

MyBot: Cloud-Based Service Robot using
Service-Oriented Architecture

Journal Paper

*CISTER Research Centre

CISTER-TR-170306

2017

Anis Koubâa*

Mohamed-Foued Sriti

Yasir Javed

Maram Alajlan

Basit Qureshi

Fatma Ellouze

Abdelrahman Mahmoud

Journal Paper CISTER-TR-170306 MyBot: Cloud-Based Service Robot using Service-Oriented ...

© CISTER Research Center
www.cister.isep.ipp.pt

1

MyBot: Cloud-Based Service Robot using Service-Oriented Architecture

Anis Koubâa*, Mohamed-Foued Sriti, Yasir Javed, Maram Alajlan, Basit Qureshi, Fatma Ellouze,
Abdelrahman Mahmoud

*CISTER Research Centre

Polytechnic Institute of Porto (ISEP-IPP)

Rua Dr. António Bernardino de Almeida, 431

4200-072 Porto

Portugal

Tel.: +351.22.8340509, Fax: +351.22.8321159

E-mail: aska@isep.ipp.pt

http://www.cister.isep.ipp.pt

Abstract

This paper presents a viable solution for the development of service robots by leveraging cloud and Web services
technologies, modular software architecture design, and Robot Operating System (ROS). The contributions of this
paper are two- folded (1) Design of ROS Web services to provide new abstract interfaces to service robots that
makes easier the interaction with and the development of service robots applications, and (2) Integration of the
service robot to the cloud using the ROSLink protocol. We demonstrate through real-world implementation on the
MyBot robot the effectiveness of these software abstraction layers in developing applications for service robots
through the Internet and the cloud, and in accessing them through Internet. We believe that this work represents
an important step towards a more popular use of service robots.

a
rt

ig
o
 c

ie
n
tí
fi
c
o

8
ro

b
ó
t
ic
a

A
n

is
 K

o
u

b
â

a
 **

¶
‡
, M

o
h

a
m

e
d

-F
o

u
e

d
 S

ri
ti

 ",
 Y

a
si

r
Ja

v
e

d
 ¶

, M
a

ra
m

 A
la

jl
a

n
 ¶

†
†
, B

a
si

t
Q

u
re

sh
i

**
, F

a
tm

a
 E

ll
o

u
ze

 *¶
, A

b
d

e
lr

a
h

m
a

n
 M

a
h

m
o

u
d

 §
†

**
P

ri
n

ce
 S

u
lt

an
 U

n
iv

e
rs

it
y,

 C
o

lle
g

e
 o

f
C

o
m

p
u

te
r

an
d

 In
fo

rm
at

io
n

 S
ci

e
n

ce
s,

 S
au

d
i A

ra
b

ia
. ¶

G
ai

te
ch

 In
te

rn
at

io
n

al
 L

td
.,

C
h

in
a.

"A

l-
Im

am
 M

o
h

am
m

ad
 Ib

n
 S

au
d

 Is
la

m
ic

 U
n

iv
e

rs
it

y,
 S

au
d

i A
ra

b
ia

. †
†
 K

in
g

 S
au

d
 U

n
iv

e
rs

it
y,

 R
iy

ad
h

, S
au

d
i A

ra
b

ia
. §

 G
e

rm
an

 U
n

iv
e

rs
it

y
o

f
C

ai
ro

, E
g

yp
t.

‡
 C

IS
TE

R
/I

N
ES

C
-T

EC
, I

SE
P,

 P
o

ly
te

ch
n

ic
 In

st
it

u
te

 o
f

Po
rt

o
, P

o
rt

o
, P

o
rt

u
g

al
. * N

at
io

n
al

 E
n

g
in

e
e

ri
n

g
 In

st
it

u
te

 o
f

Sf
ax

 (
EN

IS
),

Tu
n

is
ia

.
ak

o
u

b
aa

@
co

in
s-

la
b

.o
rg

, m
fs

ri
ti

@
cc

is
.im

am
u

.e
d

u
.s

a,
 y

as
ir.

