis upper bounded by

Bk = S+ bi
i hp(k)

where (i) S accounts for the contribution of the suspension intervals of the fask
under analysis in a similar manner to what has already been discussed id.$4ct.

and (ii)b; = min(C;, §) accounts for the contribution of each higher-priority task

in hp(k). This equivalent Oblocking tim@&@can then be used to perform a utilization-
based schedulability test. For instance, using the linear-time utilization test by Liu and
Layland (1973 and assuming that the tasks are indexed by the rate monotonic (RM)
policy, the condition

@J, U k2c81
K i hp(k)

is a sufpcient schedulability test for implicit-deadline task systems.
This blocking time can also be integrated in the WCRT analysis for bxed-priority
scheduling. The WCRT ofy is then given by the least non-negative vaRie Dy
such that
R«

Rc= Be+ Ck + T G
i hpk)
Note that even though (Li2000 discusses the intuition behind this modeling strat-

egy, it does not provide any actual proof of its correctness. However, the correctness
of that approach has been proven in Chen et28l16hc).

3 Itis in fact not clear why suspension induces blocking. Chen eRallg) noted that OEven though

the authors in this paper are able to provide a proof to support the correctness, the authors are not able to
provide any rationale behind this method which treats suspension time as blocking time.O Here, we still use
the original wording introduced by Jane Liu for consistency with the existing literature.
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Example 5Consider the task set presented in Tabte illustrate the above analysis.
In this caseb; = 0 andby = 5. ThereforeBs = 5. So, the worst-case response time
of task 3 is upper bounded by the minimutarger than 0 such that

2

t t
t= B3+ C3+ — G =6+ - 1+ — 5
3 3 - T i 2 20

This equality holds wheh = 32. Therefore, the WCRT of task is upper bounded
by 32.

Devi (in Theorem 8 in DeviZ003, Section 4.5) extended the above analysis to
EDF scheduling. However, there is no proof to support the correctness at this moment.

4.2.5 A unifying analysis framework

Suppose that all taskg for 1 i kS 1 are schedulable under the given bxed-
priority scheduling, (i.,e.R  D;j T).InChenetal.Z0169, a unifying framework

that dominates the other existing schedulability tests and response time analyses for
task k in a dynamic self-suspending task system under bxed-priority scheduling was
proposed. The analysis in Chen et @0169 is valid for any arbitrary vector assign-
mentx = (X1, X2, ..., Xk§1), in which x; is either 0 or 1. The framework quantibes

the release jitter of task in the following manner:

b Ifx; is 1 for task j, then the release jitter of taskis '-‘Lfil(sj X Xj).

D Ifx; is O for task i, then the release jitter of taskis ( 'j‘fil(Sj x i)+ R S Ci.
For any given vector assignmextthe worst-case response tirRg of g is upper
bounded by the least non-negattive Dy Tk such that

KS1 g4 ( ‘jﬁfil(sj x X))+ (1S %)(R S C)
Ti

G t (3)

Ck+ S+
i=1

Example 6Consider the task set presented in Tabl8y using the same analysis as

in Example4, Ry = 9andR, = 15since # 13%2 4= 15 There are four possible

vector assignments for testing the schedulability of tasks. The corresponding
procedure to use these four vector assignments can be found inéT&ase 1 is the
same as the analysis in Se¢t2.3whenJ; = R; S CyandJ, = R, S Cp. Among
the above four cases, the tests in Cases 2 and 4 are the tightest.

The reason for the correctness of the release jitter in ds pased on a careful
revision of the critical instant theorem to include the self-suspension time into the
window of interest. The dominance over the other existing (correct) schedulability
tests and response time analyses was also demonstrated in Cher261.64d. (To
obtain the tightest (but not necessarily exact) worst-case response time of task
their framework, we should consider all th&2 possible combinations af implying
exponential time complexity. The complexity can also be reduced by using a linear
approximation of the test in Eg3)to derive a good vector assignment in linear time.
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Table 5 A dynamic
self-suspending task set used in G S : !
Example6, originally presented 4 5 10 10
in Chen et al. 20169
6 1 19 19
3 4 0 50 50

Table 6 Detailed procedure for deriving the upper boundRaf with Ry S C; = 5andR, S C, = 9

X Condition of Eq. 8) Upper bound ofR3
Case 110, 0) 4+ t+1055 4+ t+i)gg 6 t 42
Case 210, 1) 4+ W5 4. 4140 g 32
Case 3(1,0) 4+ 1+15+0 4+ t+f+9 6 t 42
Case 411, 1) 4+ t+{350 4+ t+11g0 6 t 32

4.2.6 Improving the modeling of segmented self-suspending tasks

In thesegmented self-suspending task mogelcan simply ignore the segmentation
structure of computation segments and suspension intervals and directly apply all
the strategies for dynamic self-suspending task models. However, the analysis can
become too pessimistic. This is due to the fact that the segmented suspensions are not
completely dynamic.

Characterizing the worst-case suspending patterns of the higher-priority tasks to
quantify the interference under the segmented self-suspending task model is not easy.
Modelling the interference by a job of a self-suspending taak multiple per-segment
OchunksO, spaced apart in time by the respective self-suspension intervals in-between,
is potentially more accurate than modelling it as a contiguous computation segment
of C; units. However, the worst-case release offset afi hp(k), relative to the task

k under analysis, to maximize the interference needs to be identibed.

To deal with this, in Bletsas and Audslef005 the computation segments and
self-suspension intervals of each interfering task are reordered to create a pattern that
dominates all such possible task release offsets. The computational segments of the
interfering task are modelled as distinct tasks arriving at an offset to each other and
sharing a period and arrival jitter. However, we will explain in Sé&c® why the
quantibcation of the interference in Bletsas and Auds2€99 is incorrect.

Another possibility is to characterize the worst-case interference in the carry-in
job of a higher-priority task; by analyzing its self-suspending pattern, as presented
in Huang and Cher2Q158. This approach does examine the different possible task
release offsets and can also be used for response time analysis compatible with Auds-
leyOs optimal priority algorithm (Audsl&991). Palencia and Harbout998 provided
another technique for modelling the interference of segmented interfering tasks, albeit
in the context of multiprocessors. In their approach, the best-case and worst-case
response times of a computation segment are brst analyzed, and then the gap between
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these two response times is used as the release jitter of a computation segment. This
is called dynamic offset in Palencia and Harbdl®48.

4.2.7 Remarks on the methods without enforcement

The strategies presented from Sedtd..1to 4.2.6 can be combined together (with
care), as shown in Tabz These strategies are correct in essence, but the detailed
quantibcations and combinations should be done carefully to ensure the correctness
of the resulting analyses. We will present the corresponding misconceptions due to
incorrect quantibcations or combinations in Séct.

4.3 Period enforcement mechanisms

Self-suspension can cause substantial schedulability degradation, because the resulting
non-determinism in the schedule can give rise to unfavourable execution patterns. To
alleviate the potential impact, one possibility is to guarantee periodic behavior by
enforcing the release time of the computation segments. There exist different categories
of such enforcement mechanisms.

4.3.1 Dynamic online period enforcement

Rajkumar (991) proposed @eriod enforceralgorithm to handle the impact of uncer-
tain releases (such as self-suspensions). In a nutshell, the period enforcer algorithm
artibcially increases the length of certain suspengignamically, at run-timgwhen-
ever a taskOs activation pattern carries the risk of inducing undue interference in
lower-priority tasks. Quoting Rajkumat991), the period enforcer algorith@forces
tasks to behave like ideal periodic tasks from the scheduling point of view with no
associated scheduling penaltiesO

The period enforcer has been revisited by Chen and Brandert@)( with the
following three observations:

1. Period enforcement can be a cause of deadline misses for self-suspending task sets
that are otherwise schedulable.

2. With the state-of-the-art techniques, the schedulability analysis of the period
enforcer algorithm requires a task set transformation which is subject to expo-
nential time complexity.

3. The period enforcer algorithm is incompatible with all existing analyses of
suspension-based locking protocols, and can in fact cause ever-increasing sus-
pension times until a deadline is missed.

4.3.2 Static period enforcement

As an alternative to the online period enforcement, one may instead achieve periodicity
in the activation of computation segments and prevent the most unfavorable execution
patterns from arising, by constraining each computation segment to be released at a
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respectivebxed offsefrom its jobOs arrival. These constant offsets are computed and
specibedfine

Suppose that the offset for thigh computation segment of task is |
i

means that th¢th computation segment of taskis released only at timg +
wherer; is the arrival time of a job of taskj. That is, even if the preceding self-
suspension completes befatet i‘, the computation segment under consideration

is never executed earlier. With this static enforcement, each computation segment can

be represented by a sporadic task with a minimum inter-arrival time WCETCiJ ,

and arelative deadling’*'$ g/ (with ™**settoD;). Suppose that the offset
for each computation segment is specibed. This can be observed as a reduction to the
generalized multiframe (GMF) task model introduced in Baruah e18089. A GMF

task G; consisting ofm; frames is characterized by the 3-tul&, D;, T;), where

Ci, Dj, andT; are mj-ary vectors(C0 Cl mISl) of execution requirements,

(DY, DL, ..., m'Sl) of relative deadllnes(TO, T .. m'Sl) of minimum inter-
arrival times, respectively. In fact, from the anaIyS|s perspectlve a self-suspending
task ; under the offset enforcement is equivalent to a GMF taskby considering
the computation segments as the frames with different separation times (Huang and
Chen2018 Ding et al.2009.

