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Abstract 

This paper presents a viable solution for the development of service robots by leveraging cloud and Web services 
technologies, modular software architecture design, and Robot Operating System (ROS). The contributions of this 
paper are two- folded (1) Design of ROS Web services to provide new abstract interfaces to service robots that 
makes easier the interaction with and the development of service robots applications, and (2) Integration of the 
service robot to the cloud using the ROSLink protocol. We demonstrate through real-world implementation on the 
MyBot robot the effectiveness of these software abstraction layers in developing applications for service robots 
through the Internet and the cloud, and in accessing them through Internet. We believe that this work represents 
an important step towards a more popular use of service robots. 
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Abstract – This paper1 presents a viable solution for 
the development of service robots by leveraging 

cloud and Web services technologies, modular 
software architecture design, and Robot Operating 

System (ROS). The contributions of this paper are 
two-folded (1) Design of ROS Web services to 

provide new abstract interfaces to service robots 
that makes easier the interaction with and the 

development of service robots applications, and (2) 
Integration of the service robot to the cloud using 

the ROSLink protocol. We demonstrate through 
real-world implementation on the MyBot robot the 
effectiveness of these software abstraction layers in 
developing applications for service robots through 

the Internet and the cloud, and in accessing 
them through Internet. We believe that this work 

represents an important step towards a more 
popular use of service robots. 

I. INTRODUCTION 

The tremendous growth in utilization of robots has brought nu-

merous benefits for humans with application to manufacturing, 

healthcare, mining, deep excavation, space exploration, etc. Use 

of robots has been a significant factor in improvement of hu-

man safety, reduction in maintenance / production costs and 

improved productivity [1]. 

It is widely forecasted that service robots would inundate 

the market reaching record sales in the next 20 years. In its sta-

tistical report, the International Federation of Robotics reported 

sale of 3 million service robots for personal and domestic within 

2012. This number represents 20% increase in sales from the 

previous year accounting to US$ 1.2 billion [2]. Nowadays, one 

of the major challenges in the development of service robots is 

the lack of software engineering frame-works to build complex 

service robots’ applications that are modular, reusable, and ea-

sily extensible. Most of the available software for service robots 

are tightly coupled with the robotic platform and lack sufficient 

abstractions to remain generic for different platforms. Robot 

Operating System (ROS) is one of the widely used middleware 

to develop robotic applications, which represents an important 

milestone in the development of modular software for robots. 

In fact, it presents different abstractions to hardware, network 

and operating system such as navigation, motion planning, 

1 This paper is an extended version of the conference paper presented in IEEE 

International Conference on Autonomous Robot Systems and Competitions 

(ICARSC 2016) 

low-level device control, and message passing. However, the le-

vels of abstractions are still not enough for developing complex 

and generic applications for mobile robots, in particular if those 

applications are distributed among several machines, requiring 

machine-to-machine communication. This paper addresses this 

gap, and proposes the design of a service-oriented software 

architecture that contains software abstractions. In particular, 

we designed and developed ROS Web Services, which are new 

interfaces that expose ROS ecosystem as Web services. Further-

more, we designed the ROSLink protocol that allow the service 

robot to be controlled and monitored through a cloud robotics 

system, namely Dronemap Planner [3], [4]. 

The contributions of this paper are as follow. 

 Design of a low-cost service robot Based on the Turtlebot 

platform and Commercial off the Shelf (COTS) hardware.  

 Design of software meta-models for the integration of Web 

services into ROS. To the best of our knowledge, the work 

presented is ground breaking as far as such  integration is 

concerned.  

 Integration of ROS-based robots into the cloud using 

the  ROSLink protocol.  

 Experimentation and deployment of the service robot  for 

the validation of our architecture and discussion of experi-

mental challenges.  

The rest of this paper is organized as follows. Section II discus-

ses the state-of-the-art with an emphasis on the contribution 

of this paper compared to similar works. Section III presents the 

mechanical design of the service robot. In Section IV, we present 

ROS Web services and the ROSLink protocol for cloud integra-

tion of the robot. In Section V, we  present application deploy-

ments for the service robot. Section VI concludes the paper and 

outlines future works. 

