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Abstract—The MAVLink is a lightweight communication pro-
tocol between Unmanned Aerial Vehicles (UAVs) and ground
control stations (GCSs). It defines a set of bi-directional messages
exchanged between a UAV (aka drone) and a ground station.
The messages carry out information about the UAV’s states and
control commands sent from the ground station. However, the
MAVLink protocol is not secure and has several vulnerabilities to
different attacks that result in critical threats and safety concerns.
Very few studies provided solutions to this problem. In this
paper, we discuss the security vulnerabilities of the MAVLink
protocol and propose MAVSec, a security-integrated mechanism
for MAVLink that leverages the use of encryption algorithms to
ensure the protection of exchanged MAVLink messages between
UAVs and GCSs. To validate MAVSec, we implemented it in
Ardupilot and evaluated the performance of different encryption
algorithms (i.e. AES-CBC, AES-CTR, RC4 and ChaCha20) in
terms of memory usage and CPU consumption. The experimental
results show that ChaCha20 has a better performance and
is more efficient than other encryption algorithms. Integrating
ChaCha20 into MAVLink can guarantee its messages confiden-
tiality, without affecting its performance, while occupying less
memory and CPU consumption, thus, preserving memory and
saving the battery for the resource-constrained drone.

Index Terms—Unmanned Aerial Vehicle, Security, MAVLink,
Encryption, GCS.

I. INTRODUCTION

Autonomous Unmanned Aerial Vehicles (UAVs) are an

emerging technology that has attracted several applications

such as smart cities, border surveillance , traffic monitoring

[1], security, natural disaster monitoring, real-time object

tracking [2] and transport [3], [4].

These flying vehicles are controlled either remotely from

a Ground Control Station (GCS) or autonomously by a pre-

programmed mission. When controlled remotely, the com-

munication between the UAV and the GCS is established

through a communication protocol. The Micro Air Vehicle

link (MAVLink) [5] is one of the most widely used protocols

for communication between UAVs and GCSs. MAVLink was

developed to be a flexible, lightweight, open source com-

munication protocol specifically used for the bidirectional

data exchange between the autopilot and the GCS. The GCS

sends commands and controls to the drone, while, the latter

sends telemetry and status information data [6] to the GCS.

MAVLink is also used to connect drones over the Internet [2],

[7]–[9].

MAVLink is used by several autopilot systems including

Ardupilot [10] and PX4 [11]. Ardupilot and PX4 are the

leading open source autopilot systems designed to control any

type of unmanned vehicles, including fixed-wing aircraft, and

various rotary-wing platforms, namely single, tri, quad, hexa,

octa copters and even submarines [10]. PX4 also offers similar

capabilities for UAVs and can be extended to underwater

systems.

Despite, the wide use of the MAVLink protocol it presents

vulnerabilities and is prone to several attacks including spoof-

ing, message forging and denial of service (DoS) as proven in

[8] and [12]. These vulnerabilities are mainly due to the fact

that the protocol does not implement any security mechanism

and does not adopt any encryption algorithm. Therefore,

the GCS communicates with the UAV over an unencrypted

channel, thus subject to several types of attacks.

In literature, a few studies have discussed possible security

solutions for the MAVLink protocol. In [13], [14], the authors

used the Caesar cipher cryptography for data encryption

of MAVLink messages between the ground station and the



Micro Aerial Vehicles (MAV). They showed that a secret

key was clearly sent from the GCS to the drone, during

the establishment phase. An intruder, who may eavesdrop

the communication, could easily detect the key, and thus can

break all the security system. Moreover, the Caesar encryption

algorithms used in these works are known to be insecure and

vulnerable to crypt-analysis. In [15], the authors addressed

the MAVLink protocol security against passive attacks such

as eavesdropping and interception, and implemented the RC5

encryption algorithm to encrypt the MAVLink messages. How-

ever, the proposed method lacks an authentication mechanism

that protects communication from active attacks such as forg-

ing the message, identity spoofing, etc. It is worth noting that

a secure version of MAVLink is currently being discussed by

the protocol developers, but has not yet been developed [16].