Such approaches have been presented in Kim e2@13, Chen and Liu 2014,
Huang and Cher2Q16), and Ding et al.2009. The method in Chen and Li2Q14)
is a simple and greedy solution for implicit-deadline self-suspending task systems
with at most one self-suspension interval per task. It assigns the oﬁsHWays to
Tizs*l and the relative deadline of the brst computation segment of { %S*l
This is the brst method in the literature wgheedup factoguarantees by using the
revised relative deadline for earliest-deadline-prst scheduling. This has been recently
improved in von der BrYggen et a2qQ16 based on a simple strategy, called Shortest
execution interval brst deadline assignment (SEIFDA). That is, the tasks are assigned
relative deadlines according to a greedy order from the small&tS to the largest
T S S. Moreover, approaches based on mixed integer linear programming (MILP)
were also proposed in Peng and Fist281© and von der BrYggen et aR{16. For
more than one self-suspension interval per task, Huang and @86 €howed that
assigning the relative deadline of each of the computation segments of a task equally
also leads to a bounded speedup factor.

If the underlying scheduling algorithm is EDF, then the release enforcement can
also be relaxed. It has been already shown in von der BrYggen20a§ Gnd Chen
and Liu 2014 that releasing itgth frame at the moment when it§ § 1)th self-
suspension interval Pnishes by respecting the original setting of the absolute deadline
of the jth frame does not change the schedulability condition, as the subjobs are
scheduled using EDF.

The methods in Kim et al2013 and Ding et al. 2009 assign each computation
segment a bxed-priority level and an offset. Unfortunately, in Kim et28l19 and
Ding et al. 009, the schedulability tests are not correct, and the mixed-integer linear
programming formulation proposed in Kim et aRO{l3 is unsafe for worst-case
response time guarantees. A detailed discussion on this matter is provided B 5ect.

I This
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4.3.3 Slack enforcement

The slack enforcement in Lakshmanan and Rajku@@t @ intends to create periodic
execution enforcement for self-suspending tasks so that a self-suspending task behaves
like an ideal periodic task. However, as to be discussed in Sek;tthe presented
methods in Lakshmanan and Rajkuni2010 require more rigorous proofs to support

their correctness as the proof of the key lemma of the slack enforcement mechanism
in Lakshmanan and Rajkum&(Q10 is incomplete.

4.4 Multiprocessor scheduling for self-suspending tasks

The schedulability analysis of distributed systems is inherently similar to the schedula-
bility analysis of multiprocessor systems followingartitioned scheduling scheme.

Each task is mapped on one processor and can never migrate to another processor.
Palencia and Harbou 998 extended the worst-case response time analysis for dis-
tributed systems, and hence multiprocessor systems, to segmented self-suspending
tasks. They model the effect of the self-suspension time as release jitter.

The brst suspension-aware worst-case response time analysis for dynamic self-
suspending sporadic tasks assumigdpdal scheduling scheme was presented in Liu
and AndersonZ013. The givenM processors are assumed to be identical and the
jobs can migrate during their execution. The analysis in Liu and Ander2@b3(
is mainly based on the existing results in the literature for global Pxed-priority and
earliest deadline brst scheduling for sporadic task systems without self-suspensions.
The general concept in Liu and Anders@9{3 is to quantify the interference from
the higher-priority tasks by following similar approaches in Baru2®0{), Guan
et al. 009 for task systems without self-suspension. The task that is under analysis
greedily uses suspension as computation, as explained indSkdt.

Unfortunately, the schedulability test provided in Liu and Andersa®il@ for
global bxed-priority scheduling suffers from two errors, which were later Pxed in Liu
and AndersonZ015. Since these two errors are unrelated to any misconception due
to self-suspension, we have decided to present them here and not to include them
in Sect.5. First, the workload bound proposed in Lemma 1 (in Liu and Anderson
2013 is unsafe. It has been acknowledged and corrected in Liu and And@Gbs.(
Secondly, it is optimistic to claim that there are at mbs$S 1 carry-in jobs in the
general case. This Baw has been inherited from an error in previous work Guan et al.
(2009, which was pointed out and further corrected in Sun et28114 and Huang
and ChenZ0153. Therefore, by adopting the analysis from Huang and Cheh%3,
which is consistent with the analysis in Liu and Andersa@13, the problem can
easily be bxed. The reader is referred to Liu and Anderg0ag for further details.

Dong and Liu 2016 explored global earliest-deadline-prst (global EDF) schedul-
ing for dynamic self-suspending tasks. They presented an approach to selectively
convert the self-suspension time of a few tasks into computation and performed the
schedulability tests purely based on the utilization of the computation after conver-
sion. Chen et al.2015 studied global rate-monotonic scheduling in multiprocessor
systems, including dynamic self-suspending tasks. The proposed utilization-based
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Table 7 A set of dynamic

self-suspending tasks for : G S Ti
demonstrating the 0 2
counterexample used for the

incorrect quantibcation of jitter 2 5 D
in Sect.5.1 3 0

schedulability analysis can easily be extended to handle constrained-deadline task
systems and any given bxed-priority assignment.

5 Existing misconceptions in the state of the art

This section explains several misconceptions in some existing results by presenting
concrete examples to demonstrate their overstatements. These examples are con-
structed case by case. Therefore, each misconception will be explained by using one
specibc example.

5.1 Incorrect quantifications of jitter (dynamic self-suspension)

We Prst explain the misconceptions in the literature that quantify the jitter too opti-
mistically for dynamic self-suspending task systems under bxed-priority scheduling.
To calculate the worst-case response time of the tasknder analysis, there have
been several results in the literature, i.e., (Audsley and Bl&8@dab; Kim et al.

1995 Ming 1994, which propose to calculate the worst-case responseRinoé task

k by Pnding the minimuniy with

Rat §

Rc= Ck+ S+ T

G, (4)
i hpk)

where the ternhp(K) is the set of the tasks with higher-priority levels than tasK his
analysis basically assumes that a safe estimat&foan be computed if every higher-
priority task i is modelled as an ordinary sporadic task with worst-case execution time
Ci and release jitte§ . Intuitively, it represents the potential internal jitigithin an
activation of ;, i.e., when its execution timg; is considered by disregarding any time
intervals when; is preempted. However, it is not the real jitter in the general case,
because the execution gfcan be pushed further, as shown in the following example.
Consider the dynamic self-suspending task set presented in Tablhee analysis
in Eq. @) would yield Rz = 12, as illustrated in Fig3a. However, the schedule of
Fig. 3b, which is perfectly legal, disproves the claim ti&t= 12, becauses in that
case has aresponse time of23 time units, where is an arbitrarily small quantity.
ConsequenceSince the results in Audsley and Bletsa®(@4g, Audsley and Blet-
sas 2004h, Kim et al. 1995, and Ming (L9949 are fully based on the analysis in
Eq. @), the above unsafe example disproves the correctness of their analyses. The
source of error comes from a wrong interpretation by Mih§949 with respect to
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a paper by Audsley et al1993.% Audsley et al. {993 explained that deferrable
executions may result in arrival jitter and the jitter terms should be accounted while
analyzing the worst-case response time. However, MIrg94) interpreted that the
jitter is the self-suspension time, which was not originally provided in Audsley et al.
(1993. Therefore, there was no proof of the correctness of the methods used in Ming
(19949). The concept was adopted by Kim et d1905.

This misconception spread further when it was propagated by Lakshmanan et al.
(2009 in their derivation of worst-case response time bounds for partitioned mul-
tiprocessor real-time locking protocols, which in turn was reused in several later
works (Zeng and di Natal2011, Brandenburg2013 Yang et al.2013 Kim et al.

2014 Han et al.2014 Carminati et al2014 Yang et al.2014. We explain the con-
sequences and how to correct the later analyses in &Gect.

Moreover this counterexample also invalidates the comparison in Ridouard and
Richard @006, which compares the schedulability tests from Kim et 8095 and
Liu (200Q pp. 164D165), since the result derived from Kim etE9§ is unsafe.

Independently, Audsley and Blets@904ab) used the same methods in 2004 from
different perspectives. A report that explains in greater detail how to correct this issue
has been bled by Bletsas et &018.

Solutionsltis explained and proved in Huang et @05 and Bletsas et al2018
that the worst-case response time of tasks bounded by the minimurRy with

+Di S G
Rc= Cx+ S+ % Ci, (5)
i hp(k) !

for constrained-deadlintask systems under the assumption that every higher-priority
task ; in hp(k) can meet their relative deadline constraint. It is also safe to use

m instead of m in the above equation R D;  Ti.

