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Abstract—Mixed-criticality (MC) multicore system design
must reconcile safety guarantees and high performance. The
interference among cores on shared resources in such systems
leads to unpredictable temporal behaviour. Memory bandwidth
regulation among different cores can be a useful tool to mitigate
the interference when accessing main memory. However, for
mixed-criticality systems conforming to the (well-established)
Vestal model, the existing schedulability analyses are oblivious to
memory stalling effects, including stalls from memory bandwidth
regulation. This makes it unsafe. In this paper, we address this
issue by formulating a schedulability analysis for mixed-criticality
fixed-priority-scheduled multicore systems using per-core mem-
ory access regulation. We also propose multiple heuristics for
memory bandwidth allocation and task-to-core assignment. We
implement our analysis and heuristics in a tool and evaluate
them, performance-wise, through extensive experiments. Our
experiments show that stall-oblivious schedulability analysis may
be optimistic due to contention on shared memory resources.

I. INTRODUCTION

There is a recent trend of mixed-criticality systems (MCSs)

in many real-time embedded domains (automotive, avionics,

aerospace), where functions of different criticalities use the

same hardware resources, such as cores, interconnect and

memories [1]. A deadline miss by a high-criticality task can

be disastrous, so lower-criticality tasks must not interfere

unpredictably. This can be achieved through performance

isolation [1]. However, too rigid isolation wastes processing

resources, so designers want (i) efficient use of processing

capacity and (ii) schedulability guarantees for all tasks under

typical conditions subject to (iii) ensured schedulability of

high-criticality tasks in all cases. This is the philosophy of

Vestal’s model [2], [3], which views the system operation as

different modes, whereby only tasks of a certain criticality

or above execute. Different worst-case task execution times

(WCETs) are assumed for the same task in each mode it can

be a part of, with corresponding degrees of confidence. This

permits less rigorous (less costly) WCET estimation for low-

criticality tasks, without compromising safety. Vestal’s model

is the basis of most scheduling theory for MCSs [4].

Scheduling techniques for Vestal’s model and their analyses

can benefit from being combined with techniques intended to

make the platform both more realistic and more predictable
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and amenable to analysis by incorporating the architectural

details. A major such effort, albeit criticality-agnostic, is the

Single-Core Equivalence (SCE) framework [5], which regu-

lates access to different shared platform resources in order to

make contention patterns predictable/amenable to analysis.

In this work, we import SCE’s per-core memory bandwidth

regulation mechanism into the schedulability analysis of a

multicore MCS with static task-to-core-partitioning, sched-

uled under Fixed Priorities, i.e., the Adaptive Mixed-Criticality

(AMC) scheduling algorithm [6]. For such a system, we

formulate stall-aware schedulability analysis, (Section IV)

extending the existing stall-oblivious AMC-rtb test. We then

formulate various heuristics for (uneven, in the general case)

memory bandwidth allocation to cores and for task-to-core

assignment (Section V). Finally, we experimentally evaluate

the scheduling performance of these heuristics, using the new

schedulability test (Section VI). We establish that many task

sets deemed feasible by stall-oblivious tests may be infeasible.

II. RELATED WORK

In its classic form [2] [3], Vestal’s versatile and well-

established model for uniprocessor MCSs, assumes an ordered

set of criticality levels. Each task has a period, a deadline,

a (design) criticality level and a set of WCETs – one per

criticality level and non-decreasing with respect to the latter.

For this model, Baruah et al. [6] devised AMC scheduling and

the notion of run-time system criticality level, initialised to the

lowest task criticality at startup. If a task exceeds its WCET for

the system’s current criticality level, the system stops all tasks

with criticality equal to that level and increments its criticality

level. Schedulability analysis relies on fixed-priority worst-

case response time (WCRT) analysis, using the appropriate

task WCETs. Two such schedulability tests are presented

in [6]: AMC-rtb and the tighter, but more complex, AMC-max.

Fleming and Burns [7] extended AMC to an arbitrary number

of criticality levels and showed that AMC-rtb approximates

AMC-max reasonably well. The later AMC-IA test [8] slightly

outperforms AMC-max. Other works improve on AMC-max

via a slightly different preemption model.

