

Micro Air Vehicle Link (MAVLink) in a Nutshell:
A Survey
Early Access article.

Journal Paper

CISTER-TR-190701

Anis Koubâa ; Azza Allouch ; Maram Alajlan ; Yasir Javed ;
Abdelfettah Belghith ; Mohamed Khalgui

Journal Paper CISTER-TR-190701 Micro Air Vehicle Link (MAVLink) in a Nutshell: A Survey

© 2019 CISTER Research Center
www.cister-labs.pt

1

Micro Air Vehicle Link (MAVLink) in a Nutshell: A Survey

Anis Koubâa ; Azza Allouch ; Maram Alajlan ; Yasir Javed ; Abdelfettah Belghith ; Mohamed Khalgui

CISTER Research Centre

Polytechnic Institute of Porto (ISEP P.Porto)

Rua Dr. António Bernardino de Almeida, 431

4200-072 Porto

Portugal

Tel.: +351.22.8340509, Fax: +351.22.8321159

E-mail:

https://www.cister-labs.pt

Abstract

The Micro Air Vehicle Link (MAVLink in short) is a communication protocol for unmanned systems (e.g., drones,
robots). It specifies a comprehensive set of messages exchanged between unmanned systems and ground
stations. This protocol is used in major autopilot systems, mainly ArduPilot and PX4, and provides powerful
features not only for monitoring and controlling unmanned systems missions, but also for their integration into the
Internet. However, there is no technical survey and/or tutorial in the literature that presents these features or
explains how to make use of them. Most of the references are online tutorials and basic technical reports, and
none of them presents a comprehensive and a systematic coverage of the protocol. In this paper, we address this
gap, and we propose an overview of the MAVLink protocol, the difference between its versions, and its potential in
enabling Internet connectivity to unmanned systems. We also discuss security aspects of MAVLink. To the best of
our knowledge, this is the first technical survey and tutorial on the MAVLink protocol, which represents an
important reference for unmanned systems users and developers.

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2019.2924410, IEEE Access

Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier 10.1109/ACCESS.2017.DOI

Micro Air Vehicle Link (MAVLink) in a
Nutshell: A Survey
ANIS KOUBÂA2,3,4, AZZA ALLOUCH1,2,3,5,6,MARAM ALAJLAN7,YASIR
JAVED2,ABDELFETTAH BELGHITH7,AND MOHAMED KHALGUI1,6
1School of Electrical and Information Engineering, Jinan University (Zhuhai Campus), Zhuhai 519070, China)
2Prince Sultan University, Robotics and Internet-of-Things Lab (RIOTU), Riyadh 12435 3276, Saudi Arabia
3Gaitech Robotics, Shanghai 201101, China
4CISTER, INESC-TEC, ISEP, Polytechnic Institute of Porto, 4200-465 Porto, Portugal
5Faculty of Mathematical, Physical and Natural Sciences of Tunis (FST), University of El Manar, Tunis, Tunisia
6LISI Laboratory, National Institute of Applied Sciences and Technology (INSAT), University of Carthage, Tunis 1080, Tunisia
7 College of Computer and Information Sciences, King Saud University, Riyadh 11543, Saudi Arabia

Corresponding author: Anis Koubâa (akoubaa@psu.edu.sa) and Mohamed Khalgui (khalgui.mohamed@gmail.com)

This work was supported by the Robotics and Internet of Things Lab, Prince Sultan University, and Jinan University.

ABSTRACT
The Micro Air Vehicle Link (MAVLink in short) is a communication protocol for unmanned systems (e.g.,
drones, robots). It specifies a comprehensive set of messages exchanged between unmanned systems and
ground stations. This protocol is used in major autopilot systems, mainly ArduPilot and PX4, and provides
powerful features not only for monitoring and controlling unmanned systems missions, but also for their
integration into the Internet. However, there is no technical survey and/or tutorial in the literature that
presents these features or explains how to make use of them. Most of the references are online tutorials
and basic technical reports, and none of them presents a comprehensive and a systematic coverage of the
protocol. In this paper, we address this gap, and we propose an overview of the MAVLink protocol, the
difference between its versions, and its potential in enabling Internet connectivity to unmanned systems. We
also discuss security aspects of MAVLink. To the best of our knowledge, this is the first technical survey
and tutorial on the MAVLink protocol, which represents an important reference for unmanned systems users
and developers.

INDEX TERMS MAVLink, ArduPilot, PX4, Unmanned Aerial Vehicles (UAVs), Ground Control Station
(GCSs).

I. INTRODUCTION

Unmanned systems are autonomous platforms that can be
easily programmed to perform missions with or without
the intervention of a pilot. These systems can be aerial,
also known as drones or unmanned aerial vehicles (UAVs),
ground (UGV) or underwater. They typically communicate
through wireless with a ground control station (GCS) that
monitors their status and control their actions. UAVs embed
special hardware and software called autopilot that controls
the motion of the drone and monitors its status and used
to communicate with GCSs using telemetry or WiFi com-
munication. There are many autopilot software platforms
for UAVs available including ArduPilot from 3DR [1], Pa-
parazzi UAV [2] developed at Ecole Nationale de l’Aviation
Civile (ENAC), Hangar autopilot [3], PX4 Flight Stack [4],
MultiWii from Nintendo [5] and several others. The most

popular autopilot software is ArduPilot, which is an open-
source project effectively maintained by a huge number of
developers exceeding 400 contributors. It underpins different
types of autonomous systems, including fixed-wing planes,
(heli, tri, quad, hexa, and octo) copters, underwater vehicles
and boats, and ground vehicles. In the heart of the ArduPi-
lot system, Micro Aerial Vehicle Link (MAVLink) protocol
is specified to ensure the communication between the un-
manned systems and the ground stations. MAVLink is a well-
established lightweight message serialization protocol spec-
ified for the unmanned vehicle systems, including drones.
Lorenz Meier released MAVLink in 2009 under the LGPL
license. MAVLink is designed as a Marshaling library, which
means that it serializes messages of the states of the system
and the commands that it has to execute into a specific binary
format (i.e., a stream of bytes), that is platform-independent.

VOLUME 4, 2016 1

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2019.2924410, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

The binary serialization nature of the MAVLink protocol
makes it lightweight as it has minimal overhead as compared
to other serialization techniques, (e.g., XML or JSON). The
communication using MAVLink is bidirectional between the
ground station and the unmanned system. Besides, given
the binary serialization feature of MAVLink, its messages
are typically of small sizes and can reliably be transmitted
over different wireless mediums, including WiFi or even
serial telemetry devices with low data rates. It also ensures
the reliability and message integrity by a double checksum
verification, in its packet header. All these features make the
MAVLink protocol as the most popular among its peers for
the communication between unmanned systems and GCS.

Despite its popularity and the large community of users
and developers, there is a significant lack of surveys about
this protocol. New users/developers get usually confused due
to the lack of structured references apart from some online
documentation of some basic concepts. The only existing
tutorial is entitled MAVLink Tutorial for Absolute Dummies
(Part I), since 2013 [6], (for which there is no part II!), which
is rather an basic introduction to the elementary concepts of
the MAVLink protocol. Also, in the last two recent years,
there has been much research works around the MAVLink
protocol. However, no survey discusses these works and clas-
sifies them. Thus, there is a desperate need in the community
for a scientific research paper that provides both a tutorial and
a survey on the MAVLink protocol to be the first reference for
users, researchers and developers on this protocol and unveils
the powerful features of this protocol and its main usages,
extensions, and applications.

This paper addresses this gap and provides a tutorial and
a survey of the MAVLink protocol. The tutorial deals with
presenting the main features of the MAVLink protocol and
its two versions MAVLink 1.0 and MAVLink 2.0, and the
most important messages specified in the protocol. In addi-
tion, we present the different tools and Application Program
Interfaces (APIs) that developers need to parse and develop
their control station programs that communicate with the
unmanned systems. The survey part of the paper deals with
presenting and discussing the main contributions proposed in
the literature around MAVLink, which we classify in differ-
ent categories including (i.) enhancement and extension (ii.)
security, (iii.) applications, (iv.) integration with the Internet-
of-Things (IoT), (v.) Multi-UAV coordination and swarm. To
the best our knowledge, this is the first and unique technical
survey and tutorial that deals with the MAVLink protocol,
which represents an indispensable reference for unmanned
systems’ users and developers.

The remainder of the paper is organized as follows. Sec-
tion II presents a general overview of the MAVLink pro-
tocol versions 1.0 and 2.0 and their header formats. Sec-
tion III discusses the security threats and vulnerabilities of
MAVLink and presents the solutions proposed in the litera-
ture to address these security problems. Section IV provides
a comprehensive state of the art that has contributed to the
development of MAVLink and its applications in different

contexts. Section V presents an overview of the software
related to the MAVLink protocol, including ground stations,
and simulation models. Section VI concludes the paper and
discusses some future challenges.

II. THE MAVLINK PROTOCOL
A. OVERVIEW

This section presents an overview of the MAVLink protocol,
namely the transport and communication protocols supported
in addition to the messages structures and serialization. In
what follows, we use MAVLink messages and MAVLink
packets interchangeably.

Note for readers: The following subsections present low-
level technical details about the protocol specification that
are needed for practitioners and MAVLink developers. These
details are summarized in tables whenever relevant.

B. COMMUNICATION AND TRANSPORT PROTOCOLS

The MAVLink protocol defines the mechanism on the struc-
ture of messages and how to serialize them at the applica-
tion layer. These messages are then forwarded to the lower
layers (i.e., transport layer, physical layer) to be transmitted
to the network. The advantage of the MAVLink protocol
is that it supports different types of transport layers and
mediums thanks to its lightweight structure. It can be trans-
mitted through WiFi, Ethernet (i.e., TCP/IP Networks) or
serial telemetry low bandwidth channels operating at sub-
GHz frequencies, namely 433 MHz, 868 MHz or 915 MHz.
The sub-GHz frequencies allow us to reach large commu-
nication ranges to control the unmanned system remotely.
The maximum data rate can reach up 250 kbps, and the
maximum range is typically expected to be 500 m, but highly
dependent on the environment and level of noise and antenna
setup. Table 1 presents the features of some commonly used
telemetry devices.

The second alternative is to use a network interface, which
is typically WiFi or Ethernet, and stream the MAVLink mes-
sages through IP Networks. In this case, the autopilot running
the MAVLink protocol typically supports both UDP and also
TCP connections at the transport layer between the ground
station and the drone, depending on the reliability level
required by the application. Of course, it is commonly known
that UDP is a datagram protocol that requires no connection
between the client and server and it has no mechanism to
ensure that messages are reliably delivered, but provides a
fast lighter weight alternative for real-time and loss-tolerant
message streaming. On the other hand, TCP is a reliable
connection-oriented protocol that provides better reliability
of transfer thanks to its acknowledgment mechanism but
could be subject to congestion and heavy management of
the connection. The choice of the transport protocol is left
to the user depending on the requirement he needs for the
message exchange between the unmanned system and the
ground station.

2 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2019.2924410, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

TABLE 1: An overview comparison between Ardupilot telemetry devices [7]

Telemetry device Frequency Range Voltage Sensitivity RF transmit power
Bluetooth Between 2402 and 2480 MHz, or 2400 and 2483.5 MHz 50 m 3.6 to 6 V -80 dBm +4 dBm

SiK Radio v2 900 MHz or 433 MHz 500 m 3.3 V -121 dBm 20 dBm
RFD900 900 MHz or 868 MHz >40 km 3.3 to 5 V >121 dBm +30 dBm
Robsense 433 MHz 3-5 km 5 V -148 dBm 20 dBm

C. MESSAGE TYPES AND STRUCTURES

The unmanned system communicates with the ground station
through the exchange of MAVLink messages, which are
binary-serialized messages. Binary serialization means that
the content of the message is transformed into a sequence
of bytes to be transmitted through the network. The receiver
of the serialized message performs its deserialization in the
opposite direction to reconstitute the original message sent.
This property of binary serialization has a significant benefit
of reducing the size of the transmitted message to a maximum
as compared to other types of serialization, such as XML
or even the lighter weight JSON. Each MAVLink message
contains a header appended to the message payload. The
header carries out information about the message whereas the
payload includes the data transported by the message.

In the following section, we present the protocol headers
of MAVLink 1.0 and that of the newer MAVLink 2.0 [8] and
the difference between each other. In the remaining of the
paper, MAVLink refers to MAVLink 1.0 [9], unless otherwise
specified.

1) MAVLink 1.0 Protocol Header

As shown in Fig. 1 there are eight important fields.
The first field is STX and refers to the symbol that repre-

sents the start of a MAVLink frame. In MAVLink 1.0, STX
is equal to special symbol 0XFE. The second byte (LEN)
represents the message length in bytes and is encoded into
1 Byte. The third byte (SEQ) denotes the sequence number
of the message. It is encoded into 1 Byte and takes values
from 0 to 255. Once it reaches 255, the sequence number is
reset again to 0 and incremented in each generated message.
The sequence number of message enabled to detect message
losses in the receiver. The fourth byte SYS represents the
System ID. Every unmanned system should have its System
ID, in particular, if they are managed by one ground station.
The System ID 255 is typically allocated for ground stations.
One limitation of MAVLink 1.0 is that it restricts the number
of drones managed by one ground station to 254 because
the System ID is encoded in 1 Byte. The fifth byte is the
Component ID, and it identifies the component of the system
that is sending the message. There are 27 hardware types
(i.e., components) in MAVLink 1.0. If there is no subsystem
or component, then it is not used. The sixth byte represents
the Message ID (MSGID), which refers to the type of the
message embedded in the payload. For example, the message
ID equal to 0 refers to a message of type HEARTBEAT,
which indicates that the system is alive and is sent every
one second. One more example with a Message ID equal
to 33, which refers to a message that carries out the GPS

coordinate of the unmanned system. The message ID is the
essential information that allows to parse the payload and
extract the information from it, based on the type of message.
Each message contains a specified number of fields and
serialized in binary format in a particular order, according
to the standard specification. The payload is located just
after the message ID and can take a maximum of 255 bytes.
Finally, the last two bytes are for the checksum. The CKA
and CKB represent the Cyclic Redundancy Check (CRC)
calculated with seed values A and B, respectively. The CRC
ensures that the message has not been changed during its
transmission and that both the sender and the receiver have
the same message. It is calculated using the ITU X.25/SAE
AS-4 hash of the bytes of the message, excluding the STX
field (the hash is applied to 6+n+1 bytes, and the extra is the
seed value). The seed is added at the end of the message when
computing the CRC.