5.2 Incorrect quantifications of jitter (segmented self-suspension)

We now explain a misconception in the literature regarding an optimistic quantibcation
of the jitter of segmented self-suspending task systems under bxed-priority scheduling.
For the purpose of bounding the interference from a segmented self-suspending
task, the analysis in Bletsas and Audsl2@@5 reorders the computation segments
and the self-suspension intervals such that the computation segments appear with
decreasing (upper-bounded) execution times and the suspension intervals appear with
increasing (lower-bounded) suspension times. Among the self-suspension intervals,
a OnotionalO self-suspension corresponding to the interval between the completion
time of a job of task; and the arrival time of the next job of task is included.
The purpose of this reordering step is to avoid having to consider different release
offsets for each interfering task (corresponding to its computational segments).
Using the following example of an implicit-deadline segmented self-suspending task,

4 The technical report of Audsley et all993 is referred to in Ming 1{994). Here we refer to the journal
version.
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Table 8 A set of segmented
self-suspending tasks for
demonstrating the (2,0,0) 5 5

i (ct st.c? D T

misconception of the incorrect 1

quantipcation of jitter in 2 (2,0,0) 10 10

Sect.5.2 3 (14,5,1) 15 15
4 (3,0,0) ?
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Fig. 4 A schedule for demonstrating the misconception of the analysis in Bletsas and A&y fy
using the task set in Tab&

with deterministic segment execution times and self-suspension lengths, for conve-
nience: Let(Cl, §t,C2 %, C% = (1,5,4,3,2), Ti = 40, andR = 25. The
notional gap is§3 = 40S 25 = 15. After reordering, the parameters become
(ct s c? $¢c3 s =(4325115).

In Bletsas 2007, an error in the quantibcation of the notional gap was already iden-
tiped and bxed. However, there remains an error in the specibed jitter term, designed
to capture the variability in the start times of the computation segments, relative to
the job release. In Bletsas and Audsl@p@5 it was incorrectly argued that it is
safe to only consider the variability in the lengths of preceding computation segments
and self-suspension intervals. In the worst case though, one should also consider the
variability resulting from interference by tasks with higher priorities.

Instead of going into the detailed mathematical formulations, we will demonstrate
the misconception with the following example in TalBlewhich has only one self-
suspending tasks and there is no variation between the worst-case and the actual-
case execution/suspension times. In this specibc example, reordering has no effect.
The analysis in Bletsas and Audsle2005 can be imagined as replacing the self-
suspending tasks with a sporadic task without any jitter or self-suspension, with
C3 = 2 andD3 = T3 = 15. Therefore, the analysis in Bletsas and Audsig0§
concludes that the worst-case response time of task at most 15 sinc&, +

2, P Ci=3+6+4+2=15

However, the perfectly legal schedule in Hglisproves this. In that schedulg,

2, and s arrive att = 0 and a job of 4 arrives att = 40 and has a response time of
18 time units.

Consequencedhis example shows that the analysis in Bletsas and Aud2685

is Bawed. A bx has been bled in Bletsas et2018.
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Solutions When attempting to bx the error in the jitter quantibcation, there is no
simple way to exploit the additional information provided by the segmented self-
suspending task model. However, quantifying the jitter of a self-suspending;task
with D; S Cj (or R S Cj) as in Sect5.1remains safe for constrained-deadline task
systems since the dynamic self-suspension pattern is more general than a segmented
self-suspension pattern.

5.3 Incorrect assumptions regarding the critical instant

Over the years, it has been well accepted that the characterization of the critical instant
for self-suspending tasks is a complex problem. The complexity of verifying the exis-
tence of a feasible schedule for segmented self-suspending tasks has been proven to be
N P -hard in the strong sense (Ridouard et2l04). For segmented self-suspending
tasks with constrained deadlines under bxed-priority scheduling, the complexity of
verifying the schedulability of a task set has been left open until a recent proof of its
coN P -hardness in the strong sense by Ch2dil@ and Mohaqgeqi et al.2016 in
2016 (see Sech).

Before that, Lakshmanan and Rajkumaf10 proposed a worst-case response
time analysis for a one-segmented self-suspending tagkith one self-suspension
interval) with pseudo-polynomial time complexity assuming that

b the scheduling algorithm is bxed-priority;
b  is the lowest-priority task; and
b all the higher-priority tasks are sporadic and non-self-suspending.

The analysis, presented in Lakshmanan and Rajkutd{, is based on the notion

of a critical instant, i.e., an instant at which, considering the state of the system, an
execution request forg will generate the largest response time. This critical instant
was debned as follows:

b every task releases a job simultaneously with

b the jobs of higher-priority tasks that are eligible to be released during the self-
suspension interval of are delayed to be aligned with the release of the subsequent
computation segment of; and

b all the remaining jobs of the higher-priority tasks are released with their minimum
inter-arrival time.

This depPnition of the critical instant is similar to the depPnition of the critical instant
of a non-self-suspending task. Specibcally, it is based on the two intuitionsithat
suffers the worst-case interference when (i) all higher-priority tasks release their prst
jobs simultaneously withx and (ii) they all release as many jobs as possible in each
computation segment ofi. Although intuitively appealing, we provide examples
showing that both statements are wrong. The examples provided below brst appeared
in Nelissen et al.Z015.

5.3.1 A counterexample to the synchronous release

Consider three implicit deadline tasks with the parameters presented in9rdtde
us assume that the priorities of the tasks are assigned using the rate monotonic policy
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Table 9 A set of segmented 1 ol ~2 -
self-suspending tasks for (G S C) Di = Ti
demonstrating the

misconception of the 1 (1,0,0) 4
synchronous release of all tasks 2 (1,0,0) 50

in Sect.5.3 3 1,2,3) 100

(i.e., the smaller the period, the higher the priority). We are interested in computing the
worst-case response time @f Following the dePnition of the critical instant presented
in Lakshmanan and Rajkuma&(q10), all three tasks must release a job synchronously
attime 0. Using the standard response-time analysis for non-self-suspending tasks, we
get that the worst-case response time of the brst computation segmerns equal
to R% = 3. Because the second job aof would be released in the self-suspension
interval of 3if 1 was strictly respecting its minimum inter-arrival time, the release
of the second job of; is delayed so as to coincide with the release of the second
computation segment of (see Fig5a). Considering the fact that the second job of

2 cannot be released before time instant 50 and hence does not interfere with the
execution of 3, the response time of the second computation segment isfthus
equal toR§ = 4. In total, the worst-case response time pfvhen all tasks release a
job synchronously is equal to

Rs = R%+ S\%‘+ R%: 3+ 2+ 4= 0,

Now, consider a job release pattern as shown in Big-Task » does not release
a job synchronously with tasks but with its second computation segment instead.
The response time of the brst computation segmeng @ thus reduced t(R% =
2. However, both 1 and , can now release a job synchronously with the second
computation segment of, for which the response time is now equaIFt§ = 6 (see
Fig. 5b). Thus, the total response time @fin a scenario where not all higher-priority
tasks release a job synchronously wighs equal to

Rs= Ri+ S+ RE= 2+ 2+ 6= 10.

Consequencd he synchronous release of all tasks does not necessarily generate the
maximum interference for the self-suspending taséind is thus not always a critical
instant for . It was however proven in Nelissen et &0(5 that in the critical instant
of a self-suspending task, every higher-priority task releases a job synchronously
with the arrival of at least one computation segmentebut not all higher-priority
tasks must release a job synchronously with the same computation segment.

5.3.2 A counterexample to the minimum inter-release time
Consider a task set of 4 tasks, 2, 3, 4 in which 1, 2 and 3 are non-self-

suspending sporadic tasks ands a self-suspending task with the lowest priority. The
tasks have the parameters provided in TalfleThe worst-case response time gfs
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@) (b)

Fig. 5 A counterexample to demonstrate the misconception of the synchronous release of all tasks in
Sect5.3based on the task set in TaBlea Release jobs synchronoudhyDo not release jobs synchronously

Table 10 A set of segmented

1 2 .
self-suspending tasks used to (G §.¢0 Di = Ti
de_monstratg that it isa 1 (4,0,0) 8
misconception to believe that
releasing interfering jobs as 2 (1,0,0) 10
early and often as possible yields 3 (1,0,0) 17
a worst-case scenario, as 4 (265, 2, 6) 1000

discussed in Seck.3

obtained when; releases a job synchronously with the second computation segment
of 4 while 2 and 3 must release a job synchronously with the prst computation
segment of 4.

Consider two scenarios with respect to the job release pattern. Scéniaria
result of the proposed critical instant, in which the jobs of the higher-priority non-
self-suspending tasks are released as early and often as possible to interfere with each
computation segment ofy. In Scenaria2, one less job of task; is released before
the brst computation segment of the self-suspending task Pnishes. We show that the
WCRT of 4 is higher in the second scenario.

