
Non Pre-emptive Scheduling of Messages on SMTV Token-Passing Networks

Eduardo Tovar

Department of Computer Engineering,
ISEP, Polytechnic Institute of Porto, Portugal

E-mail: emt@dei.isep.ipp.pt

Francisco Vasques

Department of Mechanical Engineering,
FEUP, University of Porto, Portugal

E-mail: vasques@fe.up.pt

Abstract
Fieldbus communication networks aim to interconnect
sensors, actuators and controllers within distributed
computer-controlled systems. Therefore, they constitute the
foundation upon which real-time applications are to be
implemented. A specific class of fieldbus communication
networks is based on a simplified version of token-passing
protocols, where each station may transfer, at most, one
Single Message per Token Visit (SMTV).

In this paper, we establish an analogy between non pre-
emptive task scheduling in single processors and
scheduling of messages on SMTV token-passing networks.
Moreover, we clearly show that concepts such as blocking
and interference in non pre-emptive task scheduling have
their counterparts in the scheduling of messages on SMTV
token-passing networks. Based on this task/message
scheduling analogy, we provide pre-run-time
schedulability conditions for supporting real-time
messages with SMTV token-passing networks. We provide
both utilisation-based and response time tests to perform
the pre-run-time schedulability analysis of real-time
messages on SMTV token-passing networks, considering
RM/DM and EDF priority assignment schemes.

1. Introduction

Fieldbus networks are widely used as the communication
support for distributed computer-controlled systems
(DCCS), in applications ranging from process control to
discrete manufacturing. Usually, DCCS impose real-time
requirements; that is, traffic must be sent and received
within a bounded interval, otherwise a timing fault is said
to occur. This motivates the use of communication
networks within which the medium access control (MAC)
protocol is able to schedule messages according to their
real-time requirements.

One of the MAC protocols used in widely accepted
fieldbus networks is based on a simplified version of the
token-passing protocol. In these fieldbus networks
(PROFIBUS and P-NET are just two examples) there are
typically two types of network nodes: masters and slaves.
This MAC protocol is based on a token-passing procedure
used by master stations to grant the bus access to each
other, and a master-slave procedure used by master stations
to communicate with slave stations. Each time a master

receives the token, it will be able to perform, at most, one
message cycle. We denote this type of networks as Single
Message per Token Visit (SMTV) token-passing networks.

A message cycle consists of a master's action frame
(request or send/request frame) and the associated
responder's acknowledgement or response frame. We
assume that responses from slaves are immediate, with a
bounded turnaround time. At each master node, requests
generated at the application process (AP) level are placed
in the master's outgoing queue. At each token arrival, the
highest priority message cycle will be processed. We
assume the following message stream model:

),,(k
i

k
i

k
i

k
i DTCS = (1)

Si
k defines a message stream i in master k (k = 1, ..., n).

A message stream is a temporal sequence of message
cycles concerning, for instance, the remote reading of a
specific process variable. Ci

k is the longest message cycle
duration of stream Si

k. This duration includes both the
longest request and response transmission times, and also
the worst-case slave's turnaround time. Ti

k is the periodicity
of stream Si

k requests. In order to have a subsequent timing
analysis independent from the model of the tasks at the
application process level, we assume that this periodicity is
the minimum interval between two consecutive arrivals of
Si

k requests to the outgoing queue. Finally, Di
k is the

relative deadline of a message cycle; that is, the maximum
admissible time interval between the instant when the
message request is placed in the outgoing queue and the
instant at which the related response is completely received
at the master's incoming queue. Finally, nsk denotes the
number of message streams associated with a master k.

In our model, the relative deadline of a message can be
equal or smaller than its period (Di

k ≤ Ti
k). Thus, if in the

outgoing queue there are two message requests from the
same message stream, this means that a deadline for the
first of the requests was missed. Therefore, the maximum
number of pending requests in the outgoing queue will be
nsk.

We denote the worst-case response time of a message
stream Si

k as Ri
k. This time is measured starting at the

instant when the request is placed in the outgoing queue,
until the instant when the response is completely received
at the incoming queue. Basically, this time span is made up
of two components. One concerns the time spent by the
request in the outgoing queue, until gaining access to the

0-7695-0734-4/00 $10.00 � 2000 IEEE

bus (queuing delay). The other concerns the time needed to
process the message cycle, that is, to send the request and
receive the related response (transmission delay). Thus,

k
i

k
i

k
i CQR += (2)

where Qi
k is the worst-case queuing delay of a message

request from Si
k.

Analysis for the worst-case response time can be
performed if the worst-case token rotation time is assumed
for all token cycles. Assume also that CM is the maximum
transmission duration of a message cycle. If a master uses
the token to perform a message cycle, we can define the
token holding time as:

τρ ++= MCH (3)

where the symbol τ denotes the time to pass the token after
a message cycle has been performed and the symbol ρ
denotes the master’s worst-case reaction time. As the token
rotation time is the time interval between two consecutive
token visits, the worst-case token rotation time, denoted as
V, is:

HnV ×= (4)

Considering priority-based dispatching mechanisms, the
worst-case response time for a message request occurs
when the request is placed in the master's queue just after
the token arrival, hence not being able to be processed in
that token visit. If there were any other message request
pending before the token arrival, then the token would
have been used to transmit that message; otherwise, the
master would not use the token at all. Therefore, the worst-
case response time of a message stream Si

k will be:
k
i

k
i

k
i

k
i CVVCQR +×Φ+=+= (5)

where the first term V denotes the message blocking, and
the symbol Φ denotes the number of higher-priority
messages (interference) that can be scheduled ahead of a
message from Si

k. Fig. 1 illustrates the case where Φ equals
0 (highest priority message cycle S1

