

Mixed-criticality Scheduling with Dynamic
Redistribution of Shared Cache

Conference Paper

CISTER-TR-170202

2017/06/27

Muhammad Ali Awan

Konstantinos Bletsas

Pedro Souto

Benny Åkesson

Eduardo Tovar

Conference Paper CISTER-TR-170202 Mixed-criticality Scheduling with Dynamic Redistribution of ...

© CISTER Research Center
www.cister.isep.ipp.pt

1

Mixed-criticality Scheduling with Dynamic Redistribution of Shared Cache

Muhammad Ali Awan, Konstantinos Bletsas, Pedro Souto, Benny Åkesson, Eduardo Tovar

*CISTER Research Centre

Polytechnic Institute of Porto (ISEP-IPP)

Rua Dr. António Bernardino de Almeida, 431

4200-072 Porto

Portugal

Tel.: +351.22.8340509, Fax: +351.22.8321159

E-mail: muaan@isep.ipp.pt, ksbs@isep.ipp.pt, pfs@fe.up.pt, kbake@isep.ipp.pt, emt@isep.ipp.pt

http://www.cister.isep.ipp.pt

Abstract
The design of mixed-criticality systems often involvespainful tradeoffs between safety guarantees and
performance.However, the use of more detailed architectural modelsin the design and analysis of scheduling
arrangements for mixedcriticalitysystems can provide greater confidence in the analysis,but also opportunities for
better performance. Motivated by thisview, we propose an extension of Vestal 19s model for
mixedcriticalitymulticore systems that (i) accounts for the per-taskpartitioning of the last-level cache and (ii)
supports the dynamicreassignment, for better schedulability, of cache portions initiallyreserved for lower-criticality
tasks to the higher-criticalitytasks, when the system switches to high-criticality mode. Tothis model, we apply
partitioned EDF scheduling with Ekbergand Yi 19s deadline-scaling technique. Our schedulability analysisand
scalefactor calculation is cognisant of the cache resourcesassigned to each task, by using WCET estimates that
take intoaccount these resources. It is hence able to leverage the dynamicreconfiguration of the cache
partitioning, at mode change, forbetter performance, in terms of provable schedulability. We alsopropose
heuristics for partitioning the cache in low- and highcriticalitymode, that promote schedulability. Our
experimentswith synthetic task sets, indicate tangible improvements inschedulability compared to a baseline
cache-aware arrangementwhere there is no redistribution of cache resources from low- tohigh-criticality tasks in
the event of a mode change.

Mixed-Criticality Scheduling With Dynamic

Redistribution of Shared Cache∗

Muhammad Ali Awan1, Konstantinos Bletsas2, Pedro F. Souto3,

Benny Akesson4, and Eduardo Tovar5

1 CISTER Research Centre and ISEP, Porto, Portugal

muaan@isep.ipp.pt

2 CISTER Research Centre and ISEP, Porto, Portugal

ksbs@isep.ipp.pt

3 University of Porto, Faculty of Engineering, Porto, Portugal; and

CISTER Research Centre, Porto Portugal

pfs@fe.up.pt

4 CISTER Research Centre and ISEP, Porto, Portugal

kbake@isep.ipp.pt

5 CISTER Research Centre and ISEP, Porto, Portugal

emt@isep.ipp.pt

Abstract

The design of mixed-criticality systems often involves painful tradeoffs between safety guarantees
and performance. However, the use of more detailed architectural models in the design and
analysis of scheduling arrangements for mixed-criticality systems can provide greater confidence
in the analysis, but also opportunities for better performance. Motivated by this view, we propose
an extension of Vestal’s model for mixed-criticality multicore systems that (i) accounts for the
per-task partitioning of the last-level cache and (ii) supports the dynamic reassignment, for
better schedulability, of cache portions initially reserved for lower-criticality tasks to the higher-
criticality tasks, when the system switches to high-criticality mode. To this model, we apply
partitioned EDF scheduling with Ekberg and Yi’s deadline-scaling technique. Our schedulability
analysis and scalefactor calculation is cognisant of the cache resources assigned to each task, by
using WCET estimates that take into account these resources. It is hence able to leverage the
dynamic reconfiguration of the cache partitioning, at mode change, for better performance, in
terms of provable schedulability. We also propose heuristics for partitioning the cache in low-
and high-criticality mode, that promote schedulability. Our experiments with synthetic task sets,
indicate tangible improvements in schedulability compared to a baseline cache-aware arrangement
where there is no redistribution of cache resources from low- to high-criticality tasks in the event
of a mode change.

1998 ACM Subject Classification C.3 Real-Time and Embedded Systems

Keywords and phrases mixed criticality scheduling, vestal model, dynamic redistribution of
shared cache, shared last-level cache analysis, cache-aware scheduling

Digital Object Identifier 10.4230/LIPIcs.ECRTS.2017.18

∗ This work was partially supported by National Funds through FCT/MEC (Portuguese Foundation for
Science and Technology) and co-financed by ERDF (European Regional Development Fund) under the
PT2020 Partnership, within the CISTER Research Unit (CEC/04234); also by by FCT/MEC and the
EU ARTEMIS JU within project ARTEMIS/0001/2013- JU grant nr. 621429 (EMC2).

C
o

n
si

st

en
t *

 Complete * W
e
ll D

o
cu

m
ented * Easy to

 R

eu
se

 *

 *
 Evaluated *

E
C

R
T
S

*

 Artifact *
 A

E

© Muhammad Ali Awan, Konstantinos Bletsas, Pedro F. Souto, Benny Akesson,
and Eduardo Tovar;
licensed under Creative Commons License CC-BY

29th Euromicro Conference on Real-Time Systems (ECRTS 2017).
Editor: Marko Bertogna; Article No. 18; pp. 18:1–18:21

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ECRTS.2017.18
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

18:2 Mixed-Criticality Scheduling With Dynamic Redistribution of Shared Cache

1 Introduction

Many real-time embedded systems (automotive, avionics, aerospace) host functions of different
criticalities. A deadline miss by a high-criticality function can be disastrous, but losing a
low-criticality function only moderately affects the quality of service. Scalability and cost
concerns favour mixed-criticality (MC) systems, whereby tasks of different criticalities are
scheduled on the same core(s). However, this brings challenges. Lower-criticality tasks
interfering unpredictably with higher-criticality tasks can be catastrophic. Conversely, rigid
prioritisation by criticality leads to inefficient processor usage. Therefore, researchers have
been working on scheduling models and techniques for (i) efficient use of processing capacity
and (ii) schedulability guarantees for all tasks under typical conditions subject to (iii) ensured
schedulability of high-criticality tasks in all cases. Most works [11] are based on Vestal’s
model [26, 5], which views the system operation as different modes, whereby only tasks
of a certain criticality or above execute; additionally, different worst-case task execution
times (WCETs) are assumed for the same task in each mode that it can be a part of,
with corresponding degrees of confidence. This is because the cost of provably safe WCET
estimation (and the associated pessimism) is justified only for high-criticality tasks. Other
tasks have less rigorous WCET estimates, which might be exceeded, very rarely.

Many variants of the Vestal task model have been explored in recent years, with ever more
sophisticated scheduling approaches and corresponding schedulability analysis techniques
being devised for those. Yet, more progress is needed in terms of making the platform
model more realistic, by incorporating more details about the architecture. The potential
benefits could be (i) more accurate, hence safer, schedulability analysis, but also (ii) improved
performance, from scheduling arrangements that acknowledge and leverage those architectural
details. In particular, one could look for inspiration at efforts from the general-purpose (i.e.,
non-mixed-criticality) real-time systems domain, towards more cache-aware scheduling and
analysis. Notably, Mancuso et al. [18], in the context of the Single-Core Equivalence (SCE)
framework [24], consider (i) a cache-partitioned multicore architecture and (ii) task WCET
estimates that are cognisant of the cache-partitioning.

Our work is inspired from the SCE framework and specifically seeks to integrate the effects
of one particular shared resource, the last-level cache, into a dual-criticality Vestal model.
We assume a last-level cache shared by all cores and partitioned among the different tasks via
the Coloured Lockdown approach, to mitigate intra- and inter-core interference. For better
resource usage and schedulability, instead of a static cache partitioning, we reclaim the cache
pages allocated to low-criticality tasks (L-tasks) and redistribute those to high-criticality
tasks (H-tasks), upon a switch to high-criticality mode (H-mode). In turn, the additional
resources afforded to those tasks drive down their (cache-cognisant) H-mode WCETs. We
propose a new mixed-criticality schedulability analysis that takes into account these effects,
allowing for improvements in the guaranteed schedulability of the system. In a summary,
these are the main contributions of our work:

1. We integrate the shared platform resources into a mixed-criticality model and dynamically
redistribute those resources as a part of mixed-criticality scheduling. We demonstrate
this principle by applying to the shared last-level cache.