The minimum message length of MAVLink 1.0 is 8 bytes
for acknowledgment packets without the payload. On the
other hand, the maximum length of a MAVLink 1.0 message
is 263 bytes for full payload.

Summary and explanation of each MAVLink 1.0 header
fields are presented in Table 2.

2) MAVLink 2.0 Protocol Header

The MAVLink 2.0 protocol header was released in early 2017
and is the current recommended version. It is backward com-
patible with the MAVLink 1.0 version and includes several
improvements over the MAVLink 1.0 version. We first start
with presenting the MAVLink 2.0 protocol header; then we
highlight the main differences between the two versions. Fig.
2 shows the header structure of MAVLink 2.0.

The MAVLink 2.0 header shares all the fields with
MAVLink 1.0 header, and adds its new fields, in addition
to the changing the size of some existing fields. The first
byte is the start-of-text marker, and its specific value is 0xFD
for MAVLink 2.0 (as opposed to 0xFE for MAVLink 1.0).
Thus, the parser has to first recognize this character before
being able to parse the remaining fields of the MAVLink
2.0 message. The payload length is the next field and is the
same as in the legacy protocol. MAVLink introduces two new
flags before the sequence number (SEQ) of the message. The
first flags are Incompatibility flags, which are flags that affect
the message structure. The flags indicate whether the packet
contains some features that must be considered when parsing
the packet. For example, an Incompatibility flag equal to
0x01 means that the packet is signed and that a signature
is appended at the end of the packet. The second flag is
compatibility flags, which does not affect the structure of

VOLUME 4, 2016 3

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2019.2924410, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

FIGURE 1: The MAVLink 1.0 Header Structure

TABLE 2: Explanation of MAVlink frame acronyms along with its contents.

Acronym Content Description

STX 0XFE It describes start of frame and will always be 0xFE as in official documentation of MAVLink 1.0.
LEN 0 to 255 The value of LEN is described by length of payload.
SEQ 0 to 255 The sequence of packet is shown in this part of message. Such as 0 represent the first message. It is used for

detecting lost MAVlink packets.
SYS 1 to 255 This field represents the ID of the unmanned system.
COMP 0 to 255 This field represents which component in the system is sending the message.
MSG 0 to 255 This field represents the message type.
Payload 0 to 255

bytes
This carries out the real data of the message, which depends on the message type.

CKA and
CKB (CRC)
or checksum

Two
bytes
contents

The CKA and CKB is referred as checksum. The signing of packet happens from Least Significant Bit
(LSB) to Most Significant Bit(MSB).

FIGURE 2: MAVLink 2.0 Header

the message. It indicates flags that can be ignored if not
understood and it does not prevent the parser from process-
ing the message even if the flag cannot be interpreted. For
example, this may refer to flags that indicate the priority
of the packet (e.g., High Priority) as it does not affect the
packet structure. The sequence number (SEQ), the System
ID (SYSID) and Component ID (COMPID) are the same as
in the MAVLink 1.0 protocol header. However, the Message
ID (MSGID) is encoded into 24 bits instead of 8 bits in the
previous version, which allows a much higher number of
message types in MAVLink 2.0, reaching up to 16777215
possible types. It is not clear what is the reason to design
such a huge space of possible message types, as the number
of possibilities is overly large. The Payload field can take
up to 255 bytes of data, which depends on the message
type. The checksum is similar to its peer in MAVLink 1.0.
Finally, MAVLink 2.0 uses an optional Signature field of 13
bytes to ensure that the link is tamper-proof. This features
significantly improve security aspects of the MAVLink 1.0
as it allows the authentication of the message and verifies
that it originates from a trusted source. The signature of the
message is appended if the incompatibility flags are set to
0x01.

The 13 bytes of the message signature contain the follow-
ing fields:

• LinkID: it is one byte that represents the ID of the link
(channel) used to send the packet. A link or a channel
can be WiFi or telemetry and can be combined. Every
channel used to send data should have its own LinkID.
It provides a means for multi-channel unmanned system

control using MAVLink 2.0.
• timestamp: it is encoded with 6 bytes in 10-microsecond

units since 1st January 2015 GMT. It increases for
every message sent over the channel. It is applied to
every stream where a stream is defined by the tu-
ple (SystemID, ComponentID, LinkID). The
timestamp is used to avoid replay attacks.

• signature: it is encoded in 6 bytes for the message and is
calculated based on the complete message, timestamp,
and the secret key. The signature includes the first 6
bytes (48 bites) of the SHA-256 hash applied to the
MAVLink 2.0 message (excluding the signature, and
including the timestamp). The secret key is a shared
symmetric key of 32 bytes stored on both ends, namely
the autopilot, and the ground station or the MAVLink
API.

The signature of the MAVLink 2.0 message has conse-
quences on how to process incoming MAVLink messages.
If the message is signed, then it is discarded if (i.) the
timestamp of the received message is older than the pre-
vious packet received from the same stream identified by
(SystemID, ComponentID, LinkID) tuple, (ii.) the
computed signature at the reception is different from the
signature appended to the message. This may infer a data
alteration in the message, (iii.) the timestamp exceeded one
minute as compared to the local system’s timestamp. If the
message is not signed, then the acceptance/rejection of the
packet is implementation specific.

4 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2019.2924410, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

FIGURE 3: MAVLink Heartbeat Message

D. MAVLINK MESSAGES TYPES

MAVLink defines several types of messages, which are iden-
tified by their Message ID. Messages with Message IDs lower
than 255 are common for both MAVLink 1.0 and MAVLink
2.0, and those with Message IDs higher than 255 are specific
to MAVLink 2.0. As mentioned in the previous section, the
Message ID in MAVLink 1.0 is encoded in only 8 bits and
was extended to 24 bits in MAVLink 2.0.

We categorize MAVLink messages into two classes:

• State messages: these messages are sent from the un-
manned system to the ground station and contain in-
formation about the state of the system, such as its ID,
location, velocity, and altitude.

• Command messages: they are by the ground station (or
user program) to the unmanned system to execute some
actions or missions by the autopilot. For example, the
ground station can send a command to a drone to take
off or to land or to go to a waypoint or even a to execute
a mission with several waypoints.

Considering the large number of MAVLink messages, the
comprehensive description of all these messages is out of the
scope of this paper and can be found in details in [10]. In what
follows, we present the most relevant state and command
messages used in common implementations of autopilots.
More messages are presented in Table 4.

1) State Messages

There are several types of state messages defined in
MAVLink.

HEARTBEAT message: The HEARTBEAT message is
the most important message in MAVLink, and its structure
is depicted in Fig. 3. It indicates that the vehicle system
is present and active. The unmanned system periodically
sends the heartbeat message (in general every second) to
the ground station to inform the GCS that it is active.
The heartbeat is a required message. In addition to the
header, the message payload contains essential informa-
tion about the unmanned system. The first field is the
type, which indicates the type of the Micro Aerial Ve-
hicle. According to the latest specification in [10], there
are 33 pre-defined types defined in the MAV_TYPE, in-
cluding quadrotor (MAV_TYPE_QUADROTOR = 2), he-
licopter (MAV_TYPE_HELICOPTER = 4), fixed wing
(MAV_TYPE_FIXED_WING = 1), and several others. The
autopilot field indicates the type of autopilot. There are
several types defined in the MAV_AUTOPILOT enumeration
structure. For example, MAV_AUTOPILOT_GENERIC =

0 indicates a generic autopilot, MAV_AUTOPILOT_ARDUPI-

LOTMEGA = 3 indicates ArduPilot autopilot, MAV_AUTOPI-
LOT_PX4 = 12 for PX4 autopilots.

The base_mode field indicates different operation
modes. Understanding the base_mode is crucially impor-
tant to correctly parse the heartbeat message and extract
useful information out of it. It is encoded in 8 bits. There are
8 pre-defined flags, from 2

0 to 2
7. Here are the eight different

modes:

• Flag = 1 is reserved for future use
• Flag = 2 means that the test mode is enabled. This

mode is used for temporary tests and not used for regular
flights.

• Flag = 4 means that the autonomous mode (AUTO)
is enabled. This means that the unmanned system is
operating autonomously by navigating to the goal way-
points sent to it from the ground station. In AUTO mode,
a mission is loaded to the autopilot. A mission consists
of a set of several waypoints that the system has to
navigate.

• Flag = 8 means that the GUIDED mode is enabled.
In GUIDED mode, a mission consists of a single way-
point sent to the system. The system then navigates to
the specified location autonomously.

• Flag = 16 means that the system stabilizes its atti-
tude (orientation and altitude), and possibly its position,
by automatic control. This requires external sensors like
GPS in an indoor environment, altitude sensors (barom-
eter, LIDAR) or motion capture for indoor positioning
to be able to hover in a stable state. The system needs
external control inputs to make it move around.

• Flag = 32 means that the hardware in the loop sim-
ulator is activated, i.e., all motors and actuators of the
motors are blocked while the internal autopilot is fully
operational.

• Flag = 64 means that manual mode is enabled,
which requires that the pilot manually control the sys-
tem using a remote control input. In manual control,
there is no automatic control made by the autopilot.

• Flag = 128 the system is in armed state, which
means that motors are enabled/running and can start the
fly.

The custom mode is also essential. It indicates autopilot
specific flags that are interpreted in addition to the base mode.
It is used in heartbeat message parsing to determine the flight
modes of the autopilot system. There are pre-defined values
for the custom mode including 0 for manual flight mode, 4
for guided mode, 10 for auto mode, 11 for RTL mode, 9
for LAND mode, 2 for ALT_HOLD, and 5 for LOITER. In
the next section, we provide a comprehensive overview of
the different flight modes in ArduPilot systems supported by
MAVLink.

The system_status field represents a flag that indi-
cates the system state. There are night states defined as of the
latest specification [10]:

• system_status = 0 refers to a system that is not

VOLUME 4, 2016 5

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2019.2924410, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

initialized system or an unknown state.
• system_status = 1 indicates that the system is

booting.
• system_status = 2 means that the system is per-

forming a a calibration. In fact, the sensor calibration is
a very important phase to make sure that flight sensors
such as Inertial Measurement Units (IMU), and Com-
passes are consistent and run as expected.

• system_status = 3 it means that the system is in
standby mode and can be started at any time.

• system_status = 4 indicates that the motors are
engaged and that the system is active and might be
airborne.

• system_status = 5 indicate potential errors and
that the system is in critical state, although it can still
navigate. This can happen for example during temporary
interference or battery level starting to be low, etc.

• system_status = 6 this means an emergency sit-
uation where the unmanned system lost control over
some parts and is in distress situation. The system may
have already been crashed.

• system_status = 7 indicates that the system has
started its power-off process and is now shutting down.

• system_status = 8 indicates that the system is
terminating itself and ending its flight.

Finally, mavlink_version field indicates the MAVLink
version. It is not editable by the user and is set by the
protocol.

System Status message: The system status message has
a Message ID equal to 1 and is composed of data about the
onboard control sensors embedded into the unmanned system
and specifies which of these sensors are enabled/disabled
and which sensors are operating or having errors. It also
carries out data about the battery status and the remaining
voltage, which is useful to track the battery level of the
unmanned system. Besides, it provides information about the
communication errors and the ratio of dropped packets in
the communication link. The information about battery and
communication link are crucial to take appropriate failsafe
action when the battery level goes down, or the communica-
tion quality deteriorates. In this case, the unmanned system
can be pre-programmed to execute a failsafe operation in case
of low battery level or bad communication quality such as
landing and going back home for an unmanned aerial system.

Global Position message: The global positioning mes-
sage has an id equal to 33 and represents the filtered GPS
coordinate provided by the Global Positioning sensor. It is
illustrated in Fig. 4. This message carries out important
information of the unmanned system related to its global
positions, namely, the GPS latitude (lat), longitude (lon)
and also absolute altitude (alt). These three values are
encoded into four bytes (32 bits). The values of (lat) and
(lon) must be divided by 10

7, to get the real floating GPS
value, it is needed to divide them by 10

7. The altitude is
expressed in millimeters. The message also contains a rel-

ative altitude field (relative_alt), which represents the

altitude relative to the takeoff ground point of the unmanned
aerial system. It is different from the absolute altitude. For
example, the absolute altitude of Riyadh city is 612 meters,
which corresponds to a relative altitude of 0 meters, as the
drone is on the ground. If the drone takes off at a relative alti-
tude from the ground of 10 meters, then its absolute altitude
becomes 622 meters. Besides, this message also carries out
information about the linear speed of the unmanned system
along the 3 axis ((x,y,z) in addition to orientation referred
to as heading. This information is collected from the GPS
sensor, and it can also be read from other sensors such as the
Inertial Measurement Unit (IMU) or the compass, which are
available in other MAVLink messages.

FIGURE 4: System status message

2) Command Messages

There are several command messages in MAVLink that give
the ability to request the unmanned system to perform certain
actions. In what follows, we provide an overview of the
most important commands. Table 3 presents a summary of
a selected set of MAVLink commands.

COMMAND_LONG: The COMMAND_LONG is a
multi-purpose command that allows sending different types
of commands depending on the command type of the mes-
sage and its parameters. The COMMAND_LONG message
has a Message ID equal to 76 and is defined with 11 fields,
as illustrated in Fig. 5. The target_system field and
the target_component field specify the system that will
execute the command, and its underlying component.

The command field refers to the type of command to be
executed. It is defined in the MAV_CMD command enumera-
tions. Also, for each command, a set of parameters relevant
to the command can be set. In what follows, we provide a
summary of some commands and their respective parameters.

For example, the command ID with 21 refers to the LAND
command, and it has no parameter. Some other commands
have parameters like the takeoff command (ID=22), which
has to specify the takeoff altitude in param 7, and the
command arm/disarm which specifies a Boolean value in
param1 to indicate whether to arm or disarm the mo-
tors. There are around 60 commands types defined in the
MAV_CMD command enumerations. The confirmation field
indicates if the message was sent for the first time with
value 0, and other values represent a confirmation of the
message. The 7 parameters depend on the type of command.
For example, for the LAND command, all seven parameters
are useless. In the takeoff command, the seventh parameter
represents the altitude requested for the takeoff.