Scenaridl is depicted in Figéa, and Scenarid in Fig. 6b. The brst 765 time units
are omitted in both bgures. In both scenarios, the schedules of the jobs are identical in
this initial time window. The brstjobs of, 2, and 3 are released synchronously with
the arrival of the Prst computation segmentpdttime 0. The subsequent jobs of these
three tasks are released as early and often as possible respecting the minimum inter-
arrival times of the respective tasks. That is, they are released periodically with periods
T1, T2 andTs, respectively. With this release pattern, it is easy to compute that the 97
job of 1isreleased attime 768, the 78th job efat time 770 and the 46th job of at
time 765. As a consequence, attime 769)as Pnished executing 259 time units of its
Prstexecution segment out of 265 in both scenarios, i.eS 868 4S 77x 1S45x 1 =
259. From time 765 onward, we separately consider Scenhaos 2.

Scenario 1Continuing the release of jobs of the non-self-suspending tasks as early
and often as possible without violating their minimum inter-arrival times, the prst
computation segment of; Pnishes its execution at time 782 as shown in Bay.
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Fig. 6 An example based on the task set in Talfshowing that releasing higher-priority jobs as early and
often as possible to interfere with each computation segment of tasky not always cause the maximum
interference on a self-suspending taakScenariol. Jobs are released as early and often as possible to
interfere with each computation segment of tagkb Scenarid?. Jobs are not released as early and often
as possible

After completion of its brst computation segmentself-suspends for two time units
until time 784. As 3 would have released a job within the self-suspension interval, we
delay the release of that job from time 782 to 784 in order to maximize the interference
exerted by 3 on the second computation segmentoés shown in Figéa. Note that,

in order to respect its minimum inter-arrival time,has an offset of 6 time units with

the arrival of the second computation segmentfUpon following the rest of the
schedule, it can easily be seen that the jobsdbnishes its execution at time 800.

Scenario 2As shown in Fig6b, the release of a job of taskis skipped attime 776 in

comparison to Scenarib As a result, the execution of the brst computation segment

of 4iscompleted attime 777, thereby causing one jolpdhat was released at time

780 in Scenaridl, to not be released during the execution of the brst computation

segment of 4. The response time of the brst computation segmentisthus reduced

by C; + C2 = 5 time units in comparison to Scenarlo(see Fig.6a). Note that

this deviation from Scenarié does not affect the fact thag still releases a job

synchronously with the second computation segmeni.dfhe next job of 3 however,

is not released in the suspension interval anymore but 3 time units after the arrival of
40s second computation segment. Moreover, the offsgtith respect to the start

of the second computation segment is reduce@py C, = 5 time units. This causes

an extra job of , to be released in the second computation segmeny, @gfitiating a
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Table 11 A set of segmented

self-suspending tasEs for (Cil’ Sl’ciz) Di = Ti
demonstrating the

misconception to reduce the (LD 4+ 10
interference by exploiting the 2 (2+2,0,0 6
highest-priority self-suspension 3 (2+2,0,0) 6

time in Sect5.4, where

0< 0.1

cascade effect: an extra job afis released in the second computation segment at time
795, which in turn causes the release of an extra jolpitself causing the arrival

of one more job of 2. Consequently, the response time of the second computation
segment increases i@y + C; + C3+ Cy = 7 time units. Overall, the response time
of 4increases by 5= 2 time units in comparison to ScenafioThis is reRected

in Fig. 6b as the job of 4 Pnishes its execution at time 802.

ConsequenceThis counterexample proves that the response time of a self-
suspending task can be larger when the taskship(k) do not release jobs as early
and often as possible to interfere with each computation segment ofitask

Solution The problem of debning the critical instant remains open even for the
special case where only the lowest-priority task is self-suspending. Nelissen et al.
propose a limited solution in Nelissen et &0(5 based on an exhaustive search with
exponential time complexity.

5.4 Counting highest-priority self-suspension time to reduce the interference

We now present a misconception which exploits the self-suspension time of the
highest-priority task to reduce its interference to the lower-priority sporadic tasks.
We consider bxed-priority preemptive schedulingrfeelf-suspending sporadic real-
time tasks on a single processor, in whighs the highest-priority task and, is the
lowest-priority task. Let us consider the simplest setting of such a case:

b there is only one self-suspending task with the highest priority, i,e.,

b the self-suspension time is bxed, i.e., early return of self-suspension has to be
controlled by the scheduler, and

b the actual execution time of the self-suspending task is always equal to its worst-
case execution time.

Denote this task set asis [as also used in Kim et al.2013]. Since 1 is the
highest-priority task, its execution behavior is static under the above assumptions.
The misconception here is to identify the critical instant [Theorem 2 in Kim et al.
(2013)] as follows: Oa critical instant occurs when all the tasks are released at the same
timeifCi1+ SS<C TiSC;SSfori {i]i ZzZ*andl<i n}issatisbed.O
This observation leads to a wrong implication that causes the self-suspension time
(if it is long enough) toreducethe computation demand of for interfering with
lower-priority tasks.

Counterexample to Theorem 2 kim et al. 2013 Let be a positive and very
small number, i.e., & 0.1. Consider the three tasks listed in Tahle By the
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Fig. 7 A counterexample presented in Seg# for demonstrating the misconception on the synchronous

release used in Theorem 2 in Kim et 8003, based on the task set in Tallé. a Release jobs syn-
chronouslyb Do not release jobs synchronously

setting, 2+ = C1+ S <C=2+2 TiSC1SS=2+9 fori=23.The
above claim states that the worst case is to release all the three tasks together at time 0
(as shown in Fig7a). The analysis shows that the response time of tagkat most
5+ 6 . However, if we release task at time 0 and release taskand task 3 at time
1+ (as shown in Fig7b), the response time of the brst job of tagks 6+ 5 .

This misconception also leads to a wrong statement in Theorem 3 in Kim et al.
(2013:

Theorem 3 irkKim et al. 2013 For a taskset 15 with implicit deadlines, 15 is
schedulable if the total utilization of the taskset is less than or equ#| 2o+

2) RS 1) S , wheren is the number of tasks inis, and is the ratio ofS;
1 -
to Ty and lies in the range of 0 ton2T S 1.

Counter example of Theorem 3im et al. 2013 Suppose that the self-suspending
task 1 has two computation segments, Wit = C1S ,C#= ,andS; = Sl > 0
with very small 0< C%. For such an example, it is obvious that this self-
suspending highest-priority task is like an ordinary sporadic task, i.e., self-suspension
does not matter. In this counterexample, the utilization bound is still Liu and Layland
boundn(Z% S 1) (Liu and Layland1973, regardless of the ratio &/ T1.

The source of the error of Theorem 3 in Kim et &013 is due to its Theorem 2
and the footnote 4 in Kim et al2013, which claims that the case in Fig.in Kim
et al. @013 is the worst case. This statement is incorrect and can be disproved with
the above counterexample.

Consequence§heorems 2 and 3 in Kim et aRQ13 are Rawed.

Solutions The three assumptions, i.e., one highest-priority segmented self-
suspending task, controlled suspension behavior, and controlled execution time in
Kim et al. 2013 actually imply that the self-suspending behavior of taskan be
modeled as several sporadic tasks with the same minimum inter-arrival time. More
precisely, there is no need to consider self-suspension of tablat we have to effec-
tively consider each computation segment as a highest-priority sporadic task during
the response time analysis. When tite computation segment of task starts its
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execution at time, the earliest time for this computation segment to be executed again
in the next job of task; is at least + Tj.

Therefore, a constrained-deadline tagkcan be feasibly scheduled by the bxed-
priority scheduling strategy €1+ S Diandfor2 k n

O0<t Dy, Cy + T C t. (6)
i=1 !

A version of Kim et al. 2013 correcting the problems mentioned in this section
can be found in Kim et al.2016.

5.5 Incorrect analysis of segmented fixed-priority scheduling with periodic
enforcement

We now introduce misconceptions that may happen due to periodic enforcement if it
is not carefully adopted for segmented self-suspending task systems. As mentioned in
Sect.4.3.2 we can set a constant offset to constrain the release time of a computation
segment. If this offset is given, each computation segment behaves like a standard
sporadic (or periodic) task. Therefore, the schedulability test for sporadic task systems
can be directly applied. Since the offsets of two computation segments of a task may
be different, one may want to assign each computation segnfer@dxprioritylevel.
However, this has to be carefully handled.

Consider the example listed in Taldl2 Suppose that the offset of the computation
segmenCZ1 is 0 and the offset of the computation segn{éfnts 10. This setting creates
three sporadic tasks. Suppose that the segmented bxed priority assignmen(aﬁsigns
the highest priority an@% the lowest priority. It should be clear that the worst-case
response time of the computation segn@%ﬂis 5 and the worst-case response time
of the computation segme@ is 15. We focus on the WCRT analysis@f.