2. We formulate schedulability analysis for the proposed model, assuming EDF scheduling
using Ekberg and Yi’s deadline scaling. Our analysis leverages the fact that cache
resources are reclaimed from low-criticality tasks, in the event of a mode change, and
redistributed to high-criticality tasks. This allows for improved schedulability.

3. We propose a two-staged allocation heuristic for allocating cache resources to the tasks,
in the two modes of operation, and implement it by Integer Linear Programming (ILP).

M. A. Awan, K. Bletsas, P. F. Souto, B. Akesson, and E. Tovar 18:3

Our experiments with synthetic task sets indicate appreciable schedulability improvements
over approaches that perform no reclamation of cache-resources at mode change.

This paper is organised as follows. Section 2 presents the related work. The system model
and the assumptions are discussed in Section 3. The schedulability analysis for that model is
presented in Section 4, followed by some proposed heuristics for cache allocation to the tasks
in the two modes, in Section 5. Section 6 presents and discusses the experiments used to
evaluate the performance of the proposed approach. Conclusions are drawn in Section 7.

2 Related Work

Several feasibility tests are known for Vestal-model systems scheduled under, e.g., EDF or
Fixed Priorities. One drawback, when using EDF, is that an H-task too close to its deadline,
at the moment of a mode change, may be unable to accommodate its outstanding execution
time (associated with its H-WCET) until its deadline, leading to a deadline miss. Therefore,
the deadline-scaling technique was conceived [4, 13, 20, 16], to avert such scenarios if possible.
It originated with EDF-VD [4], which uses standard EDF scheduling rules but, instead
of reporting the real deadlines to the EDF scheduler for scheduling decisions, it reports
shorter deadlines (if needed) for H-tasks during L-mode operation. This helps with the
schedulability of H-tasks in the case of a switch to H-mode, because it prioritises H-tasks
more than conventional EDF would, over parts of the schedule. This allows them to be
sufficiently “ahead of schedule” and catch up with their true deadlines if any task overruns
its L-WCET. In H-mode, the true H-task deadlines are used for scheduling and L-tasks are
“dropped” (i.e., idled). EDF-VD proportionately shortens the H-task deadlines according
to a single common scalefactor and its schedulability test considers the task utilisations
in both modes. Ekberg and Yi [13] improved upon EDF-VD by enabling and calculating
distinct scale factors for different H-tasks and using a more precise demand bound function
(dbf) based schedulability test [6], for better performance. The scalefactor calculation is an
iterative task-by-task process (for details, see [13, 14]).

However, the aforementioned scheduling solutions typically only consider the task execu-
tion on the processor cores and do not consider other platform resources, such as interconnects,
caches and main memory. Some other works do consider interference on shared resources
and propose mechanisms for its mitigation, albeit for single-criticality systems. For instance,
several software-based approaches are proposed for mitigating cache and memory interference
in multi-core platforms [18, 29, 21, 15, 8, 25]. Some of these works integrate the interference
on shared resources to the schedulability analysis of the system. Mancuso et al. [19] integrate
the effect of multiple shared resources (cache, memory bus, DRAM memory) on a multicore
platform under partitioned fixed-priority preemptive scheduling. Pellizzoni and Yun [22]
generalise the arrangement (and the analysis from [19]) to uneven memory budgets per core
and propose a new analysis for different memory scheduling schemes. Behnam et al. [8]
incorporated the effect of interference on shared resources under server-based hierarchical
scheduling, that provides isolation between independent applications.

A software-based memory throttling mechanism for explicitly controlling the memory
interference under fixed-priority preemptive scheduling is proposed in [28], although it only
considers the timing requirements of tasks on a single critical core, whereupon all critical
tasks are scheduled. The rest of the cores (interfering cores) are assumed to have non-critical
tasks. Nevertheless, the analyses in existing works that consider the shared resources in
the context of scheduling, assume that resources are statically allocated. Our proposed
mixed-criticality algorithm considers the dynamic redistribution of shared resources, in order

ECRTS 2017

18:4 Mixed-Criticality Scheduling With Dynamic Redistribution of Shared Cache

to efficiently exploit their availability and improve the schedulability of the system. In this
work, we demonstrate this principle with one particular resource: the last-level cache.

3 System model and assumptions

3.1 Platform

We assume a multicore platform composed of m identical cores accessing main memory via
a shared memory controller. A core can have multiple outstanding (i.e., not served yet)
memory requests . Prefetchers and speculative units are disabled. Our assumptions about
the memory subsystem are inspired by those of the SCE [24] framework. We assume that all
cores share a big last-level cache, but have dedicated upper-level caches (closer to the cores).
Colored Lockdown [18] is used, to mitigate the intra-/inter-core interference. It allows a task
to lock its σ most frequently used pages (hot pages) in the last-level cache, which facilitates
upper-bounding the number of residual memory accesses (i.e., last-level cache misses) and, by
extension, the WCET as a function of σ. In this work, we only analyse the integration and
dynamic redistribution of one particular resource (the shared last-level cache) into a mixed
criticality scheduling theory, as proof of concept, and we genuinely believe that a similar
approach can be used to integrate other shared resources. The SCE framework also deploys
the OS-level memory bandwidth regulation mechanism Memguard [30] and the DRAM-bank
partitioning mechanism PALLOC [27] to mitigate the interference on those shared resources.
In the future, we intend to also exploit these SCE mechanisms and dynamically redistribute
memory access budgets at the mode switch.

3.2 Task model

Consider Vestal’s base model with two criticality levels, high and low, as a starting point.
Each task has an associated criticality, low or high. High-criticality tasks (H-tasks) have
two WCET estimates: The L-WCET, which is de facto deemed safe, and the H-WCET,
which is provably safe and possibly much greater. For low-criticality tasks (L-tasks), only
the L-WCET is defined. There are two modes of operation. The system boots and remains
in low-criticality mode (L-mode) as long as no job (instance of a task) executes for longer
than its L-WCET. However, if any job exceeds its L-WCET, then the system immediately
switches into high-criticality mode (H-mode) and permanently dispenses with the execution
of all L-tasks. It is pessimistically assumed that in H-mode all jobs by H-tasks (including
any existing jobs at the time of the mode switch) may execute for up to their H-WCET.
Under these assumptions, it must be provable by an offline schedulability test that (i) no
task misses a deadline in L-mode and (ii) no H-task misses a deadline in H-mode. We extend
this basic model and assume that both the L-WCET and the H-WCET are functions of the
number of the task’s hottest pages locked in the last-level cache. In detail:

Our task set consists of n independent sporadic tasks (τ
def
= {τ1, τ2, . . . , τn}). Each task

τi ∈ τ has a minimum inter-arrival time Ti, a relative deadline Di and a criticality level
κi ∈ {L, H} (low or high, respectively). The subsets of low-criticality and high-criticality

tasks are defined as τ(L)
def
= {τi ∈ τ |κi = L} and τ(H)

def
= {τi ∈ τ |κi = H}. We assume

constrained deadlines, i.e., Di ≤ Ti. The original Vestal model is extended based on the
following assumptions:

The (actual) WCET of a task depends on the number of its pages (selected in order of
access frequency) locked in place in the last-level cache.

M. A. Awan, K. Bletsas, P. F. Souto, B. Akesson, and E. Tovar 18:5

Different estimates of that WCET (derived via different techniques), are to be used for
the L-mode and H-mode.

For each task τi, the L-WCET CL
i (·) and the H-WCET CH

i (·) are not single values, but
rather functions of the pages locked in the last-level cache. For example CL

i (6) denotes the
L-WCET of τi when this task is configured with its 6 “hottest” pages locked in the cache.
How the ordered list of hot pages per task is obtained (and its accuracy) is beyond the scope
of this paper and orthogonal to both the WCET estimation techniques and the safety of our
analysis, as long as the same σ pages were assumed locked in cache when deriving CL

i (σ)
and CH

i (σ). In practice, the profiling framework in [18] can be used for ranking each tasks’s
pages by access frequency. Estimating the WCET in isolation, for each task, assuming that
the top σ pages in the list are locked in the cache, allows for the construction of a progressive

lockdown curve (WCET vs number of locked pages in last-level cache). More locked pages in
the last-level cache means fewer last-level cache misses (i.e., fewer residual memory requests)
and, consequently, also a smaller WCET.