In this paper, we suggest improving the MAVLink proto-

col security in order to protect the communication between

drones and GCSs. This allows to mitigate malicious attacks.

The proposed method involves the implementation of several

encryption algorithms, namely, RC4, AES-CBC, AES-CTR

and ChaCha20 to ensure the confidentiality of the exchanged

messages between UAV and GCS. We also evaluate their per-

formances in terms of memory usage and CPU consumption.

In summary, the four main contributions of this paper are

as follows:

• First, we identify the MAVLink protocol security threats.

• Second, we propose MAVSec, a MAVLink enhanced

version with cryptographic mechanisms to ensure confi-

dentiality of the exchanged messages between UAVs and

GCSs.

• Third, we implement the security mechanisms in Ardupi-

lot using the MAVLink protocol to demonstrate the

feasibility of the proposed solutions.

• Fourth, we prove the effectiveness through performance

evaluation of our proposal.

The remainder of this paper is organized as follows. Sec-

tion II discusses the related works. Section III describes

the MAVLink protocol. Section IV presents security threats

against the MAVLink protocol. Section V describes the pro-

posed cryptographic mechanisms to secure the MAVLink

protocol. Detailed simulation and experimental results are

presented and discussed in section VI. Finally, Section VII

provides some concluding remarks.

II. RELATED WORKS

Ensuring security has become increasingly necessary and

important for the wide adoption of UAV systems. The existing

security methods proposed for UAV systems can be classified

into hardware [17], [18] and software approaches [13], [15],

[19].

In [17], a hardware-based implementation of the AES

protocol was proposed to secure the communication between

a ground control station (GCS) and the drone. An FPGA

module, connected to the drone embeds the cryptographic so-

lution: AES-CBC-MAC, was used to encrypt and authenticate

both commands and payload data transmitted between the

drone and the GCS. However, the hardware solution affects

negatively the system performance and power consumption

due to the extra hardware weight.

In [18], the authors proposed the idea of an additional

encrypted communication channel to enhance the security

of data in UAVs through Raspberry Pi. This channel was

designed to regain control of the UAV in case it was target

to attack. However, this hardware solution displays time delay

between GCS and Raspberry Pi and increases the CPU usage

on Raspberry Pi. The experimental setup is not applied to real

drones’ communication.

In the context of software based solutions, the authors in

[13] proposed a methodology for data encryption and authen-

tication of MAVLink messages between the ground station and

the UAV using Caesar cipher cryptography. However, its main

drawback is that it can be easily broken. Moreover, the results

have not been explicitly stated. In our paper,however, we

implement robust cryptographic methods and clearly present

our simulation results.

An encryption mechanism RC5 was used in [15] to secure

the MAVLink communication protocol. This study only pro-

vided a description of the protocol without any specific details

of testing and performance analysis. In our paper, we identify

and evaluate the performance of four cryptographic methods

used to secure the MAVLink protocol.

In [19], Marty presented a vulnerability analysis of the

MAVLink protocol, suggesting some cryptographic algorithms

to secure the MAVLink protocol and provide a methodology to

evaluate the cost of securing the MAVLink protocol. However,

in their work, the cryptographic techniques were not imple-

mented and the feasibility of the approach was not shown. In

our paper, we implement the encryption mechanisms into the

source code of the Ardupilot to enable a secure communication

using MAVLink protocol along with a performance evaluation.

III. MAVLINK SYSTEM ARCHITECTURE

MAVLink is an open source, lightweight and header-only

protocol mostly used for bidirectional communications be-

tween GCSs and UAVs. MAVLink 1.0 was first released in

early 2009 by Lorenz Meier under LGPL license [20]. The

MAVLink 2.0 protocol [21] was released in early 2017 and is

the current recommended version. It is backward compatible

with the MAVLink 1.0 version and includes several improve-

ments over the MAVLink 1.0 version.

The MAVLink messages are of two types: (i.) commands

and control messages transmitted from the GCS to the UAV,

and, (ii.) state information messages (e.g., position, heartbeat,

and system status information) sent from the UAV to the GCS,

as depicted in Fig.1. Since the MAVLink protocol is used for

real-time communication; it is designed to be a lightweight

protocol. Figure 2 shows the structure of the MAVLink 2.0

packet.