ja
ve

d
@

co
in

s-
la

b
.o

rg
, m

ar
am

.a
jla

n
@

co
in

s-
la

b
.o

rg
, q

u
re

sh
i@

p
su

.e
d

u
.s

a,

fa
tm

a.
e

llo
u

ze
@

co
in

s-
la

b
.o

rg
, a

b
d

e
lr

ah
m

an
.m

ah
m

o
u

d
@

co
in

s-
la

b
.o

rg

MyBot: Cloud-Based Service

Robot using Service-Oriented

Architecture

ro
b

ó
ti

ca
 1

07
, 2

.o
 T

ri
m

es
tr

e
d

e
20

17

Abstract – This paper1 presents a viable solution for
the development of service robots by leveraging

cloud and Web services technologies, modular
software architecture design, and Robot Operating

System (ROS). The contributions of this paper are
two-folded (1) Design of ROS Web services to

provide new abstract interfaces to service robots
that makes easier the interaction with and the

development of service robots applications, and (2)
Integration of the service robot to the cloud using

the ROSLink protocol. We demonstrate through
real-world implementation on the MyBot robot the
effectiveness of these software abstraction layers in
developing applications for service robots through

the Internet and the cloud, and in accessing
them through Internet. We believe that this work

represents an important step towards a more
popular use of service robots.

I. INTRODUCTION

The tremendous growth in utilization of robots has brought nu-

merous benefits for humans with application to manufacturing,

healthcare, mining, deep excavation, space exploration, etc. Use

of robots has been a significant factor in improvement of hu-

man safety, reduction in maintenance / production costs and

improved productivity [1].

It is widely forecasted that service robots would inundate

the market reaching record sales in the next 20 years. In its sta-

tistical report, the International Federation of Robotics reported

sale of 3 million service robots for personal and domestic within

2012. This number represents 20% increase in sales from the

previous year accounting to US$ 1.2 billion [2]. Nowadays, one

of the major challenges in the development of service robots is

the lack of software engineering frame-works to build complex

service robots’ applications that are modular, reusable, and ea-

sily extensible. Most of the available software for service robots

are tightly coupled with the robotic platform and lack sufficient

abstractions to remain generic for different platforms. Robot

Operating System (ROS) is one of the widely used middleware

to develop robotic applications, which represents an important

milestone in the development of modular software for robots.

In fact, it presents different abstractions to hardware, network

and operating system such as navigation, motion planning,

1 This paper is an extended version of the conference paper presented in IEEE

International Conference on Autonomous Robot Systems and Competitions

(ICARSC 2016)

low-level device control, and message passing. However, the le-

vels of abstractions are still not enough for developing complex

and generic applications for mobile robots, in particular if those

applications are distributed among several machines, requiring

machine-to-machine communication. This paper addresses this

gap, and proposes the design of a service-oriented software

architecture that contains software abstractions. In particular,

we designed and developed ROS Web Services, which are new

interfaces that expose ROS ecosystem as Web services. Further-

more, we designed the ROSLink protocol that allow the service

robot to be controlled and monitored through a cloud robotics

system, namely Dronemap Planner [3], [4].

The contributions of this paper are as follow.

 Design of a low-cost service robot Based on the Turtlebot

platform and Commercial off the Shelf (COTS) hardware.

 Design of software meta-models for the integration of Web

services into ROS. To the best of our knowledge, the work

presented is ground breaking as far as such integration is

concerned.

 Integration of ROS-based robots into the cloud using

the ROSLink protocol.

 Experimentation and deployment of the service robot for

the validation of our architecture and discussion of experi-

mental challenges.

The rest of this paper is organized as follows. Section II discus-

ses the state-of-the-art with an emphasis on the contribution

of this paper compared to similar works. Section III presents the

mechanical design of the service robot. In Section IV, we present

ROS Web services and the ROSLink protocol for cloud integra-

tion of the robot. In Section V, we present application deploy-

ments for the service robot. Section VI concludes the paper and

outlines future works.