II. RELATED WORKS 

Developing software architecture and frameworks for assistan-

ce and service robots has attracted a lot of attention in the lite-

rature. Authors in [5] developed an intelligent vehicle control ar-

chitecture to allow multiple collaborating robots to accomplish 

missions. The proposed systems architecture is based on service 

oriented computing and agent software technology. The au-

thors evaluate the proposed work using a very limited study 

involving multiple drones. In [6], authors presented Hyper-Flex 

tool-chain focusing on ROS metamodels and ROS-specific tools 

for supporting the process of exploiting reference architectu-

res and demonstrated how reference architecture can be used 

for building complex software systems. The limitation of these 
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works is the lack of concrete implementations demonstrating 

instantiation of these processes. In [7], the authors present an 

Event-Driven Architecture, which enhances the capabilities of 

robots to interpret events and react on those according to pre-

defined functionality. The authors applied a service oriented 

architecture to a choreography engine to compose services 

without the need of an orchestration engine. The proposed sys-

tem was applied to an automation system, although no imple-

mentation details are provided. 

In [8], the authors proposed an architecture for a Domestic 

Robot targeting elderly users in assisting them to remain auto-

nomous in their homes. The proposed architecture is based on 

the integration of three middleware frameworks PEIS, MIRA, and 

ROS. Most of the computation is performed by a large number 

of ROS nodes; the resulting robot services are exported to the 

PEIS middleware for seamless integration of the robot into the 

ambient assisted living system. rosjs and rosbridge [9] have 

been proposed to facilitate integration of Web services in ROS. 

Both these framework essentially cater to (1) allowing common 

web browsers to exploit users to interact with ROS enabled ro-

bots; (2) to provide Web developers lacking expertise in robotics 

with simple interfaces to develop client applications allowing 

control and manipulation of ROS-enabled robots. In [10], the 

authors proposed ROStful by extending rosbridge to support 

REST Web services and developed a lightweight Web server that 

exposes ROS topics, services and actions through RESTful Web 

services. However, the authors did not provide an architecture 

or meta-model for the integration of REST into ROS. 

In this paper, we propose a Web service layer for ROS, in 

addition to the ROSLink protocol to integrate robots into the 

cloud and the Internet. 

III. ROBOT DESIGN 

A. Design requirements 

The design requirements of MyBot service that were considered 

are: 

 Cost-eff ectiveness: the robotic platform must be cost-eff ec-Cost-effectiveness: the robotic platform must be cost-effec-

tive to be affordable for the public use. 

 ROS-enabled design: We focused our design on ROS-ena-ROS-enabled design: We focused our design on ROS-ena-

bled robot, as ROS is attracting increasing interest in the 

robotics software developers communities. The reason is 

that ROS provides several layers of abstractions that make 

easier the development of robotics software through the 

use of open-source libraries such as navigation services (e.g. 

gmapping package), image processing (e.g. Open-CV and 

PointCloud), drivers for several robots and sensor platforms, 

etc. 

 Commercial-off-the-shelf (COTS) hardware: To extend the 

robot capabilities with additional sensors and hardware, 

we consider the use of COTS hardware that is commonly 

available in the public market. This allows end-users to easily 

extend the robots with their custom requirements. 

The Turtlebot 2 robot represents an appropriate base platform 

to meet the design requirement of the MyBot service robot. Ho-

wever, the software architecture that we propose in this paper 

can be applied to any type of ROS-enabled robot thanks to the 

abstraction layers that we designed for robot control and that 

will be presented in Section IV. 

IV. SOFTWARE ARCHITECTURE 

We designed a software architecture that provides two abstrac-

tion layers on top of ROS to make easier the development of 

distributed applications for service robots. It includes two ma-

jor layers, namely: (1) COROS [11], which is a component-based 

software architecture that provides a first abstraction layer on 

top of ROS composed of modular components to develop co-

operative and distributed applications, (2) ROS Web services is 

the second abstraction layer that allow client applications to se-

amlessly and transparently interact with the robot while hiding 

all implementation details. In what follows, we present the main 

features. 

A. COROS 

1) Component-based Layer Architecture: We reused and exten-

ded our COROS architecture defined in [11], by developing 

new modules for the service robot application logic, and 

also a new message serializer to effectively handle commu-

nication between heterogeneous platforms. In what follo-

ws, we describe the architecture and enhancements. CO-

ROS consists of five layers illustrated in Figure 1 that shows 

the component diagram of the software architecture. The 

software system is decomposed into five subsystems (or 

layers), each of which plays the role of a container of a set of 

components. These subsystems are: 

 Communication: this subsystem was designed to ensure the 

interaction between the robot and other machines, which 

can be robots or user devices. It comprises extensible and 

modular client and server components that enable agents 

to exchange serialized messages through the network inter-

face using sockets. 

