

Memory Feasibility Analysis of Parallel Tasks
Running on Scratchpad-Based Architectures

Conference Paper

*CISTER Research Centre

CISTER-TR-180805

2018/12/11

Daniel Casini

Alessandro Biondi

Geoffrey Nelissen*

Giorgio Buttazzo

Conference Paper CISTER-TR-180805 Memory Feasibility Analysis of Parallel Tasks Running on ...

© CISTER Research Center
www.cister.isep.ipp.pt

1

Memory Feasibility Analysis of Parallel Tasks Running on Scratchpad-Based
Architectures

Daniel Casini, Alessandro Biondi, Geoffrey Nelissen*, Giorgio Buttazzo

*CISTER Research Centre

Polytechnic Institute of Porto (ISEP-IPP)

Rua Dr. António Bernardino de Almeida, 431

4200-072 Porto

Portugal

Tel.: +351.22.8340509, Fax: +351.22.8321159

E-mail: grrpn@isep.ipp.pt, giorgio@sssup.it

http://www.cister.isep.ipp.pt

Abstract

This work propose solutions for bounding the worst-case memory demand generated by parallel tasks running on
multicore platforms with scratchpad memories. The objective is to propose a feasibility test that verifies whether
the memories are large enough to contain the maximum memory backlog that may be generated by the system.
Both closed-form bounds and more accurate algorithmic techniques are proposed. We show how one can use
max-plus algebra and solutions to the max-flow cut problem to efficiently solve the memory feasibility problem.
Experimental results are presented to evaluate the efficiency of the proposed feasibility analyses on synthetic
workload and state-of-the-art benchmarks.

Memory Feasibility Analysis of Parallel Tasks

Running on Scratchpad-Based Architectures

Daniel Casini∗, Alessandro Biondi∗, Geoffrey Nelissen†, and Giorgio Buttazzo∗

∗Scuola Superiore Sant’Anna, Pisa, Italy
†CISTER, ISEP, Polytechnic Institute of Porto, Portugal

Abstract—This work proposes solutions for bounding the
worst-case memory space requirement for parallel tasks running
on multicore platforms with scratchpad memories. It introduces
a feasibility test that verifies whether memories are large enough
to contain the maximum memory backlog that may be generated
by the system. Both closed-form bounds and more accurate
algorithmic techniques are proposed. It is shown how one can
use max-plus algebra and solutions to the max-flow cut problem
to efficiently solve the memory feasibility problem. Experimental
results are presented to evaluate the efficiency of the proposed
feasibility analysis techniques on synthetic workload and state-
of-the-art benchmarks.

I. INTRODUCTION

Embedded computing platforms are evolving to increase
the amout of parallel hardware available in the architecture and
this trend is expected to increase in the future. To take advan-
tage of such a feature and improve the system performance,
it is essential to express the intrinsic parallel nature of the
application code, which can then be exploited in the allocation
phase to properly partition the various code segments on the
various computing elements.

It is worth observing that the parallel structure of a software
application can typically be modelled by a directed acyclic
graph (DAG), where nodes represent sequential computations
and edges describe precedence relations among them. Such
precedence constraints derive from the fact that nodes commu-
nicate by exchanging data, which are typically stored in mem-
ory buffers. The place where these buffers are allocated (global
or local memory) affects the communication performance and,
in general, the timing behavior of the whole system.

When these computing platforms are used in safety-critical
systems that must react to events generated by the environment,
achieving a predictable timing behavior is mandatory for
guaranteeing certain levels of safety or performance. A way
to increase predictability at a low architecture level is to
use scratchpads as local memories, instead of caches [1]. In
addition, a non preemptive execution of nodes helps containing
the scratchpad-related delays due to data eviction from other
concurrent nodes.

As it is illustrated in Figure 1, in this context, two funda-
mental problems need to be solved to guarantee a predictable
behavior of the application: (1) a schedulability analysis of
real-time applications consisting of a set of DAG tasks with
non preemptive nodes, taking into account scratchpad-related
delays; (2) a memory analysis that verifies whether the size
of scratchpads are enough to contain the maximum memory
backlog. Solving the two problems stated above is essential
to address the final goal of partitioning applications on a

multicore platform, that is, finding a suitable allocation of
nodes on the processors that enhances (or possibly optimizes)
the system performance.

To the best of our knowledge, most of the works in the
literature that addressed the schedulability analysis of multiple
DAG tasks did not consider memory requirements, hence
the problem of providing a memory feasibility test for these
applications is still open.

Memory feasibility is a non-trivial problem in real-time
embedded systems. The amount of memory required by each
application dynamically varies during the system execution.
The amount of memory space required by parallel tasks
does not only depend on the nodes executing at each time
instant, but also on the pending data transfers between nodes
(belonging either to the same or different tasks) executing on
the same processor. Tightly bounding the maximum memory
space requirement (MSR) is of key importance as it ensures
a safe and correct execution of the system, i.e., data transfers
may never be corrupted or aborted due to a lack of memory. In
addition, it allows for an optimization of the required memory
sizes, and hence a global reduction of the platform cost.
Furthermore, achieving a detailed analytical understanding of
the MSR generated by parallel applications is of paramount
importance to develop suitable partitioning algorithms.

Crossbar

Core 1

Global Memory

Core 2 Core 3 Core 4

M
em

or
y

Fe
as

ib
ili

ty
(T

hi
s

pa
pe

r)
Sc

he
du

la
bi

lit
y

An
al

ys
is

Nodes and memory allocation

Depends on Used by

Partitioning Algorithm

Task node mapping Memory mapping

Parallel tasks modelling

Figure 1. Illustration of a design infrastructure to support partitioned real-
time tasks upon multiprocessor platforms. A suitable allocation for the task
nodes and the memory buffers used by them depends on both schedulability
analysis, to guarantee their timing properties, and memory feasibility, to verify
memory space requirements. In the figure, LM denotes local memory.

Contribution. This work is focused on analyzing the MSR
of parallel applications executed under partitioned scheduling,
and does not directly consider their timing properties. As
mentioned before, timing properties such as the worst-case
response time of a task, is a consequence of partitioning and a
MSR feasability analysis is a basic block that is first required
to develop suitable partitioning tools. To this end, a real-time
parallel task model is first presented in Section II to cope
with data exchanges between execution nodes and memory
copy-in/copy-out phases to move data from global memory to
scratchpads and vice versa.

Then, a memory feasibility analysis is proposed in Sec-
tion IV, which consists in verifying whether the available
memories in a platform are large enough to contain all the
outstanding communication buffers at any time (i.e., studying
the maximum memory backlog). While Section IV is focused
on closed-form bounds on the MSR, Section V shows that
an accurate characterization of the MSR can be achieved by
means of algorithmic techniques. Specifically, we show that
max-plus algebras can be applied to nested fork-join graphs
(a practical restriction of DAGs), and that the worst-case MSR
analysis for general DAGs can be mapped to a max-flow cut
problem and a special case of the maximum weight independent
set problem, which can be solved in polynomial time in the
case considered in this paper. Finally, Section VI reports on
an experimental study that has been conducted to assess the
performance of the proposed analysis techniques applied to
both synthetic workload and a state-of-the-art benchmarks.

II. SYSTEM MODEL

This section introduces the platform and task model consid-
ered in this paper. The platform model has been inspired by the
main properties of multicore execution platforms commonly
used in the automotive industry, namely the AURIX TC2xx
and AURIX TC3xx [2] family of processors. The execu-
tion model considers the characteristics of real applications
developed for automotive applications, including precedence
constraints, data dependencies, and data transfers between
tasks and memories.

1) Platform model: The computing platform is assumed to
be composed of M identical cores p1, . . . , pM . Each core pk
has direct access to a local instruction scratchpad memory S I

k
and a local data scratchpad memory SD

k. A global memory
G is shared among all the cores. The data (resp., instruction)
scratchpad of the k-th core has a size szD

k (resp., szI

k), while
the global memory has a size szG . Memory sizes are expressed
in blocks, which is a logical unit corresponding to the memory
granularity in the presence of fragmented memory allocation.
The actual definition of a block depends on the target system;
it can be a memory page [3] or just a custom chunk composed
of a given number of bytes.

2) Execution model: The system is composed of a set Γ
of n real-time applications modelled as sporadic tasks, each
described as a directed acyclic graph (DAG). Hence, a task
τi = (Vi, Ei) is characterized by a set Vi of nodes (or
vertices) and a set of directed edges Ei. Each task releases
a potentially infinite sequence of instances (i.e., jobs). Each
of those jobs must execute all nodes in Vi respecting the
precedence constraints defined by Ei. A task is said to be
pending when it has at least one released but uncompleted
node. Each job is subject to an inter-job precedence constraint:

namely, only one instance of each task can be pending at the
same time.

Tasks are executed under partitioned scheduling, where
each node executes in a non-preemptive fashion. The j-th node
of task τi is denoted by vij ∈ Vi and is statically allocated to

core P(vij). A node v
j
i is a sub-task of τi and is characterized

by a contention-free worst-case execution time (WCET) Ci
j

(occurring when it executes in isolation and all its data and
instructions are in the local scratchpads). Each node requires
LM i

j blocks of local memory during its execution (e.g., to
store local variables in a stack). The set of tasks that have at
least one node allocated to pk is denoted by Γk.