1).
The remainder of this paper is organised as follows. In

Section 2 we survey some relevant results for the priority-
based schedulability analysis of real-time tasks, both for
fixed and dynamic priority assignment schemes. We give
emphasis to the worst-case response time analysis in non
pre-emptive contexts, since that analysis is of paramount
importance to the message schedulability analysis in
SMTV token-passing communication networks. In Section
3 we discuss the analogy between task scheduling in a
single processor environment and message scheduling in
SMTV token-passing networks. Based on this
task/message scheduling analogy we provide utilisation-
based tests and response time tests, in Section 4 and
Section 5, respectively, for SMTV token-passing networks.
In both cases, RM/DM and EDF priority assignment
schemes are considered. Finally, in Section 6, some
conclusions are drawn.

ρ

2

H

res(S1
1)

3 1 2

req(S1
1)

Bus

Master
holding
the token

1

V CM

τ

highest priority
request from master 1
released marginally
after the token arrival a lower priority

message induces a
priority inversion with
length V

highest priority
requests processed
here

Figure 1

2. Schedulability Analysis of Tasks

Real-time computing systems with tasks dispatched
according to a priority-based policy (we consider only
RM/DM or EDF), must be tested a-priori in order to check
if, during run time, no deadline will be missed. This
feasibility test is called the pre-run-time schedulability
analysis of the task set.

There are mainly two types of analytical methods to
perform pre-run-time schedulability analysis. One is based
on the analysis of the processor utilisation. The other is
based on the response time analysis for each individual
task. In [1], the authors demonstrated that by considering
only the processor utilisation, a test for the pre-run-time
schedulability analysis could be obtained. Contrarily, a
response time test must be performed in two stages. First,
an analytical approach is used to predict the worst-case
response time of each task. The values obtained are then
compared, trivially, with the relative deadlines of the tasks.

The utilisation-based tests have a major advantage: it is
a simple computation procedure, which is applied to the
overall task set. By this reason, they are very useful for
implementing schedulers that check the schedulability
online. However, utilisation-based tests have also
important drawbacks, when compared with their response-
time counterparts. They do not give any indication of the
actual response times of the tasks. More importantly, and
apart from particular task sets, they constitute sufficient but
not necessary conditions. This means that if the task set
passes the test, the schedule will meet all deadlines, but if
it fails the test, the schedule may or may not fail at run-
time (hence, there is a certain level of pessimism). It is also
worth mentioning that the utilisation-based tests cannot be
used for more complicated task models [2].

2.1. Schedulability Tests: Fixed Priorities

2.1.1. Basic Utilisation-Based Test
For the RM priority assignment, Liu and Layland
introduced an utilisation-based sufficient test:

0-7695-0734-4/00 $10.00 � 2000 IEEE

()121

1

−×≤∑
=

N
N

i i

i N
T

C (6)

This utilisation-based test is valid for periodic
independent tasks, with relative deadlines equal to the
period, and for pre-emptive systems. In [3], the authors
provide an exact analysis:

() nii

i

j j

k

k

j
j

Rlk T

Tl

Tl

T
U

i
≤≤

=∈
∀≤





































 ×
×

×
×∑ 1 ,

1
,

 ,1min (7)

where Ri = {(k,l)} with 1 ≤ k ≤ i and l = 1, ..., Ti/Tk. It is
clear that inequality (7) is not an easy to use test, hence
loosing one of the advantages inherent to the more basic
formulations: its simplicity.

2.1.2. Extended Utilisation-Based Test
In [4], the authors update the utilisation-based test (6) to
include blocking periods, during which higher-priority
tasks are blocked by lower-priority ones, to solve the
problem of non-independence of tasks:

() Nii
i

i

i
i

i i

i i
T

B

T

C
≤≤

=

∀−×≤+







∑ 1 ,

1

1

 ,12 (8)

where Bi is the maximum blocking a task i can suffer.
This analysis can be extended to a non pre-emptive

context, since in this case a higher-priority task can also be
"blocked" by a lower-priority task. Assuming that the tasks
are completely independent, the maximum blocking time a
task can suffer is given by:

{ }

()
{ } { }





≠=

==

=∈

=

j
Nj

ij
ilpj

i

j
Nj

ii

PPCB

PPB

,..,1

,..,1

min if ,max

min if ,0
(9)

where lp(i) denotes the set of lower-priority tasks (than
task i). Therefore, inequality (8) can be used as an
utilisation-based test for a set of non pre-emptable
independent tasks, with the blocking for each task as given
by (9). Moreover, accepting an increased level of
pessimism, inequality (8) can be simplified to:

()12max 1

1 ,
1

−×≤








+







≤≤=

∑ N

i

i

Nii

N

i i

i i
T

B

T

C
(10)

Note that if all tasks have the same computation time,
(10) considers that each task may be blocked at the rate of
the highest-priority task.