All MAVLink messages contain a header appended to each

data payload of the message. The header contains information

about the message while the payload contains the data carried
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Fig. 1. Communication link between UAV and GCS.

out by the message. The checksum is intended to verify the

integrity of the message, that should not be altered during its

transmission.

MAVLink protocol is a variable size protocol. The minimum

packet length of a MAVLink message is 11 bytes (STX, LEN,

INC FLAGS, CMP FLAGS, SEQ, SYS ID, COMP ID, MSG

ID, CKA and CKB) and the maximum packet length, with

full payload and signature, is 297 bytes. The payload size is

variable, its length depends on the parameters which are sent or

received during the communication. The signature field allows

the authentication of the message and verifies that it originates

from a trusted source.

MAVLink message types are identified by the ID field on

the packet, and the payload contains the appropriate data.

Several control and state messages are defined in the MAVLink

protocol. The most crucial message in MAVLink is the heart-

beat message. Initially, a drone should send the HEARTBEAT

message periodically (generally every second) to the ground

station to provide feedback of their status (to indicate that

the drone is active and still connected). This is a mandatory

message.

IV. SECURITY THREATS

With the increasing use of UAVs in military and civilian

applications, they are carrying sensitive and secure information

that can be sniffed by attackers. In fact, the MAVLink protocol

does not provide any kind of security and can be hacked

quite easily. There is no confidentiality, nor authentication

mechanism. The GCS communicates with drones over an

unauthenticated and unencrypted channel. Anyone with an

appropriate transmitter can communicate with the drone and

inject commands into an existing session, and thus can easily

impersonate any drone. Also, MAVLink message streams can

be easily intercepted and eavesdropped by hackers because

they are sent with no encryption.

According to [19], the MAVLink protocol is vulnerable to

attacks and does not provide the CIA (Confidentiality, Integrity

and Availability) security services. Thus, the MAVLink proto-

col could be exposed to different attacks such as Interception

(Attacks against the systems confidentiality), Modification

(Attacks against the systems integrity), Interruption (Attacks

against the systems availability).

Interception can be achieved by eavesdropping on channels.

The message contents are read by unauthorized users. Since

the MAVLink communication protocol is not always secured,

an intruder is able to intercept information about commands

sent to the UAV from GCS and steal other data sent in

the opposite direction. Authentication and encryption should

be used on the link to mitigate this risk and guarantee the

confidentiality and integrity of the exchanged data.

Modification means tampering with an original message.

MAVLink protocol does not ensure integrity which might

allow an attacker to effectively hijack the UAV from its

GCS. If there is no integrity protection mechanisms, malicious

attacks on the network or wireless channel interference may

cause information modification, and thus become invalid.

Interruption means that a message from/to a particular

service is blocked. An adversary disables the reception of

MAVLink control signals from the ground control by the

drone. The communication between the drone and the GCS

is blocked, and the aircraft will go into a lost link state.

Implementing strong authentication mechanisms can help mit-

igate the risk of unavailability. Various security threats against

the MAVLink protocol, with the corresponding mitigation

techniques are listed in Table I.

V. MAVSEC: SECURITY OF THE MAVLINK PROTOCOL

In this section, we propose MAVSec, a MAVLink enhanced

version with cryptographic mechanisms to mitigate the vul-

nerabilities presented in the MAVLink protocol in terms of

confidentiality.

Cryptographic algorithms are classified as symmetric algo-

rithms, which use symmetric keys or asymmetric algorithms,

which use a couple of public/private keys. Symmetric encryp-

tion is fast by design and consumes little energy, because the

same key is used for both encryption and decryption. This

makes it suitable for low-resource drones. However, asymmet-

ric mechanisms can cause severe computational, memory, and

energy overhead. Asymmetric cryptography is not suitable for

static communications [22].

Symmetric encryption algorithms are further classified in

two basic categories: stream ciphers (such as RC4, CTR mode

and ChaCh20) and block ciphers (such as AES). A block

cipher encrypts fixed-length groups of N bits, called block

of plaintext to a block of N bits of encrypted data, whilst a

stream cipher can encrypt plaintext of varying sizes.