Nodes are connected by edges. Edge eij,z ∈ Ei connects

node v
j
i to node vzi of τi. It defines a precedence constraint

between the two nodes, meaning that vzi can start executing

only after v
j
i is completed.

Each edge also models the data dependencies between
nodes: to this purpose, edges are weighted with (i) the amount
of data produced by the source node to be consumed by
the destination node and (ii) the type of communication
channel being used, namely local or global memory. Formally,
an edge eij,z = (mi

j,z,∆
i
j,z) is characterized by a weight

mi
j,z (expressed in memory blocks) and a communication

type ∆i
j,z ∈ {L,G}, where L represents a shared-memory

communication with a buffer allocated in local scratchpad, and
G represents a communication through a buffer allocated in
global memory.

Communications that involve the global memory are sub-

ject to copy-in and copy-out phases. That is, if node v
j
i

communicates with node vzi by means of global memory, then

v
j
i first saves the output data in its local scratchpad memory

when it executes, and then copies the produced data in global
memory at the end of its execution (copy-out); similarly, the
destination node vzi first copies the input data from global
memory to its local scratchpad before execution (copy-in),
and then accesses the data in scratchpad without suffering any
contention during its execution. Copy-in and copy-out phases
are performed by the cores (i.e., they consume CPU cycles).
They are modelled separately from the node WCET for the
sake of logical clearness1. A node is said to be completed after
the completion of all its copy-out phases. For local memory
transactions, the memory buffer used for a communication

modelled by edge eij,z is allocated when node v
j
i starts execut-

ing and de-allocated when node vzi completes its execution. As
long as a buffer is allocated, the corresponding communication
is said to be pending. Note that this allocation can also follow
pre-computed (i.e., static) patterns and involve fragmentation
techniques [4] (i.e., a buffer is not contiguously allocated in
physical memory).

Edges of τi model the intra-job communications (i.e., the
communication between nodes released by the same job). Yet,
communication between successive jobs of the same task may
be required (e.g., to reuse data computed during the previous
iteration of a control loop). To this end, each task τi uses a
persistent memory buffer with size PM i

k statically allocated in
each scratchpad SD

k. Nodes have a direct access to those buffers

1Modelling copy-in and copy-out phases separately from the node WCET
may also allow for future extensions, such as modelling the use of DMA
engines for data transfers

to store updated data and read data produced by previous jobs.
Communications between successive jobs performed through
global memory are modelled by an edge from or to a dummy
node with zero execution time. This edge is weighted with the
amount of data to transfer and labelled with a communication
type ∆i

j,z = G.

The time overhead introduced by memory fragmentation
is assumed to be negligible or part of the tasks’ WCET,
whereas the corresponding space overhead is assumed to be
factored within the memory requirements. Tasks are assumed
to be independent, i.e., they do not access shared resources.
Furthermore, instruction scratchpads are assumed to be large
enough to contain the code of the nodes allocated to the
corresponding cores, or each core disposes of a dedicated
flash memory (as it is the case for the modern AURIX TC3xx
platforms produced by Infineon [2]).

To denote direct precedence relations, for each node the
sets of immediate predecessors ipred(vi,s) and immediate
successors isucc(vi,s) are defined, as ipred(vi,s) = {vi,j ∈
Vi : ∃ (vi,j , vi,s) ∈ Ei} and isucc(vi,s) = {vi,j ∈
Vi : ∃ (vi,s, vi,j) ∈ Ei}, respectively.

Analogously, the sets of predecessors pred(vi,s) and suc-
cessors succ(vi,s) denote precedence relations that are either
direct (i.e., by means of an edge) or transitive (i.e., by means
of a set of edges involving intermediate nodes).

A node vs,j without incoming edges is referred to as
a source node, whereas a node without outgoing edges is
referred to as a sink node. For the sake of simplicity, this paper
assumes a single sink and source node. Note that, when this
assumption does not hold, any DAG with multiple source/sink
nodes can always be transformed into a DAG with a single
source/sink node by adding an extra dummy source/sink node
with computation time equal to zero and data transfers of zero
size with their successors/predecessors.

Figure 2 reports a sample schedule of a single task τi
with 6 nodes partitioned on two processor cores, together
with the plot of the MSR for the scratchpad memory of
the second core (SD

2). All communications between nodes
allocated to the same core are performed with a shared-
memory buffer allocated in the corresponding scratchpad (i.e.,
∆i

1,2 = ∆i
3,4 = ∆i

3,5 = ∆i
4,7 = ∆i

5,7 = L), and hence do
not involve copy-in and copy-out phases. Communications that
involve nodes allocated on different cores require copy-in and
copy-out phases, as illustrated in the schedule.

To help the reader in following the adopted notation,
Table I summarizes the symbols introduced in the system
model.

III. RELATED WORK

To the best of our knowledge, no approaches are available
to study the worst-case MSR of a parallel application executed
upon a multicore platform with scratchpad memories. Previous
work strictly related to the problem addressed in this paper
focused on deriving MSR analysis and memory allocation
algorithms for a set of classical periodic tasks executed upon an
uniprocessor. Most relevant to us are the works of Marchand
et al. [5], Crespo et al. [6], and Puaut [7]. Mechanisms for
predictable data allocation in scratchpads have been studied by
Puaut and Pais [4] and Whitham and Audsley [3]. Suhendra et

ଷݒ ସݒ
଺ݒ

ଶݒ ݕ݌݋ܿ݊݋�ݐݑܿ݁ݔ଻݁ݒ ݕ݌݋ܿ݊� ݐݑ݋
ଶ݌ଵ݌

ଶ݌ ଷݒ ݐ

�ܴ݂ܵ
ܵ�݋ ଶ�

ݐ

ଵݒ ʹ ʹ
ͳ

ͳ ହͶݒʹ ͳ
͵

ହݒ଻ݒ
ͷͳͲ
ͳͷ ͳͲ 9ͳͳ Ͷ 7

�ܴܵ ݀݊ݑ݋ܾ
ݐ�ܽݓ ݐ�ܽݓ

Ͳ

ଵ݌ ଶݒݐ�ܽݓݐ ଵݒସݒ଺ݒ

Figure 2. Sample schedule of a parallel task on two processors together with
the plot of the MSR for scratchpad memory SD

2 . The task index is omitted.
Nodes v3, v4, v5 and v6 are allocated to core p1, while nodes v1, v2 and v6
are allocated to core p2. Local memory of all nodes is assumed to have size
of one block. No inter-job persistent memory buffers are present.

Table I. TABLE OF SYMBOLS

Symbol Description

pk k-th processor
szD

k size of k-th data scratchpad
SD

k k-th data scratchpad

Γk set of tasks with at least one node allocated on pk
τi i-th task

vij j-th node of τi
Ci

j WCET of vis
LM i

j size of local memory of node vij
PM i

j size of inter-job persistent memory of τi on pk
P(vis) core in which vis is allocated to

ipred(vis) immediate predecessors of vis
isucc(vis) immediate successors of vis
pred(vis) predecessors of vis
succ(vis) successors of vis
eij,z edge connecting vij to viz
mi

j,z amount of data produced by vij for viz
∆i

j,z communication type (G or L) related to eij,z

al. [8] proposed an iterative scratchpad allocation algorithm
aimed at reducing worst-case response times for periodic
tasks under preemptive scheduling. The authors presented
different methodologies for providing a scratchpad allocation
that reserves partitions to tasks that may preempt each other,
while ensuring memory space constraints.

Furthermore, note that this work also lies in the intersection
of research contributions on parallel real-time tasks and data-
flow models, and memory-aware execution models. Due to the
large number of available results and space constraints, a de-
tailed literature review cannot be reported here. Therefore, this
section is focused on reviewing the papers that are much closer
to the present work or representative for the corresponding
research domain.

A. Parallel tasks and data-flow models

During the last decade, several authors addressed the prob-
lem of analyzing parallel tasks running upon multiprocessor
platforms under real-time constraints. Both the fork-join task
model [9], [10] and the DAG task model [11]–[13] have
been studied to deal with parallel applications scheduled under
global scheduling, whereas Fonseca et al. [14] and Casini
et al. [15] studied the same models under partitioned fixed-
priority preemptive and non-preemptive scheduling, respec-
tively. Such models are different from the one presented in
the previous section as they do not consider data dependencies
between execution nodes and the corresponding MSR.

The explicit flow of data among nodes has been considered
in different variations of the dataflow task model that have
been proposed over the years. For instance, the Synchronous
DataFlow Graph model [16], [17] represents a graph with
producer-consumer relations among nodes (also called actors)
connected through edges. Each edge represents a FIFO queue,
used to direct tokens (i.e., data) among nodes, and it is
characterized by three quantities, all of them representing a
number of tokens. Specifically, the number of tokens inserted
into the queue by a producer, the number removed by a
consumer, and the number initially present in the queue.