2.1.3.Response Time Tests: Pre-emptive Context
In [5] the authors proved that the worst-case response time
Ri of a task i is found when all tasks are synchronously
released (critical instant) at their maximum rate. Ri is
defined as:

iii CIR += (11)

where Ii is the maximum interference that task i can
experience from higher-priority tasks in any interval
[t, t + Ri). Without loss of generality, it can be assumed
that all processes are released at time instant 0. Consider a
task j with higher-priority than task i. Within the interval
[0, Ri), it will be released Ri/Tj times. Therefore, each
release of task j will impose an interference Cj. The worst-
case response time Ri of a task τi is then:

()
i

ihpj
j

j

i
i CC

T

R
R +














×












= ∑

∈

(12)

where hp(i) denotes the set of higher-priority tasks (than
task i). Equation (12) embodies a mutual dependence,
since Ri appears in both sides of the equation. The easiest
way to solve such equation is to form a recurrence
relationship [6]:

()
i

ihpj
j

j

m
im

i CC
T

W
W +














×












= ∑

∈

+1 (13)

The recursion ends when Wi
m+1 = Wi

m = Ri and can be
solved by successive iterations starting from Wi

0 = Ci.
Indeed, it is easy to show that Wi

m is non-decreasing.
Consequently, the series either converges or exceeds Ti

(case of RM) or Di (case of DM). If the series exceeds Ti

(or Di), the task τi is not schedulable.

2.1.4. Response Time Tests: non Pre-emptive Context
In [6] the authors updated the analysis of [5] to include
blocking factors introduced by periods of non pre-emption,
due to the non-independence of the tasks. The worst-case
response time is updated to:

()
i

ihpj
j

j

i
ii CC

T

R
BR +













×












+= ∑

∈
(14)

which may also be solved using a similar recurrence
relationship. Bi is also as given by equation (9).

Some care must be taken using equation (14) for the
evaluation of the worst-case response time of non pre-
emptable independent tasks. In the case of pre-emptable
tasks, with equation (12) we are finding the processor's
level-i busy period preceding the completion of task i; that
is, the time during which task i and all other tasks with a
priority level higher than the priority level of task i still
have processing remaining. For the case of non pre-
emptive tasks, there is a slight difference, since for the
evaluation of the processor's level-i busy period we cannot
include task i itself; that is, we must seek the time instant
preceding the execution start time of task i.

Therefore, equation (11) can be used to evaluate the
task's response time of a task set in a non pre-emptable
context and independent tasks, where the interference is:

()
∑
∈ 













×












+=

ihpj
j

j

i
ii C

T

I
BI (15)

0-7695-0734-4/00 $10.00 � 2000 IEEE

Note also that a re-definition for the critical instant must
be made. The maximum interference occurs when task i
and all other higher-priority tasks are synchronously
released just after the release of the longest lower-priority
task (than task i).

2.2. Schedulability Tests: Dynamic Priorities

2.2.1. Basic Utilisation-Based Test
For the EDF priority assignment, Liu and Layland also
introduced an utilisation-based pre-run-time schedulability
test (16), valid for non pre-emptive, independent and
periodic tasks, for which the relative-deadline is equal to
the period.

1
1

≤∑
=

N

i i

i

T

C (16)

Inequality (16) can be easily updated to include
blocking periods due to the non-independence of the tasks.
In [7], the author updated inequality (16) to:

Nii
i

i
i

i i

i

T

B

T

C
≤≤

=

∀≤+







∑ 1 ,

1

 ,1 (17)

where Bi is the maximum blocking a task i can suffer,
considering the stack resource protocol (SRP). The key
idea behind the SRP is that when a job needs a resource
which is not available, it is blocked at the time it attempts
to pre-empt, rather than later. This makes inequality (17)
valid for sets of non pre-emptable tasks, dispatched
according to the EDF scheme.

Similarly to the updating of (8) to (10), (17) can be
updated to a simpler (but more pessimistic) test:

1max
1 ,

1

≤








+







≤≤=

∑
i

i

Nii

N

i i

i

T

B

T

C (18)

where Bi is defined as:
{ }j

ij
i CB

≠
= max (19)

Another relevant result from [7] is that (17) can also be
extended to task sets with relative deadlines smaller than
periods:

Nii
i

i
i

i i

i

D

B

D

C
≤≤

=

∀≤+







∑ 1 ,

1

 ,1 (20)

As a corollary, inequality (16) can be extended for task
sets with Di ≤ Ti:

1
1

≤∑
=

N

i i

i

D

C (21)

These simple utilisation-based tests ((18) and (20)) are
however quite pessimistic. Less pessimistic utilisation-
based tests will now be addressed in Sections 2.2.2 and
2.2.3, for pre-emptive and non pre-emptive tasks,
respectively. Later, in Sections 2.2.4 and 2.2.5, recent

results on response time analysis will be addressed, for
pre-emptive and non pre-emptive tasks, respectively.

2.2.2.Extended Utilisation Tests: Pre-emptive Context
In [8] the author extends the results of Liu and Layland in
order to consider sporadic tasks, where inequality (16) is
updated to:

0
1

 , ≥
=

+

∀≤×






 −
∑ t

N

i
i

i

i tC
T

Dt
(22)

with x+ = 0 if x < 0. This formulation has advantages
over (20), in the sense that it turns out to be a necessary
and sufficient condition. Inequality (22) can not be
classified as a simple test when compared to (20). It has
also an additional problem, since it must be checked over
an infinite continuous time interval [0, ∞). A simplification
to the schedulability test can be made considering that the
right side of inequality (22) does only change at k×Ti+Di

time instants, and thus the inequality does only need to be
checked for these time instants. Different authors have
addressed the problem of finding an upper limit for t. It is
possible to prove that if the total utilisation of the
processor is ≤ 1 (condition (16)), it exists a point tmax, such
that ∑i=1,..,n((t – Di)/Ti+ × Ci) ≤ t always hold, ∀t ≥ tmax.
Consequentely, inequality (22) can be re-written as
follows:

{ } [)max
1

1

,0,with

 , ,

tkTkDS

tC
T

Dt

N

i
ii

St

N

i
i

i

i

∩







ℵ∈×+=

∀≤×






 −

=

∈
=

+

∑

U
(23)

In [9] the authors demonstrated that tmax could be given
by (U/(1-U))×maxi=1,...,.N{(Ti-Di)}, where U represents the
overall processor's utilisation (∑i=1,...,.N (Ci/Ti)). This result
was further improved in [10], where the upper bound for t
is defined as tmax=((∑i=1,...,.N (1-Di/Ti)×Ci)/(1-U). Although
this last formulation gives a smaller value for tmax, it still
suffers from the same disadvantage: as the overall
utilisation approaches 1, its value becomes very large.