The technique in [18] for generating the progressive lockdown curve is measurement-based,
so its output is not provably safe, but it can serve as the L-WCET progressive lockdown curve
CL

i (·). Moreover, some static analysis tools comprehensively cover all possible control flows
(or even some infeasible paths) in a task, and these can be used to estimate the H-WCETs.
By safely modelling accesses to the hot pages locked-in by Colored Lockdown as “always
hit upon reuse”, the static analysis tool can derive tighter WCET estimates than it would
without this knowledge – and the improvement will be greater the more pages are locked in
the cache. Hence, a progressive lockdown curve similarly exists for the H-WCET CH

i (·).
To demonstrate the concept, Fig. 1 shows (imaginary) H- and L-mode progressive

lockdown curves of a task τi. The x and y axes show the number of locked pages and WCET,
respectively. Ideally, these two curves are non-increasing functions1. Let us assume that
σL

i and σH
i denote the number of pages of a task τi locked in last-level cache in L- and

H-mode, respectively. Then, the utilisation of a task in the L-mode (H-mode) is defined as

UL
i (σL

i)
def
= CL

i
(σL

i
)

Ti

(resp., UH
i (σH

i)
def
= CH

i
(σH

i
)

Ti

). In this paper we assume that the L- and
H-mode progressive lockdown curves for each task are already provided to us as input. We
also assume fully partitioned scheduling, i.e., no task ever migrates.

In case the overheads of unlocking and locking pages in the cache at mode change would
be excessive, one could use per-task cache partitions without any locking (i.e., populated with
lines dynamically). Techniques like APTA [23] could derive the equivalent of a parametric
WCET curve as a function of the partition size in the L-mode and the H-mode. However,
for simplicity, in the rest of the paper we assume the use of page locking.

3.3 Impact of mode change upon WCET

Under our model, a job by an H-task τi released in L-mode has its σL
i hottest pages in the

cache and a job by the same task released in H-mode has its σH
i hottest pages in the cache.

Both σL
i and σH

i are decided at design time (with σH
i ≥ σL

i , ∀τi ∈ τ(H)). We assume that,
as soon as a mode change occurs, the system can reclaim the cache pages hitherto allocated
to L-tasks, for redistribution to the H-tasks. However, it is conservatively assumed that only
new jobs by H-tasks, released after the mode change, benefit from the additional cache pages
(either because it is only opportune to distribute them at the next release, or because, in the

1 In the general case, the progressive lockdown curves are not necessarily convex, and we make no such
assumption nor does our approach depend on such a property (convexity).

ECRTS 2017

18:6 Mixed-Criticality Scheduling With Dynamic Redistribution of Shared Cache

Figure 1 H-mode and L-mode progressive lockdown curves.

worst-case, the improvement from additional pages afforded to a job already having started
its execution might not be quantifiable). For analysis purposes, we therefore conservatively
assume that any H-job caught in the mode change may execute for up to CH

i (σL
i) time units,

whereas any subsequent job by the same task only executes for up to CH
i (σH

i) ≤ CH
i (σL

i).

One interesting counter-intuitive property of our model is that there may be cases when
CH

i (σH
i) ≤ CL

i (σL
i), unlike what holds for the classic Vestal model, where CH

i ≥ CL
i in all

cases. This can happen if the reduction in last-level cache misses from the additional pages
allocated to the task in the H-mode offsets the pessimism from using a more conservative
estimation technique for H-WCETs than for L-WCETs. Fig. 1 illustrates this possibility.
Leveraging such cases in the analysis can lead to improvements in provable schedulability,
over approaches that do not reallocate cache pages in the event of a mode switch.

3.4 Aspects of deadline scaling

As already mentioned, in L-mode, the H-tasks report to the EDF scheduler a shorter deadline
DL

i ≤ Di, for the purpose of scheduling decisions. In H-mode, the true deadline is used
(i.e., DH

i = Di). The designer has freedom over the selection of L-mode deadlines and the
process that determines them is called deadline scaling. In [13], Ekberg and Yi propose a
heuristic that, starting with DL

i = Di for every task, iteratively tinkers with the task L-mode
deadlines, using their schedulability test to guide the heuristic to identify opportunities to
decrease a deadline by a notch. In our work, we also use the same heuristic (details in [13]),
with no changes except for the fact that our new schedulability analysis, cognisant of cache
reclamation by H-tasks at mode change, is used, instead of the original analysis in [13].

M. A. Awan, K. Bletsas, P. F. Souto, B. Akesson, and E. Tovar 18:7

4 Schedulability analysis

In this section, we propose a schedulability analysis, drawing from that of Ekberg and
Yi [13, 14], for the system model described earlier. It assumes that the number of hot pages
in the two modes (σL

i and σH
i) for each task is given. Similarly, we also assume that the

scaled L-mode deadline DL
i , with DH

i

def
= Di, is given for each task. As explained, this

analysis is to be coupled with the heuristic of Ekberg and Yi to guide the derivation of the
L-mode scaled deadlines. How to assign values to σL

i and σH
i , is discussed in the next section.

Ekberg and Yi’s analysis is based on the demand bound function, dbf(ℓ), which upper-
bounds the execution demand over any time interval of length ℓ by all jobs whose scheduling
windows are fully contained in ℓ. The scheduling window of a job is the time interval between
its release and its deadline. The schedulability analysis for the L-mode can be done using
standard dbf for EDF, in which the computation demand of a task is maximum when a
job is released at the beginning of the time interval. In H-mode, if the time interval under
consideration begins at the mode switch, in addition to the demand of jobs whose scheduling
windows are fully contained in ℓ, we need to consider the demand of carry-over jobs of
H-tasks, i.e. jobs of H-tasks that were released, but not finished, at the time of the mode
switch. Thus, for H-mode analysis, we consider that the scheduling window of a carry-over
job always starts at the mode switch.

A key result of Ekberg and Yi’s analysis is the following lemma, which allows to upper
bound the demand in H-mode of a carry-over job:

◮ Lemma 1 (Demand of carry-over jobs, Ekberg and Yi’s [14]’s Lemma 1). Assume that EDF

uses relative deadlines DL
i and DH

i , with DL
i ≤ DH

i = Di for high-criticality task τi, and that

we can guarantee that the demand is met in low-criticality mode (using DL
i). If the switch to

high-criticality mode happens when a job from τi has a remaining scheduling window of x

time units left until its true deadline, then the following hold:

1. If x < DH
i − DL

i , then the job has already finished before the switch.

2. If x ≥ DH
i −DL

i , then the job may be a carry-over job, and no less than JCL
i −x+DH

i −DL
i K0

time units of the job’s work were finished before the switch.

where

JzKmax
min

def
=

min if z < min

z if min ≤ z ≤ max

max if z > max

and the bound arguments min and max can be omitted, if they are −∞ or +∞, respectively.
In the classic Vestal model there is no resource reallocation upon a mode switch, except for

CPU time. Therefore, the computation demand of a carry-over job never exceeds the demand
of a full job, and the maximum demand in any time interval of length ℓ corresponds to
executions that maximise the number of full jobs after the mode switch as shown in Fig. 2(i).
In this scenario, the time interval of length ℓ under consideration ends with a deadline for
each task τi present in H-mode. Accordingly, the subinterval of length x = ℓ mod Ti, which
starts with the mode switch, is maximised, under the constraint that the number of full jobs
is maximum, maximizing its demand, because, by Lemma 1, the maximum demand of a
carry-over job is non-decreasing with the size of its scheduling window in H-mode.

In our model, σL
i < σH

i , therefore the maximum demand does not necessarily occur in
executions as shown in Fig. 2(i). The reason is that a full job in H-mode executes with σH

i

pages locked in the cache, whereas a carry-over job executes with only σL
i pages locked in

ECRTS 2017

18:8 Mixed-Criticality Scheduling With Dynamic Redistribution of Shared Cache

x = ℓ mod Ti
kTi

job deadlinemode switch

(i)

x = DH

i
−DL

i
+ CL

i
(σL

i
) (k − 1)Ti

(ii)
y < Ti

x < DH

i
−DL

i
+ CL

i
(σL

i
) (k − 1)Ti

(iii)
y < Ti

ℓ

ℓ

ℓ

Figure 2 Execution with maximum demand for CH

i (σH

i) ≥ CL

i (σL

i).

the cache until the mode switch, and thus, for safety, we assume that it executes with only
σL

i pages locked in the cache throughout its execution. Therefore, the demand in H-mode of
a full job is not necessarily larger than the (outstanding) demand in H-mode of a carry-over
job. For example, if ℓ = Ti, then the execution shown in Fig. 2(i) has no carry-over job, and
the maximum demand is CH

i (σH
i). However, for such a value of ℓ, we can have an execution

in which there is a maximal carry-over job, i.e. a carry-over job with maximum demand in
H-mode, CH

i (σL
i). If σL

i and σH
i are such that CH

i (σL
i) > CH

i (σH
i), i.e. if the extra assigned

cache lines are useful to the task and reduce its execution time, the latter execution scenario
has a demand that is higher than the former.