A different dataflow model, adopted to describe the work-
load of industrial cellular networked systems scheduled on
a heterogeneous platform, has been proposed by Dong et
al [18]. In their work, the authors aim at providing response
time bounds without incurring capacity loss for a parallel task
model, where each task consists in chain of subtasks with
an implicit deadline and it is designated to be executed on
a specific type of processor.

Closer to our work, the work by Elliott et al. [19] considers
a dataflow model in which each edge is characterized by
the number of bytes that a predecessor (i.e., the producer) is
producing for a successor (i.e., the consumer). However, they
adopted clustered multiprocessor scheduling and a platform
model consisting of a cache hierarchy. The authors proposed
a timing-driven heuristic assignment designed to make an
efficient use of the cache memory. The MSR of the tasks has
not been analyzed.

B. Memory-aware execution models

Concerning memory-aware execution models, Pellizzoni et
al. [20] proposed the PRedicatable Execution Model (PREM),
in which the execution of each task consists of two phases: a
memory phase and an execution phase. In the memory phase
the data needed by the task is preloaded into a local memory,
thus avoiding the need for accessing the shared memory during
the execution phase. The PREM execution model was origi-
nally conceived for uniprocessor platforms, and later extended
to multicores [21]. Other authors considered similar execution
models with three phases (copy-in, execution, and copy-out):
this is the case of the works of Alhammad et al. [22], [23] and
Maia et al. [24].

Kim and Rajkumar [25] focused on implementing a mem-
ory reservation scheme to trade the MSR of tasks with timing
latencies. Tabish et al. [26], Soliman and Pellizzoni [27],
and Biondi and Di Natale [28] considered techniques to
preload scratchpad memories similarly as considered in this
paper. Finally, Irobi and Juurlink [29] proposed three different

strategies for allocating data in scratchpad memories aimed at
guaranteeing the schedulability of implicit-deadline periodic
tasks on a single core, where computation times are dependent
on the amount of memory allocated in the scratchpad.

IV. MEMORY FEASIBILITY

This section presents a memory feasibility analysis for
the considered system model. To better illustrate the problem
addressed here, a simple motivational example is shown in Sec-
tion IV-A. Then, MSR bounds are proposed in Section IV-B.

A. Motivational example

Consider the sample parallel task illustrated in Figure 2
scheduled on two cores p1 and p2 (no other tasks are present).
As the task progresses in its execution, memory buffers are al-
located and de-allocated from memories by following the task
model introduced in Section II-2. Once a buffer is allocated,
the MSR for a given memory increases, and it decreases when
a buffer is released. Figure 2 also illustrates a possible schedule
of the task on p1 and p2, together with the corresponding MSR
for SD

2 over time. Note that initially the MSR is zero, and it
is increased when node v3 starts executing by allocating (i)
all the buffers corresponding to incoming and outgoing edges
(for a total of nine memory blocks), and (ii) the local memory
of the node (assumed to have size of one block). Once v3 ter-
minates, only the buffers related to intra-core communications
(specifically, those related to v4 and v5) are kept in SD

2 , for
a total of six memory blocks. However, as v4 directly starts
executing, the MSR is increased to eleven to account for (i)
the copy-in data originating from v2 (one memory block), (ii)
the buffer size of outgoing communications (three memory
blocks) and (iii) the local memory requirement of the node
(one memory block). Summing all those contributions with
the pending communications originating from v3, the MSR
reaches 11, its maximum value during the execution of the
task.

Clearly, when considering more complex DAG structures
and more than one task, the problem of computing the max-
imum demand generated by a task set becomes non-trivial.
The objective of this section is to compute suitable upper
bounds for the MSR on each core, hence verifying whether the
memories are large enough to contain the maximum memory
backlog produced by a task set.

B. MSR bounds

This section aims at deriving closed-form bounds on the
MSR generated on each core pk (with k = 1, . . . ,M), hence
providing a memory feasibility test. This section only considers
the memory feasibility problem with respect to data scratch-
pads, which are typically the scarce resources (an analysis for
the global memory can be performed with techniques similar
to those presented in this section). In the following, a top-down
approach is adopted, where the maximum MSR is increasingly
decomposed into multiple terms.

Given a core pk, at any point in time, either a single node
vij of τi is executing, or none of τi’s nodes is. From this
basic property, two different MSRs are derived for τi on pk,
depending on the case that holds:

(i) Mi,EX

k is a bound on the maximum MSR in data scratch-
pad SD

k generated by τi in the case one of its nodes
executes on pk; and

(ii) Mi,NEX

k is a bound on the maximum MSR in data scratch-
pad SD

k generated by τi in the case none of its nodes
executes on pk.

Since the additional local memory space required by a node
when it executes (e.g., to save local variables on a stack) is

freed when the node completes, it clearly holds that Mi,EX

k ≥
Mi,NEX

k , ∀τi ∈ Γk.

At any time instant t, the total MSR on core pk is given by
the sum of the MSR of the one task executing on pk at time
t (if any), and the MSR of all the other tasks in Γk that are
not executing on pk at time t. Building upon this principle,
Lemma 1 establishes a (sufficient) memory feasibility test for
core pk.

Lemma 1: The nodes running on core pk are memory-
feasible if

max
τi∈Γk







Mi,EX

k +
∑

τj∈Γk\τi

Mj,NEX

k







≤ szD

k −
∑

τi∈Γk

PM i

k.

Proof: At any time instant t, core pk can be either (i)
executing a task τi, or (ii) idle.

Case (i). The MSR in the data scratchpad at time t is given
by the demand of the executing task τi plus the memory
contribution of all the non-executing tasks (i.e., the tasks
in Γk \ τi); that is, the MSR at time t is upper-bounded

by Mi,EX

k +
∑

τj∈Γk\τi
Mj,NEX

k . Since any task τi in Γk can

be executing at time t, the maximum value of the previous
equation over all tasks in Γk yields a safe upper-bound on the
MSR when a task executes on pk.

Case (ii). If no task execute on pk at a time instant t, we
note that the total MSR in the data scratchpad at time t is

upper-bounded by
∑

τj∈Γk
Mj,NEX

k . Observing that Mi,EX

k ≥

Mi,NEX

k , ∀τi ∈ Γk, then this bound is always smaller than the
one considered in case (i).

The lemma follows by noting that the szD

k −
∑

τi∈Γk
PM i

k

expresses the amount of memory in the data scratchpad SD

k
of pk that is actually available to the nodes during the system
execution, which is given by the total size szD

k of the scratchpad
minus the size of all inter-job persistent buffers permanently
allocated in local memory.

The problem of memory feasibility is now reduced to

finding suitable values for the terms Mi,EX

k and Mi,NEX

k .

Computing Mi,EX

k
.

Note that, when a task τi is executing on core pk, there is
exactly one node vij ∈ Vi that is executing on pk. This allows

us to further decompose Mi,EX

k into two mutually-exclusive
contributions:

(i) The maximum memory amount Mi,ISO

j,k used by node vij
in SD

k when it is executing on pk;

(ii) The maximum memory amount Mi,INTRA

j,k used in SD

k by

pending communications originated from nodes in Vi \
{vij} when node vij is executing.

Intuitively, Mi,ISO

j,k accounts for the MSR of vij as if it

were executing in isolation (i.e., alone on pk), while Mi,INTRA

j,k

accounts for the intra-task MSR during the execution of vij .

Thanks to these definitions, the MSR Mi,EX

k of a task τi
executing on pk can be computed by considering all the nodes
of τi that may execute on pk, i.e.,

Mi,EX

k = max
vi
j∈Vi

P(vi
j)=pk

{

Mi,ISO

j,k +Mi,INTRA

j,k

}

. (1)

To proceed, it is convenient to make a simple observation.

Observation 1: Let IEi
j and OEi

j be the sets of incoming

and outgoing edges of node v
j
i , respectively. Since no par-

ticular assumptions are made on the code structure of the

nodes, when v
j
i executes, it can arbitrarily read from and

write in the buffers related to edges in IEi
j and OEi

j in an
interleaved manner. This means that all the communications
corresponding to IEi

j and OEi
j must be considered pending

during the execution of v
j
i .

The observation above allows deriving the following

lemma to compute Mi,ISO

j,k .

Lemma 2: The maximum amount of memory requested by
node vij in SD

k when it is executing on pk, is equal to

Mi,ISO

j,k = LM i
j +

∑

vi
l
∈ipred(vi

j
)

mi
l,j +

∑

vi
s∈isucc(vi

j
)

mi
j,s.

Proof: Following Observation 1, the amount of memory
accessed by vij in SD

k is composed of three terms: (i) the node-

local MSR (of size LM i
j), (ii) the total amount of memory

requested to save the input data received from immediate pre-
decessors (i.e.,

∑

vi
l
∈ipred(vi

j
) m

i
l,j), and (iii) the total amount

of memory requested to save the output data produced by vij
for immediate successors (i.e.,

∑

vi
s∈isucc(vi

j
) m

i
j,s). Note that,

even if input data come from global memory, they must be
counted in (ii) as those data must be copied in SD

k before vij
may access them, hence increasing vij’s MSR (see execution

model in Sec. II-2). Similarly, data produced by vij and pushed
in global memory must be counted in (iii) as those data must
first be saved in scratchpad SD

k before being pushed in global
memory.