Another approach is considered in [10] and [11], where
the authors demonstrate that tmax = L (synchronous
processor's busy period). The synchronous processor's
busy period is defined as the time interval from the critical
instant up to the first instant when there are no more
pending tasks in the system:

∑
=

×







=

N

i
i

i

C
T

L
L

1
(24)

Equation (24) may be solved by recurrence, starting with
L0 = ∑i=1,..,NCi.

2.2.3.Extended Utilis. Tests: non Pre-emptive Context
For the non pre-emptive context, a similar test was
presented in [8] and [12]:

0-7695-0734-4/00 $10.00 � 2000 IEEE

{ }
{ }j

Nj

Dt

N

i
j

,...,Nj
i

i

i

DD

tCC
T

Dt

,...,1
min

1
1

min with

 , ,max
min

=

≥
= =

+

=

∀≤+×






 −∑ (25)

Comparing to the test for the pre-emptive context (22),
the inclusion of the blocking factor is intuitive (see Section
2.2.1.). However, in [13] the authors discuss the pessimism
inherent to the inequality (25). The main argument is that
in this inequality it is considered that the cost of possible
priority inversions is always initiated by the longest task
and, moreover, it is effective during the entire interval
under analysis. To reduce this level of pessimism, it is
suggested the following modification:

{ }

{ }
∑

=

>
=

∈

>
=

+

>∃/=

∀≤+×






 −
N

i
jjj

tD
Nj

Stj

tD
Nj

i
i

i

tDC

tCC
T

Dt

j

j

1

,...,1

,...,1

: if 0max with

 , ,max

(26)

That is, the blocking factor is only included if its deadline
occurs after t.

2.2.4.Response Time Tests: Pre-emptive Context
The worst-case response time analysis for pre-emptive
EDF scheduling was first introduced in [14]. In his work,
Spuri demonstrated that the worst-case response time of a
task i is found in the processor's deadline-i busy period
(analogous to the processor's level-i busy period in the case
of fixed priorities). However, the longest processor's
deadline-i busy period may occur when all tasks but task i
(contrarily to the case of fixed priority assignment) are
synchronously released and at their maximum rate. This
means that, in order to find the worst-case response time of
task i, we need to examine multiple scenarios within
which, while task i has an instance released at time a, all
other tasks are synchronously released at time t = 0. Thus,
given a value of a, the response of an instance of task i is:

() (){ }aaLCaR iii −= ,max (27)

where Li(a) is the length of the deadline-i busy period,
which starts at time instant t = 0. Li(a) can be evaluated by
the following iterative computation:

() ()

i
i

DaD
ij

j
j

ji

j

i
i

C
T

a

C
T

DDa

T

aL
aL

ij

×

















++

+













×























 −+
+












= ∑

+≤
≠

1

1 ,min

(28)

Equation (28) can be solved by recurrence, starting with
Li

0(a) = 0. Obviously, in equation (28), the computational
load only considers tasks that have deadlines earlier than
Di. Finally, in the general case, the worst-case response
time for a given task i is:

(){ }aRR i
a

i
0

max
≥

= (29)

The remaining problem is how to determine the values
of a. Looking to the right-hand side of equation (28), we
can easily understand that its value only changes at
k × Tj + Dj – Di

 steps.

{ } [[LkDDTka
N

j
ijj ,0 ,

1
0 ∩ℵ∈−+×∈

=
U (30)

with L as given by equation (24).

2.2.5.Response Time Tests: non Pre-emptive Context
The worst-case response time analysis for the non pre-
emptive EDF scheduling was introduced in [13]. The main
difference from the analysis for the pre-emptive case is that
a task instance with a later absolute deadline can cause a
priority inversion. Thus, and similarly to the fixed priority
case (Section 2.2.4), instead of analysing the deadline-i
busy period preceding the completion time of task i, we
must analyse the busy period preceding the execution start
time of the task’s instance. Consequently, the response
time of the τi ‘s instance released at time a is:

() (){ }aCaLCaR iiii −+= ,max (31)

where Li(a) is now the length of the busy period
(preceding execution). Thus, Ri(a) can be evaluated by
means of the following iterative computation:

() { }

()
i

i
DaD

ij
j

j

ji

j

i

j
DaD

i

C
T

a
C

T

DDa

T

aL

CaL

ij

ij

×







+














×























 −+
+












++

+=

∑
+≤

≠

+>

1 ,1min

max

(32)

3. Analogies to Message Scheduling in SMTV

In this section we discuss the analogy between task
scheduling in a single processor environment and message
scheduling in SMTV token-passing networks. This
analogy will later enable the formulation of feasibility tests
for the pre-run-time schedulability analysis of message
stream sets in SMTV token-passing networks.