Since the two computation segments of taslshould not have any overlap, one
may think that during the analysis of the worst-case response time of the computation
segmentZ, we do not have to consider the computation seglﬁéml’he worst-case
response time of the computation segm@ﬁt(after its constant offset 10) for this
case is 26 sinceg—g Ci+ C% = 26. Since 26- 10< 40, one may conclude that this
enforcement results in a feasible schedule. This analysis is adopted in Section IV in
Kim et al. 2013 and Section 3 in Ding et al2009.

Unfortunately, this analysis is incorrect. Fig@@rovides a concrete schedule, in
which the response time of the computation segrﬁ)%ris larger than 30, which leads
to a deadline miss.

Consequenceghe priority assignment algorithms in Kim et 2013, Ding et al.

(2009 use the above unsafe schedulability test to verify the priority assignments.
Therefore, their results are Rawed due to the unsafe schedulability test.

Solutions This requires us to revisit the schedulability test of a given segmented
pxed-priority assignment. As discussed in S&@&.2 this can be observed as a reduc-
tion to the generalized multiframe (GMF) task model introduced by Baruah et al.
(1999. However, most of the existing bPxed-priority scheduling results for the GMF
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Table 12 A set of segmented
self-suspending tasEs for (Cil’ Sl’ Ciz) Di = Ti
demonstrating the

misconception in the literature 1 (10,0,0) 30
when analyzing the 2 (5.5 16) 40
schedulability of tasky under

segmented Pxed-priority

scheduling with periodic

enforcement in Sech.5
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Fig. 8 A schedule to release the two tasks in Takifesimultaneously. Task, in this schedule has longer
worst-case response time than the incorrect schedulability analysis used in Kim2&1@), Ding et al.
(2009

task model assume a unique priority leper task To the best of our knowledge, the
only results that can be applied for a unique lgvet computation segmeatre the
utilization-based analysis in Chen et &0( 69 and Huang and Che2Q159.

A simple bx can be achieved by classifying the interfering higher-priority com-
putation segments into two types: carry-in and non-carry-in computation segments,
presented in Kim et al2016. When analyzing the response time of a computation
segment, the approach in Kim et @006 pessimistically accounts for one higher-
priority carry-in computation segment per task, due to the assumption that the task
systems are with constrained deadlines and as the higher-priority computation seg-
ments have to meet their deadlines.

5.6 Incorrect conversion of higher priority self-suspending tasks

We now explain a misconception that treats the higher-priority self-suspending tasks by
introducing safe release jitters and analyzes the response time of taskccounting

for the self-suspending behavior explicitly. Consider the example listed in Table
Task 1 obviously meets its deadline. Taskcan be validated to meet its deadline by
using the split approach, i.e. #8812+ 8 = 28. The jitter of task 7 is hence at most

R, S C, = 28S (3+ 3) = 22.

Since % = 1forany0 t 39, we canconclude thatthereis only one active
job of task » in time interval(a, a + 39], in which a job of task 3 arrives at timea.
Theorem 2 in Nelissen et aR@15 exploited the above property and converted task

2 to an ordinary sporadic task, denoted as taskere, with jitter equal to 22 and
worst-case execution time equal te- 3 = 6. By the above discussion, in our setting
in Table13, there is only one job of task, that can interfere with a job of task.
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Table 13 A set of segmented 1 ol ~2 ] .
self-suspending tasks for (G 5.6 Di T
dgmonstrat[ng the' (5,0,0) 10 10
misconception which analyzes

the schedulability of task by 2 (3,123 28 1000
combining the release jitter 3 (3,4,3 35 1000

approach for the higher-priority
interfering tasks and the explicit
self-suspension behavior for the
interfered tasky, presented in
Sect.5.6
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Fig. 9 A schedule that releases the three tasks in TEB&multaneously. It shows that the self-suspension
behavior of task, matters, as explained in Sebt6

Due to this conversion, the interfering job of taghits either the Prst or the second
computation segment of task. In both cases, that computation segment of task
can be Pnished within 19 time units, i.e+ 8+ % x 5= 19. The other segment of
task zthatis notinterfered by the job of taskcan be Pnished within85 = 8 time
units. Therefore, the above analysis concludes that the worst-case response time of
task 3is 19+ S°%+ 8 = 31. However, the perfectly legal schedule in Mglisproves
this. In that schedule, the response time of tasis 36.

Consequenced he analysis in Section VI of Nelissen et &0(5, that accounts
for the self-suspending behavior of explicitly and analyzes the interference from
the higher-priority self-suspending tasks by converting each of them into an ordinary
sporadic task (without self-suspension) with a safe release jitter, is Bawed as shown
in the example.

SolutionsEach computation segment of a higher-priority task should be treated as
an individual sporadic task with jitter. This means that the treatment in Section VI of
Nelissen et al.Z015 remains valid if each computation segment of a higher-priority
task i is converted into an ordinary sporadic task with proper jitter. In our example
here, the segmented self-suspending tasghould be converted into two ordinary
sporadic tasks with proper jitter. This error and appropriate solutions were published
in Nelissen et al.Z017).
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6 Self-suspending tasks in multiprocessor synchronization

In this section, we consider the analysis of self-suspensions that arise due to accesses
to explicitly synchronized shared resources (e.g., shared 1/O devices, message buffers,
or other shared data structures) that are protected with suspension-based locks (e.g.,
binary semaphores) in multiprocessor systems under P-FP scheduling. The self-
suspension time of a task due to lock contention is usually calledriste blocking
time in the literature. This has been used specibcally in @¢otmotivate the impor-
tance of analyzing self-suspension. As semaphores induce self-suspensions, some
of the misconceptions surrounding the analysis of self-suspensions on uniprocessors
unfortunately also spread to the analysis of real-time locking protocols on partitioned
multiprocessors.

In particular, the analysis technique introduced by Lakshmanan 2089 (adopted
the unsafe analysis presented in SBct This technique was later reused in several
other work (Zeng and di Nata)11 Brandenbur@013 Yang et al2013 Kim et al.
2014 Han et al.2014 Carminati et al2014 Yang et al.2014). We show a concrete
counterexample in Sed.2to demonstrate that their schedulability analysis is unsafe.
Fortunately, as we will discuss in Se6t4, there are straightforward solutions based
on the corrected response-time bounds discussed in5g&ct.

We begin with a review of existing analysis strategies for semaphore-induced sus-
pensions on uniprocessors and partitioned multiprocessors.

6.1 Semaphores in uniprocessor systems

Under a suspension-based locking protocol, tasks that are denied access to a shared
resource (i.e., that block on a lock) are suspended. Interestingly, on uniprocessors, the
resulting suspensions amet considered to bself-suspensions and can be accounted
for more efbciently than general self-suspensions.

For example, consider semaphore-induced suspensions as they arise under the clas-
sic priority ceiling protocol(PCP) (Sha et all990. Audsley et al. {993 established
that (in the absence of release jitter and assuming constrained deadlines) the response
time of task k under the PCP is given by the least positiRe Dy that satispes the

following equation:

R¢= Cx+ B+ R Ci, (7)

i hpk) T

where By denotes the maximum duration pfiority inversionSha et al. 1990 due

to blocking, that is, the maximum amount of time that a pending jobcaEmains
suspended while a lower-priority job holds the lock. Notably, Dutert@99 later
conbrmed the correctness of this claim with a formal, machine-checked proof using
the PVS proof assistant.

When comparing Eq.5) for general self-suspensions with Ed) (for self-
suspensions due to semaphores, it is apparent that 7#ds (considerably less
pessimistic since the ceiling term does not inclijeor D; for ;  hp(k). Intu-
itively, this difference is due to the fact that tasks incur blocking due to semaphores
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only if a local lower-priority task holds the resource, i.e., when the local processor is
busy. In contrast, general self-suspensions may overlap with idle intervals.

6.2 Semaphores in partitioned multiprocessor systems

When suspension-based protocols, such asthigprocessor priority ceiling protocol
(MPCP) (Rajkumar1990, are applied under partitioned scheduling, resources are
classibed according to how they are shared: if a resource is shared by two or more
tasks assigned to different processors, then it is callgldizal resourceotherwise it

is called docal resource

Similarly, a job is said to incuremote blockingf it is waiting to acquire a global
resource thatis held by a job on another processor, and it is said tdacalblocking
if it is prevented from being scheduled by a lower-priority task on its local processor
that is holding a resource (either global or local).

Regardless of whether a task incurs local or remote blocking, a waiting task always
suspends until the contested resource becomes available. The resulting task suspension,
however, is analyzed differently depending on whether a local or a remote task is
currently holding the lock.

From the perspective of the local schedule on each processor, remote blocking is
caused by external events (i.e., resource contention due to tasks on the other processors)
and pushes the execution of higher-priority tasks to a later point in time regardless of
the schedule on the local processor (i.e., even if the local processor is idle). Remote
blocking thus may cause additional interference on lower-priority tasks and must be
analyzed as a self-suspension.