It remains to compute Mi,INTRA

j,k . Unfortunately, the prece-
dence constraints of a task originate a potentially large num-
ber of mutually-exclusive execution scenarios, thus making a

precise computation of Mi,INTRA

j,k particularly challenging. The
following lemma establishes a closed-form upper bound on

Mi,INTRA

j,k , while more complex techniques to derive tighter
bounds are detailed in Section V.

Lemma 3: It holds that

Mi,INTRA

j,k ≤
∑

eis,d∈{Ei}\{X∪Y ∪Z}

mi
s,d (2)

where

X =
{

eis,d ∈ Ei | v
i
s ∈ pred(vij) ∧ vid ∈ {pred(vij) ∪ vij}

}

,

Y = {eis,d ∈ Ei | v
i
s ∈ {succ(vij) ∪ vij}},

and

Z = {eis,d ∈ Ei | ∆
i
s,d = G ∨ P(vis) = P(vid) 6= pk}.

Proof: Since tasks are subject to an inter-job precedence
constraint, at most one instance of τi can be pending when

vij is executing. Therefore, Mi,INTRA

j,k is upper-bounded in any

case by
∑

ei
s,d

∈Ei
mi

s,d. Now, note that, when vij is executing,

local communications originated from other nodes of τi that
are pending and hence request memory space in the local
scratchpad SD

k cannot be related to edges that:

(i) are on a path reaching vij , as they must already be

completed (or are being accessed by vij itself and are

therefore already accounted for in Mi,ISO

j,k);

(ii) are outgoing from successors of vij , as the latter must
first complete for those to execute;

(iii) are outgoing from vij itself as those are already being

accounted for in Mi,ISO

j,k ;
(iv) perform their communications through global memory

(i.e., edges for which ∆i
s,d = G), as due to the non-

preemptive execution model assumed in this work, the
execution of other nodes of τi must have already been
completed or have not yet been started. Therefore, global
data accessed by those nodes must already have been
copied out of the scratchpad or have not yet been copied
in the scratchpad;

(v) perform local communications in other scratchpad mem-
ories (i.e., edges for which P(vis) = P(vid) 6= pk).

Set X accounts for the edges of case (i) by collecting all
edges that connect two predecessors of vij or a predecessor of

vij and vij itself; all those edges belong to a path ending in vij .
Set Y accounts for the edges of case (ii) and (iii), while set Z
jointly accounts for cases (iv) and (v). Since only edges from
those sets are excluded from Ei in Eq. (2), the lemma follows.

Computing Mi,NEX

k
.

In this section we derive an upper-bound on the maximum
MSR of a task τi in the data scratchpad SD

k when τi is not
executing on the corresponding core pk.

Clearly, if τi never executed on pk there cannot be any out-

standing communications between nodes of τi and Mi,NEX

k
= 0.

We are therefore interested to the case where at least one node
of τi executed on pk. Let vij be the last such node. We define

Mi,NEX

j,k as the maximum amount of memory allocated in SD

k

for pending communications of τi when τi is not executing
and vij is the last node of τi that executed.

From this definition, Mi,NEX

k can be obtained from Mi,NEX

j,k

by considering all nodes of τi allocated to pk. Formally,

Mi,NEX

k = max
vi
j∈Vi

P(vi
j)=pk

{

Mi,NEX

j,k

}

. (3)

Finally, the following lemma establishes the value of

Mi,NEX

j,k .

Lemma 4: The maximum amount of memory allocated in
SD

k for pending communications of τi, when τi is not executing

and vij is the last node of τi that executed on pk, is equal to

Mi,NEX

j,k = Mi,INTRA

j,k +
∑

vi
s∈isucc(vi

j)

∆i
j,s=L

mi
j,s.

Proof: When vij is the last node of τi that executed
on pk, the MSR generated by τi in SD

k is given by the
MSR when vij was executing minus the amount of memory

x that vij de-allocated after its completion, that is, Mi,NEX

j,k =

Mi,INTRA

j,k +Mi,ISO

j,k − x. When it terminates, vij de-allocates its

local memory LM i
j , the buffers related to incoming edges,

and the buffers related to outgoing edges whose content has
been copied-out into the global memory (i.e., edges eis,d with

∆i
s,d = G). By merging Lemma 2 with this observation, we

have that Mi,ISO

j,k − x = Mi,ISO

j,k − LM i
j −

∑

vi
l
∈ipred(vi

j
) m

i
l,j −

∑

vi
s∈isucc(vi

j
),∆i

j,s
=G mi

j,s =
∑

vi
s∈isucc(vi

j
),∆i

j,s
=L mi

j,s. The

lemma follows.

V. ACCURATE CHARACTERIZATION OF THE MSR

While the previous section provided closed-form bounds
for the MSR generated by a task set, this section focuses on
algorithmic approaches for computing tighter bounds, specifi-

cally by deriving an exact value for Mi,INTRA

j,k .

First, Section V-A shows that max-plus algebra related
techniques can be used to solve the problem in polynomial
time for the case where the tasks are modeled by nested fork-
join graphs [30], i.e., a more restricted version of DAGs that
found practical application in several parallel programming
frameworks. Then, Section V-B shows that the problem of

computing Mi,INTRA

j,k for a general DAG can be mapped to a
maximum weight independent set problem [31] and presents
two solutions to solve it: the first one is based on an integer
linear programming formulation, while the second is a polyno-
mial time algorithm using the notion of comparability graphs.

A. Computing Mi,INTRA

j,k for nested fork-join tasks

To make this paper self-contained, the definition of a nested
fork-join (NFJ) graph is recalled. We first define a ”fork-join
chunk” as a basic block of nested fork-join graph.

Definition 1: A fork-join chunk is a DAG (V,E) where
(i) there exists a single source node vs ∈ V and a single
termination (sink) node vt ∈ V ; (ii) if V = {vs, vt} then vs
is directly connected to vt (potentially with multiple directed
edges); (ii) otherwise, for each node v ∈ V \ {vs, vt} there
exists a single two-edges path from vs to vt that traverses v,
i.e., vs is connected to v and v is connected to vt.

A nested fork-join graph can then be recursively defined
by using the notion of fork-join chunk as the base case.

Definition 2: A nested fork-join graph is a fork-join chunk;
or it is a DAG resulting from a nested fork-join graph in which
at least one node v is replaced by a nested fork-join graph with
source and termination nodes v′s and v′t, such that all incoming
edges of v are connected to v′s and all outgoing edges of v are
outgoing from v′t.

A simple example of a nested fork-join graph composed
of a single fork-join chunk is illustrated in Figure 3(a).

Figure 3. (a) Example of fork-join graph. (b) Example in which Lemma 5 is
applied to the linear graph resulting from the nodes and the edges at the top
of inset (a). (c) Example in which Lemma 6 is applied to a graph resulting
from the application of Lemma 5 to all linear sub-graphs in inset (a).

Using Definition 2, a nested fork-join parallel task is de-
fined as any other parallel task (see Section II-2) but enforcing
that the DAG (Vi, Ei) complies with the definition of a nested
fork-join graph.

For the purpose of MSR analysis, in this section we prove
that NFJ graphs can be transformed into equivalent (i.e., with
identical MSR), but simpler graphs by recursively applying
two simple rules. Such rules are essentially a max-plus algebra
applied to graphs and are formally stated in Lemmas 5 and 6.

Consider the particular case of a linear DAG defined as:

Definition 3: A DAG G = (V,E) is said to be linear if
there exists an ordered sequence s of the nodes in V such that
the edges in E sequentially connect the nodes according to s
and |E| = |V | − 1.

An example of a linear graph is shown on the top of
Figure 3(b). Note that a linear DAG does also respect the
definition of a fork-join graph.

By using the rule stated in the following lemma, a linear
DAG can be transformed into a simpler graph containing only
one directed edge and that has the same worst-case MSR than
the original DAG.

Lemma 5: Consider a task τi modelled by a linear DAG
G = (Vi, Ei) and let vs ∈ Vi and vt ∈ Vi be the source
and termination nodes of G, respectively. The maximum MSR
generated by τi when none of its nodes are executing is
equivalent to the worst-case MSR generated by a task τ ′i
described by a two-node DAG connected by a single edge
with weight max

ei
j,z

∈Ei

{mi
j,z}.

Proof: When none of the nodes in the graph G is
executing, the MSR is only generated by the pending commu-
nications between nodes, which are represented by the edges
of G. Since the graph is linear, due to precedence constraints
all the communications are mutually exclusive in time, i.e.,
only one of them can be pending at a given point in time.
Hence, the maximum MSR generated by the task is given by
the maximum weight on the edges of G, that is, max

ei
j,z

∈Ei

{mi
j,z},

hence the claim.

The transformation described in Lemma 5 is illustrated in
Figure 3(b), where it is applied to the set of nodes and edges
belonging to the upper-most branch of the NFJ graph presented
in Figure 3(a). When Lemma 5 is applied to all branches of
the NFJ graph of Figure 3(a), one obtains the DAG shown on
the top part of Figure 3(c).