Table 1

Task Computation Time (C) Period (T)

A 10 60

B 10 80

C 10 100

D 10 100

In the schedulability analysis of tasks in the non pre-
emptive context, the concept of processor's busy period
denotes the time interval within which the processor is not
idle (see Section 2.1.4). Consider the task set example
(D=T) of Table 1.

0-7695-0734-4/00 $10.00 � 2000 IEEE

Task C

Task B

Task A

release of task

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180

Task D

processor busy period

Time utilisation of the
shared resource
(processor) by a task

When this request
appears, there is no
pending task

Maximum blocking for
a higher priority task
(as all Cs are equal)

Figure 2

Assuming a RM priority assignment policy in a non
pre-emptive context, Fig. 2 illustrates a time-line
considering that the first instance of task D (lower-priority
task) is released marginally after time instant 0, and before
all other instances of higher-priority tasks. Note that the
blocking of a task in a non pre-emptive context is equal to
the maximum execution length of a lower-priority task (see
equation (9)).

Consider now the following message stream set
example (where D=T) to be scheduled in a SMTV token-
passing network:

Table 2

Message Message Cycle Length (C) Period (T)

A 2 60

B 2 80

C 2 100

D 2 100

This case will be shown to be loosely equivalent to the
previous task scheduling example, when the token cycle
time is equal to the tasks' execution time (V = Ctask).

Consider now Fig. 3, which illustrates the time-line for
a message scheduling on a SMTV token-passing network,
considering a messages' release pattern (arrival of requests
to the outgoing queue) similar to the previous tasks' release
pattern. It is clear that the message blocking time is equal
to the token cycle time. However, this blocking term is
independent of the priority ordering of message transfers.
Therefore, the blocking problem in the task scheduling
theory can only be considered to be loosely equivalent to
the blocking problem in SMTV token-passing networks,
since the priority ordering property is not preserved.

It is also clear that tests available for the schedulability
analysis of non pre-emptable tasks in single processor
systems can be adapted to the message scheduling in
SMTV token-passing networks, considering that the
blocking term is equal to the token cycle time,
independently of the message priority.

Therefore, the computation time of a task can be
considered equivalent to the token cycle time, since in a
SMTV token-passing network the shared resource
(network access/token) is available once in every V

interval. This means that the contribution of each higher-
priority message cycle to the overall queuing delay of a
lower-priority message cycle is always equal to V.

Message C

Message B

Message A

Arrival of the request to the queue

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170

Message D

token busy period

Time utilisation of the
shared resource
(token/network) by a
message cycle, as
seen by the local
station

Maximum blocking for
any-priority message
cycle

Instant of token arrival

V

Figure 3

Finally, in Table 3 we summarise the analogies between
task scheduling in non pre-emptive single processor
environments and message scheduling in SMTV token-
passing networks.

Table 3

Task Scheduling Message Scheduling
Maximum blocking (except for
the lowest priority task/message) ()

{ }j
ilpj

i CB
∈∀

= max V

Maximum blocking (lowest
priority task/message)

0 V

Resource usage time for the
higher-priority tasks/messages

jC V

Resource usage time for the
task/message itself

iC iC

Considering these analogies between task scheduling
and message scheduling, a set of (token) utilisation-based
and response time tests can be developed for the
schedulability analysis of SMTV token-passing networks.
In the following sections we present both types of tests.

4. (Token) Utilisation-Based Tests

In this section, we derive utilisation-based schedulability
tests for both fixed and dynamic priority assignment
schemes. Such schedulability tests, which can be quite
pessimistic, provide a tool to evaluate the schedulability of
the overall message set with a reduced complexity.

4.1. Case of Rate Monotonic Priority Assignment

Considering the analogies to the blocking and tasks'
computation time drawn in the previous section, the
schedulability test (10) for the RM dispatched tasks can be
adapted to encompass the characteristics of the SMTV
token-passing protocol, as follows:

k
nsk

k
i

ni

ns

i
k

i

k

k

ns
T

V

T

V
∀










−×≤









+







≤≤=

∑ ,12max
1

1
1

(33)

0-7695-0734-4/00 $10.00 � 2000 IEEE

As the worst-case token cycle time (V) is constant,
equation (33) can be re-written as:

{ } k
nsk

k
i

ns

i
k

i

k

k

ns
TT

V ∀









−×≤












+








× ∑

=

 ,12
min

11
1

1

(34)

Note that, as we are considering SMTV token-passing
networks, the interference from other masters is only
reflected on the evaluation of the V parameter.

Consider the following example, which highlights the
use of the proposed schedulability test (34):

Table 4

Stream Period

S1
k 5

S2
k 7

S3
k 8

S4
k 12

Considering that the worst-case token rotation time is V =
1, it follows that the schedulability test is:

76.075.0124
5

11
1 4

14

1

≤⇔







−×≤












+








× ∑

=i
k

iT

Therefore the message stream set of Table 4 is
schedulable by the RM algorithm in a SMTV token-
passing network. In Fig. 4, we present a possible time-line
for the message scheduling, assuming that all messages are
requested just after the first token arrival. In this way, we
represent a blocking term at the beginning of the time-line.

This example highlights the pessimism associated to the
utilisation-based tests, since, although the schedulability
test is just marginally true, none of the message cycles is
scheduled close to its deadline.