Many works exist on mechanisms for mitigating the inter-

ference on shared resources [9], [10] and on integrating the

effects of such interference in the schedulability analysis [1],

[5], [11]–[13]. Yun et al. [13] analysed the response time of



critical tasks scheduled on a single core by regulating the

memory access rates of cores running non-critical tasks only.

This idea was generalized [12] by regulating all cores and

through a corresponding schedulability analysis that finds the

response time of all tasks. However, unlike Vestal’s model,

in [12] critical and non-critical tasks cannot co-exist on the

same core, which is potentially inefficient in terms of resource

usage. In comparison, in this paper, we port the regulation

scheme from [12] to a standard Vestal model, which is more

general and allows both critical and non-critical tasks on the

same core, for efficient resource use without compromising

the schedulability of the critical tasks and system safety.

III. TASK MODEL AND OVERVIEW OF AMC SCHEDULING

Next, we formalise our MC task model and give an overview

of the AMC-rtb schedulability analysis. Afterwards, we intro-

duce the memory-regulation-related aspects of the system and

discuss their implications on the schedulability analysis.

A. Task Model

Consider a platform with m identical cores and a set τ of n
MC sporadic tasks (τ1 to τn). Each task has a relative deadline

Di, a minimum interarrival time Ti and a criticality level κi,

which is either low (L) or high (H). The tasks are partitioned

to the cores offline and do not migrate at run-time.

We assume the same Vestal MC model as Baruah and

Burns [6], which views the system operation as different

modes, whereby only tasks of a certain criticality or higher

execute. Different WCETs estimates are assumed for each task

in different modes, with different confidence in their safety.

In our case, with two modes (L and H), the L-mode WCET

estimate (or L-WCET, for short) of a task τi is denoted as CL
i

and its (safe but pessimistic) H-WCET estimate as CH
i ≥ CL

i .

The system boots in L-mode and remains in L-mode as long

as no task exceeds its L-WCET; but if that happens, then all

L-tasks are stopped and the system switches to H-mode, where

only the H-tasks execute. It follows that H-WCETs need not be

specified for the L-tasks. The system is schedulable if no task

deadline is missed in L-mode and no H-task deadline is missed

in H-mode (including H-tasks caught in the mode transition).

This must be verifiable offline, via schedulability tests that

use the respective WCET estimates for each mode. Next, we

discuss such tests, assuming fixed-priority scheduling, which

in the context of Vestal’s model, becomes AMC.

B. Adaptive Mixed Criticality (AMC) Scheduling

AMC is a fixed-priority-based mixed-criticality scheduling

algorithm for platforms that can monitor for how long jobs

have been executing. It supports multiple criticality levels, but

here we only consider two, in accordance with our task model.

Under AMC, at any time, tasks are scheduled according to

their fixed priority. The only implications of a mode change

(triggered by some job exceeding its L-WCET estimate) are

that (i) L-tasks are halted and (ii) different WCET estimates

are henceforth assumed for the H-tasks. Therefore, AMC

schedulability analysis relies on standard fixed-priority re-

sponse time analysis [14], [15] and checks the schedulability

in both operating modes, L and H, as well as during the

mode transition interval. The latter starts at the moment of the

mode switch and ends at the earliest idle instant. Checking

the schedulability in L-mode is a straightforward application

of standard WCRT analysis. For each task τi, we compare its

deadline to its WCRT, computed using the L-WCETs:

RL
i = CL

i +
∑

τj∈hp(i)

⌈

RL
i

Tj

⌉

CL
j (1)

where hp(i) is the set of tasks with higher priority than τi.
Likewise, for the steady H-mode, for each H-task τi, one

would compute the WCRT using the H-mode WCETs of τi
and all H-tasks with higher priority than τi. However, this

steady H-mode analysis is subsumed by the analysis for the

mode transition interval. If the system is schedulable during

the transition, it will also be schedulable in steady H-mode.