The Mission Item Command: The mission item com-
mand has a Message ID equal to 39 and allows to send
a waypoint to an unmanned system so that it navigates

6 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2019.2924410, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

TABLE 3: Selected List of Important MAVLink Commands

Command Command
ID

Parameters Description

TAKEOFF 22 param7: double this command makes
the aerial unmanned
system takeoff at an
altitude specified in
param1

LAND 21 No parameters this command makes
the aerial unmanned
system land to ground

GET_HOME 410 No parameters this command allows
to get the Home posi-
tion, which is the first
waypoint in the mis-
sion list

SET_HOME 179
param5: double
param6: double
param7: double

this command allows
to get the Home posi-
tion, which is the first
waypoint in the mis-
sion list

ARM DIS-
ARM

400 param1:
boolean

this command allows
to arm the motors if
param1 is set to true,
and disarm them if
param1 is set to false

target

system

unit8_t

target

component

unit8_t

command

unit16_t

confirmation

unit8_t

param1

float

param2

float

param3

float

param4

float

param5

float

param6

float

param7

float

FIGURE 5: Command long

autonomously to that specific waypoint in GUIDED mode.
Every mission item command message has a sequence
number that specifies its number in the mission, starting
from 0, which specifies the home location. It also has
three fields (x,y,z), which specify the coordinates of
the waypoint. However, the coordinate must be specified
with respect to a reference frame. Thus, the message has a
field called frame, which specifies the reference coordinate
frame of the waypoint. This parameter is important because
it is essential to interpret the meaning of the coordinates
(x,y,z). For example, if we set the waypoint coordinate
as (24.68773, 46.72185, 10) with reference to the global
frame MAV_FRAME_GLOBAL, this would mean to go to
the waypoint at GPS location (24.68773, 46.72185) and an
absolute altitude of 10 meters with respect to sea level.
For example, in Riyadh city (Saudi Arabia), the absolute
altitude is 620 m, so this would be that the drone may go
down and crash to the ground because the target altitude is
lower than that of the ground. However, usually, we want
to specify the location with respect to the ground (e.g., 10
meters above ground) and for this, we need to specify the
reference frame to be a global frame but with relative al-

titude namely MAV_FRAME_GLOBAL_RELATIVE_ALT.
The command also specifies the target system and target
component as in other command messages.

TABLE 4: Selected List of Important MAVLink Messages

Message

Type

Message Repre-

sentation

Description

0 HEARTBEAT It is the most important message in
MAVLink that tells if the unmanned sys-
tem is alive or not.

1 SYS_STATUS It defines the unmanned system state in-
cluding onboard sensors, communication
quality and battery status.

2 SYSTEM_TIME It defines the system time of the master
clock that is usually the onboard clock.

5 and 6 CHANGE
OPERATOR
(CONTROL,
ACK)

They represent the request to take control
over the unmanned system and its corre-
sponding acknowledgment

20, 21,
22, 23

PARAM
REQUEST
(READ,
LIST),PARAM
(VALUE ,SET)

These four important messages are related
to on-board parameters whose value can be
obtained by GCS or can be set by GCS. For
example, it is possible to request to read the
SystemID parameter or to change it.

24,
25, 33,
48, 49,
123,
124,
127

GPS RAW INT,
GPS STATUS,
GLOBAL
POSITION
INT, SET_GPS
GLOBAL
ORIGIN ,
GPS GLOBAL
ORIGIN, GPS
INJECT DATA,
GPS2 RAW, GPS
RTK,

These messages are related to the GPS sen-
sor information, such the raw GPS value,
the Global Position value, etc.

26,27 SCALED IMU
and RAW IMU

These messages contain the scaled and raw
IMU sensor data according to 9 degrees-of-
freedom including acceleration, gyro (an-
gular speed) and magnetic field all in three
axes

37 up to
47 and
51

MISSION related
messages

There are 10 messages defined for mis-
sions request a mission, or set a waypoint
in a mission, clearing a mission (i.e., delete
all its waypoints), or getting acknowledge-
ment for a mission, etc. A mission is de-
fined as a set of waypoints sent to the
unmanned system to navigate to them in
the autonomous mode.

34, 35,
50, 65,
70, 92

RC_CHANNELS
SCALED, RAW,
PARAM MAP
RC, OVERRIDE,
HIL RC INPUTS
RAW

All these messages are for RC control to
get the channels, write data or controls.

75, 76 COMMAND
(INT, LONG,
ACK)

It sends the command to the unmanned
system for performing actions such as (a)
navigation commands (b) do commands
(start, jump etc.) or (3) condition com-
mands, all listed in MAV CMD.

E. FLIGHT MODES

Understanding flight modes is crucially important to be
able to pilot a unmanned system running Ardupilot and the
MAVLink protocol. There are several flight modes that were
defined by Ardupilot. In this section, we present the most
important and more common flight modes.

• The STABILIZE mode In this mode, the unmanned
system is fully controlled by the user, position, altitude,
and heading. The unmanned system will respond to
every input from the RC controller controlled by the
user, and it is up to the user to compensate any drift

VOLUME 4, 2016 7

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2019.2924410, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

made by the unmanned system.
It is recommended that users immediately switch to the
STABILIZE mode to manually control the unmanned
system, when the autopilot fails to control the vehicle in
any other autonomous mode.
It has to be noted that it is possible to download dataflash
log files from your unmanned system, to analyze the
flight performance by opening it in mission planner in
the graph tab.

• ALTITUDE HOLD: A more comfortable mode to con-
trol the unmanned system is the ALTITUDE HOLD or
ALT HOLD mode where the user does not have to worry
about maintaining a fixed altitude for the unmanned
system, as the autopilot will take care of controlling
automatically using a PID controller the altitude. The
user will have to take care of controlling the direction
and position of the unmanned system manually.
The ALT_HOLD mode automatically controls the alti-
tude of the unmanned system by the autopilot. However,
it does not control the heading, and position, which
are left to the user. This mode is more recommended
for newbies than the STABILIZE mode and does not
require a GPS because it estimates the altitude with the
barometer.
It is possible to tune the setting of the PID controller
of the ALT_HOLD mode in APM mission Planner as
illustrated in Fig. 6. The altitude is maintained with
proportional controller that estimate the error between
the desired altitude and the actual altitude and tune the
vertical acceleration proportionally to that error. The
proportional gain can be set through a ground station
as illustrated in Fig. 6. The Proportional gain must be
carefully set because a very high gain will make the
control more aggressive and less stable, whereas a very
low gain will make the control very slow and non-
responsive.

• LOITER: An even more accessible mode to control
the unmanned system is the LOITER mode, which
maintains the current location, orientation, and altitude
of the unmanned system once the user does not provide
input to the RC controller. This mode is similar to
the STABILIZE mode, but the unmanned system will
control its position, heading, and altitude once the user
gets his fingers out of the RC sticks. The LOITER mode
requires a GPS 3D fix to work with, or optical flow.
It has to be noted that it is not possible to arm the vehicle
in LOITER mode only if (1) GPS has 3D Lock, (2)
HDOP is smaller than 2.0. As such, this mode requires
a GPS 3D fix to work with.
To achieve excellent LOITER performance, it is essen-
tial to have (1) GPS Lock, (2) low magnetic interference
of the compass, and (3) low vibration.
The PID controller gains can be tuned from the Mission
Planner ground station or similar ground stations.
The LOITER SPEED represents the max horizontal
speed in cm/s and is typically equal to 500 cm/s (which

is equivalent to 5m/s). The default configuration is that
the maximum acceleration is equal to the half of the
LOITER SPEED (i.e., 2.5m/s2).
The parameters of the LOITER mode can be configured
through a ground station as illustrated in Fig.6 by setting
PID control gains of the altitude, position and orienta-
tion (Yaw, Pitch and Roll).

• LAND: The LAND mode will force the unmanned
system to land to the ground.

• RTL: The RTL mode, also called Return to Launch, will
force the unmanned system to return to start position
where it performed the TAKEOFF.
LAND and RTL mode are used in case of violation
of navigation safety and geofence, for example, it is
possible to program on the autopilot that if the battery
goes under a certain level, then the unmanned system
needs to LAND immediately or return to start position
automatically. This is called GEOFENCE.

• GUIDE: The GUIDED mode is essential and operates
only with GPS mode. When the GPS of the unmanned
system performs 3D fix and is activated, then the un-
manned system can be sent to navigate autonomously to
a particular GPS coordinate through the ground station.
It is called GUIDED mode because the unmanned sys-
tem is guided by the user to navigate autonomously to a
specific waypoint chosen by the user.
The GUIDED mode is used in conjunction with GPS
and allows the user to send the unmanned system to
specified waypoint defined by their GPS coordinates. It
is not possible to arm the unmanned system in GUIDED
mode only when the GPS has the 3D fix.
In GUIDED mode usually, a ground station is used to
send a navigation waypoint to the unmanned system
to navigate to it. It is therefore important to have a
telemetry device connected to the unmanned system and
the ground station to allow long-range communication
between them.
Typically, a user needs to click on a point on the map, in
GUIDED mode and the unmanned system will plan its
path and move towards the goal.

• AUTO: The AUTO mode refers to the autonomous
mode, where the unmanned system will follow a prede-
fined mission. A Mission is a set of waypoints stored in
the unmanned system autopilot. When the AUTO mode
is selected, the unmanned system will autonomously go
to each waypoint in the same order as they are stored.

III. SECURITY ISSUES OF MAVLINK
A. MAVLINK SECURITY REQUIREMENTS

Many research works dealt with the security of unmanned
systems but much less addressed MAVLink security issues.
Among them, several works tackled the security require-
ments that must be taken into account in the MAVLink pro-
tocol. In what follows, we summarize the most important re-
quirements in terms of confidentiality, integrity, availability,
authentication, non-repudiation, authorization, and privacy in

8 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2019.2924410, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

FIGURE 6: Settings of the PID controller

order to secure MAVLink communications.

• Confidentiality: It is an essential requirement to guar-
antee private data exchange between entities. It protects
against attacks pertaining to non authorized disclosure
of secret information exchanged in the network between
the unmanned system and the ground station, since an
adversary might be able to intercept commands sent
from GCS to the unmanned system, or steal other sys-
tem state data transmitted from the GCS to the un-
manned system.

• Integrity: It is mandatory to secure communications
between GCSs and UAVs by ensuring the integrity
of exchanged data. Integrity is required to ensure that
telemetry information sent from the unmanned systems
and control signals sent from the GCS have not been
intentionally or unintentionally interrupted, altered or
modified. It protects against threats that pertain to unau-
thorized information modification.

• Availability: The communication between UAVs and
GCSs should be available, as well as the information
itself is always available when needed or requested,
even if a fault has occurred on the UAV system or an
attacker tries to jam the UAV/GCS channel.
It is fundamental that all the elements of the UAV
system are operating and performing their requested
functions and expected services when needed. Consid-
ering system maintenance, it is mandatory to ensure the
continuous operation of the service without interruption,
and to guarantee that the system performance is main-

tained so that the system keeps its availability uninter-
rupted during operation. Besides, for the accessibility to
the UAV, the service must be available when the user
needs it.

• Authentication: In a network of unmanned systems,
multiple entities are participating and exchanging infor-
mation in the network. Authenticating these entities and
information origins is mandatory. Authentication allows
each node to verify the origin of the data transmitted,
i.e., make sure that the message is effectively received
from an authentic source. The authentication of the
unmanned system by the GCS is highly critical to make
sure the GCS is controlling an authorized drone, not
a fake one. Also, it is essential that GCS can also be
authenticated so that an unmanned system does not send
its state or accept commands from a hacked/fake ground
station. Therefore, it is mandatory to authenticate both
ends to ensure that data sources are trustworthy.

• Non-repudiation: Any entity in UAV network does
not deny that it has sent or received data or control
commands.

• Authorization: It refers to the ability of a system to
permit access to information, and which actions these
entities are allowed to perform. In the case of MAVLink
only authorized GCSs and UAVs, can enter the network,
are permitted to exchange telemetry data and send con-
trol command.

• Privacy: Exchanged information between GCSs and
UAVs includes sensitive information about location,

VOLUME 4, 2016 9

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2019.2924410, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

battery status, speed, weather, wind speed, mission sta-
tus, etc. This private information must not be leaked
to unauthorized third parties. Thus, it is mandatory to
preserve the privacy of communications, hide UAVs
and GCSs’ identities and protect sensitive information
issued by UAVs and GCSs from intruders.

B. MAVLINK SECURITY THREATS

Communication between UAVs and GCS is established by a
communication protocol via a wireless channel, which makes
them vulnerable to various attacks since the communication
protocol MAVLink does not support security procedures.
Both confidentiality and authentication mechanisms are not
natively supported. The GCS exchange data with UAVs
through an unauthenticated channel and without encryption.
These connections can be easily hacked, someone with an
appropriate transmitter can communicate with the drone,
inject commands into an existing session and easily launch
attacks on UAVs.

The open nature of communications makes MAVLink
vulnerable against various malicious attacks. These attacks
can be classified as Interception (Attacks that compromise
data confidentiality), Modification (Attacks that compromise
data integrity), Interruption (Attacks that compromise data
availability) and Fabrication (Attacks on authenticity). In the
following, we detail further these threats:

1) Confidentiality and privacy attacks

In this category of attacks, an intruder gets an unauthorized
access to confidential and sensitive information by intercept-
ing data, commands or messages exchanged between UAV
and GCS. The confidentiality and privacy of the information
are affected in this category of attack. Such attacks concern
eavesdropping, identity spoofing traffic analysis and unau-
thorized access and are a result of deficiencies in the security
of MAVLink.

• Eavesdropping (Communication capture): Due to
the lack of encrypted connections, an attacker listens
to the communication happening between UAVs and
GCS, eavesdrops on the information exchanged be-
tween UAVs and GCS directly from the open environ-
ment. This kind of attacks is exploited by the adversary
to obtain information about the UAV, and consequently
perform more elaborated attacks (active attacks). The
attacker captures control data and commands sent from
the GCS to the UAV, to be used in a replay or a fabri-
cation attack. Telemetry data broadcasted from UAVs
to the GCS is intercepted by an adversary to gain
knowledge about the UAVs location and flying speed.
Eavesdropping is a passive attack that breaches the
confidentiality and privacy of the control signal and
telemetry data. The lack of data encryption and authen-
tication in communication stimulates such attacks.