Because, Ekberg and Yi’s analysis, assumes that the demand of a carry-over job is never
larger than the demand of a full-job, we need new analysis, built on the following lemma.

◮ Lemma 2. In H-mode, for any time interval of length ℓ, the demand by the jobs of an

H-task τi whose scheduling windows are fully contained in ℓ is maximum:

1. either in executions with the maximum number of full jobs after a carry-over job, if one

fits, as illustrated in Fig. 2(i),

2. or in executions with the maximal carry-over job with the earliest possible deadline followed

by as many full jobs as can fit in the remaining time and that arrive as soon as possible,

as illustrated in Fig. 2(ii).

Proof. The scheduling window of a carry-over job in H-mode always starts at the mode
switch. Thus, in H-mode, a time interval of length ℓ can include the scheduling windows of
at most one carry-over job of τi, and of a number of full jobs (that is, jobs released at or
after the mode switch).

If ℓ < DH
i − DL

i + CL
i (σL

i), no full job contributes to the demand, because the shortest
length of the scheduling window of a full job is Di and ℓ < DH

i (because CL
i (σL

i) ≤ DL
i).

M. A. Awan, K. Bletsas, P. F. Souto, B. Akesson, and E. Tovar 18:9

Thus, in this case, execution scenario (1) maximises the amount of time that can be used by
a carry-over job and, by Lemma 1, its demand is maximum.

Let ℓ ≥ DH
i − DL

i + CL
i (σL

i). Let y be the length of the right-most subinterval of ℓ, from
the deadline of the last job contained in ℓ, if any, until the end of ℓ. If 0 < y < Ti, execution
scenario (2) maximises the demand at the beginning of the interval, because the earliest
deadline of a maximal carry-over job is DH

i − DL
i + CL

i (σL
i), by Lemma 1 (after substituting

CL
i with CL

i (σL
i)); but, the demand during y does not increase, because the deadlines of two

consecutive jobs of τi must be Ti time units apart, and therefore subinterval y cannot contain
the scheduling window of a full job. If x decreases by some amount and y increases by the
same amount, as illustrated in Fig. 2(iii), the demand of the carry-over job decreases without
increasing the demand at the end of the interval, unless y becomes Ti. If this happens, we
transform execution scenario (2) into execution scenario (1) and increase the total demand of
full jobs, but decrease the demand of the carry-over job, possibly eliminating it. Thus, if the
total demand in ℓ increases when y becomes Ti, then execution scenario (1) has maximum
demand, else execution scenario (2) has maximum demand. Decreasing x by a larger amount
than necessary for y to become equal to Ti, does not increase the demand w.r.t. execution
scenario (1), since it increases neither the total demand of full jobs nor the demand of the
carry-over job. Finally, if y = 0, then execution scenarios (1) and (2) are identical and both
have a maximal carry-over job of τi with the earliest deadline, and the maximum number of
full-jobs of τi that can fit in ℓ, therefore their demand is maximum. ◭

Thus, a tight demand bound function for any execution in H-mode is the maximum of the
demands of execution scenarios (1) and (2), illustrated respectively in Fig. 2(i) and (ii). Next,
we adapt Ekberg and Yi’s demand bound function for execution scenario (1) to take into
account a different number of pages locked in the cache per mode. After that, we develop the
demand bound function for execution scenario (2), which was not relevant in previous work.

In [14], Ekberg and Yi provide a bound for the demand of execution scenario (1) in a
time interval of length ℓ, as follows:

fullHi (ℓ) − doneH
i (ℓ) (1)

where fullHi (ℓ), given by (2), is the maximum demand by all jobs of τi whose scheduling
window is fully contained in that interval (in H-mode, the scheduling window of a carry-over
job begins at the mode switch and ends at its deadline), and doneH

i (ℓ), given by (3), is the
minimum demand of any carry-over job that must be satisfied before the mode switch.

fullHi (ℓ) =

t(⌊
ℓ −

(

DH
i − DL

i

)

Ti

+ 1

⌋)

CH
i

|

0

(2)

doneH
i (ℓ) =

{

JCL
i − (ℓ mod Ti) + DH

i − DL
i K0, if (DH

i − DL
i) ≤ ℓ mod Ti < DH

i

0, otherwise
(3)

We now derive the new expressions for fullHi (ℓ) and doneH
i (ℓ) to take into account that

the number of pages locked in the cache in the L-mode and in the H-mode may be different.
In this derivation, like Ekberg and Yi in [14], we assume that there is a carry-over job, if one
fits. At the end of this section, we show that, for any time interval ℓ after the mode switch,
the demand is maximum when there is a carry-over job.

ECRTS 2017

18:10 Mixed-Criticality Scheduling With Dynamic Redistribution of Shared Cache

So, assuming that the first job is a carry-over job, if one fits, we modify (2) (originally
(2) in [14]) as follows:

fullHi (ℓ) =
s⌊

ℓ − (DH
i − DL

i)
Ti

⌋

+ 1
{1

0

CH
i (σL

i)

+
s⌊

ℓ − (DH
i − DL

i)
Ti

⌋{

0

CH
i (σH

i) . (4)

The first term bounds the demand in H-mode of the carry-over job. As shown by Lemma 1,
DH

i − DL
i is the smallest scheduling window (in H-mode) of a carry-over job of τi. To be

safe, we assume that the number of locked pages of the carry-over job is σL
i , therefore the

maximum demand of the carry-over job, ignoring any demand that may have been satisfied
before the mode switch, is CH

i (σL
i). The second term bounds the demand of the jobs that

are released after the mode switch and therefore we use their maximum execution time with
the respective number of locked pages in H-mode, CH

i (σH
i).

Likewise, for doneH
i (ℓ), we modify (3) (originating as (3) in [14]) by substituting CL

i

with CL
i (σL

i). That is, we make explicit that any computation before the mode switch must
have been performed with σL

i pages locked in the cache.
Thus, by replacing (2) and (3) (i.e., (2) and (3) in [14]) with their versions aware of the

number of pages locked in the cache, (1) provides a bound for execution scenario (1) when
the number of pages locked in the cache is changed from σL

i to σH
i upon a switch to H-mode.

The demand under execution scenario (2) is a step function and is given by (5).

stepH
i (ℓ) =

t⌊
ℓ −

(

DH
i − DL

i + CL
i (σL

i)
)

Ti

⌋

+ 1

|1

0

CH
i (σL

i)

+

t⌊
ℓ −

(

DH
i − DL

i + CL
i (σL

i)
)

Ti

⌋|

0

CH
i (σH

i) (5)

where the first term bounds the demand in H-mode of the carry-over job, which is maximum
and has a deadline at the earliest time instant, and the second term bounds the demand of
the maximum number of full jobs that fit after the carry-over job.

Thus, a demand bound function for any interval of length ℓ in H-mode is:

dbfH
i (ℓ) = max

(

stepH
i (ℓ), fullHi (ℓ) − doneH

i (ℓ)
)

(6)

Finally, we show that executions with a carry-over job have a higher demand than
executions without a carry-over job, an assumption we made above in the derivation of
dbfH

i (ℓ).

◮ Lemma 3. For any sporadic task τi, its maximum demand in H-mode in a time interval

of length ℓ with only full jobs is not higher than its maximum demand in a time interval of

the same length ℓ with a carry-over job.

Proof. The demand of an execution of τi in H-mode with only full jobs can be bounded by
the standard dbf for sporadic tasks with the appropriate parameters:

s(⌊
ℓ − DH

i

Ti

⌋

+ 1
)

CH
i (σH

i)
{

0

. (7)

If ℓ < DH
i the demand is zero. Let ℓ ≥ DH

i . Consider a time interval of length ℓ starting
at the mode switch. Consider an execution in which the carry-over job has maximum demand,

M. A. Awan, K. Bletsas, P. F. Souto, B. Akesson, and E. Tovar 18:11

0 DH

i
−DL

i
+ CL

i
(σL

i
)

CH

i
(σL

i
)

DH

i
−DL

i
+ CL

i
(σL

i
) + Ti

CH

i
(σL

i
) + CH

i
(σH

i
)

DH

i

CH

i
(σH

i
)

DH

i
+ Ti ℓ

Figure 3 The demand over an interval of length ℓ starting at mode switch when the carry-over

job is maximum at the earliest time (black line) dominates the maximum demand over an interval

of the same length without a carry-over job.