For H-tasks caught in a mode transition, Baruah et al. [6]

offer two tractable WCRT estimation techniques, based on

solving recurrence relations. The first recurrence, AMC-rtb,

avoids enumeration of the instants at which a mode switch

may occur by bounding the worst-case interference by higher

priority L-tasks separately from that by higher-priority H-

tasks. The key observation leveraged is that no L-task can

execute beyond the L-mode response time of the task under

analysis, RL
i , because the mode change must occur before

that instant. As for the interference by H-tasks, it is larger, the

earlier the mode switch occurs. Therefore, it is upper-bounded

assuming that the mode switch occurs immediately after the

release of the task under analysis. Thus, an upper bound for

the WCRT of a job by an H-task τi, caught in a mode change,

is provided by R∗
i , the solution to recurrence:

R∗
i = CH

i +
∑

τj∈hpH(i)

⌈

R∗
i

Tj

⌉

CH
j +

∑

τℓ∈hpL(i)

⌈

RL
i

Tℓ

⌉

CL
ℓ (2)

where hpL(i) and hpH(i) are the sets of L-tasks and H-tasks,

respectively, with higher priority than τi.

AMC-rtb analysis is straightforward, but pessimistic, since

the worst-case interference by L-tasks cannot occur simul-

taneously with the worst-case interference by H-tasks. The

tighter but more elaborate AMC-max analysis [6] considers

the key instants when the mode switch may occur and takes the

maximum response time obtained for each of these instants.

For simplicity, we use AMC-rtb rather than AMC-max, even

though our approach can also be adapted to the latter.

C. Memory Access Regulation Model

The above discussion is oblivious to aspects related to mem-

ory accesses (to caches or main memory) and any regulation

thereof. To integrate such aspects, we mostly adopt the SCE

[5] assumptions, more specifically those of [12]:



We assume that all cores access main memory via a single

shared memory controller. The combined policy of both the

memory controller and its interconnect is round-robin [9], [12].

The last-level cache is either private or partitioned to each core.

Like Yao et al. [12], we assume that each memory access takes

a constant time L and that access to main memory is regulated

(by the Memguard software mechanism [9] or in hardware).

Specifically, each core i has a memory access budget Qi,

which is the maximum allowed memory access time within a

regulation period of length P . These budgets are set at design

time and may be uneven across cores. The budget enforcement

semantics are that a core i that consumes its memory access

budget, Qi, within a regulation period is stalled until the

start of the next regulation period. Regulation periods on all

cores are synchronised. The memory bandwidth share of core

i is bi = Qi/P . By design,
∑

i bi ≤ 1, i.e. the bandwidth

is not overcommitted. Finally, Yao et al. [12] assume that

CPU computation and memory access do not overlap in time;

therefore, the WCET of task τi is Ci = Cm
i +Ce

i , where Cm
i

is the memory access time and Ce
i the CPU computation time.

D. Memory Bandwidth Regulation Analysis

For the above memory regulation model, Yao et al. provide

schedulability analysis in [12] for single-criticality systems

using partitioned fixed-priority scheduling, with priorities as-

signed according to the Rate-Monotonic policy. We summarize

that analysis below and adapt it to a MC model in Section IV.

a) Stall Analysis: When performing a memory access,

as a result of a cache miss, the core may be stalled either

(i) because of memory regulation, e.g., if the core’s memory

budget has been exhausted, referred to as regulation stall, or

(ii) because of concurrent memory accesses by other cores,

referred to as contention stall. The analysis in [12] assumes

that a task is not preempted and therefore it is executing,

accessing memory or is stalled at any time. As a result, three

worst-case memory access patterns, depending on the core’s

bandwidth b as well as on the task’s cache stall ratio r =
Cm

i

Ci

are identified. Because of space limitations, we just briefly

describe the different cases/patterns, for details please check

[12]. Note that we omit the index of a task under analysis in

this subsection for simplicity.