Lemma 6: Consider a task τi described by a DAG G =
(Vi, Ei) in which there exists a set E∗ ⊆ Ei of edges with

|E∗| > 1, where all edges in E∗ connect the two same nodes
v1 ∈ Vi and v2 ∈ Vi. The maximum MSR generated by τi
when none of its nodes are executing is equal to the maximum
MSR generated by a task τ ′i modelled by a DAG G′ obtained
from G by replacing the edges in E∗ with a single edge
connecting v1 to v2 and with weight

∑

ei
j,z

∈E∗

{mi
j,z}.

Proof: According to the semantic of the edges stated in
Section II-2, a set of at least two edges that connect v1 to v2
implies a precedence constraint between v1 and v2, and the
weight of those edges specifies the amount of data produced
by v1 for v2. The lemma follows by noting that the same
semantic is preserved by collapsing such edges in a single
edge weighted with the sum of their weights.

Figure 3(c) illustrates the transformation described in
Lemma 6.

By repeatedly applying Lemmas 5 and 6, any NFJ graph G
modelling a task τi can be reduced to a two-nodes graph with
a single edge weighted with the maximum intra-task MSR of
τi. This claim is exemplified in Figure 3 and can be formally
proved with an inductive argument by introducing the notion
of nesting level of a NFJ graph.

Definition 4: A NFJ graph with nesting level k is a graph
that can be obtained by replacing each node of a fork-join
chunk with a NFJ sub-graph with nesting level at most k− 1,
where nesting level k = 0 corresponds to a linear graph.

Lemma 7: The repetitive application of Lemma 5 and 6
on a NFJ graph results in a two-node graph connected by a
single edge.

Proof: The lemma is proved by structural induction.
Base case: Consider a NFJ graph G with nesting level k = 0,
i.e., a linear graph. By applying Lemma 5, to G, G is reduced
to a two-nodes graph connected by a single edge.

Inductive case: Assume that a NFJ sub-graph with nesting
degree ≤ k can be reduced to a two-nodes graph connected
by a single edge. Now, consider a NFJ graph with nesting
degree k+1, which by definition is composed of a number of
sub-graphs with nesting level ≤ k (see Fig. 4(a)).

By induction hypothesis, each sub-graph of level ≤ k in
G can be reduced to a two-node graph connected by a single
edge. Therefore, G can be reduced to a fork-join chunk where
each node is replaced by one of such two-node sub-graphs
(see Fig. 4(b)). Consider first the sub-graphs that replace one
of the inner nodes of a fork-join chunk: by applying Lemma 5
to each parallel path, they can be replaced by a single edge (see
Fig. 4(c)). All edges resulting from this step can be merged
into a single edge using Lemma 6 (see Fig. 4(d)). Then, the
resulting graph is linear and can be transformed into a two-
node graph by applying Lemma 5 again.

Leveraging the result of Lemma 7, Algorithm 1 shows how

Lemmas 5 and 6 can be used to compute the term Mi,INTRA

j,k .

The algorithm takes as input the graph (Vi, Ei) modelling
the task under analysis, a node vij ∈ Vi and the core pk on

which vij executes. First, leveraging the results of Lemma 3,
the weights of all the edges whose corresponding inter-node
communications cannot contribute to the intra-task MSR of τi
when vij executes on pk are set to zero, i.e., the null element
of max-plus algebras. Then, Lemma 5 and Lemma 6 are

Figure 4. Example of the application of Lemma 5 and Lemma 6 to reduce
a graph with nesting level k + 1. Square nodes denote nested fork-join sub-
graphs with nesting level ≤ k, which can be reduced to two-node graphs
connected by a single edge by the inductive hypothesis of Lemma 7.

Algorithm 1 Pseudo-code for computing Mi,INTRA

j,k for a NFJ
task τi. Sets X , Y , and Z are defined as in Lemma 3.

1: procedure COMPUTEM-INTRA(Vi, Ei, v
i
j , pk)

2: for all eij,z ∈ {X ∪ Y ∪ Z} do

3: mi
j,z = 0

4: end for
5: do
6: Update (Vi, Ei) according to Lemma 5
7: Update (Vi, Ei) according to Lemma 6
8: while (|Vi| > 2 ∨ |Ei| > 1)
9: return mi

j,z of the single edge eij,z ∈ Ei

10: end procedure

repeatedly applied until the graph is reduced to a two-node
graph with a single edge (Lines 6 and 7). Specifically, the
pseudo-statement at line 6 applies the transformation specified
by Lemma 5 to all the linear sub-graphs in (Vi, Ei), while the
one at line 7 applies the transformation specified by Lemma 6
to all pairs of nodes in (Vi, Ei) that are connected by more
than one edge.

Note that whenever the two lemmas are applied, the
number of edges in Ei is reduced by at least one. The
number of iterations in the while loop is therefore bounded
by the number of edges in the graph. Further, each iteration
may require to go once through the whole graph (i.e., once
through all edges). Therefore, the complexity of the algorithm
is implicitly bounded by the number of edges, i.e., it is
upper-bounded by O(|Ei|

2). Finally, it is worth mentioning
that a recursive implementation of the algorithm with linear
complexity O(|Ei|) is also possible.

B. Computing Mi,INTRA

j,k for DAG tasks

The very efficient solution presented in the previous section
cannot be applied to the general case in which a task is
described by an arbitrary DAG. Nevertheless, in the following,

we demonstrate that the computation of Mi,INTRA

j,k can be seen
as a variant of the max-flow problem over DAGs. We propose
two solutions to solve this problem: an Integer Linear Pro-
gramming (ILP) formulation and a polynomial time algorithm
that solves the maximum-weight independent set problem for
an equivalent comparability graph [31].

An ILP based solution

We first define the notion of a flow-cut for a DAG. We
then use that notion to compute Mi,INTRA

j,k .

Definition 5: A flow-cut of a DAG G = (V,E) is a
separation of the nodes in V into two disjoint sets V1 and
V2, with V1 ∪ V2 = V , such that for all nodes v ∈ V2,
succ(v) ∩ V1 = ∅.

The following theorem establishes that the pending com-
munications of a task when one of its nodes executes can be
represented with a flow-cut.

Theorem 1: Let vij ∈ Vi be a node of task τi that is

executing on core pk. Let G′ be the DAG obtained from
(Vi, Ei) by setting the weight of all edges in sets X , Y and
Z to 0 (where X , Y and Z are defined as in Lemma 3). The
intra-task MSR of τi in SD

k can be represented as a flow-cut
of the graph G′.

Proof: As already expressed in Lemma 3, edges in X , Y
and Z do not generate intra-task MSR in the local scratchpad
SD

k when vij executes. Therefore, setting their weight to 0 is
safe.

Now, let V ∗ be equal to Vi \v
i
j . Due to the non-preemptive

execution policy assumed in this paper, when vij is executing,
each node in V ∗ can either (i) be completed, or (ii) did not
yet start executing. Now, consider a flow-cut (V1, V2) of DAG
G′. Nodes falling in case (i) are placed in V1, while nodes in
case (ii) are placed in V2. By recalling Definition 5, this is a
valid cut as, due to precedence constraints, the successors of
nodes that are not yet executed at time t cannot be completed
at time t. Furthermore, vij can be placed into V2 as it did not
complete yet at time t. The theorem follows.

With the above theorem in place, the problem of computing

Mi,INTRA

j,k can be reduced to the problem of finding the maximal

flow-cut2 in a DAG where a maximal flow-cut is defined below.

Definition 6: A maximal flow-cut of a DAG is a flow-
cut (V1, V2) such that the sum of the weights of the edges
connecting nodes in V1 to nodes in V2 is maximal.

This problem can be solved with an ILP. Let xi
s,d ∈ {0, 1}

be a binary variable defined for each edge in Ei such that
xi
s,d = 1 iff eis,d is an edge traversed by the flow-cut. The ILP

is then formulated as follows:

maximize xi
s,d ×mi

s,d

subject to

∀eis,d ∈ Ei, ∀e
i
l,r ∈ Ei | v

i
l ∈ {succ(vid) ∪ vid} :

xi
l,r ≤ 1− xi

s,d (4)

∀eis,d ∈ {X ∪ Y ∪ Z} : xi
s,d = 0 (5)

Eq. (4) enforces the definition of a flow-cut, while Eq. (5)
excludes all the communications that are unrelated to a given
memory SD

k and prunes the edges that cannot contribute to the
MSR, as it was proven in Lemma 3.

This solution based on ILP can be extended to support
additional modeling features or restrictions just by adding new
constraints to the ILP formulation. However, it may suffer

2The maximum flow-cut problem should not be confused with the ”max-
flow/min-cut” problem which seeks the minimum flow-cut in a graph [32].

Figure 5. A DAG G = (V,E) and the comparability graph C obtained from
its edges C. The max flow-cut in G (in red) corresponds to the max-weight
independent set {e1,3, e2,4} in C.

scalability issues. A more efficient solution for large systems
is proposed in the next subsection.

A solution based on comparability graphs

Considering the definition of a flow-cut (Definition 5), two
different edges ex and ey can be cut by the same flow-cut if
and only if they do not belong to the same path in the graph.
That is, there is no precedence constraints (direct or transitive)
between ex and ey . Precedence constraints between edges of
a DAG can be represented by a comparability graph. We first
recall the definition of a comparability graph.

