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Abstract 
This report describes the development of a Test-bed Application for the ART-WiSe Framework with the aim 
of providing a means of access, validate and demonstrate that architecture. The chosen application is a kind 
of pursuit-evasion game where a remote controlled robot, navigating through an area covered by wireless 
sensor network (WSN), is detected and continuously tracked by the WSN. Then a centralized control station 
takes the appropriate actions for a pursuit robot to chase and “capture” the intruder one.  

This kind of application imposes stringent timing requirements to the underlying communication 
infrastructure. It also involves interesting research problems in WSNs like tracking, localization, cooperation 
between nodes, energy concerns and mobility. Additionally, it can be easily ported into a real-world 
application. Surveillance or search and rescue operations are two examples where this kind of functionality 
can be applied. 

This is still a first approach on the test-bed application and this development effort will be continuously 
pushed forward until all the envisaged objectives for the Art-WiSe architecture become accomplished. 

 

Keywords: Wireless sensor networks, real-time communications, RSSIbased localization mechanism, test-
bed application, mobile robots. 
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Section 1 - Introduction 
 

1.1 Context and Motivation 
 
Recent advancements in wireless communications and micro-sensing 

embedded technologies are enabling the real deployment of Wireless Sensor 
Networks (WSN). WSNs consist of potentially thousands of sensor nodes with 
multiple sensing capabilities, such as vibration, light, temperature, magnetic and 
acoustic sensing. WSN nodes must also support some (limited) processing, 
memory and radio communication functionalities, enabling multi-hop message 
routing and self-healing. 

Wireless Sensor Networks offer new ways to monitor our environment, 
continuously and almost invisibly, holding the promise of many new ubiquitous 
and pervasive computing applications. Examples include target tracking, 
intrusion detection, wildlife habitat monitoring and climate control. In fact, even 
though the available technology is still emerging, it has been witnessing a quick 
acceptance. For instance, sensor networks have already been deployed for 
environmental monitoring (e.g. monitoring nesting behavior of endangered birds 
in a remote island [1]), precision agriculture (e.g. monitoring of temperature and 
humidity in vineyards [2]), and military and surveillance purposes (e.g. 
classification and tracking of trespassers [3]), just to mention a few “real-world” 
examples. 

While their potential benefits are clear, a number of problems must be 
solved in order for wireless sensor networks to gain widespread use. These 
problems include issues such as security, calibration and failure detection, as 
well as other related to the timing and reliability behavior in critical applications 
like target tracking, considering the limited resources of the nodes.  

In order to improve the timing and reliability in wireless sensor networks, a 
R&D framework, called ART-WiSe (Architecture for Real-Time communication 
in Wireless Sensor networks) has been defined. It consists on using a two-
tiered architecture where a more powerful wireless network acts as a backbone 
of an underlying WSN. One of the major goals in the ART-WiSe framework is to 
rely as far as possible on standard communication protocols rather than 
defining new alternatives. The main reason is to push forward solutions that 
match standardization efforts and commercial-off-the-shell (COTS) platforms. 
For that purpose, research work is being focused on the use of the recently 
standardized communication protocols, IEEE 802.15.4 and ZigBee, initially 
proposed for Low-Rate Wireless Private Area Networks (LR-WPANs). 

This project addresses the design of a test-bed application, using essentially 
COTS, including mobile robots and wireless sensor network platforms, with the 
aim of providing a way to assess, validate and demonstrate the ART-WiSe 
architecture. This is particularly important when dealing with WSN technology 
since besides relying on wireless communications, which are very sensitive to 
the environment, the available products are very recent. These issues make it 
even more important to carry out experimental testing and validation of 
theoretical work.  
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1.2 Structure of this report 
 