Case 1: b ≤ 1
m

In this case, the worst-case stall occurs

when all the memory accesses are clustered, maximizing the

regulation stall, and the stall can be upper-bounded by:

stall =

{

Cm

Q
(P -Q)+(m-1)Q if Cm%Q=0

⌈

Cm

Q

⌉

(P -Q)+(m-1)(Cm%Q) otherwise
(3)

Case 2: b> 1
m

and r=Cm

C
< 1−b

(m−1)b In this case, the worst-case

stall occurs when all memory accesses suffer the maximum

contention stall and an upper bound of the stall is given by:

stall = (P −Q) + (m− 1) ·Q (4)

Case 3: b > 1
m

and r = Cm

C
≥ 1−b

(m−1)b In this case, the density

of memory accesses is such that some regulation periods must

suffer regulation stalls, and an upper bound of the stall is:

stall =

{

(1 +K1)(P −Q) + r1 if C ≤ (1 +K1)Q
(

1 + C
Q

)

(P −Q) + r2 otherwise
(5)

where, K1 =

⌊

Ce

Q−RBS

⌋

, RBS =
P −Q

m− 1

r1 = min{P −Q, (m− 1)(Cm −K1 ·RBS)}

r2 = min{P −Q, (m− 1)(C%Q)}

Algorithm 1 from [12] summarizes the computation of an

upper bound on the worst-case stall of a non-preemptive task

and is presented here to facilitate the understanding of the

approach we are proposing for MCSs.

Algorithm 1 Non-preemptive Task Worst-Case Stall

Input: System and task parameters: C,Cm, Ce, r, P,Q,m
Output: Worst-case stall for this task

1: if b = Q

P
< 1

m
then compute stall as Eq. (3)

2: else if r =
Cm

C
≤

1−b

b·(m−1)
then compute stall as Eq. (4)

3: else compute stall as Eq. (5) end if

b) Schedulability Analysis: The schedulability analysis

in [12] relies on standard fixed-priority response time analy-

sis [15], comparing the response time of each task, in decreas-

ing order of a task’s priority, with its deadline. However, the

above stall analysis assumes that the task is not preempted.

Therefore, to analyse the response time of each task, Yao

et al. [12] consider a synthetic task equivalent to all the

activations that occur in the response time window of the task

under analysis and uses the following recurrence:

R
(k+1)
i = Ci +

∑

τj∈hp(i)

⌈

R
(k)
i

Tj

⌉

Cj + stall
(

R
(k)
i

)

(6)

where the stall term, stall
(

R
(k)
i

)

, is computed using Algo-

rithm 1 with these parameters for the equivalent synthetic task:














Cm(k) = Cm
i +

∑

τj∈hp(i)

⌈

R
(k)
i

Tj

⌉

Cm
j

Ce(k) = Ce
i +

∑

τj∈hp(i)

⌈

R
(k)
i

Tj

⌉

Ce
j

(7)

The initial estimate of τi’s response time R
(0)
i is computed

with standard response time recurrence without any stall term.

IV. STALL-AWARE AMC-RTB ANALYSIS

In this section, we extend the well-known AMC-rtb [6] MC

schedulability analysis to also consider memory budgets.

A. Implications of Memory Regulation to the Task Model

Section III-A defines L-mode (CL
i ) and H-mode (CH

i )

WCET estimates for the tasks in the respective modes. As

a first step towards bringing this mixed-criticality model in

line with the analysis by Yao et al [12], we henceforth

distinguish between worst-case CPU computation time (C
e|•
j )

and worst-case memory access time (C
m|•
j ), in each mode,



and define CL
i = C

e|L
j + C

m|L
j and CH

i = C
e|H
j + C

m|H
j .

Thus, in accordance with Vestal’s principles, each H-task

has two (Ce, Cm) pairs: (Ce|L, Cm|L) for the L-mode, and

(Ce|H , Cm|H) for the H-mode, the latter being more conser-

vative. On the other hand, there are fewer tasks contending

for the memory in H-mode (since the L-tasks are dropped).

Our memory-regulation-aware MC schedulability analysis, in

the next section, leverages this fact to reduce pessimism.

B. Analysis

We now incorporate the stall terms derived for each mode

by the analysis in [12] to the respective WCRT equations.

1) L-mode Analysis: In L-mode, AMC behaves like stan-

dard fixed-priority scheduling. Therefore, we can apply Yao

et al. [12] analysis described in III-D, using the L-WCETs

for both the L-tasks and the H-tasks. More specifically, we

perform the analysis in decreasing priority order, and to

compute the response time of task i we use recurrence:

R
L(k+1)
i

∧

= CL
i +

∑

τj∈hp(i)









R
L(k)
i

∧

Tj









CL
j + stall

(

R
L(k)
i

∧

)

(8)

where the stall(R
L(k)
i

∧

) is computed using Algorithm 1

from [12]. Furthermore, R
L(0)
i is computed with standard

response time recurrence without any stall term. If the WCRT

of some task exceeds its deadline, the task set is unschedulable.