4.2. Case of EDF Priority Assignment

Considering again the analogies to the blocking and tasks'
computation time drawn in Section 3, the schedulability
test (18) for the EDF dispatched tasks can also be adapted
to encompass the characteristics of the SMTV token-
passing protocols, as follows:

{ } kk
i

ni

ns

i
k

i TT
V

k

∀≤











+








×

≤≤
=
∑ ,1

min

11

1
1

(35)

Consider now the example of Table 5, where periods
are considered to be marginally smaller than multiples of
the worst-case token cycle time (V = 1). The application of
the schedulability test (35) to this message stream set is:

TRUE 199.01
4

11
1

4

1

≤⇔≤











+








× ∑

=i
k

iT

Hence, this message stream set is schedulable
considering the EDF priority assignment scheme, while

with the RM assignment scheme would not pass the
schedulability test (34): 0.99 ≤ 0.76 is FALSE.

Table 5

Stream Period

S1
k 4-

S2
k 5

-

S3
k 6

-

S4
k 8

-

Message
cycle

processed

Priority
queue (RM)

Requests at
the AP level

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

S1
k

S2
k S3

k S4
k

hi

low

...

S1
k

S2
k

S3
k

S4
k

Figure 4

5. Response Time Tests

In this section we derive response time schedulability tests
for both fixed and dynamic priority assignment schemes.
Such schedulability tests, compared to the (token)
utilisation-based tests are more complex, but also much
less pessimistic, as it will be shown in this section. This is
an expected result, as response time tests for task
scheduling are sufficient and necessary conditions, while
the utilisation-based tests are generally only sufficient
conditions (refer to Section 2). It is also important to note
that for the case of Di

k < Ti
k there are no simple utilisation-

based tests for the case of fixed priorities.

5.1. Response Time Tests: Fixed Priority

Based on the analogies between task scheduling and
message scheduling on SMTV token-passing networks, the
worst-case response time analysis for the non pre-emptive
context (refer to Section 2.1.4) can be adapted to
encompass the characteristics of the SMTV token-passing
protocols. The worst-case message response is defined in
equation (2), where Qi

k is:

() ()






















+×=×












+= ∑∑

∈∈ ∀∀ ihpjihpj

k
j

k
i

k
j

k
ik

i T

Q
VV

T

Q
VQ 1 (36)

Note that this queuing delay is the equivalent to the
task's interference in a non pre-emptive context (15).

0-7695-0734-4/00 $10.00 � 2000 IEEE

Considering again the message stream set example of
Table 5, the worst-case response time for each message
stream will be as shown in Table 6 (with Ci

k = 0.2, ∀i).

Table 6
Stream Response

S1
k 1.2

S2
k 2.2

S3
k 3.2

S4
k 7.2

Considering the message stream S4
k, the iterations for

evaluating its queuing delay are as follows:

() () () () () ()
7 ;7 ;6 ;5 ;4 ;1

5

4

4

4

3

4

2

4

1

4

0

4 ====== kkkkkk QQQQQQ

and iterations stop, since Q4
k(5) = Q4

k(4) = 7. Therefore,
from equation (2) R4

k = 7 + 0.2 = 7.2, which is smaller than
its relative deadline (its period), and thus, the message
stream set is RM schedulable. Considering the same
message stream set, the (token) utilisation-based test (34)
gives 0.99 ≤ 0.76, which is equivalent to state that this
message stream set may or not be schedulable. Therefore,
it turns out that the response time test is much less
pessimistic than the (token) utilisation-based test. The
time-line presented in Fig. 5 illustrates the above results.

Message cycle
 processed

Priority
queue (RM)

Requests at
the AP level

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

S1
k

S2
k

S3
k S4

k

hi

low

...

S1
k

S2
k

S3
k

S4
k

Figure 5

5.2. Response Time Tests: Dynamic Priority

Based on the analogies between task scheduling and
message scheduling on SMTV token-passing networks, the
worst-case response time analysis for the non pre-emptive
context (refer to Section 2.2.5) can also be adapted to
encompass the characteristics of the SMTV token-passing
protocols. The worst-case message response time is,
obviously, given by equation (2). However, a major
difference exists for the definition of the queuing delay,
which for the EDF case must be defined as:







































 −
+












++×= ∑

≤
≠

k
i

k
j DD

ij
k
j

k
j

k
i

k
j

k
ik

i T

DD

T

Q
VQ 1 ,1min1 (37)

that is, a message request concerning stream Si
k will be

delayed by all message requests of other streams having
earlier or equal absolute deadlines than the absolute
deadline for Si

k (absolute deadlines are the difference
between the relative deadline, Di

k, and the beginning of the
evaluation interval - assumed at time instant 0). Note that
while ∑(1 +  Qi

k / Tj
k ) requests having relative deadlines

smaller or equal to Di
k can be placed in the AP queue, from

those requests, only a maximum of 1 +  (Di
k - Dj

k)/ Tj
k 

will have absolute deadlines earlier than Di
k. We illustrate

this effect with the following example.

Table 7

Stream Period

S1
k 4-

S2
k 5-

S3
k 6-

S4
k 7-

If we consider the synchronous release pattern for
message streams (Table 7), a time-line for the EDF
schedule may be as illustrated in Fig. 6.

Message cycle
processed

Priority queue
(EDF)

Requests at
the AP level

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

S1
k

S2
k

S3
k S4

k

hi

low

...

S1
k

S2
k

S3
k

S4
k

Figure 6

As it can be seen from Fig. 6, there is a request for S1
k

arriving to the queue before the processing of the first
request for S4

k. However, as that request for S1
k has an

absolute deadline which is later than the absolute deadline
for S4

k, it will be processed only after the request for S4
k.