In Section 2 is made a brief introduction to Wireless Sensor Networks and to 

the ART-WiSe Framework architecture. An overview of the project, concerning 
the general application architecture and used technologies is presented in 
Section 3. Section 4 addresses the localization mechanism and Section 5 the 
full test-bed application architecture in more technical detail. Finally, in Section 
6 is made a discussion regarding the results achieved, improvements and future 
work to carry on the test-bed. 
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Section 2 – On the ART-WiSe Framework 
 
 

2.1 Overview of a WSN 
 
A Wireless Sensor Network (WSN) is typically composed of a large set of 

sensor nodes with multiple sensing capabilities, such as vibration, light, 
temperature, magnetic and acoustic sensing, scattered in a controlled 
environment. This set aims the collection of specified data needed for the 
monitoring/control of a predefined area/region. The delivery of sensory data for 
process and analysis, usually to a control station (also referred as sink), is 
based on the collaborative work of the WSN nodes in a multi-hop fashion 
(Figure 1) 

 
 

 
 

Figure 1 - Topology of a wireless sensor network 

 
Hence, a WSN node must include some basic capabilities, namely sensing 

(eventually other I/O), processing (and memory) and wireless communications, 
acting as: 

 
 Data source. Producing sensory data by interacting with the physical 

environment and collecting a specified data needed for control 
(temperature, humidity, pressure, movement…). 

 
 Data router. Transmitting and relaying/routing data from one 

neighbor sensor node to another, towards the control station, which 
processes and analyses the data collected from the different 
sensors/nodes in the network. 
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2.2 Real-time Performance in WSNs 
 
This particular form of distributed computing raises many challenges in 

terms of real-time communication and coordination due to the large number of 
constraints that must be simultaneously satisfied. 

As stated in [4], WSNs interact directly with real world physical events, which 
may exhibit unpredictable spatiotemporal properties, hard to characterize with 
traditional methods. Moreover, when trying to achieve real-time performance, 
we must overcome the node’s limited resources (e.g. low power, low CPU 
speed, limited storage capacity, bandwidth, short radio coverage). Hence, 
critical issues like energy efficiency and system robustness must be tackled. For 
example, it is not efficient to keep sensors continuously monitoring the 
environment, only for the benefit of a fast response, since that reduces system 
lifetime. Likewise, the use of computational expensive algorithms for real-time 
detection is not suitable for WSN applications. 

 
 

2.3 The ART-WiSe Framework 
 
The ART-WiSe (Architecture for Real-Time communications in Wireless 

Sensor networks) framework, aims at providing new communication 
architectures and mechanisms to improve the timing and reliability performance 
of Wireless Sensor Networks (WSNs). The ART-WiSe architecture is based on 
a two-tiered network structure (Figure 2) where a wireless network (Tier 2) 
serves as a backbone for a WSN (Tier 1). 

 

 
Figure 2 - Example of the ART-WiSe network topology 
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The ART-WiSe architecture relies (as much as possible) on standard 
communication protocols and commercial-off-the-shell technologies – IEEE 
802.15.4/ZigBee for Tier 1 and IEEE 802.11 for Tier 2. 

Tier-2 is an IEEE 802.11-compliant network acting as a backbone for the 
underlying sensor network. It is composed of a scalable set of special nodes 
called Access Points, which act as interfaces between the two tiers. Each 
Access Point must also act as a Personal Area Network (PAN) coordinator of 
the IEEE 802.15.4 Wireless PAN (WPAN) it manages. The IEEE 802.11 
protocol is widely used, very mature and represents a cost-effective solution 
with powerful networking capabilities, high bandwidth (11-54 Mbps) and long 
transmission ranges (>100 m). Although the basic IEEE 802.11 does not 
provide any Quality of Service (QoS) guarantees, it has been shown that it 
performs well under lightly loaded networks in 0 and [6]. 

Tier-1 is an IEEE 802.15.4-compliant WSN interacting with the physical 
environment (e.g. to collect sensory data). The IEEE 802.15.4 protocol [7] is 
characterized by a low data rate (250 kbps), a short transmission range (10-30 
m) and low power consumption, thus leading to limited communication 
capabilities. This protocol has several appealing features to fulfill different 
requirements of WSN applications. Tier 1 is partitioned into several independent 
WPANs, each of them managed by one Access Point. Each WPAN may still be 
structured into multiple clusters, whenever the density/location of the Access 
Points does not provide direct coverage for the WSN nodes. 