Definition 7: Let S be a strictly partially ordered set. A
comparability graph C of S is an undirected graph whose
nodes are the elements in S such that any two node x and
y in C are connected iff x < y or y < x in S .

The set of edges E of a DAG G = (V,E) can be seen as
a strictly partially ordered set such that for every pair (ex, ey)
of edges in E, ex < ey iff ex must be ”executed” before ey .
Therefore, E can be represented as a comparability graph C.
Figure 5 shows an example of a DAG G and the comparability
graph C built from the precedence constraints between the
edges of G.

From the discussion above, it results that the comparability
graph C has the following useful property:

Property 1: Let C be the comparability graph obtained
from a set of edges E of a DAG G = (V,E). Any two nodes
ex and ey in C are not connected by an edge in C iff there is
no precedence constraint between ex and ey in G.

From that property and recalling Definition 5, it holds that
the set of edges cut by a flow-cut in a DAG G = (V,E) is
an independent set3 of nodes in the comparability graph C
obtained from E. Figure 5 shows that the flow-cut composed
of edges {e2,4, e1,3} in G is equivalent to an independent set
(i.e., no edge connects its elements) composed of the two red
nodes in the comparability graph C.

Now, assume that each node in the comparability graph C
obtained from G = (V,E) is weighted with the weight mi

j,z

of the corresponding edge in E, then we have the following
theorem.

Theorem 2: The maximum flow-cut of G = (V,E) cuts
the edges in E that corresponds to the maximum-weight
independent set4 of the comparability graph C obtained from

3Recall that an independent set I in a graph C is a set of nodes of C such
that no two nodes in I are connected by an edge in C.

4We recall that a maximum-weight independent set of a weighted graph C

is an independent set I of C such that the sum of the weights of the nodes in
I is maximal, i.e., there is no other independent set in C for which the sum
of the weights is larger.

Algorithm 2 Pseudo-code for computing Mi,INTRA

j,k by means
of the comparability graph. Sets X , Y , and Z are defined as
in Lemma 3.

1: procedure COMPUTEM-INTRA(Vi, Ei, v
i
j , pk)

2: for all eij,z ∈ {X ∪ Y ∪ Z} do

3: mi
j,z = 0

4: end for
5: C = COMPARABILITYGRAPH(Vi, Ei)
6: I = MAXWEIGHT_INDEPENDENTSET(C)
7: return

∑

vi,j∈I
mi

j

8: end procedure

G, where each node in C is weighted with the weight of the
corresponding edge in E.

Proof: Thanks to Property 1, any independent set in C is
a valid flow-cut in G and vice-versa.

Further, if the independent set is the maximum-weight
independent set in C, then the sum of the weights of the nodes
in the independent set is maximal, that is, there is no other
independent set such that the sum of the weights is larger.
Since the weights of the nodes in C are the weight of the edges
in G, this means that there is no other flow-cut of G such that
the sum of the weights on the cut edges is larger. Therefore,
the set of edges in the maximum-weight independent set of
the comparability graph C form a maximum flow-cut of G.

Note that generating a comparability graph can be per-
formed in polynomial time. Moreover, besides being an NP-
hard problem for general graphs, the maximum-weight inde-
pendent set for a comparability graph can also be computed
in polynomial time [33]. Therefore, the computation of the

maximum intra-task MSR Mi,INTRA

j,k can be done in polynomial
time. Algorithm 2 summarizes the approach for calculating

Mi,INTRA

j,k .

While this solution provides considerable benefits in terms
of computational complexity, it provides less flexibility for
modelling other constraints related to future model extensions
in comparison to the ILP-based approach. It is however more
scalable against the number of nodes and edges in the graph.

The solution devised in Section V-A for NFJ tasks suffers
from the same limitations and advantages than the compa-
rability graph approach presented here, but it allows for a
very efficient implementation with a complexity linear in the
number of edges. The solution of Section V-A is therefore
more appropriate when a task is known to be NFJ.

VI. EXPERIMENTAL RESULTS

This section reports the results of two different experimen-
tal studies that have been conducted to evaluate the approaches
presented in this paper. Both are aimed at empirically assessing
how the memory demand varies with respect to: (i) the adopted

strategy for computing the terms Mi,INTRA

j,k (the closed-form
bound presented in Section IV or the algorithmic approaches
presented in Section V), and (ii) how nodes are partitioned.
The two studies differ by the type of workload used for the
evaluation: in the first one we generated synthetic task sets,
whereas in the second one we used a realistic case study based
on applications in the field of digital signal processing.

0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

1,000

2,000

3,000

KE
L

M
S

R
(b

lo
ck

s)

(a) m = 4, n = 5, U = 0.8m

0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

2,000

4,000

6,000

KE
L

M
S

R
(b

lo
ck

s)

(b) m = 8, n = 10, U = 0.8m

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

0.5

1

KS

fe
as

ib
il

it
y

ra
ti

o

(c) KL = 0.2,m = 4, n = 5

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

0.5

1

KS

fe
as

ib
il

it
y

ra
ti

o

(d) KL = 0.2,m = 8, n = 10

FF FF_ALG WF WF_ALG

Figure 6. MSR (insets (a) and (b)) and feasibility ratio (insets (c) and (d)) of synthetically generated tasks set, when KE
L and KS varies, respectively.

Different curves show the result of adopting different partitioning strategies (first-fit vs. worst-fit) and methods for computingMi,INTRA

j,k
(closed-bound forms vs.

algorithmic).

B1 B2 B3 B4 B5 B6 B7

102

103

CPU1

M
S

R
(b

y
te

s)

B1 B2 B3 B4 B5 B6 B7

102

103

CPU2

B1 B2 B3 B4 B5 B6 B7

101

102

103

CPU3

B1 B2 B3 B4 B5 B6 B7

102

103

CPU4

ClosedForm Algorithmic

Figure 7. MSR for the STR2RTS benchmark suite when nodes are partitioned according to the worst-fit wcet partitioning scheme on a multiprocessor platform
composed of M = 4 processors.

B1 B2 B3 B4 B5 B6 B7

102

103

CPU1

M
S

R
(b

y
te

s)

B1 B2 B3 B4 B5 B6 B7

102

103

CPU2

B2 B3 B4 B5

102

103

CPU3

B2 B3 B4 B5
100

101

102

CPU4

ClosedForm Algorithmic

Figure 8. MSR for the STR2RTS benchmark suite when nodes are partitioned according to the rank-based partitioning scheme (described in Algorithm 3) on
a multiprocessor platform composed of M = 4 processors. When a benchmark has not been assigned to a processor, the corresponding bar in the histogram is
not reported.

1) Synthetic Workload: The technique we adopted to syn-
thetically generate task sets composed of DAG tasks is based
on the generator made available online by Melani et al. [34]:
details on this generator and its configuration are reported
in Appendix A. Note that this generator also produces a
WCET Ci,j for each node of the generated graphs and a
period for each task. For each node the amount of local
memory LM i

j is generated proportionally to the WCET, with

uniform distribution in the interval [KLM

L
Ci,j ,K

LM

U
Ci,j], where

KLM

L
,KLM

U
are two scale factors such that 0 < KLM

L
< KLM

U
< 1.

The amount of memory exchanged with each edge mi
j,s is

generated proportionally to the WCET of vi,j and its number
of outgoing edges nsucc, using uniform distribution in the

interval [
KE

LCi,j

nsucc
,
KE

UCi,j

nsucc
], where 0 < KE

L
< KE

U
< 1 are

two scale factors. In the charts reported in this section, we
set KLM

L
= KE

L
= 0.2 and KLM

U
= KE

U
= 0.9 (except in

Figure 6(a) and (b), where KE

L
varies) to have heterogeneity

in local memory requirements and edge weights.

Tasks have been partitioned with the first-fit and worst-
fit heuristics w.r.t. to the utilization (see Appendix A), and
we assumed that each consecutive pair of nodes allocated
to the same core communicates through the local scratch-

pad. Task sets for which a partitioning could not be found
according to at least one partitioning heuristic have been
discarded since in this paper we are interested about memory
feasability, not schedulability. In each chart, we analyzed four
different configurations: (i) first-fit partitioning with closed-
form bound (denoted as FF); (ii) first-fit partitioning with
algorithmic characterization of the intra-memory interference

Mi,INTRA

j,k (denoted as FF_ALG); (iii) worst-fit partitioning with
closed-form bound (WF); and (iv) worst-fit partitioning with

algorithmic characterization of Mi,INTRA

j,k (WF_ALG). For each
value of the x-axis, the corresponding value on the y-axis is
the average on 500 different task sets.