This behaviour of the EDF scheduler is effectively
translated by equation (37), as can be seen by the following
successive iterations (V = 1):

() { } { } { } 41 ,1min1 ,1min1 ,1min1
0

4 =+++=kQ
() { } { } { } 41 ,1min1 ,1min1 ,2min1
1

4 =+++=kQ

and iterations stop, as Q4
k(1) = Q4

k(0) = 4. The maximum
queuing delay for a request of stream S4

k, considering that
the streams have a synchronous release pattern, is thus as
shown in Fig. 6.

Note however that the worst-case response time for
EDF dispatched messages is not necessarily found with a

0-7695-0734-4/00 $10.00 � 2000 IEEE

synchronous release pattern (refer to Sections 2.2.4 and
2.2.5). Therefore, equation (37) must be updated to:

() ()

()
























+




































 −+
+












+×

+=

∑
+≤

≠
k
i

k
j DaD

ij
k

i
k
j

k
j

k
i

k
j

k
i

k
i

k
i

T

a

T

DDa

T

aQ
V

aBaQ

1 ,1min (38)

where Bi
k is defined as follows:

()






+>∃∧≠

=
= k

i
k
jj

k
i DaDaV

aV
aB

 : 0 ,

0 ,
(39)

Note that while with the RM/DM approach (Section
5.1) the blocking term is V and effective for all the
message streams, with the EDF approach, we must only
consider (if a ≠ 0) a blocking if it exists a message stream
Sj

k (j ≠ i) with an absolute deadline later than the relative
deadline of the instance of Si

k released at time instant a. A
main difference exists in comparison to the analogous
formulation for task scheduling (32), since in the case of
the SMTV token-passing model, for a = 0 there is always a
blocking with the value V. Similarly to the case of task
scheduling, a belongs to the following set of values:

{ } [[
















∩ℵ∈Ψ−+×Ψ∪∈
=

LDDTa k
i

k
l

k
l

ns

l

k

,0 ,0, 0
1

(40)

where the (token) synchronous busy period is given by:

V
T
L

L
kns

i
k

i

×







= ∑

=1

(41)

The queuing delay is thus:

(){ }aaQQ k
i

a

k
i −= ,0max (42)

since the computation Qi
k(a) may occasionally give a value

smaller than a (for instance, when the value of a
corresponds to more than one request of Si

k during the
interval under analysis, the interval [0,Qi

k(a)].
Finally, substituting equation (42) back in equation (2),

the worst-case response time of a message stream
dispatched according to the EDF scheme is:

(){ } k
i

k
i

a

k
i CaaQR +−= ,0max (43)

The analysis outlined will be now illustrated for the
stream set example of table 7. The results presented were
obtained using the following exact characterisation of the
message stream set of table 7:

Table 8

Stream Ci
k Ti

k Di
k

S1
k 0.2 3.99 3.99

S2
k 0.2 4.99 4.99

S3
k 0.2 5.99 5.99

S4
k 0.2 6.99 6.99

For this message stream set, the value for L (upper
bound for a) is: L = 9. Therefore, the values of a that must
be tested for each message stream are:

Table 9

Stream a = 0 a1 a2 a3 a4 a5 a6 a7

S1
k 0.00 1.00 2.00 3.00 3.99 5.99 7.98 7.99

S2
k 0.00 1.00 2.00 2.99 4.99 6.98 6.99 8.99

S3
k 0.00 1.00 1.99 3.99 5.98 5.99 7.99 8.98

S4
k 0.00 0.99 2.99 4.98 4.99 6.99 7.98 8.97

In order to evaluate the queuing delay for each release
pattern, equation (7.8) must be evaluated for each a value.
The results for (Qi

k(a) - a) are:

Table 10

Stream a = 0 a1 a2 a3 a4 a5 a6 a7

S1
k 1.00 1.00 1.00 0.00 -0.99 1.01 -0.98 0.01

S2
k 2.00 2.00 1.00 0.01 -1.99 0.02 2.01 1.01

S3
k 3.00 2.00 1.01 -0.99 -2.98 -2.99 2.01 2.02

S4
k 4.00 2.01 0.01 -1.98 -1.99 -3.99 3.02 2.03

In this table, for each message stream the value of
max{0, Qi

k(a) - a} is highlighted. The worst-case response
times for the message streams are presented in Table 11.

Table 11

Stream Response a

S1
k 2.01+0.2=1.21 5.99

S2
k 2.01+0.2=2.21 6.99

S3
k 3.00+0.2=3.20 0.00

S4
k 4.00+0.2=4.20 0.00

Therefore, the message stream set is EDF schedulable,
since Ri

k ≤ Ti
k (Di

k), ∀i, while it would not be schedulable
by RM. In fact, stream S4

k, and using equation (36), will
have the following worst-case queuing delay:

() () () () () ()
7 ;7 ;6 ;5 ;4 ;1

5

4

4

4

3

4

2

4

1

4

0

4 ====== kkkkkk QQQQQQ
and thus R4

k = 7 + 0.2 = 7.2, which is larger than T4
k

(D4
k)= 6.99. Fig. 7 puts this to evidence.

Message cycle
processed

Priority queue (RM)

Requests at
the AP level

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

S1
k

S2
k

S3
k S4

k

hi

low

...

S1
k

S2
k

S3
k

S4
k

Two message requests
belonging to the same
stream: a deadline was
missed.

Figure 7

0-7695-0734-4/00 $10.00 � 2000 IEEE

As a final remark, it is important to note that the stream
set of Table 8 does not emphasise the importance of
parameter a. This is only due to the specific characteristics
of the particular stream set. In fact, the results in Tables 10
and 11 show that considering a = 0 corresponds virtually to
the actual worst-case response time. The following
example will better illustrate the importance of parameter a
in the evaluation of the queuing delay. The only difference
to the previous example is in the value of D2

k.