 
 

2.4 On a Test-bed Application for the ART-WiSe framework 
 
As previously referred, the objective of this work was to kick-off the design 

and implementation of a test-bed application for the Art-WiSe Framework. This 
field-trial will serve to access, validate and demonstrate the Art-WiSe 
architecture. 

In our particular case, the application had to satisfy some requirements, 
namely the application should: 

 
1. be as much appealing and realistic as possible, nevertheless limited to 

the available human and technological resources;  
2. include a relevant and scalable number of WSN nodes and of static and 

mobile Access Points; 
3. allow to assess the feasibility of the ART-WiSe architecture, based on 

the chosen/available technologies; 
4. allow to assess the real-time behavior of the ART-WiSe architecture 

(tackling critical events), comparing to analytical and simulation results; 
5. allow to assess the scalability of the ART-WiSe architecture (adaptable 

density of Access Points), enabling the comparison with “traditional” 1-tiered 
WSNs; 
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2.5 Contributions of this report 
 
The main contributions regarding this report are the following: 

 Specification of the test-bed application; this included the analysis of 
other field trials in the area of WSNs and the investigation of relevant 
and potential application domains. Several presentations and 
discussions within the research team leaded to the chosen “pursuit-
evasion” application. 

 Theoretical analysis of different localization mechanisms. 
 Experimental evaluation of an IEEE 802.15.4 RSSI-based localization 

mechanism and implementation of this method in the test-bed 
application, enabling localization of the Intruder robot and positioning 
of the Pursuer. 

Specification and development work on the following: 
 Overall software architecture for the Pursuer robot to interface with 

the WSN and with the Control Station and to navigate in order to 
pursuit the Intruder. 

 Overall software architecture for the remote control of the Intruder 
robot. 

 Overall software architecture for the Control Station including the 
developing a virtual representation of the test-bed scenario in 
OpenGL and a user interface in GTK+. 

 Development of the software architecture of the sensor nodes to 
enable the support for the localization mechanism and the overall 
application. 
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Section 3 - Project Overview 
 
 

3.1 Snap-shot of the test-bed application 
 
As previously referred, a Pursuit-Evasion application has been chosen. This 

kind of application imposes stringent timing requirements to the underlying 
communication infrastructure. It also involves interesting research problems in 
Wireless Sensor Networks (WSNs) like tracking, localization, cooperation 
between nodes, energy concerns and mobility. Additionally, it can be easily 
ported into a real-world application. Surveillance or search and rescue 
operations are two examples where this kind of functionality can be applied. 

There are four entities on the application: 
 

 control station; acts as a data sink, providing information related to 
the state of the application to the user level and performing the 
necessary data collection and processing necessary to the overall 
application; 

 
 Intruder robot team and Intruder Remote Control; The Intruder 

robots are remotely controlled via an IEEE 802.11 link and move 
inside the WSN covered area. In order to control the Intruders an 
Intruder Remote Control was developed, capable of displaying the 
image from the Intruder’s mounted camera and accept control input 
from a joystick. 

 
 Pursuer robot team; with an autonomous behavior whose function is 

to capture the intruders based on the information provided by the 
Control Station and the WSN.  

 
 WSN; featuring Wireless Sensor node responsible for tracking the 

intruders inside the deployment area and relaying that information to 
the Control Station. 

 
The objective of the application is to detect, localize, track and pursuit the 

Intrude, until the Pursuer robot, aided by the WSN abilities to find the Intruder, 
gets close enough to it. Figure 3 illustrates an example scenario.  