• Identity spoofing: The MAVLink Communication pro-
tocol is unencrypted and uses the System IDs to identify

the drone which sends or is expected to receive the mes-
sages. System ID is sent in clear within the unencrypted
MAVLink header. Thus, an attacker can compromise the
communication link to get the identity of the sending
system.

• Traffic analysis: Traffic analysis is a passive attack. An
intruder may collect exchanged data to infer specific
data to reveal specific patterns about the communication
between UAV and GCS. It can be any useful information
such as frequency of MAVLink communication, size of
MAVLink packets, etc. Traffic analysis is a method to
gather useful and sensitive information that potentially
can be used in other attacks.

• Unauthorized access: It occurs when the attacker gets
access to the UAV and/or GCS, their services and
resources using duplicated SYSID or COMPID. This
attack usually results in unauthorized disclosure of GCS
and telemetry information from UAV.

2) Integrity attacks

The integrity of MAVLink can be compromised by modify-
ing the data being sent. Violation of the MAVLink integrity
allows the following attacks:

• Man-in-the-middle: In the MAVLink communication
protocol, messages are sent in plain text, which rep-
resents vulnerability and a threat to network security.
The M-I-T-M attack can be successfully established
in the channel. The attacker is located between UAVs
and GCS and listen to the exchanged communications.
The attacker can infer the content of the intercepted
MAVLink payload and reconstruct commands. He can
replay previously recorded packets, modify control and
telemetry data and send these wrong data back to the
GCS or the UAV. Thus, the integrity of the control data
and telemetry data is hampered.

• Hijacking (Unauthorized Command Injection):

There is a possibility, whenever a M-I-T-M attack
against a UAV is successful, the attacker sends unau-
thorized commands to the UAV to takes its control from
its GCS while allowing the GCS to believe that it is still
controlling the UAV. Once the drone is under his control,
the attacker can catch and withhold the UAV. There are
two ways to hijack a drone using MAVLink vulnerabili-
ties: (i.)(Skyjacking): Exploiting MAVLink’s lack
of authentication, a drone called Skyjack hacks other
drones by using airplay-ng software to force discon-
necting the authentic user from the drone by injecting
de-authentication messages. Since the drone does not
authenticate users, an hacker may easily connect to it
and take control over the device as soon as the WIFI
connection is established. (ii.)(Radio Jacking):

It is another way to hack a UAV using the MAVLink’s
vulnerability. To control the drone using telemetry via
MAVLink, it is mandatory to set up the NetID to connect
to the drone. If an intruder recognizes the NetID field, he
can easily hijack the UAV through the use of an antenna

10 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2019.2924410, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

with the sniffed NetID to transmit malicious MAVLink
packets and false information.

• Replay attack: Due to the ease of message capture and
open nature of communications, the MAVLink protocol
is vulnerable to replay attacks. A malicious user records
the control data sent to the drone and replays them
later to misuse the drone and produces an unauthorized
effect. This attack may cause loss of control over the
drone and possible crash.

• Message modification: Modification of messages
means altering the contents of the data packet. The
attacker captures the control data sent by the GCS,
modifies them and sends wrong data back to the UAV.
As a result, the GCS’s control data are misinterpreted by
the drone resulting in the drone being uncontrollable.
The integrity of the control data and telemetry data is
compromised.

• False location update: An attacker can send spoofed
messages to the GCS using the data link that seems to
be from a UAV containing false UAV location data using
Scapy (a packet manipulation tool) to spoof heartbeat
messages. This attack makes GCS believing that the
UAV is in another location, or is following a wrong
trajectory.

3) Availability attacks

Attacks that compromise the availability of MAVLink can be
achieved through interruption of the link used to exchange
data between the drone and the ground station. There are
several means on how to perform this attack, in particular
through jamming, deletion attack, falsifying signals and De-
nial of Service (DoS/DDoS) attacks.

• Jamming: This attack affects system availability. An
attacker who is trying to take full control of the drone
interrupts the UAV reception of the GCS control sig-
nals by breaking the communication link. The jamming
attack results in the loss of communication between
UAVs and the GCSs through the loss of control signals,
which leads the drone to enter into a lost-link state

preventing the controller from operating correctly, and
thereby causing unavailability of services.

• Denial of service (DoS): An attacker may use the
MAVLink vulnerability to flood the UAVs GCS com-
munication channels with data; the network becomes
interrupted, which leads to resource (UAV and GCS)
unavailability. This form of attack is called a DoS attack.
In such an attack, the control messages as well as the
mission data is not properly received by the drone. As a
result, the drone cannot remain in a stable state, and the
mission is not executed appropriately. If DoS attack is
successful, it can result in a (M-I-T-M) attack. By con-
ducting a MITM attack, the attacker sends unauthorized
commands in an infinite loop to the UAV. This could
effectively deny the communication between the GCS
and the UAV, preventing the legitimate commands sent
by the GCS from being treated by the UAV, as the drone

would always be occupied by commands issued from
the attacker. A successful DoS attack against the drone
makes it no longer responsive to the GCS, or vice versa,
because of the violation of system availability.
Furthermore, in DDoS attack, an adversary sends a huge
number of packets to the UAV or the GCS which causes
a network congestion and prevents the UAV and the
GCS from communicating with each other (failing to
respond to commands).

• Flooding: This attack works on the principle of flooding
the network with a huge number of various packets to
make it down. Generally, packets of types SYN, UDP,
ICMP and Ping are used in this kind of attacks. In [11], a
simulated attack, ICMP flooding attack, was performed
to exploit the vulnerability of the MAVLink waypoint
protocol. The intruder sends many ICMP request pack-
ets to both the GCS and the UAV during their mission.
The GCS and the UAV are too overloaded, and thus,
cannot respond to commands. As such, the UAV sensor
values, the GCS mission commands were not appropri-
ately transmitted. Furthermore, the heartbeat message
necessary for maintaining the connection between the
UAV and the GCS is received after the target time
because of the ICMP flooding attack. In this case, the
UAV crashed without operating the fail-safe mode due
to an error in the fail-safe mode.

4) Authenticity attacks

Authenticity attacks try to make the GCS/UAV believe that
falsified data is authentic. Authenticity of a MAVLink mes-
sage can be hampered by fabricating malicious data to re-
place the legitimate data. Fabrication attacks include data
fabrication and GCS spoofing.

• Data fabrication: To perform a fabrication attack, the
adversary needs to have extended knowledge about how
the GCS and the considered drone communicate, i.e.,
knows the protocol used by the drone and the GCS,
which can be achieved by having performed eavesdrop-
ping and traffic analysis attacks. This attack violates the
integrity of the control data and/or telemetry data, and
can lead to a hostile takeover of the drone.

• GCS spoofing: The UAV connects with the GCS via
wireless links for data and control signal exchanges.
However, since the wireless environment is open, an
attacker could successfully spoof MAVLink commands.
More specifically, a malicious attacker can send a false
wireless control command to take over the UAV illegit-
imately.

Fig. 7 summarizes the potential security threats against
the MAVLink protocol, the identified attacks, and the cor-
responding violated security properties.

IV. MAVLINK SECURITY SOLUTIONS
Despite the widespread use of the MAVLink protocol, it
has security gaps and is prone to several attacks that result
in critical threats and safety concerns. The protocol does

VOLUME 4, 2016 11

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2019.2924410, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

Security attacks on MAVLink protocol

Confidentiality and privacy

Data interception

Eavesdropping

Identity spoofing

Traffic analysis

Unauthorized
access

Integrity

Data modification

Man-in-the-middle

Replay attack

Message modification

False location update

Hijacking

Availability

Communication
interruption

Jamming

DoS/DDoS

Flooding

Authenticity

Data fabrication

GCS spoofing

Fabrication attack

Skyjacking

Radio Jacking

FIGURE 7: Security threats and attacks against MAVLink Protocol

not implement encryption and authentication mechanisms.
Therefore, MAVLink is very prone to security threats and
attacks.

Several techniques and solutions have been already pro-
posed to address the security issues described previously. In
this section, we provide an overview and a classification of
the proposed solutions for each security service as illustrated
in Table. 5. Existing security solutions proposed for securing
the MAVLink communication protocol can be classified into
hardware and software approaches.

A. HARDWARE-BASED SOLUTION

Several embedded and hardware security solutions have
been introduced to secure the MAVLink protocol. In [12],
a lightweight hardware-based solution is proposed to secure
the communication between the GCS and the drone. An
FPGA module connected to the drone embeds the symmetric
key cryptography function: AES-CBC-MAC was used to
encrypt and authenticate both commands and payload data
communicated between the drone and the GCS. However, the
hardware solution negatively affects system performance and
power consumption due to the extra hardware weight. In [13],
the authors proposed the idea of an additional encrypted com-
munication channel to improve UAV data security through
Raspberry Pi. This channel was designed to resume the
control of the UAV if any attack was detected on the drone.
However, this hardware solution induces delays between the
GCS and the Raspberry Pi and increases the CPU usage on
the Raspberry Pi.

B. SOFTWARE BASED SOLUTION

We may here further distinguish among several approaches:
the classical security approaches, the Intrusion Detection

System (IDS) based approaches, and the new emerging
Blockchain technology based approaches.

1) Classical security approaches

This category of solutions groups cryptographic-based ap-
proaches used in the context of MAVLink to address the main
security services. We review the proposed cryptographic
solutions and discuss their main advantages and shortages
relatively to each security service.

a: Confidentiality solutions

To ensure confidentiality of both control signals and teleme-
try data, MAVLink data has to be encrypted before being
sent. However, it is important to use both a strong key and
a powerful cryptographic algorithm to mitigate the vulner-
abilities of the MAVLink protocol in terms of confidential-
ity. Cryptographic algorithms are classified into two main
classes: symmetric and asymmetric cryptographic solutions.

(i.) Symmetric key solutions: Each entity in the system
shares the same cryptographic keys with all other entities.
The main benefits of symmetric key schemes are their easy
implementation, fast design, and low computation require-
ments. In fact, they use the same key to encrypt and decrypt
data, which makes it appropriate for limited-resource drones.

In [14], the authors introduced SMACCMPilot, a secure
UAV project based on the MAVLink protocol. SMACCMPi-
lot refers to GIDL as the application level protocol. GIDL
uses AES to encrypt the MAVLink payload, header, and
CRC. The community of the MAVLink protocol develop-
ers are currently discussing a secure version of MAVLink
(sMAVLink) [15]. sMAVLink has the same encryption algo-
rithm as GIDL but encrypts only the payload, which makes
the MAVLink packet structure untouched. To the best of our

12 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2019.2924410, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

TABLE 5: Survey on the state-of-the-art on existing security solutions

Category Key method Proposed solution Research focus REF

Hardware based solution
AES-CBC-MAC embedded in FPGA module

Hardware
Confidentiality and

authentication [12]

Additional encrypted channel through Raspberry Pi
Resume the control of UAV if

any attack was detected [13]

Classical security approaches

AES

Symmetric key

Confidentiality

[14], [15]
Galois Embedded Crypto Library [16]

AES-ECB, AES-CBC [17]
Rabbit stream cipher, XXTEA

stream cipher, and Salsa20 stream cipher [18]

RC5 [19]
Caesar cipher [20], [21]
RSA and ECC Asymmetric key [17]

probabilistic selective data
encryption Identity-based encryption

(IBE)
[22]

(IBE-Lite) [23]
Private key Digital signature

Integrity

[24]
Authenticated encryption

algorithm
Symmetric key

[25]

Message Authentication Code(Poly1305)
and authenticated encryption algorithm

Galois/Counter Mode (GCM)
[18]

Message Authentication Code
(MAC) [26]

Strong authentication based
solution Symmetric key Availability [12], [27]

AES-GCM
Symmetric key

Authenticity

[18], [28]
Caesar Cipher [20], [21]

Message Authentication Code
(MAC) [12]

Elliptic Curve Cryptography
(ECC) Asymmetric key [17]

The signature represents the first 48
bits of an SHA-256 hash of the

secret key, header, payload,
CRC, link ID, and timestamp

Digital signature [8]

Intrusion Detection System
(IDS)

Behavior rule-based solution Rule-based specification
detection

Detect and guard a UAV system
against cyber-attacks [29]

Behavior rule-based solution
Evaluate the behavior of
attacks that target UAV [30]

UAV behavior based fight
commands Signature-based detection Authentication [31]

Statistical method (recursive least squares
technique)

Anomaly-based detection

UAV real-time monitoring
system [32]

Belief-based threat estimation
Protect UAVs from attacks

targeting data integrity [33]

Neural network and fuzzy learning algorithm
Protect UAVs against a distributed
denial-of-service (DDoS) attacks [34]

Support Vector Machine (SVM) algorithm
Detect cyber-attacks that

target autonomous avionic systems [35]

Bayesian game model
Protect UAV-aided network

against lethal attackers [36]

Rule-based detection and
SVM-based anomaly detection Hybrid-based detection

Identify cyber-attacks [37]

Signature-based anomaly detectors and
residual-based anomaly detectors.

Bayesian network to estimate possible attacks
Detects GPS spoofing attacks [38]

New emerging security
solutions

Blockchain Blockchain

Data integrity,
trusted source ,

accountability, and
resilient backend

[39]

Secure the communication
among UAVs [40]

Securely relay drone
information [41]

Security and privacy [42]

knowledge, sMAVLink has not yet been implemented.

In [16], the authors proposed an encrypted radio control
link based on Galois Embedded Crypto library with the
openLRSng open-source radio project for securing com-
munication links among open source UAV systems. The
proposed solution uses the symmetric key produced by a
trusted third-party entity and manually hard-coded in the

autopilot. This approach is not efficient and may lead to
security vulnerabilities and restricts its feasibility. In [17], the
authors chose AES-ECB and AES-CBC to protect command
messages.

In [26], the authors proposed a transfer protocol, which
provides confidentiality service and data transfer service
between the drone and GCS. User data are encrypted with a

VOLUME 4, 2016 13

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2019.2924410, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

key, derived during the initialization phase to guarantee data
confidentiality,

The work in [18] presented four suitable cryptographic im-
plementations that may be able to mitigate the confidentiality
vulnerabilities presented in the MAVLink protocol using
strong symmetric-key encryption algorithms. The proposed
algorithms are Rabbit stream cipher, XXTEA stream cipher,
and Salsa20 stream cipher. They both encrypt MAVLink
messages rapidly while preserving the confidentiality of
communication among the GCS and UAV.