Table 12

Stream Ci
k Ti

k Di
k

S1
k 0.2 3.99 3.99

S2
k 0.2 4.99 3.90

S3
k 0.2 5.99 5.99

S4
k 0.2 6.99 6.99

For this stream set example, the set of values for a
would be (L = 9):

Table 13

Stream a = 0 a1 a2 a3 a4 a5 a6 a7

S1
k 0.00 2.00 3.00 3.99 4.90 7.98 7.99 ---

S2
k 0.00 0.09 2.09 3.09 4.08 4.99 8.07 8.08

S3
k 0.00 1.00 1.99 2.90 5.98 5.99 7.89 7.99

S4
k 0.00 0.99 1.90 4.98 4.99 6.89 6.99 8.97

Using the resulting values for each Qi
k(a), the difference

(Qi
k(a) - a) is:

Table 14

Stream a = 0 a1 a2 a3 a4 a5 a6 a7

S1
k 2.00 1.00 0.00 -0.99 1.10 -0.98 0.01 ---

S2
k 1.00 1.91 0.91 -0.09 -1.08 -1.99 -1.07 0.92

S3
k 3.00 2.00 1.01 0.10 -2.98 -2.99 1.11 3.01

S4
k 4.00 2.01 1.10 -1.98 -1.99 -3.89 -3.99 2.03

As it can be seen, for stream S2
k, with a = 0.09, the

queuing delay (as compared to the case of a = 0) increases
from 1.00 to 1.91. This is an understandable result, as its
"absolute deadline" will then be 0.09 + 3.90 = 3.99, and
therefore, Si

k will be scheduled earlier.

6. Conclusions

The main contribution of this paper was the adaptation, by
providing the convenient analogies, of the feasibility tests
available for non pre-emptive task scheduling to the
scheduling of messages in SMTV token-passing networks.

We reasoned on how the blocking effect (resulting from
non pre-emption) in the schedulability analysis of tasks
could be mapped to each case of priority scheme used to
schedule messages. We showed how the worst-case
execution time of tasks could be translated to the upper
bound of the token rotation time in SMTV token-passing
networks. More important, we demonstrated how the
simple utilisation-based feasibility tests for non pre-

emptive independent tasks could be easily adapted to be
used as (token) utilisation-based tests. However, as these
tests can be quite pessimistic, we developed response-time
tests which were also adapted from the well know response
time tests used for RM/DM scheduled non pre-emptable
independent tasks and we also adapted the more recently
developed response time tests for EDF scheduled non pre-
emptable independent tasks.

Acknowledgements

This work was partially supported by ISEP, FLAD,
DEMEGI and FCT.

References

[1] Liu, C. and Layland, J. (1973). Scheduling Algorithms for
Multiprograming in Hard-Real-Time Environment. In
Journal of the ACM, Vol. 20, No. 1, pp. 46-61.

[2] Tindell, K. (1992). An Extendible Approach for Analysing
Fixed Priority Hard Real-Time Tasks. Department of
Computer Science, University of York, Technical Report
YCS-189.

[3] Lehoczky, J. (1990). Fixed Priority Scheduling of Periodic
Task Sets with Arbitrary Deadlines. In Proceedings of the
11th IEEE Real-Time Systems Symposium, pp. 201-209.

[4] Sha, L., Rajkumar, R. and J. Lehoczky (1990). Priority
Inheritance Protocols: an Approach to Real-Time
Synchronisation. In IEEE Transactions on Computers, Vol.
39, No. 9, pp. 1175-1185.

[5] Joseph, M. and Pandya, P. (1986). Finding Response Times
in a Real-Time System. In The Computer Journal, Vol. 29,
No. 5, pp. 390-395.

[6] Audsley, N., Burns, A., Richardson, M., Tindell, K and
Wellings, A. (1993). Applying New Scheduling Theory to
Static Priority Pre-emptive Scheduling. In Software
Engineering Journal, Vol. 8, No. 5, pp. 285-292.

[7] Baker, T. (1991). Stack-Based Scheduling of Real-Time
Processes. In Real-Time Systems, Vol. 3, No. 1, pp. 67-99.

[8] Zheng, Q. (1993). Real-Time Fault-Tolerant
Communication in Computer Networks. PhD Thesis,
University of Michigan.

[9] Baruah, S., Howell, R., Rosier, L. (1990). Algorithms and
Complexity Concerning the Pre-emptive Scheduling of
Periodic Real-time Tasks on One Processor. In Real-Time
Systems, 2, pp. 301-324.

[10] Ripoll, I., Crespo, A., Mok, A. (1996). Improvement in
Feasibility Testing for Real-time Systems. In Real-Time
Systems, 11, pp. 19-39.

[11] Spuri, M. (1995). Earliest Deadline Scheduling in Real-time
Systems. PhD Thesis, Scuola Superiore Santa Anna, Pisa.

[12] Zheng, Q., Shin, K. (1994). On the Ability of Establishing
Real-Time Channels in Point-to-Point Packet-Switched
Networks. In IEEE Transactions on Communications, Vol.
42, No. 2/3/4, pp. 1096-1105.

[13] George, L., Rivierre, N., Spuri, M. (1996). Preemptive and
Non-Preemptive Real-Time Uni-Processor Scheduling.
Technical Report No. 2966, INRIA.

[14] Spuri, M. (1996). Analysis of Deadline Scheduled Real-
Time Systems. Technical Report No. 2772, INRIA.

0-7695-0734-4/00 $10.00 � 2000 IEEE