ChaCha20 is a stream cipher developed by D. J. Bernstein

in 2008, based on the Salsa cipher principles, to provide

better diffusion and resistance against cryptanalytic attacks

[23], without losing performance on software platforms [24].

ChaCha20 is classified as a high-speed stream cipher although

it is technically a block cipher in counter mode. For instance,

ChaCha20 is often used by world leading companies like

Google and Mozilla as it offers safer and faster alternatives

[25].

Advanced Encryption Standard (AES) is the most widely

used symmetric cryptographic algorithm, which was chosen

as a secure encryption algorithm by the National Institute of

Science and Technology (NIST) [26] among other encryption

algorithms. AES is fast, flexible in block ciphers and has a
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Fig. 2. MAVLink 2.0 packet structure.

TABLE I
SECURITY THREATS ON MAVLINK AND COUNTERMEASURES.

Security objective Threats Mitigations

Confidentiality

Eavesdropping
Data link interception

Man-in-the-middle
Identity spoofing

Hijacking

Data link encryption

Integrity

Packet injection
Man-in-the-middle

Fabrication
Message deletion

Message modification
Replay attack

Hash
Authentication

MAC

Availability

Command and control data link spoofing
Channel jamming

Routing attack
Denial of service

Flooding
Buffer overflow

Authentication

high security and performance as compared to other symmetric

encryption algorithms [27].

AES receives as input a plaintext block size of 128-bit and

the encryption key length, which is either 128, 192 or 256

bits. The input text is processed by using the given key and

applying a number of transformations to produce the output

text (ciphertext).

AES block cipher algorithm can operate in five modes:

Output Feedback (OFB), Electronic Code Book (ECB), Cipher

Feedback (CFB), Cipher Block Chaining (CBC), and Counter

(CTR) [28], [29]. In this paper, we choose the CBC and

CTR modes, since they are well known and widely used in

encryption to encrypt MAVLink payload.

A. Background on the encryption mechanisms.

In what follows, we describe the four cryptographic algo-

rithms used in our experiments, namely, (1) the Advanced

Encryption Standard in Counter Mode (AES-CTR), (2) the

Advanced Encryption Standard in Cipher Block Chaining

Mode (AES-CBC), (3) RC4 and (4) ChaCha20.

1) AES Counter Mode (CTR) : The Counter mode (CTR)

is a mode that turns a block cipher into a stream cipher and

therefore used for achieving confidentiality [30]. First, a stream

of input blocks is generated, called counters. The counters are

obtained from an initial counter IV , which is incremented

and used to encrypt each block in turn. Then a forward cipher

function is applied to these counters to produce a sequence

of output blocks ri that are exclusive-ORed with the plaintext

mi to produce the ciphertext ci.

Algorithm 1 explains the pseudo-code of AES-CTR encryp-

tion, where IV is the initial counter value, mi represents the

ith block of plain text, and ci represents the ith block of

ciphertext. Both IV + i and mi are independent. Decryption

transformation is identical to that of encryption. The main

difference is that the plaintext and ciphertext positions are

switched.

Algorithm 1: Pseudo-code of CTR encryption.

Input : n-block message m = m1 . . .mn, and a block

cipher key k

Output: Ciphertext AES-encrypt-ctr (k,m) = c1 . . . cn

1 Initialization:

2 IV ← {0, 1}
n
;

3 r0 ← IV ;

4 Encryption:

5 for i from 1 to n do

6 ri = (IV + i)k
7 end

8 for i from 1 to n do

9 ci = mi ⊕ ri
10 end

11 return c1 . . . cn

Counter mode (CTR) is employed for its simplicity and



efficiency because there is no need for a decoding function,

nor for padding, and it offers a large flexibility in the imple-

mentation. Besides its high level of security [31], it presents

high speed as it can be executed in parallel. Indeed, both

encryption and decryption can be achieved in parallel on

multiple blocks of plain or cipher data, which enables us to

achieve a maximum level of parallelism. Another alternative

is that CTR transforms block cipher into stream cipher, which

is strongly recommended for our implementation since the

stream cipher is more appropriate as MAVLink allows limited

buffering.