II. RELATED WORKS

Developing software architecture and frameworks for assistan-

ce and service robots has attracted a lot of attention in the lite-

rature. Authors in [5] developed an intelligent vehicle control ar-

chitecture to allow multiple collaborating robots to accomplish

missions. The proposed systems architecture is based on service

oriented computing and agent software technology. The au-

thors evaluate the proposed work using a very limited study

involving multiple drones. In [6], authors presented Hyper-Flex

tool-chain focusing on ROS metamodels and ROS-specific tools

for supporting the process of exploiting reference architectu-

res and demonstrated how reference architecture can be used

for building complex software systems. The limitation of these

a
rt

ig
o
 c

ie
n
tí
fi
c
o

9
ro

b
ó
t
ic
a

works is the lack of concrete implementations demonstrating

instantiation of these processes. In [7], the authors present an

Event-Driven Architecture, which enhances the capabilities of

robots to interpret events and react on those according to pre-

defined functionality. The authors applied a service oriented

architecture to a choreography engine to compose services

without the need of an orchestration engine. The proposed sys-

tem was applied to an automation system, although no imple-

mentation details are provided.

In [8], the authors proposed an architecture for a Domestic

Robot targeting elderly users in assisting them to remain auto-

nomous in their homes. The proposed architecture is based on

the integration of three middleware frameworks PEIS, MIRA, and

ROS. Most of the computation is performed by a large number

of ROS nodes; the resulting robot services are exported to the

PEIS middleware for seamless integration of the robot into the

ambient assisted living system. rosjs and rosbridge [9] have

been proposed to facilitate integration of Web services in ROS.

Both these framework essentially cater to (1) allowing common

web browsers to exploit users to interact with ROS enabled ro-

bots; (2) to provide Web developers lacking expertise in robotics

with simple interfaces to develop client applications allowing

control and manipulation of ROS-enabled robots. In [10], the

authors proposed ROStful by extending rosbridge to support

REST Web services and developed a lightweight Web server that

exposes ROS topics, services and actions through RESTful Web

services. However, the authors did not provide an architecture

or meta-model for the integration of REST into ROS.

In this paper, we propose a Web service layer for ROS, in

addition to the ROSLink protocol to integrate robots into the

cloud and the Internet.

III. ROBOT DESIGN

A. Design requirements

The design requirements of MyBot service that were considered

are:

 Cost-eff ectiveness: the robotic platform must be cost-eff ec-Cost-effectiveness: the robotic platform must be cost-effec-

tive to be affordable for the public use.

 ROS-enabled design: We focused our design on ROS-ena-ROS-enabled design: We focused our design on ROS-ena-

bled robot, as ROS is attracting increasing interest in the

robotics software developers communities. The reason is

that ROS provides several layers of abstractions that make

easier the development of robotics software through the

use of open-source libraries such as navigation services (e.g.

gmapping package), image processing (e.g. Open-CV and

PointCloud), drivers for several robots and sensor platforms,

etc.

 Commercial-off-the-shelf (COTS) hardware: To extend the

robot capabilities with additional sensors and hardware,

we consider the use of COTS hardware that is commonly

available in the public market. This allows end-users to easily

extend the robots with their custom requirements.

The Turtlebot 2 robot represents an appropriate base platform

to meet the design requirement of the MyBot service robot. Ho-

wever, the software architecture that we propose in this paper

can be applied to any type of ROS-enabled robot thanks to the

abstraction layers that we designed for robot control and that

will be presented in Section IV.

IV. SOFTWARE ARCHITECTURE

We designed a software architecture that provides two abstrac-

tion layers on top of ROS to make easier the development of

distributed applications for service robots. It includes two ma-

jor layers, namely: (1) COROS [11], which is a component-based

software architecture that provides a first abstraction layer on

top of ROS composed of modular components to develop co-

operative and distributed applications, (2) ROS Web services is

the second abstraction layer that allow client applications to se-

amlessly and transparently interact with the robot while hiding

all implementation details. In what follows, we present the main

features.

A. COROS

1) Component-based Layer Architecture: We reused and exten-

ded our COROS architecture defined in [11], by developing

new modules for the service robot application logic, and

also a new message serializer to effectively handle commu-

nication between heterogeneous platforms. In what follo-

ws, we describe the architecture and enhancements. CO-

ROS consists of five layers illustrated in Figure 1 that shows

the component diagram of the software architecture. The

software system is decomposed into five subsystems (or

layers), each of which plays the role of a container of a set of

components. These subsystems are:

 Communication: this subsystem was designed to ensure the

interaction between the robot and other machines, which

can be robots or user devices. It comprises extensible and

modular client and server components that enable agents

to exchange serialized messages through the network inter-

face using sockets.