Subsequently, an encryption mechanism RC5 is used in
[19] to secure the MAVLink communication protocol. In
[20], [21], the Caesar cipher cryptography algorithm is
used for data encryption of MAVLink messages between
the ground station and the Micro Aerial Vehicles (MAV).
However, in this method, the secret key is sent as a plain
text to the drone, during the establishment phase. The key
could easily be detected which breaks the whole security
system. Moreover, the Cesar encryption algorithm used in
this method is proved to be insecure and is vulnerable to
cryptanalysis.

(ii.) Asymmetric key solutions: Another form of encryp-
tion is public-private key cryptography, also known as asym-
metric encryption. It uses a couple of public/private keys. The
public key is used for data or information encryption, and
the private key, only known to the receiver, is used for the
decryption process. The advantages of these approaches are
their flexibility, scalability and skey management efficiency.
However, these solutions can cause severe computational,
memory, and energy overhead which are not suitable for
constrained devices. RSA and ECC algorithms were used in
[17] to encrypt of Aerial Robotics Communication.

(iii.) Identity-based encryption (IBE): The problem of
public key cryptography resides in its dependency on the
third-party authority that issues the certificates. To overcome
the scalability and complexity issues, IBE is proposed by
suggesting the idea to use known information that uniquely
identifies users (e.g., phone number, email, etc.) as their
public keys for data encryption and thus eliminates the ne-
cessity for certificates and Public Key Infrastructures (PKI).
Despite the clear achievement in scalability and efficiency,
IBE needed further refinements to become lightweight and
consequently viable for the use in resources constrained
devices such as UAVs.

The contribution in [22] is twofold. First, a hierarchical
architecture has been designed for the UAV networks using
identity-based encryption and bilinear pairing over elliptic
curve cryptography (ECC) without compromising system
security. Second, a lightweight cryptographic primitive is
proposed using a probabilistic selective data encryption tech-
nique. The proposed method improves system performance
and increases the efficiency of the transmitted message with-
out affecting security. Stenography or data watermarking
technique is used to reduce overheads and increase message
confidentiality. In [23], a lightweight IBE scheme (IBE-Lite)
is specially designed for resource-constrained IoD architec-

ture. The proposed scheme facilitates the secure sharing of
drones’ data.

b: Integrity solutions

Integrity can be ensured using signature, hash functions,
message authentication code (MAC) and authenticated en-
cryption cryptographic primitives [43], [44].

In [24], the authors proposed to add a digital signature to
the data packet using the UAV private key.

According to [25], the authors proposed to use authenti-
cated encryption cryptographic mechanisms to enforce the
integrity of the data.

In [18], the authors addressed two cryptographic imple-
mentations that can mitigate integrity vulnerabilities pre-
sented in the MAVLink protocol: the Poly1305 Message
Authentication Code (MAC) and the Galois/Counter Mode
(GCM). The GCM implementation adds an authentication
code along with the ciphertext and the initialization vector.
The authentication code is used to create an authentication
tag that is used as a method for validating the message
integrity. Poly1305 is a message authentication code (MAC)
used to verify data integrity.

However, using Poly1305 or GCM increases the packet
size due to the added padding, which increases the latency
in UAV communications and reduces the energy efficiency
of the autopilot processor. Moreover, Galois/Counter Mode
is the most computation-extensive mechanism because it
authenticates and encrypts every message using a slower
method.

In [26], the authors proposed a data transfer and confi-
dentiality services between the ground station and the drone.
This protocol ensures the message integrity using a message
authentication code (MAC) function using an alternative key
computed based on the master key.

c: Availability solutions

Protecting the UAV against malicious availability attacks is
important to succeed in UAV missions.

The contribution in [33] consists of proposing an estima-
tion model based on estimated beliefs to detect the existence
of a system threat. This work includes specific detection
policies to maintain the availability of UAV network.

Authors in [12], [27] surveyed the potential DoS attacks
that could cause serious availability issues in UAV systems.
They also proposed strong authentication based solutions to
mitigate these attacks.

d: Authenticity solutions

Authentication is essential to make sure that the GCS is
controlling an authorized drone not a fake one, and that
the UAV is sending its state or accepting commands from
a legitimate GCS not from a hacked/fake ground station. In
other words, authentication enables the UAV and the GCS to
guarantee that they communicate with each other. Authenti-
cation techniques used in UAV networks are Symmetric key
solutions, Asymmetric key solutions, and Digital signature.

14 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2019.2924410, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

(i.) Symmetric key solutions: A symmetric encryption
algorithm AES-GCM is used in [18], [28] to ensure the
authenticity of the transmitted signals. In [20], [21], the au-
thors tackled the problem of authentication using the Caesar
Cipher method in the MAVLink protocol. To guarantee a
secured communication between the UAV and the GCS, the
drone is authenticated at the beginning of the communication
using Cesar Ciphering. Thus, GCS data will not be received
by the UAV unless it gets authenticated, through sending an
encrypted text similar to the one produced by the GCS.

The Message Authentication Code (MAC) algorithm is
used to provide message authentication by using a symmetric
key encryption technique. Authors in [12] claimed that at-
taching the MAC to each MAVLink payload could be suitable
to verify the authenticity of the message.

(ii.) Asymmetric key solutions: The authors in [17] em-
ployed the use of Elliptic Curve Cryptography (ECC) for
ensuring authentication between the GCS and the UAV. All
feedback messages are encrypted with the drone’s private
key, which means that only the drone’s public key can decrypt
these messages. This procedure ensures that the receiver
authenticates the origin of the received messages. On the
other hand, the GCS’s public/private keys guarantee that the
UAV recognizes the message sent by the GCS so that the
drone is authenticated.

(iii.) Digital signature: As we stated before, a MAVLink
version 2.0 has been designed to support the packet signing
mechanism and to bring security to MAVLink communica-
tions [8]. The signature represents the first forty eight bits of
an SHA-256 hash of the secret key, payload, link ID, header,
CRC, and timestamp. The 13 bytes (including signature,
link ID and timestamp) must be appended at the tail of a
MAVLink 2.0 message to ensure that messages are sent by
trusted sources.

Despite packet signing has backward-compatibility and
best portability as compared to other security alternatives,
developers still need to upgrade their autopilots to MAVLink
v2.0 to support packet signing [45].

However, adding packet signing security solution is not
free. The cost consists in several factors including the compu-
tational overhead of 26 microseconds per packet, the increase
of firmware size (packet signing code is 812 bytes) and
the increase in power consumption due to the higher CPU
and network traffic usages. This leads also to increase the
communication time [45].

2) Intrusion Detection System (IDS)

It is essential to protect the UAV system against attackers by
allowing to detect possible cyber attacks against the drone
communication system. Intrusion Detection Systems (IDSs)
are typically deployed to monitor the incoming communica-
tion, supervise and identify indications of abnormal activity
or behavior. Some works in [29]–[38] have discussed the
area of intrusion detection systems (IDSs) for UAVs. In
what follows, we survey these existing studies based on the
categories of the techniques proposed for intrusion detection

including, the rule-based specification detection, anomaly-
based detection, hybrid-based detection, and signature-based
detection,.

a: Rule-based specification detection

This method is based on comparing the behavior of UAVs
against a set of specified rules based on the expected behav-
iors of UAVs.

In [29], Mitchell and Chen proposed the BRUIDS intru-
sion detection mechanism, which aims to detect and protect
a UAV system against security threats. BRUIDS is a rule-
based specification detection technique for intrusion detec-
tion of compromised UAVs. The authors proposed a set of
behavioral rules related to cyber-attacks constructed based
on defined attack models to build a model of a normal UAV
behavior.

Kim et al. [30] evaluated the behavior of attacks that
target UAV. They proposed a behavior rule-based intrusion
detection system for UAVs, in which the rules are specified
according to these malicious anomalies to model a normal
UAV behavior.

b: Signature-based detection

This method refers to the detection of known attacks based
on predefined known signatures, features, and patterns. Such
signatures are used to compare patterns with captured events
to recognize and ensure the detection of possible intrusions.
Although signature-based detection can easily detect known
attacks, it is difficult to detect unknown or new attacks for
which no pattern is available.

Authors in [31] proposed a technique (behaviometrics) for
continuous authentication of data command transmitted by
a ground station to the drone based on UAV behavior. The
drone’s behavior is specified using a set of flight commands,
which are considered later as a unique signature to identify
authorized UAVs and detect malicious commands stemmed
from attackers.

c: Anomaly-based detection

Anomaly-based mechanism defines normal and baseline fea-
tures to build a model of normal behavior profile and to
follow any possible variation from the normal behavior.
Anomaly detection usually uses statistic analysis, machine
learning techniques, and game theory to enhance the detec-
tion of anomaly behavior of a monitored node and unknown
attacks. The key benefit of this mechanism lies in its ability to
detect new or unknown attacks when there are no predefined
signatures of the unknown attacks.

Authors in [32] presented another IDS, where they pro-
posed a prototype of UAV real-time monitoring system to
control avionics and flight controller systems. Their approach
adapts the recursive least squares technique to estimate
UAV navigation sensor, controller parameters, and other re-
lated parameters. Through the application of this statistical
method, the IDS can identify the system’s parameters values,

VOLUME 4, 2016 15

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2019.2924410, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

and the anomaly is detected whenever the monitored param-
eters deviate from their expected values during the flight.

In [34], the authors suggested an intrusion detection sys-
tem based on Neural network and fuzzy learning algo-
rithms to protect UAVs against a distributed denial-of-service
(DDoS) attacks.

Authors in [35] developed an anomaly detection scheme
based on Support Vector Machine (SVM) algorithm to detect
cyber-attacks that target autonomous avionic systems.

The authors in [33] proposed and implemented an intru-
sion detection system to protect UAVs from attacks targeting
data integrity. The detection of these attacks relies on a belief-
based threat estimation model to reduce false positive and
false negative rates.

Besides, the authors in [36] proposed a collaborative intru-
sion detection framework, named Security Game Framework
(SGF), to protect UAV-aided network against lethal attackers.
SGF is formulated based on the Bayesian game model to
detect attacks accurately.

d: Hybrid-based detection

It takes the advantages of both rule-based, anomaly detection,
and signature-based and combines them to catch known
and/or unknown attack signatures and abnormal events.

In [37], authors investigated the use of an intrusion detec-
tion. The IDS uses an SVM learning algorithm to classify
threats while monitoring the behavior of UAVs. A sequence
of detection policies related to each cyber-attack is proposed
based on a hybrid approach (rule-based detection and SVM-
based anomaly detection) to model a normal UAV behavior.

The authors in [38] proposed a framework based on IDS
that detects GPS spoofing attacks onboard the UAV. The IDS
uses the attack-signature-based anomaly detectors as well
as residual-based anomaly detectors. The Bayesian network
takes anomaly detectors outputs as evidence to estimate a
possible attack through Bayesian inference.

3) New emerging security solutions

Blockchain is an emergent technology that can be efficiently
used solve the aforementioned security issues of MAVLink.
Blockchain is originally used for recording financial trans-
actions between entities in a distributed and decentralized
manner. The transaction is verified collaboratively using
trusted entities in the network, thus eliminating the need for
a controlling authority. Moreover, transactions are stored on
the Blockchain, which makes tampering with data extremely
challenging because Blockchain relies on fully distributed
cryptographic techniques. In this way, any modification on
these transactions can be easily detected.

All these advantages led several researchers to consider
this technology to deal with security issues in UAV network
since Blockchain provides privacy, integrity, accountability,
authorization, authentication, confidentiality, identity hiding
and non-repudiation.

In [39], the authors included Blockchain and cloud storage
in their framework to guarantee the UAV data integrity. This

idea addresses the following objectives: trusted source, tim-
ing, and data integrity, accountability and resilient backend.

In [40], Blockchain is used to secure the communication
among UAVs as they collaborate to make cooperative deci-
sions and exchange data.

Sharma et al. [41] exploited the Blockchain features to
securely relay drone information, especially in ultra-dense
environments.

Furthermore, authors in [42] presented a system model
based on the public Blockchain technology which provides
security and privacy to the IoD network.

The approach proposed by [46] relies on Blockchain prin-
ciples to identify compromised UAVs using trust rules and
detect wrong information when a UAV is hijacked.

V. LITERATURE REVIEW
The MAVLink protocol has attracted the research commu-
nity, and several contributions were proposed in the literature.
Some of these works proposed some extensions and en-
hancements to the protocol (e.g., [47], [48], and [49]), while
some other works presented the integration of the MAVLink
protocol with the cloud and the Internet of Things (e.g.,
[50], [51]). Furthermore, recent works also addressed how to
use MAVLink for autonomous agents and swarms (e.g. [52],
[53], [52]). In this section, we present an overview of the
recent research contributions that dealt with the MAVLink
protocol.

A. EXTENSIONS AND ENHANCEMENTS

Recently, several research studies proposed extensions to the
MAVLink protocol. In particular, the authors in [47], [48],
and [49] extended the MAVLink protocol to support the
multi-drones’ cooperation.

In [47], the authors defined a new set of messages and data
structures to manage a swarm and to enable drone-to-drone
communication. The proposed messages are divided into
two groups: swarm formation set and swarm maintenance
set. In total, the authors developed six enumerations, six
new commands, and thirty-three new messages. However,
the authors did not validate their approach neither with a
simulation nor experimental implementation. The concept
of groups was introduced into the MAVLink protocol by
adding two identifiers: 1) Group ID (group-wide), and 2)
Group Member ID (group-internal). For the swarm mainte-
nance, two factors were considered: drone replacement and
recharging. The drone replacement is the process of finding a
suitable alternative drone, then move all the mission-related
data to that new drone, and finally the physical and logical
replacement of the old drone with the new drone to finish the
mission. The drone replacement is needed in several cases
such as when the flight duration is undefined or longer than
the capacity of the battery, or when the drone encounters
some hardware problems. The recharge is a specific operation
to extend the mission duration because of the limited battery
capacity.

16 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2019.2924410, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

In [49], Erdelj et al. also proposed additional new
MAVLink messages and commands support collaboration
between drones in multi-UAV scenarios. The paper proposed
an approach to ensure the continuity of the drone service,
which means that when a drone has to leave the mission,
it is immediately replaced with another. A proof-of-concept
simulation was presented to show the effectiveness of the
proposed algorithm. Also, the authors analyzed the perfor-
mance of their system in terms of the total number of bytes
induced by the collaboration.