Currently, the intruder and pursuer teams include just one robot each but the 
complexity of the application will tend to grow in the medium-term. Commercial-
off-the-shelf mobile robots platforms (WifiBot [13]]) are being used for this 
purpose. 
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Figure 3 - Snapshot of the Test-bed application 

 
The four entities previously mentioned are represented in Figure 3. An 

Intruder robot is driven through the WSN remote controlled by an operator.  
Some of the WSN nodes are triggered by the presence of the Intruder and this 
information is relayed to the Control Station. The Control Station then computes 
the Intruder’s location and informs the Pursuer robot that will immediately 
initiate the pursuit by moving towards the last known position of the Intruder. 
This process will be repeated until the Pursuer is close enough to the Intruder. 

 
 

3.2 On the used technology 
 

3.2.1 WSN nodes 
 
MICAz motes (Figure 4) from Crossbow [8] have been used to deploy the 

WSN. They feature an ATMEL ATmega128L 8-bit microcontroller with 128 KB 
of in-system programmable memory. This low-power microcontroller features an 
advanced RISC architecture with 133 instructions; most of them with a single 
clock cycle execution time. Its operation is fully static and can offer an up to 8 
MIPS throughput when running at 8 MHz. 

 
 

Control Station 

Intruder Remote Control 

Pursuer Robot 
Intruder Robot 

WSN node 

Triggered WSN Node 
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Figure 4 - MICAz mote 

 
It also features: 

• 128 KB of Program memory (in-system reprogrammable flash); 

• 4 KB of EEPROM; 

• 4 KB of Data memory (internal SRAM); 
 
Besides these memory capabilities, the ATmega128L enables to address up 

to 64 KB optional external memory space.  
These nodes run TinyOS [9] which is an open-source event-driven operating 

system designed for wireless sensor network nodes that have limited resources. 
The operating system files are written in NesC [10]. As stated in [11], this 
language is an extension to C designed to embody the structuring concepts and 
execution model of TinyOS.  

As stated in [12] there are two types of files in TinyOS: components and 
interfaces. The components can be configuration or modules. The modules 
implement one or more interfaces; the configuration wires other components 
together. An application is a combination of several components linked or 
“wired” together. Figure 5 shows the graphical arrangement of this component 
“wiring”. The interaction between components is provided by the interfaces. For 
a component to call the commands in an interface it must implement the events 
of that interface.  

 

 
Figure 5 - Graphical arrangement of the components and their wiring 

  
TinyOS's component library includes network protocols, distributed services, 

sensor drivers, and data acquisition tools, each of them can be used as-is or be 
further refined for a custom application.  

A requires interface I, B provides I, and A and B are wired together. 
C and D both require or both provide J. The direction of the arrow 
indicates that the original wiring is "C = D". 
E requires function f, and F provides function f. 
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TinyOS's event-driven execution model enables fine-grained power 
management yet allowing the scheduling flexibility required by the unpredictable 
nature of wireless communication and physical world interfaces.  

 
 

3.2.2 Mobile Robots 
 
The mobile robotic platform used in the test-bed application is the WifiBot 

[13]. The system architecture is build around a double bus Ethernet-I²C and a 
CPU that acts as a bridge between the two. This same CPU works as an IEEE 
802.11 access point, enabling wireless access to the Ethernet bus from the 
outside. Figure 6 depicts the internal architecture of the robot. 

 

 
Figure 6 - Internal architecture of the WifiBot 

 
In general the embedded LAN is used for peripherals of a certain importance 

such the IP camera while the I²C bus is useful for connecting more simple 
modules based on microcontrollers. To finish, the robot features one RS232 
port which can be bridged to upper levels as well. This makes possible to add to 
the robot new modules based on simple microcontrollers. 

The embedded CPU is a 4G Access Cube [14]. This is a new hardware 
platform dedicated to Wireless LAN Mesh Routing, developed by 4G Systems. 
Some of its interesting features are: 

 
 400 MHz MIPS processor AMD Alchemy Au1500 
 64 MB RAM 
 32 MB Flash 
 100 Mbps Ethernet 
 Power Over Ethernet Standard IEEE 802.3af 
 USB host/USB device  
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 Scope for installing up to 8 MiniPCI devices via four dual adapters. 
The robot has space for one MiniPCI. 