2) Mode Transition Analysis: We now merge the

regulation-stall-aware analysis from [12] with the analysis

of Baruah et al. [6] for mode switching. For simplicity, we

consider the AMC-rtb analysis, although this approach could

be applied to the other analyses from [6].

Upon a mode switch under AMC, L-tasks are halted and

afterwards only H-tasks run. Therefore, an upper-bound on

the WCRT of an H-task τi, assuming that the mode switch

occurs before its completion can be given by R∗
i , the solution

to (2). To take into account the regulation-induced stall, we

add the stall term obtaining the following recurrence:

R
∗(k+1)
i

∧

=CH
i +

∑

τj∈hpH(i)









R
∗(k)
i

∧

Tj









CH
j +

∑

τℓ∈hpL(i)

⌈

RL
i

Tℓ

⌉

CL
ℓ

+ stall(R
∗(k)
i

∧

) (9)














Cm(k+1) = C
m|H
i +

∑

τj∈hp(i)

⌈

R
∗(k)
i

Tj

⌉

C
m|κj

j

Ce(k+1) = C
e|H
i +

∑

τj∈hp(i)

⌈

R
∗(k)
i

Tj

⌉

C
e|κj

j

(10)

Like for Recurrence (8), we compute the stall term with

Algorithm 1 using an equivalent “synthetic task” that com-

prises the demand of both Ce and Cm of all the activations

within the response time window. The synthetic task param-

eters Ce and Cm can be computed with Recurrence (10).

Recurrences (9) and (10) can be initialized with RL
i computed

through Recurrence (8). In line with the assumptions made by

AMC-rtb, we use Ce|L and Cm|L for all activations of L-tasks,

and Ce|H and Cm|H for all activations of H-tasks.

The computation of the stall term via (9) is pessimistic. We

use R
∗(k)
i as a stall term input to compute the parameters of the

synthetic tasks via Recurrence (10). However, L-tasks are idled

after the mode change, hence, all the activations of hpL(τi)
tasks should be considered only within the RL

i interval. In

contrast, all activations of hpH(τi) tasks must be considered

for the entire R
∗(k)
i interval. We refine the stall term for

Recurrence (9) and denote it as stall(RL
i , R

∗(k)
i ) with two pa-

rameters. The synthetic task parameters for stall(RL
i , R

∗(k)
i )

are computed with Recurrence (11). The rest of the procedure

remains the same, the stall is computed with Algorithm 1 and

Recurrence (9) is initialised with RL
i .



























Cm(k+1) = C
m|H
i

+
∑

τj∈hpL(i)

⌈

RL
i

Tj

⌉

C
m|L
j

+
∑

τℓ∈hpH(i)

⌈

R
∗(k)
i

Tℓ

⌉

C
m|H
ℓ

Ce(k+1) = C
e|H
i

+
∑

τj∈hpL(i)

⌈

RL
i

Tj

⌉

C
e|L
j

+
∑

τℓ∈hpH(i)

⌈

R
∗(k)
i

Tℓ

⌉

C
e|H
ℓ

(11)

V. MEMORY BANDWIDTH ALLOCATION AND

TASK-TO-CORE ASSIGNMENT HEURISTICS

We propose five heuristics for allocating memory bandwidth

and tasks to the cores, and evaluate them in terms of system

schedulabity. Like AMC, we use Audsley’s algorithm [16] to

assign task priorities, even though it is no longer necessarily

optimal in the presence of stalls.

1) Even: All cores get the same share of the total memory

bandwidth. Subject to this, the task-to-core assignment is

performed using first-fit bin-packing.