In contrast, local blocking takes place only if a local lower-priority task holds the
resource [i.e., if the local processor is busy], just as it is the case with uniprocessor
synchronization protocols like the PCP (Sha e1880. Consequently, local blocking
is accounted for similarly to blocking under the PCP in the uniprocessor case [i.e., as
in Eq. (7)], and not as a general self-suspension [E)]. Since local blocking can
be handled similarly to the uniprocessor case, we focus on remote blocking in the
remainder of this section.

As previously discussed in Sedtl1.], a safe, but pessimistic strategy is to simply
model remote blocking as computation, which is cabedpension-oblivious analy-
sis (Brandenburg and Anders@010. By overestimating the processor demand of
self-suspending, higher-priority tasks, the additional delay due to deferred execution
is implicitly accounted for as part of regular interference analysis. Block e2@G0.7
brst used this strategy in the context of partitioned and glebadiest deadline brst
(EDF) scheduling; Lakshmanan et 2009 also adopted this approach in their anal-
ysis of Ovirtual spinning,0 where tasks suspend when blocked on a lock, but at most
one task per processor may compete for a global lock at any time. However, while
suspension-oblivious analysis is conceptually straightforward, it is also subject to
structural pessimism, and it has been shown that, in pathological cases, any analysis
that inRates task execution times to account for blocking can overestimate response
times by a factor linear in both the number of tasks and the ratio of the longest period
to the shortest period (Wieder and Brandent20§3.
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Table 14 A set of real-time
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A less pessimistic alternative iseaplicitly bound the effects of deferred execution
due to remote blocking, which is calleslispension-aware analys{Brandenburg
and Andersor2010. Inspired by MingOs (Rawed) analysis of self-suspensions (Ming
1994 Lakshmanan et a2009 proposed such a response-time analysis technique that
explicitly accounts for remote blocking. Lakshmanan et al.Os bound (Lakshmanan et al.
2009 was subsequently reused by several authors in

b Zengand diNatalQ1]) (Eqg. 9), Han etal.Z014 (Eqg. 5), and Yang et al2014
(Section 2.5) in the context of the MPCP, and

b Yang et al.Z013 (Eg. 6), Brandenburg2013 (Eqg. 1), Carminati et al.2014
(Egs. 3,12, and 16), and Kim et 22014 (Eq. 6) in the context of other suspension-
based locking protocols.

To state Lakshmanan et al.Os claimed bound, some additional notation is required.
Let By denote an upper bound on the maximum remote blocking that a jok of
incurs, letC, = Cx + By, and letp(k) denote the tasks with lower priority thag.
Furthermore, leP( k) denote the tasks that are assigned to the same procesgor as
let s denote the maximum number of critical sections gfand IetClvj denote an
upper bound on the execution time of thié critical section of .

Assuming constrained-deadline task systems, Lakshmanan et al. (Lakshmanan et al.
2009 claimed that the response time of tagkis bounded by the least non-negative
R« Dy that satisbes the equation

+ Bf
Re= G+ REB Gt (s D max C, . (8)

i hptk) P( k) Ti 1 (k) P( k)

In Eqg. @), the additional interference o due to the lock-induced deferred exe-
cution of higher-priority tasks is supposed to be captured by the terB{() in the

interference bound R";i B -Cj, similarly to the misconception discussed in SBcL.
For completeness, we show with a counterexample tha8yidlds an unsafe bound
in certain corner cases.

In the following example, we show the existence of a schedule in which a task
that is considered schedulable according to Bjjn{isses a deadline. Consider four
implicit-deadline sporadic tasks, 2, 3, 4 with parameters as listed in Tahld,
indexed in decreasing order of priority, that are scheduled on two processors using
P-FP scheduling. Taskg, 2 and 3 are assigned to processor 1, while tagkis
assigned to processor 2.
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Fig. 10 A schedule wherez misses a deadline for the task set in Tablewhere task 3 is schedulable
according to the incorrect response time analysis in &q. (

Each job of ; has one critical sectiors{ = 1) of length at most5(i.e.,C, ; = 5 ),
where 0< 1/3, in which it accesses a global shared resouice

Each job of 4 has one critical sectiors{ = 1) of length at most 4 4 (i.e.,

C,1 =4S 4),inwhich it also accesses.

Consider the response time af Since 3 does not access any global resource and
because itis the lowest-priority task on processor 1, it does not incur any global or local
blocking, i.e.,Bf = 0 and(ss+ 1) x | Ip(3) P(3)MaX | g Cl,j = 0. With regard
to the remote blocking incurred by each higher-priority task, we ijve 0 because

1 does not request any global resource. Further, each time when a jpbenfuests

1, itmay be delayed by, for a duration of at most8 4 . Thus the maximum remote
blocking of 2 is bounded byB} = C, , = 4S 4 > Therefore, according to Ecg,
the response time of is claimed by Lakshmanan et al.Os analysis (Lakshmanan et al.
2009 to be bounded by

8+7 +0 8+7 +4S4
Ry= + — 2+ — 13 (4+6) =8+7.

However, there exists a schedule, shown in E@jin which a job of task 3 arrives
at time 6 and misses its absolute deadline at time 20. This shows th&) Hgeg not
always yield a sound response-time bound.

The misconception here is to account for remote blocking 8/¢,,which is a form
of self-suspension, as if it is equivalent to release jitter. However, it is not, as already
explained in Sect.1

5 In general, the upper bound on blocking of course depends on the specibc locking protocol in use, but
in this example, by construction, the stated bound holds under any reasonable locking protocol. Recent
surveys of multiprocessor semaphore protocols may be found in Brande206ds), (Yang et al. 2015.
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6.3 Incorrect contention bound in interface-based analysis

Arelated problem affects anterface-based analysggoposed by Nemati etaRQ11).
Targetingopenreal-time systems with globally shared resources (i.e., systems where
the Pnal task set composition is not known at analysis time, but tasks may share global
resources nonetheless), the goal of the interface-based analysis is to extract a concise
abstraction of the constraints that need to be satisbed to guarantee the schedulability of
all tasks. In particular, the analysis seeks to determinmiremum tolerable blocking
time, denotedntbi, that a taskk can tolerate without missing its deadline.

Recall from classic uniprocessor time-demand analysisithtite absence of jitter
or self-suspensiona task g is considered schedulable under non-preemptive bxed-
priority scheduling if

t (0,Dg]: Bx+ Ck+ i -Gt 9)
i hp(k) T

whereBy is the blocking time of task. Starting from Eq.9), Nemati et al. 2011)
substitutedBy with mtbt, (the maximum tolerable blocking time of task. Solving
for mtbt; yields:

mtbt, = max tS Cy+ — -G . 10
Tk 0<t Dy k Ti i ( )

i hp(k)

However, based on the example in Séc?, we can immediately infer that ECR)
which ignores the effects of deferred execution due to remote blocking, is unsound in
the presence of global locks. Considerin the previous example (with parameters
as listed in Tablel4). According to Eq. 10), we havemtbts  12S ( + 12/6 -
2+ 1213 - (4+ 6)) = 4S 7 (fort = 12), which implies that 3 can tolerate
a maximum blocking time of at least2 7 time units without missing its deadline.
However, this is not true since can miss its deadline even without incurring any
blocking, as shown in FidLO.

6.4 A safe response-time bound

In Eq. @), the effects of deferred execution are accounted for similarly to release jitter.
However, it is not sufbcient to count the duration of remote blocking as release jitter,
as already explained in Seétl

A straightforward remedy is to repla@ in the ceiling term [i.e., the second term
in Eg. @)] with a larger but safe value suchBsor R S C; if R T; (as discussed
in Sect5.1): assuming constrained deadlines, the response time ofgéskounded
by the least non-negatiigx Dy that satisbes the equation

Rc+ R S Ci

i hek) P( k) T 1 Ipk) P( k)

Rq=C, .+ X Cj+ (x+ 1) % max Cl,j-

19
(11)
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Similarly, the term hp(k) t/Ti - Cjin Egs. @) an (L0) should be replaced
with " hp(k) (t+ D)/T - Cjor . hp(k) (t+ R SGC)/T - Cj to properly
account for the deferred execution of higher-priority tasks.

Finally, the already mentioned papers (Zeng and di N&a2flel Brandenburg
2013 Yang et al.2013 Kim et al. 2014 Han et al.2014 Carminati et al2014 Yang
et al. 2014 that based their analysis on E®) can be bxed by simply using Eq.
(12) instead, because they merely reused the unsafe suspension-aware response-time
bound introduced in Lakshmanan et &009 without further modibcations. The
actual, novel contributions in Zeng and di Nata2©11), BrandenburgZ013, Yang
et al. 013, Kim et al. 2014, Han et al. 2014, Carminati et al. 2014, and Yang
et al. 019 remain unaffected by this correction.

7 Soft real-time self-suspending task systems

For a hard real-time task, its deadline must be met; while for a soft real-time task,
missing some deadlines can be tolerated. We have discussed the self-suspending tasks
in hard real-time systems in the previous sections. In this section, we will review
the existing results for scheduling soft real-time systems when the tasks can suspend
themselves. So far, no concern has been raised regarding the correctness of the results
discussed in this section.