Figure 1. COROS Software Architecture.

 ROS Interaction Layer: this subsystem adds a lightwei-

ght layer on top of ROS allowing a seamless inter-process

interaction between ROS nodes (processes) defined in the

architecture.

 Robot Control: this subsystem adds another layer on

top of ROS providing a bridge between the local software

agents and the physical robots. The role of this layer is to

manage the robot configuration and its state. The Robot

Controller component provides an abstract model for any

ROS-enabled robot.

a
rt

ig
o
 c

ie
n
tí
fi
c
o

10
ro

b
ó
t
ic
a

 Application Logic: this subsystem addresses the pro-

blem solving requirements; it encapsulates all of the

components needed to implement a complete service

robot application. Any new application should reuse and

configure the software components to define its proper

behavior.

 Knowledge Base Manipulation Layer: This subsystem

aims at satisfying knowledge base requirements and main-

tains up-to-date information about the robot status and its

environment.

In the context of MyBot project, we have implemented four ap-

plications using COROS, including (1), Discovery application, (2)

Courier Delivery application, (3) Coffee delivery application, and

(4) people guidance application.

B. ROS Web Services

1) Objectives: The objective of designing ROS Web services

is to expose ROS as a Service to the client applications,

providing an additional abstraction layer of ROS resour-

ces including topics, services and actions for developers

with no prior knowledge on robots or on ROS. There are

three main benefits coming from exposing ROS as a ser-

vice, namely:

 Fostering public usage of robots: By exposing the com-

plex ROS ecosystem through Web services interfaces

to client applications, Web and mobile developers with

no background on robotics can easily interact with the

robots through the Internet through Web service invo-

cation. This enables a wider usage of robots at public

scale.

 Integration with the cloud: Web services and Service

Oriented Architecture (SOA) are major components of

today’s cloud as they allow virtualization of resources.

Therefore, embedding Web services into ROS allows for

the integration of ROS-enabled robots with the cloud

so that users can virtually access the robots’ resour-

ces through the cloud to either control or monitor the

robots status.

 Standard interfaces: Web services allows for providing

standard interfaces to robotics resources so that it will

be possible for client application to interact with hete-

rogeneous robots if they are having the same Web ser-

vices abstractions, independently from implementation

details.

To address these objectives, we propose to use Web services

as an additional abstraction layer on top of ROS. We develop

a SOAP Web Service implementation (ros-ws) and a REST Web

Service implementation (ros-rs), which represent the two fun-

damental architectural models for SOA. ROS Web Services allow

any client application on any platform to interact with ROS sim-

ply by invoking the ROS Web Services in exactly the same way

as invoking traditional Web Services.

2) System Architecture: Figure 2 depicts the deployment dia-

gram of ROS Web services and illustrates the integration of

the Web services’ layers into the ROS-enabled service robot

and the client device.

Figure 2. Deployment Diagram of ROS Web Services.

The Web services can be seen as a middleware that allows sea-

mless interaction between client applications and ROS ecosys-

tem in the service robot. Our architecture encompasses both

SOAP and REST Web services to provide flexible alternative to

client applications to interact with ROS ecosystem. In particular,

the Web service layer allows a user to subscribe to or publish

any ROS topic, action or service, and thus delivering ROS messa-

ges to client subscribed to a particular topic.

To integrate Web services into ROS, we faced the challenge

of choosing the most appropriate technology to build the sof-

tware system and design its architecture. We have opted for the

use of Java as a Web service programming language, as it provi-

des a native and advanced support of SOAP and REST Web ser-

vices, although they are programming-language-independent

and platform-independent. However, Java EE provides standard

APIs for SOAP and REST Web Services, known as JAX-WS and

JAX-RS specifications, respectively. Python also provides REST

Web service support, but much less than Java for SOAP Web

services.