CH
i (σL

i), at the earliest possible time, DH
i − DL

i + CL
i (σL

i), and the following jobs of τi arrive
as soon as possible. For any time interval of length ℓ, the demand of such an execution is
never lower than the demand of an execution without a carry-over job (see Fig. 3 for further
intuition). Indeed:

1. CH
i (σL

i) ≥ CH
i (σH

i), because σL
i ≤ σH

i .

2. DH
i − DL

i + CL
i (σL

i) ≤ DH
i , because DL

i ≥ CL
i (σL

i). ◭

5 Last-level cache allocation

The description of our analysis assumed that for each task the number of its hottest pages
that are locked in the cache in each mode is already determined. We now propose a heuristic
for this allocation. Our objective is to efficiently distribute the last-level cache among the
tasks, for improved schedulability.

A heuristic is needed because a brute-force combinatorial exploration of all possible
allocations is intractable and the arbitrary nature of progressive lockdown curves means
that there is no structure in the problem to employ for strict optimality, in the general case.
Additionally, since any possible allocation configuration of the cache for the L-mode can
be re-configured in many ways for the H-mode, we opt for a two-staged heuristic. We first
determine the L-mode allocation and then, subject to the constraints stemming from that, we
determine the H-mode allocation. Since the schedulability analysis is conceptually complex
(and made even more so by the deadline scaling), our idea is to optimise, in each mode, for
a metric that strongly correlates with schedulability: the task set utilisation. So, we first
(i) assign values to the σL

i variables (corresponding to the number of locked pages in L-mode)

for each task so that the L-mode utilisation (
∑

τi∈τ

CL

i
(σL

i
)

Ti

is minimised and subsequently
(ii) assign values to the σH

i variables for the H-tasks (with σH
i ≥ σL

i) such that the (steady)

H-mode utilisation (
∑

τi∈τ(H)
CH

i
(σH

i
)

Ti

) is minimised. Next, we discuss the ILP formulation
implementing this heuristic.

ECRTS 2017

18:12 Mixed-Criticality Scheduling With Dynamic Redistribution of Shared Cache

5.1 L-mode allocation

Let σL
i be the number of pages by τi in the last-level cache in the L-mode and σT be the

total number of pages that fit in that cache. Intuitively, lower utilisation correlates with
better schedulability, hence, our objective is to set the σL

i values such that the total task set
utilisation in L-mode is minimised. To model this heuristic with ILP formulation, we define
a binary decision variable variable ULi,j such that:

ULi,j =

{

1, if j pages are assigned to τi ∈ τ in L-mode

0, otherwise

Since our aim is to minimise the system utilisation in L-mode, the objective function and
constraints take the form:

Minimise
∑

∀τi∈τ

σT

∑

j=0

ULi,j × UL
i (j) (8)

s. t.

σT

∑

j=0

ULi,j = 1, ∀τi ∈ τ (9)

∑

∀τi∈τ

σT

∑

j=0

j × ULi,j ≤ σT (10)

σT

∑

j=0

ULi,j × UL
i (j) ≤ 1, ∀τi ∈ τ (11)

∑

∀τi∈τ

σT

∑

j=0

ULi,j × UL
i (j) ≤ m, ∀τi ∈ τ (12)

The UL
i (j) constants are derivable from the tasks’ progressive lockdown curves. The set

of constraints given by (9) ensures that each task is considered for allocation in the last-level
cache. A task can be allocated any number of pages from zero to all σT pages in the cache.
However, the sum of all pages allocated to tasks should not exceed the cache capacity (i.e.,
∑

∀τi∈τ σL
i ≤ σT), which is ensured by (10). Additionally, the utilisation of each task in the

L-mode for the selected number of pages should not exceed one (i.e., UL
i (σL

i) ≤ 1), which is
ensured by (11); otherwise, the task will not be unschedulable. Finally, the set of constraints
given by (12) ensures that the total utilisation of the task set in L-mode, under the particular
allocation, should not exceed the number of cores in the platform (

∑

∀τi∈τ UL
i (σL

i) ≤ m);
otherwise the task set would be unschedulable in the L-mode, under these parameters.

5.2 H-mode allocation

In this second stage of our allocation heuristic, we determine how the pages reclaimed from
the idled L-tasks at the switch from L-mode to H-mode, are to be redistributed to the
H-tasks. Let σH

i denote the number of cache pages in the last-level cache allocated to a
task τi ∈ τ(H) in the H-mode. Our ILP formulation for the H-mode allocation derives σH

i

for each task τi ∈ τ(H) in such a way that the overall steady H-mode system utilisation is
minimised. We define a binary decision variable UHi,j such that:

UHi,j =

{

1, if j pages are assigned to τi ∈ τ(H) in H-mode

0, otherwise

M. A. Awan, K. Bletsas, P. F. Souto, B. Akesson, and E. Tovar 18:13

The objective function in this stage minimises the H-mode utilisation and the ILP
formulation is given below:

Minimise
∑

∀τi∈τ(H)

σT

∑

j=0

UHi,j × UH
i (j) (13)

s. t.

σT

∑

j=0

UHi,j = 1, ∀τi ∈ τ(H) (14)

∑

∀τi∈τ(H)

σT

∑

j=0

j × UHi,j ≤ σT (15)

σT

∑

j=0

UHi,j × UH
i (j) ≤ 1, ∀τi ∈ τ(H) (16)

∑

∀τi∈τ(H)

σT

∑

j=0

UHi,j × UH
i (j) ≤ m, ∀τi ∈ τ(H) (17)

σT

∑

j=0

j × UHi,j ≥ σL
i , ∀τi ∈ τ(H) (18)

The constraints given by (14)-(17) are similar to those given by (9)-(12) for the L-mode.
These constraints ensure that every H-task is considered for allocation, the sum of allocated
pages does not exceed the total number of pages in the cache (

∑

∀τi∈τ(H) σH
i ≤ σT), each

task has utilisation not greater than one (UH
i (σH

i) ≤ 1) and sum of their utilisations is less
than or equal to the number of cores (

∑

τi∈τ(H) UH
i (σH

i) ≤ m). As for the set of constraints
given by (18), they express the fact that σH

i ≥ σL
i , ∀τi ∈ τ(H). In other words, in the

H-mode, an H-task may be allocated additional pages, reclaimed from the idled L-tasks, but
never fewer. The reason for restricting the solution space in this manner is practical: Unlike
cache pages allocated to L-tasks in the L-mode which are reclaimable immediately after a
mode switch (since no L-tasks execute in the H-mode), the instant that some cache page
could be taken away from an H-task is ill-defined if there is a carry-over job from that task.
Even if it is assumed that a page can be taken away from that H-task, once its carry-over
job completes, this would introduce an arbitrarily long (in the general case) transition to
steady H-mode, in the case of a carry-over job with long outstanding execution time and
even longer deadline. The schedulability analysis would then become extremely complicated,
with hardly any gains expected from such a more general model.

As a final note, one might consider optimising σL
i and σH

i jointly in a single step but this
would be non-trivial due to lack of a single meaningful objective function to minimise.

6 Evaluation

We experimentally explore the effectiveness of our proposed allocation heuristics and dynamic
redistribution mechanism in terms of schedulability.

6.1 Experimental Setup

We developed a Java tool for our experiments. (Sources found at [3].) Its first module
generates the synthetic workload (task sets). A second module implements the ILP models

ECRTS 2017

18:14 Mixed-Criticality Scheduling With Dynamic Redistribution of Shared Cache

Table 1 Overview of Parameters.

Parameters Values

Task-set size (n) {10 , 13, 15, 20}

Inter-arrival time Ti 10 to 100 msec (1 msec resol.)

Fraction of H-tasks in τ {20%, 40%, 60%, 80%}

Ratio of CH

i to CL

i {4, 6, 8, 10, 12}

Lower bound α on CL

i (0)/CH

i (0) {0.1, 0.2, 0.4, 0.8}

Mean (λ) for x-coordinate (in pages) of the {5, 10, 15, 20, 25, 30}

taper point (X, Y) in the prog. lockdown curve

Cache size {512 KB, 1 MB, 2 MB, 4 MB}

Number of cores (m) {1, 2, 4, 8}

Nominal L-mode utilisation (1

m

∑

τi∈τ
UL

i (0)) {0.1 : 0.1 : 1.5}

Page size 4 KB

for the allocation heuristics. Using the generated task-set and platform information as input,
it partitions the cache to the tasks. A third module uses the task set, platform information
and cache assignment as an input and performs the schedulability analysis and task-to-core
allocation. The following parameters control the task set generation:

We generate the L-mode task utilisations with zero locked pages (UL
i (0)) for a given target

task set L-mode utilisation (
∑

i∈τ UL
i (0)) using UUnifast-discard [9, 12], for unbiased

distribution of task utilisations.