We assume a well-studied soft real-time notion, in whackoft real-time task is
schedulable if its tardiness can be provably bounpked., several recent dissertations
have focused on this topic Leontye2010 and Devi 00§]. Such bounds would
be expected to be reasonably small. A taskOs tardiness is debned as its maximum
job tardiness, which is O if the job Pnishes before its absolute deadline or is the
jobOs completion time minus the jobOs absolute deadline otherwise. The schedulability
analysis techniques on soft real-time self-suspending task systems can be categorized
into two categories: suspension-oblivious analysis and suspension-aware analysis.

7.1 Suspension-oblivious analysis

According to Devi and Andersor2005 as well as Leontyev and Anderso2007),

an ordinary sporadic task system (i.e. no self-suspensions) has bounded tardiness
under global EDF for all then sporadic tasks if i”:lCi/Ti M, whereM is

the number of processors in the system. The suspension-oblivious analysis simply
treats the suspensions as computation, as also explained in Sécisand4.2.1
Therefore, by suspension-oblivious analysis, an self-suspending sporadic task system
has bounded tardiness under global EDF for allrittasks if i”= 1(Ci+ S)T

M. This can be very pessimistic since/_;(C; + S)/ Ti can easily exceed! for
schedulable task sets.

7.2 Suspension-aware analysis

Several recent work has been conducted to reduce the utilization loss by focusing
on deriving suspension-aware analysis for soft real-time suspending task systems on
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multiprocessor systems, mainly done by Liu and Ander2009 2010ab, 2012ab).

In 2009, they derived the brst suspension-aware schedulability test for soft real-time
systems (Liu and Andersa2009 and showed that in preemptive sporadic systems
bounded tardiness can be ensured under global EDF scheduling and global prst-in-
prst-out (FIFO) scheduling. Their analysis uses a paramgetanging ovef0, 1] to
represent theuspension ratiof task i, dePned as = S/( § + Cj). Themaximum
suspension ratiof the task setismax = max; . Specibcally it is shown in Liu and
Anderson 2009 that tardiness in such a system is bounded if

Usum+ UL < (1S max) - M, (12)

whereUg,,, is the total utilization of all self-suspending tasksis the number of
computational tasks (which do not self-suspemd)is the number of processors, and
U¢ is the sum of the mifM S 1, c) largest computational task utilizations. In a follow-
up work (Liu and Anderso20103, by observing that the utilization loss seen 12y

is mainly caused by a large value gfax, a technique was presented to effectively
decrease the value of this parameter for improving the analysis.

8 Computational complexity and approximations

This section reviews the difpculty of designing scheduling algorithms and schedulabil-
ity analyses of self-suspending task systems. Thblummarizes the computational
complexity classes of the corresponding problems, in which the complexity problems
are reviewed according to the considered task models (i.e., segmented or dynamic
self-suspending models) and the scheduling strategies (i.e., Pxed- or dynamic-priority
scheduling).

8.1 Computational complexity of designing scheduling policies

We Prst present the computational complexity of designing scheduling policies for
both self-suspending task models considered in this report.

8.1.1 Segmented self-suspending tasks

Verifying the existence of a feasible schedule for segmented self-suspending task
systems is proved to b P -hard in the strong sense in Ridouard et 204 for
implicit-deadline tasks with at most one self-suspension per task. For this model, it
is also shown that EDF and RM do not have any speedup factor bound in Ridouard
et al. 004 and Chen and Liu2014), respectively. For the generalization of the
segmented self-suspension model to multi-threaded tasks (i.e., every task is debned
by a Directed Acyclic Graph (DAG) with edges labelled by suspension delays), the
feasibility problem is also known to B¢ P -hard in the strong sense (Rich&@03

even if all sub-jobs have unit execution times. Up to now, there is no known theoretical
lower bound with respect to the speedup factors for this scheduling problem.
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The only results with speedup factor analysis for bxed-priority scheduling and
dynamic-priority scheduling can be found in Chen and 12014, Huang and Chen
(2016, and von der BrYggen et a2q16. The analysis with a speedup factor of 3
in Chen and Liu 2014 and von der BrYggen et aRq16 can be used for systems
with at most one self-suspension interval per task under dynamic-priority scheduling.
The analysis with a bounded speedup factor in Huang and Gitdri§)(can be used
for Pxed-priority and dynamic-priority systems with any number of self-suspension
intervals per task. The scheduling policy used in Huang and G1E§)is suspension
laxity-monotoni¢SLM) scheduling, which assigns the highest priority to the task with
the least suspension laxity, dePned®sS S. However, the speedup factor of SLM
depends on the number of self-suspension intervals, and grows quadratically with
respect to it.

The above analysis also implies that the priority assignment in dynamic-priority
and bxed-priority scheduling should be carefully designed. Traditional approaches
like RM or EDF do not work very well. SLM may work well for a few self-suspension
intervals, but how to perform the optimal priority assignment is an open problem. Such
difbculty comes from scheduling anomalies that may occur at run-time. An example
is provided in Ridouard et al2004 to show that reducing execution times or self-
suspension delays can result in deadline misses under EDF (i.e., EDF is no longer
sustainable). This latter result can be easily extended to bxed-priority scheduling
policies (i.e., RM and DM). Lastly, in Ridouard and Richa2®(6), it is proved that
no deterministic online scheduler can be optimal if the real-time tasks are allowed to
suspend themselves.

8.1.2 Dynamic self-suspending tasks

The computational complexity of verifying the existence of a feasible schedule for
dynamic self-suspending task systems is unknown. The proof in Ridouard28@d) (
cannot be applied to this case. It is proved in Huang et28119 that the speedup
factor for RM, DM, and suspension laxity monotonic (SLM) scheduling isHere,

we repeat the example in Huang et aD{5. Consider the following implicit-deadline
task set with one self-suspending task and one sporadic task:

PC;=182,5=0,T1=1
PC= ,$=T81S ,T,=T

whereT is any natural number larger than 1 andan be arbitrary small. It is clear

that this task set is schedulable if we assign the highest priority to takkder either

RM, DM, and SLM scheduling, task has higher priority than task. It was proved

in Huang et al. 2015 that this example has a speedup factowhen approaches 0.
There is no upper bound of this problem in the most general case. The analysis in

Huang et al. 2015 for a speedup factor 2 uses a trick to compare the speedup factor

with respect to theptimal Pxed-priority schedul@stead of theoptimal schedule

The priority assignment used in Huang et @015 is based on the optimal-priority

algorithm (OPA) from Audsley et al1093 with an OPA-compatible schedulability

analysis. However, since the schedulability test used in Huang 2045(s not exact,
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the priority assignment is also not the optimal solution. Finding the optimal priority
assignment for bPxed-priority scheduling is still an open problem.

For dynamic self-suspending task systems, as shown in G@di§)( the speedup
factor for any FP preemptive scheduling, compared to the optimal schedules, is
not bounded by a constant if the suspension time cannot be reduced by speeding
up. Such a statement of unbounded speedup factors was proved in ZJ (
for earliest-deadline-prst (EDF), least-laxity-brst (LLF), and earliest-deadline-zero-
laxity (EDZL) scheduling algorithms. How to design good schedulers with a constant
speedup factor remains as an open problem.

8.2 Computational complexity of schedulability tests

We now present the computational complexity of schedulability tests for both self-
suspending task models considered in this report.

8.2.1 Segmented self-suspending tasks

Preemptive bxed-priority scheduliig this case, the computational complexity of
schedulability tests isoN P -hard in the strong sense even when the lowest priority
task has at least two self-suspension intervals and the higher-priority sporadic tasks
do not suspend themselves (CH201L§ Mohageqi et al2016. The computational
complexity analysis holds for both implicit-deadline and constrained-deadline task
systems, when the priority assignment is given. Moreover, validating whether there
exists a feasible priority assignmentiaN P -hard in the strong sense for constrained-
deadline segmented self-suspending task systems.

Preemptive dynamic-priority scheduling this case, if the task systems have con-
strained deadlines, i.eD; Ti, the computational complexity of this problem
is at least cbl P -hard in the strong sense, since a special case of this problem is
coN P -complete in the strong sense (Ekberg and2¥1L5. It has been proved in
Ekberg and Yi 2015 that verifying uniprocessor feasibility of ordinary sporadic
tasks with constrained deadlines is stronglyNéb-complete. Therefore, when we
consider constrained-deadline self-suspending task systems, the complexity class is
at least cbl P -hard in the strong sense.