V. INTEGRATION TO THE CLOUD

The main problem with the deployment of a service robot is

to make accessible, controllable and monitored through the

Internet. Some solutions like [9] proposed the ROSBridge with

a Websockets server on the robot side. This approach enabled

the effective integration of ROS with the Internet; however, the

fact that the Websockets server is running on the robot machine

requires the robot to have a public IP address to be accessible

by Websockets clients, which is not possible for every robot, or

being on the same local area networks. Network address trans-

lation (NAT) could also be used when the robot is behind a NAT

domain, but still this option may be cumbersome in deploy-

ment. To address this issue, we proposed the ROSLink protocol

[3] that overcomes the aforementioned limitations by (i.) imple-

menting the client in the robot side, (ii.) manifestation of a proxy

server located at a public IP server machine deployed in a cloud.

The main objective of ROSLink is to control and monitor a ROS-

enabled robot through the Internet. The general architecture of

ROSLink is presented in Figure 3.

a
rt

ig
o
 c

ie
n
tí
fi
c
o

11
ro

b
ó
t
ic
a

Figure 3. ROSLink Architecture [3].

The system is composed of three main parts:

 The ROSLink Bridge: This bridge provides the main inter-The ROSLink Bridge: This bridge provides the main inter-

face between ROS and the ROSLink protocol. It subscribes

to ROS topics/services to read data from, serializes them in

JSON and send it to the cloud, server or user application. In

addition, it receives commands in JSON format, and execu-

tes the corresponding action through ROS.

 The ROSLink Proxy and Cloud: it is a proxy server that con-The ROSLink Proxy and Cloud: it is a proxy server that con-

nects user application with ROSLink Bridge in the robot. It

acts as a mediator between the two ends, and forwards

message between the user and the robot. Furthermore, it

provide a complete management system for both robots

and users, and their mapping in real-time.

 The ROSLink Client Application: This application is used to

control and monitor the robot remotely through Internet.

It provide status of the robot in real-time and allow to send

commands to it, both using ROSLink Messages.

For more details about ROSLink communication and ROSLink

messages, the reader if referred to [3].

The ROSLink communication protocol is based on the ex-

change of ROSLink messages. ROSLink messages are JSON for-

matted strings that contain information about the command

and its parameters. To standardize the type of messages exchan-

ged, we specified a set of ROSLink messages that are supported

by the ROSLink Proxy. These message can be easily extended

based on the requirements of the user and the application.

There are two main categories of ROSLink messages: (i.) Sta-

te messages: these are message sent by the robot and carry out

information about the internal state of the robot, including its

position, orientation, battery level, etc. (ii.) Command messages:

these are messages sent by the client application to the robot

and carry out commands to make the robot execute some ac-

tions, like for example moving, executing a mission, going to a

goal location, etc.

In what follows, we identify an example of messages and

command types:

 Presence message: the robot should declare its presence

regularly to declare itself and to be considered as active. Ty-

pically, Heartbeat messages sent at a certain frequency (ty-

pically one message per second) are used for this purpose.

 Motion messages: In robot mission, it is important to know

the location and odometry motion parameters (i.e.linear

and angular velocities) of the robot at a certain time. Thus,

a motion message containing position information of the

robot should be periodically broadcast.

 Sensor messages: The robot needs to broadcast its internal

sensor data such as IMU, laser scanners, camera images, GPS

coordinates, actuators states, etc. ROSLink also defines seve-

ral sensor messages to exchange these data between the

robot and the user.

 Motion commands: For the robot to navigate in ROS,

certain commands are sent to it like Twist messages in

ROS, and goal/waypoint locations. ROSLink also specifies

different types of commands to make the robot moves as

desired.

VI. EXPERIMENTATION AND DEPLOYMENT

To demonstrate the effectiveness of the proposed COROS ar-

chitecture and ROS Web services, we used them to develop the

applications and services of the MyBot service robot presented

in Section 3. In addition, we deployed the MyBot service robot

at Prince Sultan University to deliver courier between offices

and also to bring coffee from the central cafe of the University in

addition to other services and applications. In the remainder of

this section, we present the experimental applications develo-

ped using the proposed architecture.

Figure 4. Weather Android Interface.

A. Climate Condition Application

The service robot provides the user with information about in-

door climate conditions namely, the temperature, the light and

humidity. Figure 4 shows the Android interface for the climate

conditions. It presents the temperature, light and humidity of

the operating environment of the robot extracted from the Te-

losB sensor node. The COROS architecture was used in this ap-

plication. The integration process of the TelosB sensor into the

robot has the following steps.