Figure 1. COROS Software Architecture. 

 ROS Interaction Layer: this subsystem adds a lightwei-

ght layer on top of ROS allowing a seamless inter-process 

interaction between ROS nodes (processes) defined in the 

architecture. 

 Robot Control: this subsystem adds another layer on  

top of ROS providing a bridge between the local software  

agents and the physical robots. The role of this layer is to 

manage the robot configuration and its state. The Robot 

Controller component provides an abstract model for any 

ROS-enabled robot. 
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 Application Logic: this subsystem addresses the pro-

blem solving requirements; it encapsulates all of the 

components needed to implement a complete service 

robot application. Any new application should reuse and 

configure the software components to define its proper 

behavior.  

 Knowledge Base Manipulation Layer: This subsystem 

aims at satisfying knowledge base requirements and main-

tains up-to-date information about the robot status and its 

environment.  

In the context of MyBot project, we have implemented four ap-

plications using COROS, including (1), Discovery application, (2) 

Courier Delivery application, (3) Coffee delivery application, and 

(4) people guidance application.  

B. ROS Web Services

1) Objectives: The objective of designing ROS Web services 

is to expose ROS as a Service to the client applications, 

providing an additional abstraction layer of ROS resour-

ces including topics, services and actions for developers 

with no prior knowledge on robots or on ROS. There are 

three main benefits coming from exposing ROS as a ser-

vice, namely:  

 Fostering public usage of robots: By exposing the com-

plex ROS ecosystem through Web services interfaces 

to client applications, Web and mobile developers with 

no background on robotics can easily interact with the 

robots through the Internet through Web service invo-

cation. This enables a wider usage of robots at public 

scale.  

 Integration with the cloud: Web services and Service 

Oriented Architecture (SOA) are major components of 

today’s cloud as they allow virtualization of resources. 

Therefore, embedding Web services into ROS allows for 

the integration of ROS-enabled robots with the cloud 

so that users can virtually access the robots’ resour-

ces  through the cloud to either control or monitor the 

robots status. 

 Standard interfaces: Web services allows for providing  

standard interfaces to robotics resources so that it will 

be possible for client application to interact with hete-

rogeneous robots if they are having the same Web ser-

vices abstractions, independently from implementation 

details. 

To address these objectives, we propose to use Web services 

as an additional abstraction layer on top of ROS. We develop 

a SOAP Web Service implementation (ros-ws) and a REST Web 

Service implementation (ros-rs), which represent the two fun-

damental architectural models for SOA. ROS Web Services allow 

any client application on any platform to interact with ROS sim-

ply by invoking the ROS Web Services in exactly the same way 

as invoking traditional Web Services. 

2) System Architecture: Figure 2 depicts the deployment dia-

gram of ROS Web services and illustrates the integration of 

the Web services’ layers into the ROS-enabled service robot 

and the client device. 

Figure 2. Deployment Diagram of ROS Web Services. 

The Web services can be seen as a middleware that allows sea-

mless interaction between client applications and ROS ecosys-

tem in the service robot. Our architecture encompasses both 

SOAP and REST Web services to provide flexible alternative to 

client applications to interact with ROS ecosystem. In particular, 

the Web service layer allows a user to subscribe to or publish 

any ROS topic, action or service, and thus delivering ROS messa-

ges to client subscribed to a particular topic. 

To integrate Web services into ROS, we faced the challenge 

of choosing the most appropriate technology to build the sof-

tware system and design its architecture. We have opted for the 

use of Java as a Web service programming language, as it provi-

des a native and advanced support of SOAP and REST Web ser-

vices, although they are programming-language-independent 

and platform-independent. However, Java EE provides standard 

APIs for SOAP and REST Web Services, known as JAX-WS and 

JAX-RS specifications, respectively. Python also provides REST 

Web service support, but much less than Java for SOAP Web 

services. 