2) AES Cipher Block Chaining Mode (CBC) : The Ci-

pher Block Chaining (CBC) [32] is a block cipher mode of

operation, known to be the most commonly used whenever

large amounts of data need to be sent securely. CBC mode

chains the previous ciphertext block with the current message

block before the cipher function. This mode is efficient at

disguising any pattern in the plaintext: the encryption of each

block depends on all the previous blocks.

Algorithm 2 explains the pseudo-code of AES-CBC encryp-

tion. As shown in Algorithm 2, the CBC mode takes a secret

key k as input, an Initialization Vector IV , which is randomly

chosen with a length equal to the block length N , and the

plaintext message. The plaintext is divided into several blocks

P1 . . . PN , and each block is XOR− ed with the cipher data

of the previous block before it is encrypted. The result of

the XOR operation is encrypted with the key K to produce

ciphertext C1 . . . CN .

Decryption is thus the reverse process, which involves

decrypting the current ciphertext and then adding the previous

ciphertext block to the result. The IV and the encrypted

message are sent to the recipient, which will then process

this data using AES-CBC under the same key to check the

integrity of the message and recover the plaintext message.

Algorithm 2: Pseudo-code of CBC encryption.

Input : N -block message P = P1 . . . PN , and a block

cipher key k

Output: Ciphertext AES-encrypt-cbc (k, P ) = C1 . . . CN

1 Initialization:

2 IV ← {0, 1}
n
;

3 C0 ← IV ;

4 Encryption:

5 for i from 1 to N do

6 Ci = (Pi ⊕ Ci−1)k
7 end

8 return C1 . . . CN

3) RC4 : It is the most popular and widely accepted

symmetric key stream cipher algorithm in network security

[33].

The encryption of a message in RC4 is achieved by gen-

erating a keystream to be XORed with a stream of plaintext

to produce a stream of ciphertext. The pseudo code for RC4

is shown in Algorithm 3. It has two parts: the first is a

Key Scheduling Algorithm (KSA) whereas the second is the

Pseudo-Random Number Generation Algorithm (PRGA), that

generates a pseudo-random output sequence.

The KSA accepts the sized key k as input, that may range

between 8 and 2048 bits in multiples of 8 bits. It starts with

the identity permutation in S and uses the key continually

swapping values to produce a new unknown key-dependent

permutation. Since the only action on S is to swap two values,

the fact that S contains a permutation is always maintained.

The PRGA works by continually shuffling the permutation

stored in S as time goes on, each time picking a different

value from the S permutation as output. One round of RC4

outputs an n bit word as keystream, which is further XORed

with the plaintext to produce the ciphertext.

Algorithm 3: Pseudo code for RC4 stream cipher.

1 KSA

2 Initialization:

3 for i from 0 to 255 do

4 S[i] = i;

5 end

6 j = 0;

7 L= length of the key.

8 N= length of the Substitution box or

state.

9 K= key randomly chosen.

10 Scrambling:

11 for i from 0 to N-1 do

12 j = (j + S[i] + K[i mod L]);

13 swap(S[i], S[j]);

14 end

PRGA

Initialization:

i = 0;

j = 0;

Generation Loop:

i = i + 1;

j = j + S[i]);

swap(S[i], S[j]);

outputO = S[S[i] + S[j]];

The Stream cipher RC4 is efficient for real time processing.

The algorithm is simple, fast and easy to explain. It can be

efficiently implemented in both software and hardware.

4) ChaCha20 : The ChaCha20 encryption algorithm re-

quires the following parameters: a 256-bit encryption key, a

96-bit nonce, and a 32-bit Initial Block Counter to encrypt

an arbitrary-length plaintext [34].The output is an encrypted

message of the same length. ChaCha20 generates a keystream

by applying the ChaCha20 block function to the key, nonce,

and a blockcounter. Plaintext is then encrypted using this

keystream, with block i of the plaintext XORed with the

output of the ChaCha20 block function, evaluated using the

block counter i. As the ChaCha20 block function is not applied

directly to the plaintext, no padding should be necessary.