The work in [54], presented a system that translates
MAVLink messages to STANAG 4586 standard [55].
STANAG 4586 is a complete standard aiming at having
NATO interoperability between UAVs from different coun-
tries. A bridge between MAVLink and STANAG 4586 cre-
ated in a Raspberry Pi computer to make it easy to integrate
with any UAV (Fig. 8). This work aimed to allow any GCS
compatible with STANAG 4586 to be able to operate with
any MAVLink-based UAV to accomplish the interoperability
between the UAVs of the NATO’s member. The proposed
system was tested using the SITL simulator. Only impor-
tant messages were translated such as waypoints messages
because STANAG 4586 has a large set of messages. The mes-
sages were received successfully by the UAV, and the change
on the parameters (long, lat, and alt) was not significant.

FIGURE 8: Bridge between MAVLink and STANAG 4586
[54]

B. CLOUD AND IOT INTEGRATION

The use of Internet-of-Things to communicate, manage and
control multiple drones has gained a lot of interest.

In [51], the authors proposed Dronemap Planner, which
is a cloud-based system to manage drones over the Internet
and to offload heavy computation from the UAV to the cloud
(e.g., Image Processing). The authors used the MAVLink
protocol to send information from the drone to the cloud.
The cloud forwards UAV data to corresponding users, which
also send their commands to the drones through the cloud.
The paper provided a complete implementation of the cloud-
based management system and demonstrated how to monitor
and control drones over the Internet effectively.

The work in [50] proposed a multi-UAV system for track-
ing and scanning missions in disaster response applications.
A UAV is turned into an IoT device by embedding an 4G
dongle with the drone autopilot. The MAVLink protocol is
used for the communication between the UAV and the GCS.
The authors proposed to use APM software on Windows
2016 OS running on a cloud server (Elastic Compute Cloud
(EC2)). Experiments on a scanning mission for an area of
size 0.16 km with real drones were conducted on a university
campus. The missions were executed on EC2 and MAVLink
through UDP and TCP protocols to exchange data and re-
ceive commands from the ground station. In addition, this
paper analyzed the behavior of the MAVLink protocol using
both UDP and TCP connections through 4G network.

In [56], the authors proposed an IoT architecture of dif-
ferent types of systems including UAVs, sensor devices and
mobile phones. The communication between UAVs and the
server was performed using the MAVLink protocol.

The work in [57] aimed to create an framework where
the drones might be used to support the communication in
areas having no or limited infrastructure. The focus is on
the point-to-point connection between drone and car in an
ad-hoc communication. The position information is received
from the UAV’s GPS using MAVLink protocol, which allows
the communication between the drone’s hardware and the
Raspberry Pi.

C. SIMULATION AND MODELING

Several research works proposed simulation frameworks and
evaluated the performance of MAVLink-based unmanned
aerial systems.

The work in [58] analyzed the data loss and network
latency in the communication channel between the ground
station and the autopilot. The work in [59] describes a
simulator for MAVLink-based UAVs. The proposed visual
simulator combines SITL simulator which uses MAVLink for
the communication with a scene model generated in OpenGL
environment which allows visualizing the actions executed
by the simulated UAV.

The work in [60] designed a Hardware-In-the-Loop
testbed to test and simulate a control system for tail-sitter
UAV. MAVLink is used to exchange messages between the
vehicle and the GCS. The work in [61], introduced a new sim-
ulator called ArduSim which allows to control UAV flights in
real-time and manage the communication between multiple
UAVs. The MAVLink is used to send the control messages
via TCP. In [62], the authors proposed a modular hardware-
in-the-loop (HITL) simulation framework for multi-vehicle
autonomous systems. The proposed simulation framework
is compatible with any ground control station that operates
MAVLink protocol over UDP.

The work in [63] addressed the development of a method-
ology for automated modeling of collaborative underwater
vehicles. The MAVLink protocol is used to communicate
with the Pixhawk autopilot and the Odroid-XU4 single board
computer of the robot.

VOLUME 4, 2016 17

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2019.2924410, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

The work in [64] proposed a framework that combines
different verification methods (simulation, symbolic, and sta-
tistical and model checking) to analyze the different stages of
drone development. The proposed framework is composed of
3 main components: (1) Simulator: to specify the physical
model of the drone, (2) formal executable language: used to
specify the drone behavior and environment, (3) statistical
model checking algorithm: used to analyze the system behav-
ior. The communication uses the MAVProxy ground station
that acts as a proxy that forwards the MAVLink commands
to the drone.

D. APPLICATIONS

The MAVLink protocol is used as a communication protocol
in a wide range of UAV applications, ranging from agri-
culture, construction, and environment monitoring. In what
follows, we present an overview of some applications.

In Agriculture applications, the work in [65] proposed a
system for crop monitoring through a multispectral camera
mounted on a UAV. The MAVLink protocol is used for the
wireless communication between the UAV to the ground sta-
tion to send the multispectral crop images through telemetry.
In the context of environmental monitoring applications,
the work in [66] proposed an autonomous underwater vehicle
system for cooperative environmental sensing. The MAVlink
protocol is used to handle the communication between the
modules, in addition the base station workstation. In [67], the
authors developed an autonomous drone for the monitoring
of oil and gas pipelines. All the data are transmitted using the
MAVLink protocol, which ensures reliable communication
within a 5-km radius. For construction inspections, the
work in [68], proposed to integrate UAVs for inspection
purposes and used MAVLink for communication between
Ground Control Stations and UAVs. For Maritime applica-

tion, the work in [69] proposed an architecture for maritime
surveillance using battery-powered drones. The MAVLink
protocol was used to exchange data between the autopilot and
the flight duration enhancement system.

In addition, several recent research works addressed dis-
aster management applications, such as [70] and [71]. In
[70], the authors developed a fleet of UAVs for research and
rescue applications. Rescue operations are sent from mobile
phone to the drones through the MAVProxy ground station.
The work in [71] proposed an agent-hardware integration
architecture for search and rescue operations. The proposed
architecture embeds JaCaMo agents on UAVs. The UAV’s
flight controller exchanges data via MAVLink protocol.

E. AUTONOMOUS AGENTS

There are several efforts have been made to make the UAVs
autonomous. In [52], authors proposed an architecture to
provide the UAV with the capability of locating itself using
computer vision, modeling its environment, and planning
and executing a 3D trajectories. The work was successfully
tested with Solo from 3D Robotics which compatible with
MAVLink. Gstreamer is used to receive the video feed, and

Dronekit, which is compatible with MAVLink, is used to gain
access to the vehicle. In [72], authors deal with precision
landing problem for UAVs. As the GPS quality reduced when
the drone gets close to the ground, this paper proposed using
low cost adaptive fuzzy multi-sensor data fusion architec-
ture. PX4FLOW sensor is used to get an accurate velocity
measurement and recognize the moving features. PX4FLOW
data was acquired using the MAVlink protocol. The work in
[73] presents a system designed for multicopters to enable
them from autonomous landing on a moving object. The
presented system is based on visual tracking and landing of
a marker on the object. The MAVLink protocol is used for
the communication between the autopilot simulator and the
rest of the system. The work in [74] proposed an algorithm to
quantify the risk in a population and to find the optimal path
with minimum risk. The proposed algorithm consists of two
phases: first, identify the risk in a specific area by generating
a risk map based on factors like population density, no-fly
zones, sheltering, and obstacles. The second phase is the path
planning algorithm to search for the best path that minimizes
the risk. The communication between the autopilot and ROS
is done using MAVLink protocol.

The work in [75] proposed an algorithm for offline path
planning in a static environment. The proposed algorithm
was tested with real UAV. The algorithm runs on a single-
board computer onboard (Odroid XU4) To allow a com-
pletely autonomous flight. The proposed system was tested
using Iris+, a ready-to-fly quadcopter from 3DRobotics to
demonstrate the efficiency of the proposed system in practice.
The Pixhawk flight control board is used to control the
Iris+. The communication with the Pixhawk is done using
MAVLink.

F. SWARM CONTROL

In [53], authors presented an algorithm to avoid collisions for
a swarm of UAVs. The authors used small quadrotors with
diameter 250mm equipped with GPS and distance sensors.
An embedded Linux computer (Raspberry Pi) and Pixhawk
autopilot board are used to control the UAVs. The control
algorithm runs on the Raspberry Pi and is implemented as
C++ package in the ROS platform. The MAVLink protocol
is used for the communication between the Raspberry Pi and
the Pixhawk.

The work in [76] proposed a decentralized control algo-
rithm to be executed by each drone on the local onboard com-
puter (Raspberry Pi). The proposed algorithm implemented
as Python scripts, and in each iteration after computing
the desired velocity, they sent to the flight control through
MAVLink using DroneKit Python interface.

VI. MAVLINK RELATED SOFTWARE
There several types of software that support the MAVLink
protocol, including (i.) ground stations, (ii.) Simulation
frameworks. In the following subsections, we provide the
main candidates for each category.

18 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2019.2924410, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

A. SUPPORTED GROUND STATIONS

A Ground Station is a software that communicates with
the micro-vehicle through a serial or network interface by
exchanging MAVLink messages. The communication can
either take place over a serial port generally through a teleme-
try device or through a network interface inside a wireless
local area network using UDP or the protocol. The advan-
tage of telemetry devices is that they allow more extended
communication range than traditional WLAN technologies,
and can reach up to 5 km in range. This section presents
the most common available ground stations. Table 6 shows a
comparison of each GCS software discussed in this section.

• QGroundControl: The most commonly used ground
station is QGroundControl [77]. This ground station
was natively developed in C++ and also has a wrapper
package for Android. It fully supports the MAVLink
protocol in addition to Ardupilot and PX4 powered
vehicles. QGroundControl has several functionalities,
including defining and planning autonomous missions,
full control of the vehicle, graphical visualization of the
map and location tracking of the vehicle through its GPS
coordinates. It also provides support for video streaming
and changing the internal parameters of the autopilot, in
addition to the calibration of the sensors of the autopilot.
QGroundControl runs on different platforms, namely,
Windows, Mac OS, IOS, and Android devices.

• Mission Planner: Is the second most popular ground
stations for MAVLink-vehicles [78]. It is created by
Michael Oborne and runs on Windows platforms only.
Similarly to QGroundControl, Mission Planner also al-
lows for planning an autonomous mission and making
full control of the MAVLink vehicle. It has an additional
feature of downloading and analyzing the log files of
a mission. This means after completing any mission or
operation of the unmanned systems, all internal param-
eters and state variables are stored in log files inside
the autopilot, which can be download and analyzed by
the Mission Planner. This helps you to understand how
the autopilot behaves and provides a means to analyze
any exotic behavior and analyze the performance of the
autopilot.

• APM Planner 2.0: Is also a ground station software that
is very similar to mission planner but is also available
for both MAC OS and Linux environments [79]. It is
considered as the best ground station to use for MAC
and Ubuntu operating systems. APM Planner 2.0 pro-
vides almost all the functionalities of Mission Planner
including analyzing log files.

• MAVProxy: Is a Linux-based ground station, that is
primarily a command line interface and console-based
interface with some graphical modules for map visual-
ization and mission editing [80]. MAVProxy is written
in Python. It uses a set of simple command to interact
with Ardupilot autopilot. The advantage of MAVProxy
is that it is portable and lightweight as compared to other

ground stations, and also quite easy to use.
• DroidPlanner: For Android devices, DroidPlanner is

also known as Tower software, is the best alternative
for Android devices [81]. DroidPlanner relies on a Java
ground station at a lower level that interfaces with the
users through an Android GUI. It presents an excellent
interface to interact with an autopilot through either
serial telemetry interfaces and also network interfaces
using both UDP and TCP like other ground stations. It
also allows the user to configure the parameters of the
autopilot and create missions on the fly. Nonetheless, it
does not analyze log files like Mission Planner and APM
Planner 2.

• Universal Ground Control Software (UGCS): It is
a simple desktop software solution able to communi-
cate with and control multiple unmanned systems si-
multaneously [82]. It also supports various autopilots
from different manufacturers such as APM, Pixhawk,
DJI, Mikrokopter, YUNEEC, Micropilot, Micro un-
manned systems, Parrot (Ar.unmanned system) and
other MAVLink compatible. UGCS supports several
map layers and map providers. It provides a much more
robust interface with many features such as NFZs and
immersive 3D simulation. It runs on different platforms,
namely, Windows, Mac OS, Ubuntu, iOS and Android
devices [83].

B. UNMANNED SYSTEMS SIMULATORS

Unmanned systems simulator help simulating any environ-
ment and any unmanned systems activities in a digital envi-
ronment to make easier the test and the validation of algo-
rithms and protocols developed for the UAVs. The choice of
the appropriate simulator depends on the objectives, the areas
of application and the functionalities given by the simulator.
Table 7 provides a comparison between unmanned systems
simulators discussed in this section.

• FlightGear: Is a free, open-source flight simulator
framework used for research and academic environ-
ments [84]. It works on different environment such as
Windows, Mac, and Linux operating systems platforms
[85]. The entire source code is available for modifica-
tion and published under the General Public License
(GPL). Aircraft models must be created by an external
3D modeling application. Typically, the UAV structure
and features are described by an XML file. FlightGear
can run Software-In-The-Loop (SITL) and Hardware-
In-The-Loop (HITL).

• UE4Sim: In 2017, the Unreal Engine (UE4) is de-
veloped at King Abdullah University of Science and
Technology, based on the open-source computer game
engine Unreal Engine (UE4) [86]. The simulator has
been designed to facilitate the integration of computer
vision and machine learning techniques into a realistic
looking 3D environment. UE4Sim gives accurate un-
manned system physics, an evaluation tool based on the

VOLUME 4, 2016 19

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2019.2924410, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

TABLE 6: An overview comparison between GCS software

GCS software
Free/

commercial
Interface

Supported

Autopilots
Platforms

MAVLink

compatible

Implementation

language
License

QGroundControl Free Graphical

PX4 Pro, ArduPilot (APM)
or any vehicle that
communicates using
the MAVLink protocol.