It is also not difbcult to see that the implicit-deadline case is also at lebld? eo
hard. A special case of the segmented self-suspending task system is to allow each
task i to have exactly one self-suspension interval witbkadengthS and one com-
putation segment with WCET;. Therefore, the relative deadline of the computation
segment of task; (after it is released to be scheduledds= T; S S. For such a
special case, self-suspension of a task is equivalent to a release offyefTokre-
fore, there is no need to consider any self-suspension behavior any further. Scheduling
in such a scenario is equivalent to ordinary constrained-deadline sporadic real-time
task systems, in which preemptive EDF is optimal. It has been proved in Ekberg
and Yi (2015 that verifying uniprocessor feasibility of ordinary sporadic tasks with
constrained deadlines is strongly\tB -complete. By the above discussions, any ordi-
nary constrained-deadline sporadic task system can be converted to a corresponding
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implicit-deadline segmented self-suspending task system, and their exact schedula-
bility tests for EDF scheduling are identical. Since a special case of the problem is
coN P -complete in the strong sense, the problem i Bohard in the strong sense.

8.2.2 Dynamic self-suspending tasks

Preemptive bxed-priority schedulihtthis case, the complexity classis atleast weakly
NP -hard since the schedulability test problem for implicit-deadline task systems
under uniprocessor preemptive bxed-priority scheduling, i.e., a special case, is weakly
N P -complete proved by Ekberg and Y2@17). Therefore, the schedulability test
problem for self-suspending task systems under bxed-priority scheduling is at least
weaklyN P -hard.

The computational complexity due to the additional dynamic self-suspending
behavior is in generalnknownup to now. The only exception is the special case
mentioned in Sec#.1.4when there is only one dynamic self-suspending sporadic
task assigned to the lowest priority and the higher-priority tasks are ordinary sporadic
tasks. That is, the computational complexity of this special case remains the same as
that of non-self-suspending sporadic task systems. Whether the problem (with dynamic
self-suspension) il P -hard in the weak or strong sense is an open problem.

Preemptive dynamic-priority schedulinfjthe task systems have constrained dead-
lines, i.e.,D; Ti, the computational complexity class of this problem is at least
coN P -hard in the strong sense, since the computational complexity for testing the
schedulability of an ordinary sporadic task system under the optimal dynamic-priority
scheduling strategy, i.e., EDF, is® -complete in the strong sense (Ekberg and Yi
2019. Forimplicit-deadline self-suspending task systems, the schedulability test prob-
lem is not well-debned, since there is no clear scheduling policy that can be applied
and tested. Even for the well-known dynamic-priority scheduling strategies like EDF,
LLF, EDZL, and their variances as mentioned at the end of 8ethe computational
complexity of schedulability tests and how to perform exact schedulability tests are
both unknown for implicit-deadline self-suspending task systems.

9 Final discussion

Self-suspensions are becoming an increasingly prominent characteristic in real-time
systems, for example due to (i) I/O-intensive tasks, (ii) multi-processor synchroniza-
tion and scheduling, and (iii) computation off3oading with coprocessors such as GPUs.
This paper has reviewed the literature in the light of recent developments in the anal-
ysis of self-suspending tasks, explained the general methodologies, summarized the
computational complexity classes, and detailed a number of misconceptions in the
literature concerning this topic. We have given concrete examples to demonstrate the
effect of these misconceptions, listed some Rawed statements in the literature, and
presented potential solutions. For completeness, all the misconceptions, open issues,
closed issues, and inherited Baws discussed in this paper are listed il&able

This review extensively references errata and reports as follows: the proof (Chen
et al.2016h of the correctness of the analysis by Jane W.S. Liu in her book2@0d
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pp. 164D165); the re-examination and the limitations (Chen and Brande2(iliig

of the period enforcer algorithm proposed in RajkumEd9q1); the erratum report
(Bletsas et al2018 of the misconceptions in Audsley and Bletsa8@4g, Audsley

and Bletsas2004h), Bletsas and Audsley(009; and the erratum (Kim et 2016 of

the misconceptions in Kim et aRQ13. For brevity, these errata and reports are only
summarized in this review. We encourage interested readers to refer to these reports
and errata for more detailed explanations.

9.1 Unresolved issues

We have carefully re-examined the results related to self-suspending real-time tasks in
the literature in the past 25 years. However, there are also some results in the literature
that may require further elaboration, including:

D Devi (in Theorem 8 in De\2003 Section 4.5) extended the analysis proposed
by Jane W.S. Liu in her book (LiR00Q Page 164-165) to EDF scheduling. This
method quantibes the additional interference due to self-suspensions from the
higher-priority jobs by setting up the blocking time induced by self-suspensions.
However, there is no formal proof in Dex2Q03. The proof made by Chenetal. in
Chen et al. 2016hc) for bxed-priority scheduling cannot be directly extended to
EDF scheduling. The correctness of Theorem 8 in D200@, Section 4.5 should
be supported with a rigorous proof, since self-suspension behavior has induced
several non-trivial phenomena.

b For segmented self-suspending task systems with at most one self-suspension
interval, Lakshmanan and Rajkuma0(0Q proposed two slack enforcement
mechanisms to shape the demand of a self-suspending task so that the task behaves
like an ideal ordinary periodic task. From the scheduling point of view, this means
that there is no scheduling penalty when analyzing the interferences of the higher-
priority tasks. However, the suspension time of the task under analysis has to be
converted into computation. The correctness of the dynamic slack enforcement
in Lakshmanan and Rajkuma2@10 is heavily based on the statement of their
Lemma 4. However, the proof is not rigorous for the following reasons:

€ Firstly, the proof argues:L@t the duration R under consideration start from
time s and Pnish at times R. Observe that if s does not coincide with
the start of the Level-i busy period af then s can be shifted to the left to
coincide with the start of the Level-i busy period. Doing so will not decrease
the Level-i interference over.R This argument has to be expanded to also
handle cases in which a task suspends beforé ével S i busy period. This
results in the possibility that a higher-priority task starts with the second
computation segment in the Leviebusy period. Therefore, the brst and the
third paragraphs in the proof of Lemma 4 (Lakshmanan and Rajka01i)
require more rigorous reasoning.

€ Secondly, the proof arguesTiie only property introduced by dynamic slack
enforcement is that under worst-case interference from higher-priority tasks
there is no slack available toijbetween jf’ and P+ Rj. [E] The sec-

]
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ond segment ofj is never delayed under this transformation, and is released
sporadicallyO In fact, the slack enforcement may make the second computa-
tion segment arrive earlier than its worst case. For example, we can greedily
start with the worst-case interference of tagkin the Prst iteration, and do

not release the higher-priority tasks of tagkafter the arrival of the second

job of task ;. This can immediately create some release jitter of the second
computation segmem‘.jz.

For similar reasons, the static slack enforcement algorithm in Lakshmanan and
Rajkumar 2010 also requires a more rigorous proof.

9.2 Non-implicated approaches

We would like to conclude this review on a positive note regarding the available results
on the design and analyses of hard real-time systems involving self-suspending tasks.
At the time of writing, no concerns have been raised regarding the correctness of the
following results®

b For segmented self-suspending task systems:

1. RajkumarOs period enforcer (Rajkufr®87) if a self-suspending task can only
suspend at most once and only before any computation starts;

2. the result by Palencia and Harbo®®98 using the arrival jitter of a higher-
priority task properly with an offset (also for multiprocessor partitioned
scheduling);

3. the proof ofN P -hardness in the strong sense to bnd a feasible schedule and
negative results with respect to the speedup factors, provided by Ridouard et al.
(2004;

4. the result by Nelissen et aP@15 by enumerating the worst-case interference
from higher-priority sporadic tasks with an exhaustive search;

5. the result by Chen and Li2Q14, Huang and Cher2Q16, Peng and Fisher
(2016, and von der BrYggen et a2q16 using the release-time enforcement
as described in Seat.3.2;

6. the result by Huang and Che20(L5h exploring the priority assignment prob-
lem and analyzing the carry-in computation segments together;

7. the proof of cdl P -hardness by Cher2Q16 and Mohaqgeqi et al.2016
based on a reduction from the 3-partition problem when there are at least two
suspension intervals.

b For dynamic self-suspending task systems on uniprocessor platforms:

1. the analysis provided in Lil2Q00, pp. 164D165 by Liu as proved by Chen
et al. 016ho);

6 This list is not exhaustive as not all self-suspension results that were published after 2015 have been
carefully examined by the authors.

7 Chen and Liu found a typo in Theorem 3 in Chen and 120%4 and bled a corresponding erratum in
their websites.
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2. the utilization-based analysis by Liu and Ch&014 under rate-monotonic
scheduling;

3. the priority assignment and the schedulability analysis with a speedup factor
2, with respect to optimal bxed-priority scheduling, by Huang etal1§);

4. the response-time analysis framework by Chen eall§g, as described in
Sect4.2.5

5. the negative results regarding existing scheduling algorithms with respect to
speedup factors by CheRq16.

b For dynamic self-suspending task systems on identical multiprocessors:

1. the schedulability test for global EDF scheduling by Liu and Liu and Anderson
(2013;

2. the schedulability test by Liu et aR@143 for harmonic task systems with
strictly periodic job arrivals;

3. the utilization-based schedulability analysis by Chen epall§ considering
carry-in jobs as bursty behavior.

To the best of our knowledge, the solutions and bxes listed in &t the affected
papers and statements appear to be correct.
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