2) Uneven: Initially, this heuristic also distributes the band-

width evenly to the cores and employs first-fit for task assign-

ment. However, instead of declaring failure whenever a task

does not fit on any core, it sets that task aside, and moves on

to consider the next task. Any tasks that remain unassigned,

after considering all tasks are handled in-order as follows:

Each core’s bandwidth is “trimmed” to the minimum value that

preserves schedulability, via sensitivity analysis (specifically,

binary interval search). Let the total reclaimed bandwidth from

all cores be B. A second round of first-fit tries to assign the

remaining tasks, assuming that the bandwidth of the target

core i is increased by B. Upon successfully assigning such

a task, we trim anew the target cores’s memory budget via

sensitivity analysis, adjust the available reclaimed budget and

move on to the next task in a similar manner.

3) Greedy-fit: Initially, the total memory bandwidth is

assigned to the first core and the task-set is iterated over once

(in a given order) to assign the maximum number of tasks

to this core; if one task does not fit, we try the next one.

Afterwards, the spare bandwidth on this core is reclaimed

using sensitivity analysis, and is fully assigned to next core.

This continues until all tasks are assigned or the cores run out.



4) Humble-fit: Similar to greedy-fit, except that when a task

assignment fails, we move to the next core (attempting no

more task assignments on the current one).

5) Memory-fit: Initially, bi = 0 for every core i. Each task

is assigned to the core i that requires the least increase to its

bi to accommodate it, subject to existing task assignments.

Obviously, we expect “Uneven” to outperform “Even”

schedulability-wise, but run slower, as it explores larger

solution space. “Greedy-fit” and “Humble-fit” aggressively

optimise for the available core processing capacity, possibly

at the cost of memory bandwidth. Conversely, “Memory-

fit” optimises for bandwidth instead, possibly at the cost

of processing resource usage. Hence, all these alternative

techniques sample the solution space in different ways.

VI. EVALUATION

1) Experimental Setup: We used a Java tool to generate

synthetic workloads with the following control parameters.

Task periods are generated with a log-uniform distribution

in the range 10ms − 100ms. We assume implicit deadlines

(Di = Ti), even if our analysis holds for constrained deadlines

(Di ≤ Ti). The L-mode utilisation of each task is generated

using UUnifast-discard [17], [18] for unbiased distribution of

utilisation values. Task L-WCETs are derived by multiplying

the task period with its L-mode utilisation. H-WCETs are

computed by multiplying the L-WCET with a user-defined

factor [4]. The fraction of H-tasks in the task-set is a user-

specified parameter. The cache stall ratio r =
Cm

i

Ci
of each

task is randomly chosen from the SPEC2006 suite [12]; in

turn, C
m|L
i = r × CL

i and C
m|H
i = r × CH

i . Consequently,

C
e|L
i = CL

i − C
m|L
j and C

e|H
i = CH

i − C
m|H
i .

Each task-set is generated for a given target utilisation of

U = x × m : x ∈ (0, 1]. We created different objects

of a random class, each seeded with different odd integers

and reused in successive replication [19], to generate random

values for periods, utilisations and r. For each set of input

parameters, we generate 1000 random task-sets. Each task-set

is indexed1 in descending order of
C

m|κi
i

Ti
, except for Memory-

fit that performs better with descending order of UL
i . Table I

summarises the parameters used in our experiments.

2) Results: We compare all heuristics from Section V

along with one heuristic (“AMC-rtb-FF”) that uses necessary

schedulability tests on each core. “AMC-rtb-FF” tests the fea-

sibility assuming zero stalling, using standard stall-oblivious

AMC-rtb analysis [6] and first-fit task allocation. It gauges

the schedulability drop in stall-aware schedulability analysis

due to memory contention.

Due to space constraints, in each plot we vary only one

parameter; the rest conform to the defaults from Table I. Since

the number of plots would still be too high to accommodate,

1In our experiment, we found that this ordering performs better than

descending (κi, Di), (κi, U
L
i ), UL

i , Di or C
m|L
i /Ti.