V. INTEGRATION TO THE CLOUD 

The main problem with the deployment of a service robot is 

to make accessible, controllable and monitored through the 

Internet. Some solutions like [9] proposed the ROSBridge with 

a Websockets server on the robot side. This approach enabled 

the effective integration of ROS with the Internet; however, the 

fact that the Websockets server is running on the robot machine 

requires the robot to have a public IP address to be accessible 

by Websockets clients, which is not possible for every robot, or 

being on the same local area networks. Network address trans-

lation (NAT) could also be used when the robot is behind a NAT 

domain, but still this option may be cumbersome in deploy-

ment. To address this issue, we proposed the ROSLink protocol 

[3] that overcomes the aforementioned limitations by (i.) imple-

menting the client in the robot side, (ii.) manifestation of a proxy 

server located at a public IP server machine deployed in a cloud. 

The main objective of ROSLink is to control and monitor a ROS-

enabled robot through the Internet. The general architecture of 

ROSLink is presented in Figure 3. 
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Figure 3. ROSLink Architecture [3]. 

The system is composed of three main parts: 

 The ROSLink Bridge: This bridge provides the main inter-The ROSLink Bridge: This bridge provides the main inter-

face between ROS and the ROSLink protocol. It subscribes 

to ROS topics/services to read data from, serializes them in 

JSON and send it to the cloud, server or user application. In 

addition, it receives commands in JSON format, and execu-

tes the corresponding action through ROS. 

 The ROSLink Proxy and Cloud: it is a proxy server that con-The ROSLink Proxy and Cloud: it is a proxy server that con-

nects user application with ROSLink Bridge in the robot. It 

acts as a mediator between the two ends, and forwards 

message between the user and the robot. Furthermore, it 

provide a complete management system for both robots 

and users, and their mapping in real-time. 

 The ROSLink Client Application: This application is used to 

control and monitor the robot remotely through Internet. 

It provide status of the robot in real-time and allow to send 

commands to it, both using ROSLink Messages. 

For more details about ROSLink communication and ROSLink 

messages, the reader if referred to [3]. 

The ROSLink communication protocol is based on the ex-

change of ROSLink messages. ROSLink messages are JSON for-

matted strings that contain information about the command 

and its parameters. To standardize the type of messages exchan-

ged, we specified a set of ROSLink messages that are supported 

by the ROSLink Proxy. These message can be easily extended 

based on the requirements of the user and the application. 

There are two main categories of ROSLink messages: (i.) Sta-

te messages: these are message sent by the robot and carry out 

information about the internal state of the robot, including its 

position, orientation, battery level, etc. (ii.) Command messages: 

these are messages sent by the client application to the robot 

and carry out commands to make the robot execute some ac-

tions, like for example moving, executing a mission, going to a 

goal location, etc. 

In what follows, we identify an example of messages and 

command types: 

 Presence message: the robot should declare its presence 

regularly to declare itself and to be considered as active. Ty-

pically, Heartbeat messages sent at a certain frequency (ty-

pically one message per second) are used for this purpose. 

 Motion messages: In robot mission, it is important to know 

the location and odometry motion parameters (i.e.linear 

and angular velocities) of the robot at a certain time. Thus, 

a motion message containing position information of the 

robot should be periodically broadcast. 

 Sensor messages: The robot needs to broadcast its internal 

sensor data such as IMU, laser scanners, camera images, GPS 

coordinates, actuators states, etc. ROSLink also defines seve-

ral sensor messages to exchange these data between the 

robot and the user. 

 Motion commands: For the robot to navigate in ROS, 

certain commands are sent to it like Twist messages in 

ROS, and goal/waypoint locations. ROSLink also specifies 

different types of commands to make the robot moves as 

desired. 

VI. EXPERIMENTATION AND DEPLOYMENT 

To demonstrate the effectiveness of the proposed COROS ar-

chitecture and ROS Web services, we used them to develop the 

applications and services of the MyBot service robot presented 

in Section 3. In addition, we deployed the MyBot service robot 

at Prince Sultan University to deliver courier between offices 

and also to bring coffee from the central cafe of the University in 

addition to other services and applications. In the remainder of 

this section, we present the experimental applications develo-

ped using the proposed architecture. 

  

Figure 4. Weather Android Interface. 

A. Climate Condition Application 

The service robot provides the user with information about in-

door climate conditions namely, the temperature, the light and 

humidity. Figure 4 shows the Android interface for the climate 

conditions. It presents the temperature, light and humidity of 

the operating environment of the robot extracted from the Te-

losB sensor node. The COROS architecture was used in this ap-

plication. The integration process of the TelosB sensor into the 

robot has the following steps. 