We developed the low-level driver for TelosB sensor node

that we integrated it into ROS by developing a ROS package

for the TelosB node that uses this driver to get the sensor va-

lues from the serial port, and then publishes the three sensor

data as a new custom ROS topic /telosb_topic using a cus-

tom TelosBMsg message that we created for this purpose. It

contains three fields for the three sensor data. In the Android

interface, we have used the android_core and rosjava API avai-

lable to create subscribers to the /telosb_topic, by creating an

a
rt

ig
o
 c

ie
n
tí
fi
c
o

12
ro

b
ó
t
ic
a

Android activity that extends the ROSActivity class, and which

allows publishing and subscribing to topics running on the

robot.

The deployment of this application used the COROS archi-

tecture to deliver the sensor data to the mobile application wi-

thin the same local area network, so it is displayed in the user

mobile device, as illustrated in Figure 4. On the other hand, the

deployment through the Internet is performed using the ROS-

Link protocol. The use of ROLink allows to easily send this sensor

information to end-users through the cloud. It defines a custom

ROSLink message that contains all the three sensor values. This

message is firstly received by the cloud server, which identifies

the user who is mapped to this service robot to forward this

information to it. The mapping between a user and a service

robot is done through the cloud, when the user registers to use

a certain robot. It is clear that the ROSLink protocol contributes

to the concept of Internet-of-Things through its platform-inde-

pendent protocol specification that allows the transfer of any

kind of data through the Internet, basically data collected from

ROS ecosystem.

B. Delivery Application

The delivery application use case, illustrated in Figure 5, was

developed so that the robot performs courier delivery mission

between offices or also deliver coffee from the central Cafe to

offices. The use case is illustrated in the following video de-

monstration [12].

The use case was implemented using two approaches: (1)

using the COROS framework by instantiating the AgentOpera-

tor for the delivery mission and using JSON to ROS message se-

rialization for platform-independent communication between

the robot and the Android device, (2) using the ROS Web Ser-

vices interfaces (ros-ws and ros-rs). A comprehensive demons-

tration on developing and using ROS Web services interfaces is

presented in [13].

a) Using ROS Web Services: We also implemented the delivery

mission using ROS Web services. The Web service interface

is presented in Listing 2.

package org.ros-ws;

@WebService (serviceName= ,

 name= ,

 targetNamespace=”http://ros-ws.org”)

public interface TurtlebotPublishersInterface {

 @WebMethod (action=”execute_delivery”,

 operationName=”executeDelivery”)

 public void ExecuteDeliveryRequest(

 DeliveryRequestMessage msg);

}

Listing 1. TurtlebotPublishersInterface Interface.

The ROS Web service interface shows one method called Exec

uteDeliveryRequest(DeliveryRequestMessage msg) that take a

request message as parameter and send the request to the ro-

bot via Web services. Once the robot receives the coordinates of

the user, it will execute the action accordingly, by invoking the

back-end ROS delivery application that remains listening on the

topic DeliveryRequestMsg/from_json.

b) Using ROSLink and Cloud Services: We developed a ROSLink

Bridge for the MyBot robot. The ROSLink Bridge of the ro-

bot subscribe to ROS topics of the MyBot robot and sends

Heartbeat messages to the cloud at regular time interval to

maintain its active status in the cloud. It also sends its loca-

tion in the map and motion parameters through the Global

Motion ROSLink message. These messages are forwarded to

the end user from the cloud server to keep track and moni-

tor the status of the service robot. On the other hand, the

user can execute the delivery service through the cloud by

sending a custom ROSLink Command message ExecuteDe-

livery that takes as parameter the location of the user re-

questing the delivery service. Once this message is received

by the cloud, it is forwarded to the ROSLink Bridge of the

robot, which in turns forward it to the same back-end ROS

delivery application that remains listening on the topic De-

Figure 5. Courier Delivery Scenario.

PUB

liveryRequestMsg/from_json, which receives ROS messages sent by

the publisher of the dispatcher component.

 The use the ROSLink protocol definitely solves the problem of acces-

sing robots through the Internet. In addition, the software architecture

that we proposed provide loosely coupled modules through front-end

interfaces including Web service interfaces and ROSLink interfaces that

allow to access the same back-end application in a seamless manner.