TABLE I: Overview of Parameters

Parameters Values Default

H-WCET scaling up factor {2 : 0.5 : 6} 2

Number of cores (m) {2, 4, 8, 16} 4

Task-set size (n) {8 : 4 : 32, 64} 16

Fraction of H-tasks in τ {0.2 : 0.05 : 0.8} 0.4
Regulation period (P ) {1us, 10us, 100us, 1ms} 100us
Cache stall ratio limit {0.1 : 0.1 : 1} SPEC2006

Inter-arrival time Ti 10ms to 100ms N/A

Nominal L-mode utilisation {0.1 : 0.01 : 1} N/A

we further reduce the number of plots instead of plotting

outright the scheduling success ratio for each parameter com-

bination, we condense this information into plots of weighted

schedulability (WS). This performance metric [20], [21], con-

denses what would have been three-dimensional plots into two

dimensions. It is a weighted average that gives more weight

to task-sets with higher utilisation (i.e., supposedly harder to

schedule). Let Sy(τ, p) represent the binary result (0 or 1)

of the schedulability test y for a task-set τ with an input

parameter p. Then Wy(p), the weighted schedulability for that

schedulability test y as a function p, is given by (12), where,

ŪL(τ) = UL(τ)
m

is the nominal L-mode utilisation.

Wy(p) =

∑

∀τ

(

ŪL(τ) · Sy(τ, p)
)

∑

∀τ Ū
L(τ)

(12)

A bigger fraction of H-tasks or a greater H-WCET scaling-

up factor raises the H-mode demand, leading to lower WS

as seen in Figures 1 and 2, respectively. A larger number of

cores increases the contention and hence, decreases the WS

(Figure 3). This experiment assumes a task-set size of 4 ·m,

instead of the default 16. A greater task-set size decreases

the bin-packing fragmentation and hence leads to better WS

for most heuristics (see Figure 4). To analyse the effect of

memory intensity, we randomly select a task’s r uniformly

over an interval (0, z]. Values of z from 0.1 to 1 are used in

different experiments. For reference, we also plot results for

when the tasks randomly get their r values from the SPEC2006

benchmark suite. Greater memory intensity results in higher

stall-related overheads and lower WS (Figure 5).

Figure 6 presents the unweighted schedulability success

ratio for default parameters but for m = 2 because exhaustive

search (added in this experiment) was intractable with m = 4.

We can see from this and all other figures that Memory-fit,

Uneven, Even, Humble-fit and Greedy-fit is the descending

ordered list w.r.t. schedulability ratio. Greedy-fit and Humble-

fit perform worse than the Uneven and Even approaches due

to their too aggressive optimisation w.r.t. the use of processing

resources at the cost of available memory bandwidth. Indeed,

Humble-fit is less aggressive in that respect, which is why it

performs better compared to Greedy-fit. On the other hand,

Memory-fit, which optimises the use of memory bandwidth,

performs better than Uneven. This means, for the given set of

parameters, memory bandwidth is the scarcest resource. AMC-

rtb-FF excludes the overheads of memory stall and hence,

effectively serves as a ceiling on schedulability success ratio.

In Figure 6, the “Exhaustive” algorithm checks the system’s

feasibility using our analysis, after considering all possible

allocations of tasks to cores. The efficiency of the proposed
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heuristics is evident from their very small difference from

the Exhaustive solution. Conversely, the wide gap between

AMC-rtb-FF and the stall-aware Exhaustive algorithm shows

that many task-sets deemed feasible by AMC-rtb-FF are

not feasible with stall-aware schedulability tests and hence,

underlines the significance of stall-awareness. Nevertheless,

AMC-rtb-FF is not entirely oblivious to memory demand as

task-set sorting is still based on
C

m|κi
i

Ti
, hence, there is a smaller

dip in Figure 5 at 0. By construction, Greedy-fit and Humble-

fit do not benefit from an increase in task-set size despite gains

of low bin-packing fragmentation (Figure 4).

VII. CONCLUSIONS

We proposed task-to-core partitioning, memory bandwidth

distribution and regulation-aware (stall-cognisant) schedulabil-

ity analysis for MC fixed-priority-scheduled multicore sys-

tems. Combining Vestal’s model with techniques intended to

make the multicore platform more realistic and predictable,

improves confidence in it and leads to an accurate and hence,

safer schedulability analysis. Our results show that stall-aware

analysis can eliminate false positives in schedulability testing

and that for better schedulability it is important to optimize

the memory bandwidth allocation and task-to-core assignment

heuristic for the scarcest resource in the system. In the future,

we intend to dynamically vary the memory bandwidth distribu-

tion at mode switch to further improve system schedulability.
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