Windows/Mac/Linux/iOS
and Android devices Yes C++

Open Source
(GPLv3)

Mission Planner Free Graphical APM/PX4 Windows/Mac OS (Using Mono) Yes C#
Open source
(GPLv3)

APM Planner 2.0 Free Graphical
MAVlink based
autopilots including
APM and PX4/Pixhawk

Windows, Mac OS, and Linux Yes C++
Open source
(GPLv3)

MAVProxy Free
Command line
and console
based interface

Ardupilot MAVLink
compatible Linux Yes Python

Open source
(GPLv3)

DroidPlanner Free Graphical APM Android Phones and Tablets Yes Java
Open source
(GPLv3)

UGCS
Free version
with limited
capabilities

Graphical

APM, Pixhawk, DJI,
Mikrokopter, YUNEEC,
Micropilot, Microunmanned systems,
Lokheed Martin, Parrot (Ar.unmanned system)
and other MAVLink compatible
multirotors, fixed wings
and VTOLs

Windows, Mac OS,
Ubuntu, Android, iOS Yes

Human control
interface with C#,
Universal control
server with JAVA,
Vehicle specific layer
with Java or C++

Not open source with
a free licence available

latest advanced tracking algorithms, and a deep learning
interface based on TensorFlow for autonomous driving
without requiring manually collected training data.

• X-Plane: Is a commercial flight simulator produced by
Laminar Research [87]. X-Plane simulator works on
different environment, namely, Windows, Linux, and
Android. It is certified by the FAA (Federal Aviation
Administration) as a training simulator because it is
more flexible and offers high fidelity simulation than
the flight model when it is used with specific hardware
configurations [88]. The flight model was created using
the Plane-Maker, an application provided with X-Plane.
This tool allows users to design any aircraft based on
the vehicle’s physical specifications. X-Plane uses UDP
or TCP-based protocols to connect different instances
through a network. X-Plane can exchange information
through the UDP communication protocol, which guar-
antees high-speed data traffic.

• Aerial Informatics and Robotics Platform (AirSim):

This simulator was produced in 2017 by Microsoft to
develop and test deep learning, computer vision, and
reinforcement learning algorithms for autonomous vehi-
cle applications [89]. It is open-source, cross-platform,
built on Unreal Engine 4 (UE4), and supports SITL and
HITL with popular flight controllers such as Ardupi-
lot and PX4 with the possibility of interfacing with
MAVLink protocol to render the simulation more real-
istic [90].
AirSim can retrieve data, images, control and interact
with the vehicle based on APIs, via C++, Python, C#
and Java languages. However, AirSim simulation is lim-
ited to quadunmanned systems. AirSim does not support
ROS and cloud connectivity [91]. This simulator is also
computation-extensive and needs advanced computing
requirements as compared to other simulators.

• Gazebo: Is an open source simulation tool for robots
and vehicles used for several applications [92]. This
simulator was developed at the University of South-
ern California and currently managed by the Open

Source Robotics Foundation (OSRF). It supports differ-
ent robots and can simulate complex 3D virtual worlds
with supporting various physical simulation engines and
different sensors, to test robot designs and AI algorithms
using real scenarios. Gazebo supports Ardupilot and
PX4 with the ability to run Software In The Loop and
Hardware-In-Tl-Loop. An API is provided allowing the
creation of new sensors for Gazebo. Moreover, Gazebo
is one of the most popular simulators since it enables
multi-robot simulation, supports ROS and enables cloud
connectivity [93]. However, it is too computationally
demanding to simulate multi-vehicle operations in real-
time [94].

• Java Micro Air Vehicle Simulator (jMAVSim): Is a
Java UAV simulator developed by the PIXHAWK engi-
neering team [95]. The main advantage of jMAVSim is
that it is simple to use and lighweight. jMAVSim allows
flying unmanned system type vehicles running PX4
around a simulated world. It supports the MAVLink
protocol with the possibility to run SITL via UDP and
HITL via a serial connection. It supports ROS and uses
a Java3D library for graphical visualization. There is no
possibility to integrate other sensors in the simulation.

VII. CONCLUSIONS
In this paper, we presented a comprehensive survey on the
MAVLink protocol, which is a lightweight protocol for com-
munication with unmanned systems. This survey addresses
the need for having a technical reference for MAVLink-
based systems developers. We thorough presented the char-
acteristics of the MAVLink protocol version 1 and version 2
and their messages formats. Furthermore, we discussed the
MAVLink security requirements, threats, possible solutions,
and we presented the recent research works that dealt with
security aspects of MAVLink. We also presented a com-
prehensive literature review of related research works about
MAVLink.

We believe that this survey provides a handy reference for
the large community of practitioners and developers to learn
about the MAVLink protocol, in particular with the absence

20 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2019.2924410, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

TABLE 7: Comparison between unmanned systems simulators

Simulator Main domain
Commercial/

free

Implementation

language
Open source

Operating

systems
License

Supported

Vehicles

MAVLink

compatible

ROS

interface
SITL/HITL

FlightGear unmanned systems Free C, C++ Yes
Windows, Linux,
Mac OS-X, IRIX
FreeBSD, Solaris

GNU/GPL Aircraft, unmanned systems Yes No Yes

UE4Sim Vehicles Free Python, C++, Yes unmanned systems, cars No No No

X-Plane unmanned systems Commercial C++ No
Android, iOS, Linux,
MacOS, WebOS,
Windows

Proprietary with
Free Trial Plane Yes No HITL

AirSim unmanned systems, cars Free
C++, Python,
C#, Java Yes Windows, Linux MIT

Iris (MultiRotor model
and a configuration
for PX4 QuadRotor in
the X configuration)

Yes No Yes

Gazebo Robots Free
C++,
JavaScript Yes

Linux, Mac
Windows Apache V2.0

Quad (Iris and Solo),
Hex (Typhoon H480),
Generic quad delta VTOL,
Tailsitter, Plane, Rover,

Yes Yes Yes

jMAVSim unmanned systems Free JAVA Yes
Linux, MacOs,
Windows BSD 3 Multirotor/Quad Yes Yes Yes

of any technical coverage of MAVLink except some online
documentation resources.

ACKNOWLEDGMENT

This work is supported by the Robotics and Internet of
Things Lab of Prince Sultan University, and Jinan University.

REFERENCES
[1] A. D. Team, “Ardupilot.” http://ardupilot.org/about/. Accessed: 2019-06-

19.
[2] P. D. Team, “Paparazzi uav.” http://wiki.paparazziuav.org/wiki/Main_Page.

Accessed: 2019-06-19.
[3] “Autopilot - hangar.” https://autoflight.hangar.com/autopilot. Accessed:

2019-06-19.
[4] P. D. Team, “Pixhawk web page.” www.pixhawk.org. Accessed: 2019-06-

19.
[5] “Multiwii.” http://www.multiwii.com/. Accessed: 2019-06-19.
[6] S. Balasubramanian, “MAVLink tutorial for absolute dummies (part-i).”

https://dokumen.tips/documents/mavlink-tutorial-for-absolute-dummies-
part-i-tfwqtf2r7mmw7hksau-u9iabkndo9apguoisocmavlink.html, 2015.

[7] “Ardupilot telemetry devices.” http://ardupilot.org/copter/docs/common-
telemetrylandingpage.html. Accessed: 2019-06-19.

[8] L. M. Andrew Tridgell, “MAVLink 2.0 packet signing proposal,” October
2015.

[9] L. Meier, J. Camacho, B. Godbolt, J. Goppert, L. Heng, M. Lizarraga,
et al., “MAVLink: Micro air vehicle communication protocol,” Online].
Tillgänglig: http://qgroundcontrol. org/mavlink/start.[Hämtad 2014-05-
22], 2013.

[10] “MAVLink Common Message Set Specifications.”
https://mavlink.io/en/messages/common.html. Accessed: 2019-06-19.

[11] Y.-M. Kwon, J. Yu, B.-M. Cho, Y. Eun, and K.-J. Park, “Empirical
analysis of MAVLink protocol vulnerability for attacking unmanned aerial
vehicles,” IEEE Access, vol. 6, pp. 43203–43212, 2018.

[12] A. Shoufan, H. AlNoon, and J. Baek, “Secure communication in civil
drones,” in International Conference on Information Systems Security and
Privacy, pp. 177–195, Springer, 2015.

[13] K. Yoon, D. Park, Y. Yim, K. Kim, S. K. Yang, and M. Robinson,
“Security authentication system using encrypted channel on uav network,”
in International Conference on Robotic Computing (IRC), pp. 393–398,
IEEE, April 2017.

[14] L. Pike, “Keynote talk i: Building a high-assurance unpiloted air vehicle,”
in 2013 Eleventh ACM/IEEE International Conference on Formal Meth-
ods and Models for Codesign (MEMOCODE 2013), pp. 33–34, IEEE,
2013.

[15] S. B. Lorenz Meier, Seung-Hyun Seo, “sMAVLink request for comments,”
August 2013. Accessed: 19 February 2014.

[16] M. Podhradsky, C. Coopmans, and N. Hoffer, “Improving communication
security of open source UAVs: Encrypting radio control link,” in Inter-
national Conference on Unmanned Aircraft Systems (ICUAS), pp. 1153–
1159, IEEE, 2017.

[17] M. Han, “Authentication and encryption of aerial robotics communica-
tion,” Master’s thesis, San Jose State University, 2017.

[18] J. A. Marty, “Vulnerability analysis of the mavlink protocol for command
and control of unmanned aircraft,” Air Force Institute of Technology
Wright-Patterson Graduate School of Engineering and Management, 2013.

[19] N. Butcher, A. Stewart, and S. Biaz, “Securing the mavlink communication
protocol for unmanned aircraft systems,” Appalachian State University,
Auburn University, USA, 2013.

[20] B. S. Rajatha, C. M. Ananda, and S. Nagaraj, “Authentication of mav
communication using caesar cipher cryptography,” in 2015 International
Conference on Smart Technologies and Management for Computing,
Communication, Controls, Energy and Materials (ICSTM), pp. 58–63,
May 2015.

[21] Hamsavahini, Rashmi, Varun, Swaroop, V. S. Praneeth, and S. Narayana,
“Development of light weight algorithms in a customized communication
protocol for micro air vehicles,” International Journal of Latest Research
in Engineering and Technology, 2016.

[22] M. S. Haque and M. U. Chowdhury, “A new cyber security framework
towards secure data communication for unmanned aerial vehicle (uav),”
in Security and Privacy in Communication Networks: SecureComm 2017
International Workshops, ATCS and SePrIoT, Niagara Falls, ON, Canada,
October 22–25, 2017, Proceedings 13, pp. 113–122, Springer, 2018.

[23] C. Lin, D. He, N. Kumar, K.-K. R. Choo, A. Vinel, and X. Huang,
“Security and privacy for the internet of drones: challenges and solutions,”
IEEE Communications Magazine, vol. 56, no. 1, pp. 64–69, 2018.

[24] J. Bian, R. Seker, and M. Xie, “A secure communication framework for
large-scale unmanned aircraft systems,” in 2013 Integrated Communica-
tions, Navigation and Surveillance Conference (ICNS), pp. 1–12, IEEE,
2013.

[25] R. Altawy and A. M. Youssef, “Security, privacy, and safety aspects of
civilian drones: A survey,” ACM Transactions on Cyber-Physical Systems,
vol. 1, no. 2, p. 7, 2017.

[26] O. Zouhri, S. Benhadou, and H. Medromi, “A new adaptative security
protocol for uav network,” in Advances in Ubiquitous Networking 2,
pp. 649–657, Springer, 2017.

[27] H. Shakhatreh, A. Sawalmeh, A. Al-Fuqaha, Z. Dou, E. Almaita, I. Khalil,
N. S. Othman, A. Khreishah, and M. Guizani, “Unmanned aerial vehicles:
A survey on civil applications and key research challenges,” arXiv preprint
arXiv:1805.00881, 2018.

[28] M. Verup and M. Olin, “Security models and exploitations in theory
and practice for unmanned aerial vehicles,” Master’s thesis, Technical
University of Denmark, 2016.

[29] R. Mitchell and R. Chen, “Adaptive intrusion detection of malicious un-
manned air vehicles using behavior rule specifications,” IEEE Transactions
on Systems, Man, and Cybernetics: Systems, vol. 44, no. 5, pp. 593–604,
2014.

[30] A. Kim, B. Wampler, J. Goppert, I. Hwang, and H. Aldridge, “Cyber
attack vulnerabilities analysis for unmanned aerial vehicles,” in Infotech@
Aerospace 2012, p. 2438, 2012.

[31] A. Shoufan, “Continuous authentication of uav flight command data using
behaviometrics,” in 2017 IFIP/IEEE International Conference on Very
Large Scale Integration (VLSI-SoC), pp. 1–6, IEEE, 2017.

[32] Z. Birnbaum, A. Dolgikh, V. Skormin, E. O’Brien, D. Muller, and C. Strac-
quodaine, “Unmanned aerial vehicle security using recursive parameter
estimation,” Journal of Intelligent & Robotic Systems, vol. 84, no. 1-4,
pp. 107–120, 2016.

[33] H. Sedjelmaci, S. M. Senouci, and M.-A. Messous, “How to detect cyber-

VOLUME 4, 2016 21

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2019.2924410, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

attacks in unmanned aerial vehicles network?,” in 2016 IEEE Global
Communications Conference (GLOBECOM), pp. 1–6, IEEE, 2016.

[34] C. Rani, H. Modares, R. Sriram, D. Mikulski, and F. L. Lewis, “Security
of unmanned aerial vehicle systems against cyber-physical attacks,” The
Journal of Defense Modeling and Simulation, vol. 13, no. 3, pp. 331–342,
2016.

[35] S. G. Casals, P. Owezarski, and G. Descargues, “Generic and autonomous
system for airborne networks cyber-threat detection,” in 2013 IEEE/AIAA
32nd Digital Avionics Systems Conference (DASC), pp. 4A4–1, IEEE,
2013.

[36] H. Sedjelmaci, S. M. Senouci, and N. Ansari, “Intrusion detection
and ejection framework against lethal attacks in uav-aided networks: A
bayesian game-theoretic methodology,” IEEE Transactions on Intelligent
Transportation Systems, vol. 18, no. 5, pp. 1143–1153, 2017.

[37] H. Sedjelmaci, S. M. Senouci, and N. Ansari, “A hierarchical detection
and response system to enhance security against lethal cyber-attacks in
uav networks,” IEEE Transactions on Systems, Man, and Cybernetics:
Systems, vol. 48, no. 9, pp. 1594–1606, 2018.

[38] D. Muniraj and M. Farhood, “A framework for detection of sensor attacks
on small unmanned aircraft systems,” in 2017 International Conference on
Unmanned Aircraft Systems (ICUAS), pp. 1189–1198, IEEE, 2017.