Task periods are generated with a log-uniform distribution in the range 10-100 ms. We
also assume implicit deadlines, even if our analysis holds for constrained deadlines.

The L-mode progressive lockdown curve of a task τi is derived as follows. CL
i (0) is obtained

as UL
i (0) · Ti. Then the L-WCET with full cache (CL

i (σT)) is randomly generated with
uniform distribution over [α · CL

i (0), CL
i (0)], where α < 1 is a user-defined parameter.

Then we add a “bending point” with random coordinates (X,Y). X is sampled from a
Poisson distribution with median λ (user-defined parameter) and Y is sampled from a
uniform distribution in the range [CL

i (σT), Z], where Z is the y-coordinate of the point
where the x = X axis intersects the line ((0, CL

i (0)), (σT , CL
i (σT))). See Figure 4 for an

illustration. The two linear segments ((0, CL
i (0)), (X, Y)) and ((X, Y), (σT , CL

i (σT))),
joined at an angle at (X,Y) define our L-mode progressive lockdown curve. This generation
scheme can output (i)“L-shaped” curves, where the L-WCET drops sharply with a few
pages and then stays flat; (ii) flat L-WCET curves, largely insensitive to the number of
pages; and (iii) in-between2.

Based on the target fraction of H-tasks in the task set (user-specified), a number of tasks
(rounded-up) will be H-tasks. For those ones, an H-mode progressive lockdown curve is
generated, by up-scaling of the respective L-mode curve. The scalefactor (multiplier) is
user-specified.

For each set of input parameters, we generate 100 task sets. We use independent pseudo-
random number generators for the utilisations, minimum inter-arrival times/deadlines, Poisson
distribution and CL

i (σT) generation, and reuse their seeds [17].

2 We thank Renato Mancuso, for having shared with us his empirical observations about the shapes of
progressive lockdown curves.

M. A. Awan, K. Bletsas, P. F. Souto, B. Akesson, and E. Tovar 18:15

Figure 4 Illustration of progressive lockdown curve generation.

The second module of our tool models the ILP formulations for an input task set on IBM
ILOG CPLEX v12.6.3 and interfaces it with the Java tool using CONCERT technology. In
all experiments, the defaults for different parameters are underlined in Table 1. Note that,
since the target utilisation when invoking UUnifast-discard corresponds to

∑

i∈τ UL
i (0) (i.e.,

the L-mode task set utilisation when none of the tasks uses any cache), it is possible that
some task sets where this nominal utilisation is greater than m may be in fact schedulable,
since the allocation of cache pages to their tasks may drive down their L-WCETs and decrease
the L-mode utilisation to below m. So, we explore tasks sets with nominal utilisation up to
1.5. To generate task sets with nominal utilisation greater that m, we first generate a task
set with target nominal utilisation of m using UUnifast-discard, and subsequently multiply
with the desired scalar. This preserves the properties of UUnifast-discard.

Finally, note that in our experiments, after the values of σL
i and σH

i are determined for
the tasks, we employ First-Fit bin-packing for task-to-core assignments. The new analysis
(introduced in Section 4) is used as a schedulability test, on each processor, for testing the
assignments. Note that our new analysis is also used for the derivation of the deadline
scalefactors for the H-tasks, using Ekberg’s and Yi’s (otherwise, unmodified) approach [13].
The bin-packing ordering is by decreasing criticality and decreasing deadline – a task ordering
that works well with Ekberg and Yi’s algorithm, as shown in our previous work [2].

6.2 Results

Since presenting plots for each possible combination of parameters would be impractical, each
experiment varies only one parameter, with the rest conforming to the respective defaults
from Table 1. Even so, the number of plots would still be too high to accommodate. So,
instead of providing plots comparing the approaches in terms of scheduling success ratio (i.e.,
the fraction of task sets deemed schedulable under the respective schedulability test), we
condense this information by providing plots of weighted schedulability.3 This performance
metric, adopted from [7], condenses what would have been three-dimensional plots into
two dimensions. It is a weighted average that gives more weight to task-sets with higher
utilisation, which are supposedly harder to schedule. Specifically, using the notation from [10]:

Let Sy(τ, p) represent the binary result (0 or 1) of the schedulability test y for a given
task-set τ with an input parameter p. Then Wy(p), the weighted schedulability for that

3 The plots of (non-weighted) schedulability can still be found in the Appendix of our TR [1].

ECRTS 2017

18:16 Mixed-Criticality Scheduling With Dynamic Redistribution of Shared Cache

schedulability test y as a function p, is:

Wy(p) =

∑

∀τ

(

ŪL(τ) · Sy(τ, p)
)

∑

∀τ ŪL(τ)
. (19)

In (19), (adapted from [10]), ŪL(τ)
def
= UL(τ)

m
is the system utilisation in L-mode, normal-

ised by the number of cores. m.
The purpose for our experiments was to quantify the schedulability improvement over

a system model without cache reallocation at mode switch. However, the state-of-the-art
scheduling algorithm by Ekberg and Yi, assumed for the latter, is cache-agnostic: whether
the L-WCETs and H-WCETs estimates used are cache-cognisant or not is opaque to the
algorithm. Therefore, in order to have a fair comparison, we needed to specify an efficient
cache partitioning heuristic, even for the case of no cache reallocation.

The different curves depicted on our plots are the following:
VT: This “Validity Test”, for indicative purposes, is a necessary condition for a task set to

be mixed-criticality schedulable at all (i.e., under any possible scheduling arrangement).
The actual condition, verifiable with low computational complexity, is:

(

UL
i (σT) ≤ 1, ∀τi ∈ τ

)

∧
(

UH
i (σT) ≤ 1, ∀τi ∈ τ(H)

)

∧
(

∑

τi∈τ

UL
i (σT) ≤ m

)

∧
(

∑

τi∈τ(H)

UH
i (σT) ≤ m

)

ILP: A tighter necessary condition, for a task set to be mixed-criticality schedulable at all. It
is tested via our ILP (i.e., if it succeeds). It holds if and only if there exists an assignment
of values to the σL

i and σH
i variables such that:

(

σL
i ≤ σT , ∀τi ∈ τ

)

∧
(

σL
i ≤ σH

i ≤ σT , ∀τi ∈ τ(H)
)

∧
(

∑

τi∈τ

σL
i ≤ σT

)

∧
(

∑

τi∈τ(H)

σH
i ≤ σT

)

∧

(

UL
i (σL

i) ≤ 1, ∀τi ∈ τ
)

∧
(

UH
i (σH

i) ≤ 1, ∀τi ∈ τ(H)
)

∧
(

∑

τi∈τ

UL
i (σL

i) ≤ m
)

∧
(

∑

τi∈τ(H)

UH
i (σH

i) ≤ m
)

V-Ekb: Similar to “ILP”, but with the added constraint that σL
i = σH

i , ∀τi ∈ τ(H). Hence,
it is a necessary condition for mixed-criticality schedulability for any approach that does
not redistribute cache pages reclaimed from L-tasks to the H-tasks.

Z-Ekb: This is a sufficient test for partitioned scheduling using Ekberg and Yi’s algorithm [13],
using the specified bin-packing, if the system is crippled by disabling of the last-level cache.
In that case, σL

i = 0, ∀τi ∈ τ and similarly σH
i = 0, ∀τi ∈ τ(H), meaning that Ekberg

and Yi’s original analysis is applied, with CL
i = CL

i (0) and CH
i = CH

i (0). Intuitively
“Z-Ekb” is meant as a lower-bound for the performance by this approach, once the cache
is taken into account.

E-Ekb: A sufficient test for partitioned scheduling using Ekberg and Yi’s algorithm, using
the specified bin-packing, when (i) the cache is distributed equally to the tasks in the

L-mode; i.e., σL
i =

⌊

σT

n

⌋

, ∀τi ∈ τ and (ii) there is no redistribution of cache pages, i.e.,

σL
i = σH

i , ∀τi ∈ τ(H). Since Ekberg and Yi’s algorithm is cache-agnostic, dividing the
cache equally is a simple, reasonable heuristic.

M. A. Awan, K. Bletsas, P. F. Souto, B. Akesson, and E. Tovar 18:17

Table 2 Improvement in weighted schedulability.