VII. CONCLUSIONS ACKNOWLEDGMENTS

This work is supported by the myBot project entitled “MyBot: A Perso-

nal Assistant Robot Case Study for Elderly People Care” under the grant

from King AbdulAziz City for Science and Technology (KACST). In addi-

tion, the authors would like to thank the Robotics and Internet of Things

(RIoT) Unit at Center of Excellence of Prince Sultan University for their

support to this work. Furthermore, the authors thank Gaitech Robotics

in China for their support to this work.

The authors would like to thank the Robotics and Internet of Things

(RIoT) Unit at Center of Excellence of Prince Sultan University for their

support to this work.

REFERENCES

[1] M. Waibel, M. Beetz, J. Civera, R. D’Andrea, J. Elfring, D. Galvez-Lopez, K. Haussermann, R.

Janssen, J. M. M. Montiel, A. Perzylo, B. Schiessle, M. Tenorth, O. Zweigle, and R. van de

Molengraft, “RoboEarth,” Robotics Automation Magazine, IEEE, vol. 18, pp. 69– 82, June 2011;

[2] “World Robotics 2013 Service Robots,” 2013;

[3] A. Koubaa, M. Aljlan, and B. Qureshi, “ROSLink: Bridging ROS with the Internet-of-Things for

Cloud Robotics,” Springer Book on Robot Operating System (ROS), Volume 2, vol. 2, May 2017;

[4] A. Koubaa, B. Qureshi, M.-F. Sriti, Y. Javed, and E. Tovar, “A Service-Oriented Cloud-Based

Management System for the Internet-of-Drones,” 17th IEEE Int. Conf. on Autonomous Ro-

bot Systems and Competitions , April 2017;

[5] I. C. C., “Service-oriented agent architecture for unmanned air vehicles.,” 33rd IEEE/AIAA

Digital Avionics Systems Conference. Colorado Springs, CO, 2014;

[6] L. Gherardi and D. Brugali, “Modeling and Reusing Robotic Software Architectures: The

HyperFlex Toolchain,” in 2014 IEEE International Conference on Robotics and Automation,

ICRA 2014, Hong Kong, China, May 31 – June 7, 2014, pp. 6414–6420, 2014;

[7] G. Starke, T. Kunkel, and D. Hahn, “Flexible collaboration and control of heterogeneous mecha-

tronic devices and systems by means of an event-driven, soa-based automation concept,” in

2013 IEEE International Conference on Industrial Technology (ICIT), pp. 1982–1987, Feb 2013;

[8] N. Hendrich, H. Bistry, and J. Zhang, “PEIS, MIRA, and ROS: Three frameworks, one service

robot – A tale of Integration,” in Robotics and Biomimetics (ROBIO), 2014 IEEE International

Conference on, pp. 1749–1756, Dec 2014;

[9] S. Osentoski, G. Jay, C. Crick, B. Pitzer, C. DuHadway, and O. C. Jenkins, “Robots as web

services: Reproducible experimentation and application development using rosjs,” in

Robotics and Automation (ICRA), 2011 IEEE International Conference on, 2011;

[10] “Introducing ROStful: ROS over RESTful web services, http://www.ros.org/news/2014/02/

introducing-rostful-ros-over-restful-web-services.html,” 2015;

[11] A. Koubaa, M.-F. Sriti, H. Bennaceur, A. Ammar, Y. Javed, M. Ala-jlan, N. Al-Elaiwi, M. Toun-

si, and E. Shakshuki, “COROS: A Multi-Agent Software Architecture for Cooperative and

Autonomous Service Robots,” in Cooperative Robots and Sensor Networks 2015 (A. Koubaa

and J. Martinez-de Dios, eds.), vol. 604 of Studies in Computational Intelligence, pp. 3–30,

Springer International Publishing, 2015;

[12] “MyBot Courier Delivery Demonstrator, https://www.youtube.com/watch?v=oTLtmX2-

ucA,” 2015;

[13] “MyBot Cafe Delivery using Web Services Interfaces, https://www.youtube.com/

watch?v=WvjY5XjAX7U,” 2015.

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org