Decryption is performed in the same way. The ChaCha20

block function is used to expand the key into a keystream,

which is XORed with the ciphertext giving back the plaintext.

B. MAVSec: Integration of encryption mechanisms into

MAVLink

In this section, we introduce our proposed approach

MAVSec and describe how the encryption mechanisms were

implemented into the MAVLink protocol.

The implementation involves the development and integra-

tion of the above-mentioned encryption algorithms both on



the UAV autopilot side and GCS side integrated with the

MAVLink protocol.

MAVLink messages contain a header with a MAVLink

Identifier ID that cannot be encrypted. Therefore, only the

MAVLink message payload can be encrypted since encrypting

the header would result in the recipient being unable to

recognize the appropriate MAVLink message type.

MAVLink makes use of a checksum to determine if a

message was changed and therefore, the checksum needs to

be recomputed after encryption. A solution to this would be to

perform the encryption before calculating the checksum and

decrypt after it is checked again.

Before sending any parameter through the payload, a heart-

beat message is sent from the UAV to the GCS in order to

verify that the system is ready and alive. The encryption is

performed from the UAV to GCS. The payload is encrypted

with the session key derived during the authentication phase,

and the checksum is computed after encryption to ensure that

the message is properly received by the ground station. The

UAV sends a message containing the encrypted payload to the

ground station. Once the message is received, the GCS, first

checks the checksum and then decrypts the payload.

The encryption algorithms AES-CTR, AES-CBC,

ChaCha20 and RC4 are developed both on the autopilot and

the GCS. The MAVLink source code is modified to include

cryptographic functions resulting in a successful encryption

and decryption. The payload is fed to the encryption algorithm

as an input to obtain encrypted data. At the receiver’s side,

the received encrypted data is decrypted. The MAVSec code

is available at Github [35].

VI. EXPERIMENTAL VALIDATION

In this section, we present a comprehensive study on the

performance of the encryption algorithms integrated to the

MAVLink protocol, in terms of the resource utilization such

as CPU processing time and memory consumption rate. Based

on the analysis of the obtained results, we discuss which algo-

rithm is better to use according to the mentioned performance

metrics.

A. Simulation environment settings

The experimental testbed consists of using a simulated

drone with the Ardupilot Software-In-The-Loop (SITL) [36],

which uses the same autopilot used in the real drone and

the same MAVLink communication protocol. The use of

a simulated drone generalizes straightforwardly to the case

of a real drone. More specifically, the setup used for our

experiments is as follows: We used a virtual drone executed

with the Ardupilot Software-In-The-Loop (SITL) simulator

[36]. It enables us to operate a Plane, Copter or Rover, without

the need for any hardware. We have compiled the source code

of Ardupilot to be able to integrate the encryption mechanisms

into the message stream exchanged between the autopilot

in the drone and the ground station. Besides, we used the

QGroundControl [37] ground station, which is an open source

ground control station (GCS) software application developed

by Lorenz Meier and written in C++. To allow the secure

communication between the autopilot of the SITL drone and

the QGroundControl, we have also integrated the encryption

algorithms into the QGroundControl to be able to decode

the cipher stream received and extract the original MAVLink

message. The GCS is connected to the simulated UAV via an

open source GCS software called MAV proxy [38].

The SITL simulator runs on a Linux virtual machine

(Ubuntu 14.04 TLS) running on computer with 2.9 GHz Intel

Core(TM) i7 CPU, 5.4 GB of memory. We used the ArduPilot

version 3, more specifically, a UAV copter as a SITL to testing.

To connect to the SITL, we used the port 14550 over the UDP

protocol.

B. Performance evaluation

The experiments were performed ten times to make sure that

the results comparing the different algorithms, are accurate and

valid. Table II shows the algorithm’s parameters used in this

experiment. Each algorithm was executed one after the other

TABLE II
ALGORITHMS SETTINGS.

Algorithm

Key size

(Bits)

Block size

(Bytes)

AES-CTR 256
Any length, in our case is the
same length of the payload data

AES-CBC 256 128

RC4 256
Any length, in our case is the
same length of the payload data

ChaCha20 256
Any length, in our case is the
same length of the payload data

so that each one can have full system resources at its disposal.