We developed the low-level driver for TelosB sensor node 

that we integrated it into ROS by developing a ROS package 

for the TelosB node that uses this driver to get the sensor va-

lues from the serial port, and then publishes the three sensor 

data as a new custom ROS topic /telosb_topic using a cus-

tom TelosBMsg message that we created for this purpose. It 

contains three fields for the three sensor data. In the Android 

interface, we have used the android_core and rosjava API avai-

lable to create subscribers to the /telosb_topic, by creating an 
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Android activity that extends the ROSActivity class, and which 

allows publishing and subscribing to topics running on the 

robot. 

The deployment of this application used the COROS archi-

tecture to deliver the sensor data to the mobile application wi-

thin the same local area network, so it is displayed in the user 

mobile device, as illustrated in Figure 4. On the other hand, the 

deployment through the Internet is performed using the ROS-

Link protocol. The use of ROLink allows to easily send this sensor 

information to end-users through the cloud. It defines a custom 

ROSLink message that contains all the three sensor values. This 

message is firstly received by the cloud server, which identifies 

the user who is mapped to this service robot to forward this 

information to it. The mapping between a user and a service 

robot is done through the cloud, when the user registers to use 

a certain robot. It is clear that the ROSLink protocol contributes 

to the concept of Internet-of-Things through its platform-inde-

pendent protocol specification that allows the transfer of any 

kind of data through the Internet, basically data collected from 

ROS ecosystem. 

B. Delivery Application 

The delivery application use case, illustrated in Figure 5, was 

developed so that the robot performs courier delivery mission 

between offices or also deliver coffee from the central Cafe to 

offices. The use case is illustrated in the following video de-

monstration [12]. 

The use case was implemented using two approaches: (1) 

using the COROS framework by instantiating the AgentOpera-

tor for the delivery mission and using JSON to ROS message se-

rialization for platform-independent communication between 

the robot and the Android device, (2) using the ROS Web Ser-

vices interfaces (ros-ws and ros-rs). A comprehensive demons-

tration on developing and using ROS Web services interfaces is 

presented in [13]. 

a) Using ROS Web Services: We also implemented the delivery 

mission using ROS Web services. The Web service interface 

is presented in Listing 2. 

 

package org.ros-ws;

@WebService (serviceName= ,

    name= ,

            targetNamespace=”http://ros-ws.org”)

public interface TurtlebotPublishersInterface {

    @WebMethod (action=”execute_delivery”,

        operationName=”executeDelivery”)

    public void ExecuteDeliveryRequest(

        DeliveryRequestMessage msg);

} 

Listing 1. TurtlebotPublishersInterface Interface.

The ROS Web service interface shows one method called Exec

uteDeliveryRequest(DeliveryRequestMessage msg) that take a 

request message as parameter and send the request to the ro-

bot via Web services. Once the robot receives the coordinates of 

the user, it will execute the action accordingly, by invoking the 

back-end ROS delivery application that remains listening on the 

topic DeliveryRequestMsg/from_json. 

b) Using ROSLink and Cloud Services: We developed a ROSLink 

Bridge for the MyBot robot. The ROSLink Bridge of the ro-

bot subscribe to ROS topics of the MyBot robot and sends 

Heartbeat messages to the cloud at regular time interval to 

maintain its active status in the cloud. It also sends its loca-

tion in the map and motion parameters through the Global 

Motion ROSLink message. These messages are forwarded to 

the end user from the cloud server to keep track and moni-

tor the status of the service robot. On the other hand, the 

user can execute the delivery service through the cloud by 

sending a custom ROSLink Command message ExecuteDe-

livery that takes as parameter the location of the user re-

questing the delivery service. Once this message is received 

by the cloud, it is forwarded to the ROSLink Bridge of the 

robot, which in turns forward it to the same back-end ROS 

delivery application that remains listening on the topic De-

Figure 5. Courier Delivery Scenario.
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liveryRequestMsg/from_json, which receives ROS messages sent by 

the publisher of the dispatcher component. 

 The use the ROSLink protocol definitely solves the problem of acces-

sing robots through the Internet. In addition, the software architecture 

that we proposed provide loosely coupled modules through front-end 

interfaces including Web service interfaces and ROSLink interfaces that 

allow to access the same back-end application in a seamless manner. 
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