Improvement (Manberg vs V-Ekb)

Experiment / parameter varied absolute relative

Task-set size (n) 1.36%–2.36% 13.98%–30.59%

Fraction of H-tasks in τ 0.13%–2.34% 6.18%–16.05%

Ratio of CH

i to CL

i 1.41%–3.64% 10.24%–27.13%

L. bound α on CL

i (0)/CH

i (0) 0.25%–1.65% 3.36%–15.62%

λ 1.60%–2.32% 12.95%–20.25%

Cache size 1.64%–2.23% 12.67%–15.81%

Number of cores (m) -0.00%–1.21% -0.67%–17.45%

N-Ekb: Another sufficient test, but which instead uses the output of the ILP, aimed at
minimising L-mode utilisation (

∑

τi∈τ UL
i (σL

i)), as values to the σL
i variables. Again,

there is no cache redistribution at mode change, i.e., σL
i = σH

i , ∀τi ∈ τ(H). Re-using
the ILP solution for the L-mode both (i) enables a fair comparison (by equipping the
“opponent” with the same good heuristic for the L-mode allocation, and (ii) takes the
ILP and the L-mode allocation heuristic out of the equation, as much as possible, and
isolates the improvement originating from to the dynamic cache redistribution.

Manberg: A sufficient test for our approach (named after Mancuso and Ekberg), which
redistributes cache pages at mode switch. The σL

i and σH
i variables are set to the

respective outputs of the ILP, under the heuristic that picks the σL
i values that minimise

the L-mode utilisation and, subject to that selection, the σH
i values that minimise the

H-mode utilisation.

Note that VT theoretically dominates ILP, which in turn theoretically dominates all other
curves. Additionally, V-Ekb theoretically dominates all *-Ekb curves.

As observed (Fig. 5–11), the curves of N-Ekb and V-Ekb almost coincide. This means that
the heuristic of choosing the σL

i values that minimise the L-mode utilisation is very efficient,
if cache redistribution at mode change is not permitted (bin-packing considerations aside4).
Even when no dynamic cache reallocation is performed, the improvement just from using
this particular heuristic, vs using the still reasonable “E”-heuristic is respectable (Fig. 5–11).
Even if it only goes up to 10% higher weighted schedulability (and usually around 2% to
3%), it still means a large increase in the number of provably schedulable task sets. This is
because in all plots except the two (Fig. 8 and 9) in which the difference between N-Ekb
and E-Ekb is greatest in absolute terms, even the V-Ekb necessary test stays below 18% in
weighted schedulability. As can be seen, the relative improvement of N-Ekb over E-Ekb is
more significant when the execution time is more sensitive to the cache resources (Fig. 5) or
the scarcer the latter are (Fig. 6).

As for our approach (Manberg), in all experiments it outperforms V-Ekb, i.e., what is
theoretically possible without cache redistribution (bin-packing considerations aside). It is
often nearer to the ILP curve (a necessary schedulability test, for any algorithm, with cache
redistribution permitted) than to the V-Ekb curve. The absolute improvement in weighted
schedulability is up to 3.64% but, in relative terms it can be up to 30.59%. This means

4 What we mean is that our experiments cannot possibly account for all possible task assignments,
since bin-packing is an NP-complete problem; we limit ourselves to just one reasonable and popular
bin-packing heuristic.

ECRTS 2017

18:18 Mixed-Criticality Scheduling With Dynamic Redistribution of Shared Cache

0.1 0.2 0.4 0.8
0

0.05

0.1

0.15

0.2

0.25

0.3

α (lower bound on C
i

L
(σ

T
)/C

i

L
(0))

W
e
ig

h
te

d
 S

c
h
e
d
u
la

b
ili

ty
 r

a
ti
o

VT
ILP
V−Ekb
Z−Ekb
E−Ekb
N−Ekb
Manberg

Figure 5

128 256 512 1024
0

0.05

0.1

0.15

0.2

0.25

0.3

Cache size (KB)

W
e
ig

h
te

d
 S

c
h
e
d
u
la

b
ili

ty
 r

a
ti
o

VT
ILP
V−Ekb
Z−Ekb
E−Ekb
N−Ekb
Manberg

Figure 6

1 2 4 8
0

0.05

0.1

0.15

0.2

m (number of cores)

W
e
ig

h
te

d
 S

c
h
e
d
u
la

b
ili

ty
 r

a
ti
o

VT
ILP
V−Ekb
Z−Ekb
E−Ekb
N−Ekb
Manberg

Figure 7

4 6 8 10 12
0

0.1

0.2

0.3

0.4

0.5

0.6

C
H

i
/C

i

L
 ratio

W
e
ig

h
te

d
 S

c
h
e
d
u
la

b
ili

ty
 r

a
ti
o

VT
ILP
V−Ekb
Z−Ekb
E−Ekb
N−Ekb
Manberg

Figure 8

0.2 0.4 0.6 0.8
0

0.1

0.2

0.3

0.4

0.5

0.6

Fraction of H−tasks

W
e
ig

h
te

d
 S

c
h
e
d
u
la

b
ili

ty
 r

a
ti
o

VT
ILP
V−Ekb
Z−Ekb
E−Ekb
N−Ekb
Manberg

Figure 9

5 10 15 20 25 30
0

0.05

0.1

0.15

0.2

0.25

0.3

λ (mean "taper point", in pages, for prog. lockdown curve)

W
e
ig

h
te

d
 S

c
h
e
d
u
la

b
ili

ty
 r

a
ti
o

VT
ILP
V−Ekb
Z−Ekb
E−Ekb
N−Ekb
Manberg

Figure 10

10 13 15 20
0

0.05

0.1

0.15

0.2

0.25

0.3

n (task set size)

W
e
ig

h
te

d
 S

c
h
e
d
u
la

b
ili

ty
 r

a
ti
o

VT
ILP
V−Ekb
Z−Ekb
E−Ekb
N−Ekb
Manberg

Figure 11

M. A. Awan, K. Bletsas, P. F. Souto, B. Akesson, and E. Tovar 18:19

many more tasks sets (especially among higher-utilisation ones) found schedulable. Table 2
summarises the improvement. Note that the more sensitive to cache allocations the WCETs
are, the greater the relative gains by our approach (Fig. 5). Similarly when the CH

i /CL
i ratio

is higher, i.e., when the mode switch is harder to accommodate (Fig. 8). We believe that
these findings validate our approach.

(Note that two near-zero negative values in Table 2 reflect the fact that V-Ekb is a
necessary test, whose success does not imply that bin-packing will be feasible!)

In our experiments, the ILP run-time was a few seconds (upto four seconds for the feasible
solutions), but the deadline-scaling (which repeatedly invokes the schedulability test) took
23 hours for 6000 task sets.

7 Conclusions

In this work, we proposed the redistribution of resources from low-criticality tasks to high-
criticality tasks, at mode change, for better scheduling performance. Focusing on one
particular resource, the last-level cache, we formulated analysis and showed the potential
gains. This validates the notion that more detailed models of the platform and the allocation
of its resources, can be used to improve both the performance and the confidence in the
analysis of mixed-criticality systems. In the future, we plan to consider additional system
resources. We also intend to explore efficient non-ILP-based cache allocation heuristics.

References

1 M. A. Awan, K. Bletsas, P. F. Souto, Benny Åkesson, and E. Tovar. Mixed-criticality
scheduling with dynamic redistribution of shared cache, 2017. arXiv:1704.08876, http:

//arxiv.org/abs/1704.08876.
2 M. A. Awan, K. Bletsas, P. F. Souto, and E. Tovar. Semi-partitioned mixed-criticality

scheduling. In 30th Int. Conf. on the Architecture of Computing Systems (ARCS), pages
205–218, 2017. doi:10.1007/978-3-319-54999-6_16.

3 Muhammad Ali Awan. Source code for our tool, 2017. https://goo.gl/jNVcbJ.
4 S. Baruah, V. Bonifaci, G. DAngelo, H. Li, A. Marchetti-Spaccamela, S. van der Ster, and

L. Stougie. The preemptive uniprocessor scheduling of mixed-criticality implicit-deadline
sporadic task systems. In 24th Euromicro Conference on Real-Time Systems (ECRTS),
pages 145–154, July 2012. doi:10.1109/ECRTS.2012.42.

5 Sanjoy Baruah and Alan Burns. Implementing mixed criticality systems in Ada. In 16th

Ada-Europe Conference, pages 174–188, 2011.
6 S. K. Baruah, A. K. Mok, and L. E. Rosier. Preemptively scheduling hard-real-time sporadic

tasks on one processor. In 11th Real-Time Systems Symposium (RTSS 1990), pages 182–
190, Dec 1990. doi:10.1109/REAL.1990.128746.

7 A. Bastoni, B. B. Brandenburg, and J. H. Anderson. Cache-related preemption and mi-
gration delays: Empirical approximation and impact on schedulability. Proceedings of

OSPERT, pages 33–44, 2010.
8 M. Behnam, R. Inam, T. Nolte, and M. Sjödin. Multi-core composability in the face of

memory-bus contention. ACM SIGBED Review, 10(3):35–42, 2013. doi:10.1145/2544350.