To understand the effect of an encryption oriented solution,

we compare the measured memory utilization, CPU con-

sumption and packets transmitted of the insecured MAVLink

protocol with the secured MAVLink protocol using crypto-

graphic implementations (MAVSec). The performance evalu-

ation comparison between the insecured MAVLink protocol

and MAVSec can measure the success of the implemented

encryption mechanism. In terms of packet transmission, it can

be clearly inferred from Fig.3, that MAVLink based stream

cipher ChaCha20 and MAVLink-CTR send more packets

compared to the MAVLink based CBC and RC4.

As expected, the AES-CBC requires more processing time,

so the number of transmitted packets will decrease. This can

be explained by the key-chaining nature of the CBC and the

fact that encryption is not performed in parallel. Also, the

plaintext sizes that are not a multiple of the block size need

to be padded which make the CBC unsuitable for encrypting

and sending more packets. The AES-CTR mode encrypts

and sends more packets because of its cipher type nature.

MAVLink-ChaCha20 sends more packets as compared to

MAVLink based CBC and CTR, because it is the fastest

data transmission algorithm compared to AES [34]. Thus,

ChaCha20 is suited to be used in lower powered UAV devices

and real time communication.



The insecured MAVLink protocol sends more packets than

the MAVLink-ChaCha20, but the difference is generally neg-

ligible.
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Fig. 3. Transmitted packets number (insecured MAVLink vs MAVSec).

Other important performance parameters are the memory

and CPU utilization. Figures 4 and 5 show graphs that compare

the average memory and CPU consumption of the insecured

MAVLink with a MAVLink based ChaCha20, CTR, CBC and

RC4.

As per the graph shown in figure 4, the MAVLink-RC4 is

the most resource intensive, in terms of memory utilization,

because the KSA and PRGA are executed sequentially in

the RC4 encryption algorithm, which requires the use of

more registers. However, the MAVLink-ChaCha20 takes less

memory space, making ChaCha20 a good fit for UAV devices.

According to Fig. 4, no difference can be observed between the

unsecured MAVLink protocol and the MAVLink-ChaCha20 in

terms of memory usage.

The CPU usage is the percentage of time a CPU is com-

mitted for only a particular process of calculations. It reflects

the load of the CPU. The more the CPU is used in the

encryption process, the higher the load of the CPU will be

[39]. The simulation results depicted in fig. 5 conclude that,

MAVLink-RC4 takes the highest CPU utilization time period,

wheras MAVLink-ChaCha20 consumes less CPU. This can

be explained by the fact that ChaCha20 is based on ARX

(Addition-Rotation-XOR) which are CPU friendly instructions

[40]. In contrast, the AES uses binary fields for the Sbox and

Mixcolumns computations, which are generally implemented

as a look up table to make it more efficient. Therefore,

including ChaCha20 encryption algorithm will not affect

the performance of the MAVLink protocol since MAVLink-

ChaCha20 is very close in CPU utilization to the insecured

MAVLink version.

The performance evaluation comparison between the inse-

cured MAVLink protocol and MAVSec allows us to measure

the success of the implemented encryption mechanism. Our set

of simulation results were aimed to prove that ChaCha20 has

better performance and is more efficient than other encryption

algorithms. It can be considered as an excellent standard
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encryption algorithm to be adopted to secure MAVLink proto-

col and guarantee confidentiality of the MAVLink messages,

without affecting its performance, consuming less memory

space and CPU in order to preserve the memory and save

the battery for resource-constrained drones.

VII. CONCLUSION

In this paper, we discussed the vulnerability and security

threats against the MAVLink protocol, then we proposed dif-

ferent cryptographic solutions to mitigate these vulnerabilities.

The experimental study was achieved through implementing

the encryption algorithms in the MAVLink source code. From

the performance evaluation,we proved that ChaCha20 can

be applied to secure the MAVLink protocol as it maintains

confidentiality of the MAVLink messages without affecting

its performance. In our future work, we will focus on testing

and validating this implementation using a real scenario.
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