Figures 6(a) and (b) show the variation of MSR as a
function of KE

L
, for 4 and 8 processors, and 5 and 10 DAG

tasks, respectively. As expected, when the minimum memory
requirement for each edge increases (and then also KE

L
),

the overall memory requirement increases. When the first-fit
heuristic is adopted, the MSR is much higher in comparison to
worst-fit. The reason behind this result is that worst-fit tends
to spread nodes of the same DAG among processors, whereas
first-fit tends to pack entire DAGs on a single processor.
Spreading nodes of a DAG among processors increases the
size of set Z (as defined in Lemma 3), thus also increasing the
number of edges that can be neglected in the computation of
the intra-memory inference, when both the closed-form bound
and the algorithmic approaches are considered. For the same
reason, the pessimism introduced by the closed-form bound
decreases when worst-fit is adopted. The reduction in local
MSR will however be at the cost of increased communication
delays as nodes must more often access the global memory.

Figures 6(c) and (d) show the memory feasibility ratio
when the size of the scratchpads is varied, considering 4 and 8
processors, and 5 and 10 DAG tasks, respectively. The memory
feasibility ratio represents the ratio between the number of
generated configurations that fit in each scratchpad when a
specific node partitioning scheme is used, divided by the
number of cores and the number of task sets. Scratchpads sizes
are derived as CMAX×NMAX×n×KS , where CMAX and NMAX are
the maximum WCET per node and the maximum number of
nodes of the generated DAGs, respectively (see Appendix A),
n is the number of tasks used in each experiment, and KS a
scale factor. Also in this case, a worst-fit partitioning scheme
performs better than first-fit: for instance, Figure 6(d) shows
that when KS = 0.2, WF_ALG is able to satisfy the memory
requirement for 88% of the generated task sets, whereas
FF_ALG guarantees only 22%. Again, this is because first-
fit favors local communication while worst-fit increases the
number of communications through global memory. There-
fore, memory feasibility and schedulability have contending
objectives that will need to be balanced using appropriate
partitioning algorithms.

2) The STR2RTS Case Study: The second experimental
study is aimed at evaluating the MSR for realistic applications.
To this purpose, we used the STR2RTS Benchmark Suite [35].
STR2RTS is derived from the StreamIT Benchmark [36] code,
which consists of digital signal processing applications. In
STR2RTS, each application is represented as a DAG. For
each benchmark, it contains an XML description of the DAG
representing the application, which includes: (i) a list of
nodes, (ii) their precedence constraints, (iii) their WCETs,
(iv) the amount of local memory needed by each node, and

(v) the amount of memory assigned to each edge. Table II
lists the seven representative benchmarks we selected for our
experimental evaluation.

Table II. CASE STUDIES FROM THE STR2RTS BENCHMARK

SUITE [35]

Id Name Description

B1 FFT4 Precise Fast Fourier Transform
B2 FilterBankNew Multi-rate signal processing
B3 FMRadio FM radio
B4 AudioBeam Audio beam-forming
B5 Beamformer Beam-forming
B6 CFAR Constant False Alarm Detection
B7 FFT2 Fast Fourier Transform

We considered each benchmark separately (i.e., each one
as a task set with a single DAG task). Since STR2RTS does
not contains data concerning minimum inter-arrival times and
relative deadlines, we tried two different partitioning heuristics.
The first heuristic partitions nodes according to worst-fit with
respect to the WCETs, thus tending to scatter nodes between
cores and reducing data locality. In the second heuristic, we
attempted to maximize parallelism while keeping decent local
communications at the same time. A detailed description of
this second heuristic is reported in Appendix B. Figures 7
and 8 (in Appendix) show the MSR of each processor when
the two different partitioning schemes are adopted, considering
a platform composed of M = 4 processors. To better evaluate
the differences among the different benchmarks, we adopted a
logarithmic scale on the y axis. Interestingly, both figures show
that the closed form bounds are very close to the algorithmic
bounds for such realistic workloads. Visible differences can
only be appreciated for benchmark B2 on CPU4 in Figure 7; in
Figure 8 appreciable differences can be seen for B2 on CPU2
and CPU4 and a small difference for B3 on CPU2 and CPU3.
We conclude that the algorithmic approaches increase accuracy
and hence should be used whenever possible. Nevertheless,
whenever a very fast analysis is required, for instance when it
is used as part of an iterative process for optimizing system
parameters, the closed form bounds showed to be a viable
alternative, providing very good estimations of the worst-case
local memory consumption.

VII. CONCLUSION AND FUTURE WORK

This paper presented a memory feasibility analysis for
parallel tasks running upon a scratchpad-based multicore plat-
form. Both closed-form bounds and algorithmic solutions have
been presented. A fine-grained characterization of the memory
space requirement has been achieved by deriving an efficient
technique based on max-plus algebra that applies to NFJ tasks,
and reducing to max flow-cut problems for the case of DAG
tasks, which are shown to be solvable in polynomial time by
transformation to a maximum-weight independent set problem.
The approaches have been evaluated with synthetic workload
and a state-of-the-art benchmark. Closed-form bounds have
been found tight on the benchmark. Future work will target the
design of partitioning algorithms that integrate both memory
feasibility and schedulability analysis to assign sub-tasks to
processors.

APPENDIX A
SYNTHETIC WORKLOAD GENERATION

This work adopted the DAG task generator presented in [34]5. Re-
cently, the same generator has also been adopted for the experimental
evaluation of other approaches concerning the schedulability analysis
of DAG tasks [13], [37]. Each DAG is generated starting from a fork-
join chunk composed of two nodes connected in series. Then, nodes
are recursively expanded by replacing them with fork-join graphs.
NFJ tasks are converted into DAGs by randomly adding edges with a
probability padd among arbitrary selected nodes, without introducing
cycles. During the recursive expansion of the fork-join chunk, each
node has a probability pfork to fork and a probability pterm to
be a termination node. The number of nested forks is limited by
a maximum depth. The number of branches generated by a fork node
is randomly picked in the interval [2, npar] with uniform distribution.

To allow a partitioning strategy based on scheduling parameters,
we also generated a worst-case execution time, a relative deadline
Di and a minimum inter-arrival time Ti, thus considering sets of
sporadically-released real-time DAGs. Ci,j is uniformly generated
in the interval [1, CMAX] with CMAX = 100. This way, the overall
computation time required by a DAG is Ci =

∑

vi,j∈Vi
Ci,j . The

utilization of a DAG is defined as U = Ci

Ti
. Given a number of tasks

and a target overall system utilization U =
∑

τi∈Γ
Ci

Ti
, individual

tasks utilizations are generated with the UUnifast algorithm [38],
consequently deriving Ti = Ci/Ui. For each task, we considered
relative deadlines equal to minimum inter-arrival times, i.e., Di = Ti.
Concerning the generation of each graph Vi, we set pfork = 0.8,
pterm = 0.2, padd = 0.2, npar = 6, and the maximum number of
nesting equal to 2. With this configuration, each generated graph has
at most NMAX = 50 nodes.

APPENDIX B
RANK-BASED HEURISTIC

Definition 8: The rank [39] of a node vij ∈ Vi is defined as:

rank(vij) =

{

0 if vij is source

maxvi
k
∈ipred(vi

j
)rank(v

i
j) + 1. otherwise.

Algorithm 3 Pseudo-code for a rank-based partitioning of
nodes.

1: procedure RANKBASEDPARTITIONING(Γi,m)
2: ⊲ m is the number of processors
3: for all τi ∈ Γ do

4: for all vij ∈ τi, in topological order do

5: compute rank(vij) according to Definition 8

6: end for

7: end for

8: for all vij ∈ τi, sorted w.r.t. to rank(vij) do

9: if vij is the first node of τi to be partitioned then

10: c← 0
11: else if two consecutive nodes with the same rank then

12: c← (c+ 1)%m

13: else

14: c← cpu in which a vip ∈ ipred(vij) is allocated

15: end if

16: allocate vij to core c

17: end for

18: end procedure

5The generator is no more available at the link indicated in [34], but can be
found at: https://retis.sssup.it/∼d.casini/resources/DAG Generator/cptasks.zip

ACKNOWLEDGMENT

This work has been partially supported by the RETINA
Eurostars Project E10171 and by National Funds through FCT

(Portuguese Foundation for Science and Technology) within
the CISTER Research Unit (CEC/04234).

REFERENCES

[1] G. Gracioli, A. Alhammad, R. Mancuso, A. A. Fröhlich, and R. Pel-
lizzoni, “A survey on cache management mechanisms for real-time
embedded systems,” ACM Comput. Surv., vol. 48, no. 2, pp. 32:1–32:36.

[2] Infineon, “AURIXTM 32-bit microcontrollers for automotive and
industrial applications Highly integrated and performance optimized,”
Tech. Rep., 2018. [Online]. Available: https://www.infineon.com/
dgdl/Infineon-TriCore Family BR-2018-BC-v03 00-EN.pdf?fileId=
5546d4625d5945ed015dc81f47b436c7

[3] J. Whitham and N. Audsley, “Implementing time-predictable load and
store operations,” in Proceedings of the Seventh ACM International
Conference on Embedded Software, ser. EMSOFT ’09, 2009, pp. 265–
274.

[4] I. Puaut and C. Pais, “Scratchpad memories vs locked caches in
hard real-time systems: a quantitative comparison,” in 2007 Design,
Automation Test in Europe Conference Exhibition, 2007, pp. 1–6.