2544354.
9 E. Bini and G. C. Buttazzo. Measuring the performance of schedulability tests. Real-Time

Systems, 30(1-2):129–154, May 2005. doi:10.1007/s11241-005-0507-9.
10 A. Burns and R. I. Davis. Adaptive mixed criticality scheduling with deferred preemption.

In 35th IEEE Real-Time Systems Symposium (RTSS 2014), pages 21–30, Dec 2014. doi:

10.1109/RTSS.2014.12.

ECRTS 2017

http://arxiv.org/abs/1704.08876
http://arxiv.org/abs/1704.08876
http://dx.doi.org/10.1007/978-3-319-54999-6_16
https://goo.gl/jNVcbJ
http://dx.doi.org/10.1109/ECRTS.2012.42
http://dx.doi.org/10.1109/REAL.1990.128746
http://dx.doi.org/10.1145/2544350.2544354
http://dx.doi.org/10.1145/2544350.2544354
http://dx.doi.org/10.1007/s11241-005-0507-9
http://dx.doi.org/10.1109/RTSS.2014.12
http://dx.doi.org/10.1109/RTSS.2014.12

18:20 Mixed-Criticality Scheduling With Dynamic Redistribution of Shared Cache

11 Alan Burns and Robert Davis. Mixed criticality systems-a review. Department of Computer

Science, University of York, Tech. Rep, 2013.
12 R. I. Davis and A. Burns. Priority assignment for global fixed priority pre-emptive schedul-

ing in multiprocessor real-time systems. In 30th IEEE Real-Time Systems Symposium

(RTSS 2009), pages 398–409, Dec 2009. doi:10.1109/RTSS.2009.31.
13 P. Ekberg and W. Yi. Bounding and shaping the demand of mixed-criticality sporadic tasks.

In 24th Euromicro Conference on Real-Time Systems (ECRTS), pages 135–144, July 2012.
doi:10.1109/ECRTS.2012.24.

14 P. Ekberg and W. Yi. Bounding and shaping the demand of generalized mixed-criticality
sporadic task systems. Journal of Real-Time Systems, 50(1):48–86, January 2014. doi:

10.1007/s11241-013-9187-z.
15 J. Flodin, K. Lampka, and W. Yi. Dynamic budgeting for settling dram contention of co-

running hard and soft real-time tasks. In 9th IEEE International Symposium on Industrial

Embedded Systems (SIES), pages 151–159, June 2014. doi:10.1109/SIES.2014.6871199.
16 X. Gu and A. Easwaran. Dynamic budget management with service guarantees for mixed-

criticality systems. In 37th IEEE Real-Time Systems Symposium (RTSS), pages 47–56,
Nov 2016. doi:10.1109/RTSS.2016.014.

17 Raj Jain. The art of computer systems performance analysis – techniques for experimental

design, measurement, simulation, and modeling. Wiley professional computing. Wiley, 1991.
18 R. Mancuso, R. Dudko, E. Betti, M. Cesati, M. Caccamo, and R. Pellizzoni. Real-time

cache management framework for multi-core architectures. In 19th IEEE Real-Time and

Embedded Technology and Applications Symposium (RTAS 2013), pages 45–54, April 2013.
doi:10.1109/RTAS.2013.6531078.

19 R. Mancuso, R. Pellizzoni, M. Caccamo, L. Sha, and H. Yun. WCET(m) estimation in
multi-core systems using single core equivalence. In 27th Euromicro Conference on Real-

Time Systems (ECRTS 2015), pages 174–183, July 2015. doi:10.1109/ECRTS.2015.23.
20 A. Masrur, D. Müller, and M. Werner. Bi-level deadline scaling for admission control in

mixed-criticality systems. In 21st IEEE Int. Conf. on Embedded and Real-Time Computing

Systems and Applications (RTCSA), pages 100–109, 2015. doi:10.1109/RTCSA.2015.35.
21 J. Nowotsch, M. Paulitsch, D. Bühler, H. Theiling, S. Wegener, and M. Schmidt. Multi-core

interference-sensitive WCET analysis leveraging runtime resource capacity enforcement.
In 26th Euromicro Conf. on Real-Time Systems (ECRTS), pages 109–118, 2014. doi:

10.1109/ECRTS.2014.20.
22 R. Pellizzoni and H. Yun. Memory servers for multicore systems. In 22nd IEEE Real-Time

and Embedded Technology and Applications Symposium (RTAS 2016), pages 97–108, April
2016. doi:10.1109/RTAS.2016.7461339.

23 J. Reineke and J. Doerfert. Architecture-parametric timing analysis. In 20th IEEE Real-

Time and Embedded Technology and Applications Symposium (RTAS), pages 189–200, 2014.
24 Lui Sha, Marco Caccamo, Renato Mancuso, Jung-Eun Kim, Man-Ki Yoon, Rodolfo Pel-

lizzoni, Heechul Yun, Russel Kegley, Dennis Perlman, Greg Arundale, Bradford Richard,
et al. Single core equivalent virtual machines for hard real—time computing on multicore

processors. Technical report, Univ. of Illinois at Urbana Champaign, 2014.

25 P. K. Valsan, H. Yun, and F. Farshchi. Taming non-blocking caches to improve isolation in

multicore real-time systems. In 22nd IEEE Real-Time and Embedded Technology and Ap-

plications Symposium (RTAS), pages 1–12, April 2016. doi:10.1109/RTAS.2016.7461361.

26 S. Vestal. Preemptive scheduling of multi-criticality systems with varying degrees of exe-

cution time assurance. In 28th IEEE International Real-Time Systems Symposium (RTSS

2007), pages 239–243, Dec 2007. doi:10.1109/RTSS.2007.47.

27 H. Yun, R. Mancuso, Z. P. Wu, and R. Pellizzoni. PALLOC: DRAM bank-aware memory

allocator for performance isolation on multicore platforms. In 20th IEEEReal-Time and

http://dx.doi.org/10.1109/RTSS.2009.31
http://dx.doi.org/10.1109/ECRTS.2012.24
http://dx.doi.org/10.1007/s11241-013-9187-z
http://dx.doi.org/10.1007/s11241-013-9187-z
http://dx.doi.org/10.1109/SIES.2014.6871199
http://dx.doi.org/10.1109/RTSS.2016.014
http://dx.doi.org/10.1109/RTAS.2013.6531078
http://dx.doi.org/10.1109/ECRTS.2015.23
http://dx.doi.org/10.1109/RTCSA.2015.35
http://dx.doi.org/10.1109/ECRTS.2014.20
http://dx.doi.org/10.1109/ECRTS.2014.20
http://dx.doi.org/10.1109/RTAS.2016.7461339
http://dx.doi.org/10.1109/RTAS.2016.7461361
http://dx.doi.org/10.1109/RTSS.2007.47

M. A. Awan, K. Bletsas, P. F. Souto, B. Akesson, and E. Tovar 18:21

Embedded Technology and Applications Symposium (RTAS 2014), pages 155–166, April
2014. doi:10.1109/RTAS.2014.6925999.

28 H. Yun, G. Yao, R. Pellizzoni, M. Caccamo, and L. Sha. Memory access control in multipro-
cessor for real-time systems with mixed criticality. In 24th Euromicro Conference on Real-

Time Systems (ECRTS 2012), pages 299–308, July 2012. doi:10.1109/ECRTS.2012.32.
29 H. Yun, G. Yao, R. Pellizzoni, M. Caccamo, and L. Sha. Memguard: Memory bandwidth

reservation system for efficient performance isolation in multi-core platforms. In 19th IEEE

Real-Time and Embedded Technology and Applications Symposium (RTAS 2013), pages 55–
64, April 2013. doi:10.1109/RTAS.2013.6531079.

30 H. Yun, G. Yao, R. Pellizzoni, M. Caccamo, and L. Sha. Memory bandwidth manage-
ment for efficient performance isolation in multi-core platforms. IEEE Transactions on

Computers, 65(2):562–576, Feb 2016. doi:10.1109/TC.2015.2425889.

ECRTS 2017

http://dx.doi.org/10.1109/RTAS.2014.6925999
http://dx.doi.org/10.1109/ECRTS.2012.32
http://dx.doi.org/10.1109/RTAS.2013.6531079
http://dx.doi.org/10.1109/TC.2015.2425889

	Introduction
	Related Work
	System model and assumptions
	Platform
	Task model
	Impact of mode change upon WCET
	Aspects of deadline scaling

	Schedulability analysis
	Last-level cache allocation
	L-mode allocation
	H-mode allocation

	Evaluation
	Experimental Setup
	Results

	Conclusions