[39] X. Liang, J. Zhao, S. Shetty, and D. Li, “Towards data assurance and
resilience in iot using blockchain,” in MILCOM 2017-2017 IEEE Military
Communications Conference (MILCOM), pp. 261–266, IEEE, 2017.

[40] A. Kapitonov, S. Lonshakov, A. Krupenkin, and I. Berman, “Blockchain-
based protocol of autonomous business activity for multi-agent systems
consisting of uavs,” in 2017 Workshop on Research, Education and De-
velopment of Unmanned Aerial Systems (RED-UAS), pp. 84–89, IEEE,
2017.

[41] V. Sharma, I. You, and G. Kul, “Socializing drones for inter-service oper-
ability in ultra-dense wireless networks using blockchain,” in Proceedings
of the 2017 International Workshop on Managing Insider Security Threats,
pp. 81–84, ACM, 2017.

[42] N. K. M. C. S Aggarwal, M Shojafar, “A new secure data dissemination
model in internet of drones,” in The 53rd IEEE International Conference
on Communications, (ICC 2019), IEEE, 2019.

[43] N. M. Rodday, R. d. O. Schmidt, and A. Pras, “Exploring security vul-
nerabilities of unmanned aerial vehicles,” in NOMS 2016-2016 IEEE/IFIP
Network Operations and Management Symposium, pp. 993–994, IEEE,
2016.

[44] H. Benkraouda, E. Barka, and K. Shuaib, “Cyber-attacks on the data
communication of drones monitoring critical infrastructure,” 2018.

[45] A. Davanian, F. Massacci, and L. Allodi, “Diversity: A poor man’s solution
to drone takeover.,” in PECCS, pp. 25–34, 2017.

[46] I. García-Magarińo, R. Lacuesta, M. Rajarajan, and J. Lloret, “Security in
networks of unmanned aerial vehicles for surveillance with an agent-based
approach inspired by the principles of blockchain,” Ad Hoc Networks,
vol. 86, pp. 72 – 82, 2019.

[47] T. Dietrich, O. Andryeyev, A. Zimmermann, and A. Mitschele-Thiel,
“Towards a unified decentralized swarm management and maintenance
coordination based on MAVLink,” in 2016 International Conference on
Autonomous Robot Systems and Competitions (ICARSC), pp. 124–129,
May 2016.

[48] I. Zacarias, C. E. Leite, J. Schwarzrock, and E. P. de Freitas, “Control
platform for multiple unmanned aerial vehicles,” IFAC-PapersOnLine,
vol. 49, no. 30, pp. 36 – 41, 2016. 4th IFAC Symposium on Telematics
Applications TA 2016.

[49] M. Erdelj, O. Saif, E. Natalizio, and I. Fantoni, “UAVs that fly forever:
Uninterrupted structural inspection through automatic uav replacement,”
Ad Hoc Networks, 2017.

[50] M. Aljehani and M. Inoue, “Communication and autonomous control of
multi-uav system in disaster response tasks,” in Agent and Multi-Agent
Systems: Technology and Applications (G. Jezic, M. Kusek, Y.-H. J. Chen-
Burger, R. J. Howlett, and L. C. Jain, eds.), (Cham), pp. 123–132, Springer
International Publishing, 2017.

[51] A. Koubaa, B. Qureshi, M.-F. Sriti, A. Allouch, Y. Javed, M. Ala-
jlan, O. Cheikhrouhou, M. Khalgui, and E. Tovar, “Dronemap planner:
A service-oriented cloud-based management system for the internet-of-
drones,” Ad Hoc Networks, vol. 86, pp. 46 – 62, 2019.

[52] D. Soto-Guerrero, J. G. Ramírez-Torres, and J.-P. Gazeau, “Towards
an autonomous airborne robotic agent,” in Computational Kinematics
(S. Zeghloul, L. Romdhane, and M. A. Laribi, eds.), (Cham), pp. 62–69,
Springer International Publishing, 2018.

[53] R. G. Braga, R. C. da Silva, A. C. B. Ramos, and F. Mora-Camino, “Colli-
sion avoidance based on reynolds rules: A case study using quadrotors,”
in Information Technology - New Generations (S. Latifi, ed.), (Cham),
pp. 773–780, Springer International Publishing, 2018.

[54] A. V. Rodrigues, R. S. Carapau, M. M. Marques, V. Lobo, and F. Coito,
“Unmanned systems interoperability in military maritime operations:
MAVLink to STANAG 4586 bridge,” in OCEANS 2017 - Aberdeen, pp. 1–
5, June 2017.

[55] M. M. Marques, “STANAG 4586-standard interfaces of uav control sys-
tem (ucs) for nato uav interoperability,” NATO Standardization Agency:
Afeite, Portugal, p. 14, 2012.

[56] B. Uk, D. Konam, C. Passot, M. Erdelj, and E. Natalizio, “Implementing
a system architecture for data and multimedia transmission in a multi-uav
system,” in Wired/Wireless Internet Communications (K. R. Chowdhury,
M. Di Felice, I. Matta, and B. Sheng, eds.), (Cham), pp. 246–257, Springer
International Publishing, 2018.

[57] S. A. Hadiwardoyo, E. HernÃąndez-Orallo, C. T. Calafate, J. C. Cano,
and P. Manzoni, “Experimental characterization of uav-to-car communi-
cations,” Computer Networks, vol. 136, pp. 105 – 118, 2018.

[58] S. Atoev, K. Kwon, S. Lee, and K. Moon, “Data analysis of the MAVLink
communication protocol,” in 2017 International Conference on Informa-
tion Science and Communications Technologies (ICISCT), pp. 1–3, Nov
2017.

[59] P. śmigielski, M. Raczyński, and Á. Gosek, “Visual simulator for
MAVLink-protocol-based uav, applied for search and analyze task,” in
Federated Conference on Computer Science and Information Systems
(FedCSIS), pp. 1177–1185, Sep. 2017.

[60] J. Sun, B. Li, C.-Y. Wen, and C.-K. Chen, “Design and implementation of
a real-time hardware-in-the-loop testing platform for a dual-rotor tail-sitter
unmanned aerial vehicle,” Mechatronics, vol. 56, pp. 1 – 15, 2018.

[61] F. Fabra, C. T. Calafate, J. C. Cano, and P. Manzoni, “Ardusim: Accurate
and real-time multicopter simulation,” Simulation Modelling Practice and
Theory, vol. 87, pp. 170 – 190, 2018.

[62] L. Pannocchi, C. Di Franco, M. Marinoni, and G. Buttazzo, “Integrated
framework for fast prototyping and testing of autonomous systems,”
Journal of Intelligent & Robotic Systems, Dec 2018.

[63] M. C. Nielsen, O. A. Eidsvik, M. Blanke, and I. Schjølberg, “Constrained
multi-body dynamics for modular underwater robots - theory and experi-
ments,” Ocean Engineering, vol. 149, pp. 358 – 372, 2018.

[64] I. A. Mason, V. Nigam, C. Talcott, and A. Brito, “A framework for
analyzing adaptive autonomous aerial vehicles,” in Software Engineering
and Formal Methods (A. Cerone and M. Roveri, eds.), (Cham), pp. 406–
422, Springer International Publishing, 2018.

[65] U. R. Mogili and B. B. V. L. Deepak, “Review on application of drone
systems in precision agriculture,” Procedia Computer Science, vol. 133,
pp. 502 – 509, 2018. International Conference on Robotics and Smart
Manufacturing (RoSMa2018).

[66] F. Schill, A. Bahr, and A. Martinoli, Vertex: A New Distributed Underwa-
ter Robotic Platform for Environmental Monitoring, pp. 679–693. Cham:
Springer International Publishing, 2018.

[67] Y. G. Kabaldin, D. A. Shatagin, A. V. Kiselev, M. V. Zhelonkin, and A. A.
Golovin, “Drone-based autonomous robot diagnostic system for gas and
oil pipelines in the arctic and far north,” Russian Engineering Research,
vol. 38, pp. 677–679, Sep 2018.

[68] H. Freimuth and M. Kónig, “Planning and executing construction inspec-
tions with unmanned aerial vehicles,” Automation in Construction, vol. 96,
pp. 540 – 553, 2018.

[69] L. Rodríguez, J. A. Cobano, and A. Ollero, “Architecture of a flight
endurance enhancement system for maritime operations with fixed wing
uas,” in ROBOT 2017: Third Iberian Robotics Conference (A. Ollero,
A. Sanfeliu, L. Montano, N. Lau, and C. Cardeira, eds.), (Cham), pp. 171–
182, Springer International Publishing, 2018.

[70] T. Riviere, H. G. Ayala, and J. Hajek, “The extension and implementation
of the autonomous movement framework,” in Proceedings of the 6th
Annual Conference on Research in Information Technology, RIIT ’17,
(New York, NY, USA), pp. 7–10, ACM, 2017.

[71] M. S. Menegol, J. F. Hübner, and L. B. Becker, “Coordinated uav search
and rescue application with jacamo,” in Advances in Practical Applications
of Agents, Multi-Agent Systems, and Complexity: The PAAMS Collection
(Y. Demazeau, B. An, J. Bajo, and A. Fernández-Caballero, eds.), (Cham),
pp. 335–338, Springer International Publishing, 2018.

[72] M. K. Al-Sharman, B. J. Emran, M. A. Jaradat, H. Najjaran, R. Al-Husari,
and Y. Zweiri, “Precision landing using an adaptive fuzzy multi-sensor

22 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2019.2924410, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

data fusion architecture,” Applied Soft Computing, vol. 69, pp. 149 – 164,
2018.

[73] J. J. Acevedo, M. García, A. Viguria, P. Ramón, B. C. Arrue, and A. Ollero,
“Autonomous landing of a multicopter on a moving platform based on
vision techniques,” in ROBOT 2017: Third Iberian Robotics Conference
(A. Ollero, A. Sanfeliu, L. Montano, N. Lau, and C. Cardeira, eds.),
(Cham), pp. 272–282, Springer International Publishing, 2018.

[74] S. Primatesta, L. S. Cuomo, G. Guglieri, and A. Rizzo, “An innovative
algorithm to estimate risk optimum path for unmanned aerial vehicles in
urban environments,” Transportation research procedia, vol. 35, pp. 44–53,
2018.

[75] H. D. Mathias and V. R. Ragusa, “Micro aerial vehicle path planning and
flight with a multi-objective genetic algorithm,” in Proceedings of SAI
Intelligent Systems Conference (IntelliSys) 2016 (Y. Bi, S. Kapoor, and
R. Bhatia, eds.), (Cham), pp. 107–124, Springer International Publishing,
2018.

[76] Q. Yuan, J. Zhan, and X. Li, “Outdoor flocking of quadcopter drones with
decentralized model predictive control,” ISA Transactions, vol. 71, pp. 84
– 92, 2017. Special issue on Distributed Coordination Control for Multi-
Agent Systems in Engineering Applications.

[77] QGroundControl, “Open source mav ground control station.”
http://qgroundcontrol.org, 2010. Accessed: 2019-06-19.

[78] M. Planner, “Ground control station for apm(ardupilotmega).”
http://planner.ardupilot.com/wiki/mission-planner-overview/. Accessed:
2019-06-19.

[79] Ardupilot, “APM 2.0 planner.” http://planner2.ardupilot.com/, 2014. Ac-
cessed: 2019-06-19.

[80] Ardupilot, “Mavproxy.” https://github.com/ArduPilot/MAVProxy. Ac-
cessed: 2019-06-19.

[81] Benemann, “Droidplanner 2.” https://play.google.com/store/apps/details
?id=org.droidplanner, 2014. Accessed: 2019-06-19.

[82] G. S. Software, “Ugcs pc mission planning.” https://www.ugcs.com/. Ac-
cessed: 2019-06-19.

[83] A. I. Hentati, L. Krichen, M. Fourati, and L. C. Fourati, “Simulation tools,
environments and frameworks for uav systems performance analysis,”
in 2018 14th International Wireless Communications Mobile Computing
Conference (IWCMC), pp. 1495–1500, June 2018.

[84] A. R. Perry, “The flightgear flight simulator,” in Proceedings of the
USENIX Annual Technical Conference, 2004.

[85] P. Cao, X. Hu, and G. Zhang, “Interface research and flight control based
on flightgear,” in 2017 12th IEEE Conference on Industrial Electronics and
Applications (ICIEA), pp. 397–402, June 2017.

[86] M. Mueller, V. Casser, J. Lahoud, N. Smith, and B. Ghanem, “Ue4sim: A
photo-realistic simulator for computer vision applications,” 2017.

[87] A. Meyer, “X-plane.” Available: http://www.x-plane. com. Accessed:
2019-06-19.

[88] R. Garcia and L. Barnes, Multi-UAV Simulator Utilizing X-Plane,
pp. 393–406. Dordrecht: Springer Netherlands, 2010.

[89] S. Shah, D. Dey, C. Lovett, and A. Kapoor, “Airsim: High-fidelity visual
and physical simulation for autonomous vehicles,” in Field and service
robotics, pp. 621–635, Springer, 2018.

[90] S. Shah, D. Dey, C. Lovett, and A. Kapoor, “Airsim: High-fidelity visual
and physical simulation for autonomous vehicles,” in Field and Service
Robotics (M. Hutter and R. Siegwart, eds.), (Cham), pp. 621–635, Springer
International Publishing, 2018.

[91] T. A. Johansen and K. Klausen, “The path to Autonomous Inspection using
an Unmanned Aerial Vehicle Brage Gerdsønn Eikanger,” Master’s thesis,
Norwegian University of Science and Technology, June 2017.

[92] N. Koenig and A. Howard, “Design and use paradigms for gazebo,
an open-source multi-robot simulator,” in 2004 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS)(IEEE Cat. No.
04CH37566), vol. 3, pp. 2149–2154, IEEE, 2004.

[93] Gazebo, “Robot simulation made easy.” http://gazebosim.org, 2014. Ac-
cessed: 2019-06-19.

[94] M. Read, C. Möslinger, T. Dipper, D. Kengyel, J. Hilder, R. Thenius,
A. Tyrrell, J. Timmis, and T. Schmickl, “Profiling underwater swarm
robotic shoaling performance using simulation,” in Conference Towards
Autonomous Robotic Systems, pp. 404–416, Springer, 2013.

[95] A. Babushkin, “Jmavsim.” https://pixhawk.org/dev/hil/jmavsim. Ac-
cessed: 2019-06-19.

VOLUME 4, 2016 23