[5] A. Marchand, P. Balbastre, I. Ripoll, M. Masmano, and A. Crespo,
“Memory resource management for real-time systems,” in 19th Eu-
romicro Conference on Real-Time Systems (ECRTS’07), July 2007, pp.
201–210.

[6] A. Crespo, I. Ripoll, and M. Masmano, “Dynamic memory management
for embedded real-time systems,” in From Model-Driven Design to Re-
source Management for Distributed Embedded Systems, B. Kleinjohann,
L. Kleinjohann, R. J. Machado, C. E. Pereira, and P. S. Thiagarajan,
Eds. Springer US, 2006.

[7] I. Puaut, “Real-time performance of dynamic memory allocation al-
gorithms,” in Proceedings 14th Euromicro Conference on Real-Time
Systems (ECRTS’02), 2002, pp. 41–49.

[8] V. Suhendra, A. Roychoudhury, and T. Mitra, “Scratchpad allocation
for concurrent embedded software,” ACM Trans. Program. Lang. Syst.,
vol. 32, no. 4, Apr. 2010.

[9] K. Lakshmanan, S. Kato, and R. Rajkumar, “Scheduling parallel real-
time tasks on multi-core processors,” in 2010 31st IEEE Real-Time
Systems Symposium, Nov 2010.

[10] G. Nelissen, V. Berten, J. Goossens, and D. Milojevic, “Techniques
optimizing the number of processors to schedule multi-threaded tasks,”
in 2012 24th Euromicro Conference on Real-Time Systems (ECRTS).
IEEE, 2012, pp. 321–330.

[11] V. Bonifaci, A. Marchetti-Spaccamela, S. Stiller, and A. Wiese, “Feasi-
bility analysis in the sporadic dag task model,” in 2013 25th Euromicro
Conference on Real-Time Systems, July 2013.

[12] S. Baruah, “Improved multiprocessor global schedulability analysis of
sporadic dag task systems,” in 2014 26th Euromicro Conference on
Real-Time Systems, July 2014.

[13] J. Fonseca, G. Nelissen, and V. Nélis, “Improved response time analysis
of sporadic dag tasks for global fp scheduling,” in Proceedings of the
25th International Conference on Real-Time Networks and Systems.
ACM, 2017, pp. 28–37.

[14] J. Fonseca, G. Nelissen, V. Nelis, and L. M. Pinho, “Response time
analysis of sporadic dag tasks under partitioned scheduling,” in 2016
11th IEEE Symposium on Industrial Embedded Systems (SIES), May
2016.

[15] D. Casini, A. Biondi, G. Nelissen, and G. Buttazzo, “Partitioned
fixed-priority scheduling of parallel tasks without preemptions,” in
Proceedings of the 39th IEEE Real-Time Systems Symposium (RTSS
2018), 2018.

[16] A. Singh, P. Ekberg, and S. Baruah, “Applying Real-Time Scheduling
Theory to the Synchronous Data Flow Model of Computation,” in
29th Euromicro Conference on Real-Time Systems (ECRTS 2017), ser.
Leibniz International Proceedings in Informatics (LIPIcs), 2017.

[17] A. Singh and S. Baruah, “Global EDF-based scheduling of multiple
independent synchronous dataflow graphs,” in 2017 IEEE Real-Time
Systems Symposium (RTSS 2017), Dec 2017.

[18] Z. Dong, C. Liu, A. Gatherer, L. McFearin, P. Yan, and J. H. Anderson,
“Optimal Dataflow Scheduling on a Heterogeneous Multiprocessor With
Reduced Response Time Bounds,” in 29th Euromicro Conference on
Real-Time Systems (ECRTS 2017), 2017.

[19] G. A. Elliott, N. AKim, J. P. Erickson, C. Liu, and J. H. Anderson,
“Minimizing response times of automotive dataflows on multicore,” in
2014 IEEE 20th International Conference on Embedded and Real-Time
Computing Systems and Applications, Aug 2014.

[20] R. Pellizzoni, E. Betti, S. Bak, G. Yao, J. Criswell, M. Caccamo, and
R. Kegley, “A predictable execution model for cots-based embedded
systems,” in 2011 17th IEEE Real-Time and Embedded Technology and
Applications Symposium, April 2011.

[21] G. Yao, R. Pellizzoni, S. Bak, E. Betti, and M. Caccamo, “Memory-
centric scheduling for multicore hard real-time systems,” Real-Time
Syst., vol. 48, no. 6, pp. 681–715.

[22] A. Alhammad and R. Pellizzoni, “Schedulability analysis of global
memory-predictable scheduling,” in Proceedings of the 14th Interna-
tional Conference on Embedded Software. ACM, 2014, p. 20.

https://retis.sssup.it/~d.casini/resources/DAG_Generator/cptasks.zip
https://www.infineon.com/dgdl/Infineon-TriCore_Family_BR-2018-BC-v03_00-EN.pdf?fileId=5546d4625d5945ed015dc81f47b436c7
https://www.infineon.com/dgdl/Infineon-TriCore_Family_BR-2018-BC-v03_00-EN.pdf?fileId=5546d4625d5945ed015dc81f47b436c7
https://www.infineon.com/dgdl/Infineon-TriCore_Family_BR-2018-BC-v03_00-EN.pdf?fileId=5546d4625d5945ed015dc81f47b436c7

[23] A. Alhammad, S. Wasly, and R. Pellizzoni, “Memory efficient global
scheduling of real-time tasks,” in 2015 Real-Time and Embedded
Technology and Applications Symposium (RTAS). IEEE, 2015, pp.
285–296.

[24] C. Maia, G. Nelissen, L. M. Nogueira, L. M. Pinho, and D. G. Pérez,
“Schedulability analysis for global fixed-priority scheduling of the 3-
phase task model,” in RTCSA 2017, 23rd IEEE International Conference
on Embedded and Real-Time Computing Systems and Applications,
Hsinchu, Taiwan, August, 16-18 2017.

[25] “Memory reservation and shared page management for real-time sys-
tems,” Journal of Systems Architecture, vol. 60, no. 2, pp. 165 – 178,
2014.

[26] R. Tabish, R. Mancuso, S. Wasly, S. S. Phatak, R. Pellizzoni, and
M. Caccamo, “A reliable and predictable scratchpad-centric os for
multi-core embedded systems,” in 2017 IEEE Real-Time and Embedded
Technology and Applications Symposium (RTAS), April 2017.

[27] M. R. Soliman and R. Pellizzoni, “WCET-Driven Dynamic Data
Scratchpad Management With Compiler-Directed Prefetching,” in 29th
Euromicro Conference on Real-Time Systems (ECRTS 2017), ser. Leib-
niz International Proceedings in Informatics (LIPIcs), 2017.

[28] A. Biondi and M. D. Natale, “Achieving predictable multicore execution
of automotive applications using the let paradigm,” in 2018 IEEE Real-
Time and Embedded Technology and Applications Symposium (RTAS),
April 2018.

[29] S. Irobi and B. Juurlink, “On-chip scratchpad memory size prediction
and allocation for multiprocess embedded applications,” in 17th Annual
Workshop on Circuits, Systems and Signal Processing, 2006.

[30] J. Valdes, R. E. Tarjan, and E. L. Lawler, “The recognition of series
parallel digraphs,” in Proceedings of the Eleventh Annual ACM Sympo-

sium on Theory of Computing, ser. STOC ’79. New York, NY, USA:
ACM, 1979.

[31] E. Čenek and L. Stewart, “Maximum independent set and maximum
clique algorithms for overlap graphs,” Discrete Applied Mathematics,
vol. 131, no. 1, pp. 77 – 91, 2003.

[32] P. J. Pahl and R. Damrath, Mathematical Foundations of Computational
Engineering: A Handbook. Springer, 2001.

[33] M. Grötschel, L. Lovász, and A. Schrijver, “The ellipsoid method and
its consequences in combinatorial optimization,” Combinatorica, vol. 1,
no. 2, pp. 169–197, Jun 1981.

[34] A. Melani, M. Bertogna, V. Bonifaci, A. Marchetti-Spaccamela, and
G. C. Buttazzo, “Response-time analysis of conditional dag tasks in
multiprocessor systems,” in 2015 27th Euromicro Conference on Real-
Time Systems, July 2015.

[35] B. Rouxel and I. Puaut, “STR2RTS: Refactored StreamIT benchmarks
into statically analysable parallel benchmarks for WCET estimation
& real-time scheduling,” in OASIcs-OpenAccess Series in Informatics,
vol. 57. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2017.

[36] W. Thies, M. Karczmarek, and S. Amarasinghe, “Streamit: A language
for streaming applications,” 2002.

[37] M. A. Serrano, A. Melani, S. Kehr, M. Bertogna, and E. Quiñones, “An
analysis of lazy and eager limited preemption approaches under dag-
based global fixed priority scheduling,” in 2017 IEEE 20th International
Symposium on Real-Time Distributed Computing (ISORC), May 2017.

[38] E. Bini and G. Buttazzo, “Measuring the performance of schedulability
tests,” Real-Time Systems, vol. 30, no. 1, pp. 129 – 154, May 2005.

[39] E. Tardos and J. Kleinberg, Algorithm Design. Pearson Education
(US), 2005.