 WLAN card with RP-SMA connection 
 Dimensions: 7 x 5 x 7 cm 
 Power rating: 4 W 

 
The Access Cube runs the nylon Linux distribution as operating system. It 

features WirelessLan, routing, MeshRouting, autoconfiguration, IpSec and VPN 
all in a compact design to fit on the 32 MB flash. It is completely licensed has 
Open Source and is based on OpenEmbedded [15] which is a tool for building 
embedded devices. The datasheet of the robot is showed in Annex 2. 

As it should be expected in an embedded system, the platform lacked a 
compiler. So, in order to compile an application for a different architecture from 
the one we were working on, like MIPS and x86, a toolchain had to be built. The 
toolchain consists of a number of components. The main one is the compiler 
itself gcc, which can be native to the host or a cross-compiler. This is supported 
by binutils, a set of tools for manipulating binaries and by the C-library glibc. 

Since in the future it could be necessary to install new developed software 
packages in the robot, or even compile a special crafted linux distribution for it, 
the most reasonable option to build the toolchain was to install the 
OpenEmbedded environment, since all the nylon packages are available under 
it. OpenEmbedded was designed to be able to handle different hardware 
architectures, support multiple releases for those architectures, and utilize tools 
for speeding up the process of recreating the base after changes have been 
made. 

Bitbake is the tool that reads the OpenEmbedded metadata and does all the 
work. It is responsible for: 

 
 Building the compiler and cross-compiler versions specified, as 

well as configuration tools. 
 Fetching sources from the internet. 
 Configuring, compile and deploy, create packages including the C 

library. 
 Compiling for several architectures in parallel, just by duplicating 

the build directories. 
 Supporting several package formats: ‘.rpm’, ‘.ipk’, ‘.deb’. 
 Cross-compiling single packages. 
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Section 4 – On the Localization Mechanism 
 
 

4.1 Choosing the localization system 
 
A problem faced throughout the design of the application was how to 

achieve localization inside the Wireless Sensor Network (WSN), both for the 
Pursuer positioning and Intruder detection. One possibility would be to rely on 
odometry readings from the robots for determining position. Nevertheless, this 
option has the disadvantage of accumulating errors over time, so common on 
dead reckoning. The systematic and non-systematic errors from this positioning 
mechanism plus the inaccessibility to the raw data from the wheel encoders of 
the robots, since only speed values can be obtained from the I2C bus, would 
eventually lead to positioning problems over time. So, the need for an absolute 
positioning system was demanding. By using the WSN for this task, in addition 
to solving the above issue, it was possible to add more stress into the network, 
necessary for later performance assessment of the ART-WiSe architecture. It 
also allowed us to go even further, by learning more on how much we could rely 
on a deployed WSN for obtaining positioning. 

There are many proposals on this subject using different kinds of range 
measurements, like Time of Arrival (ToA) or Radio Signal Strength (RSS). For 
instance, the Cricket [16] indoor localization system uses ToA obtained by 
combining ultrasound and Radio Frequency (RF), whereas MoteTrack [17] uses 
RSS measurements to provide location signatures for each node in the network. 
As stated in [18], the majority of existing location discovery approaches consist 
of two basic phases: distance (or angle) estimation and distance (or angle) 
combining. The most popular methods for estimating the distance between two 
nodes are: 

 
 Received Signal Strength (RSS) techniques measure the power of the 

signal at the receiver. Based on the known transmit power, the 
respective propagation loss can be calculated. Theoretical or empirical 
models are used to translate this loss into a distance estimate. This 
method has been used mainly for RF signals. 

 
 Time based methods (ToA,TDoA) record the time-of-arrival (ToA) or 

time-difference-of-arrival (TDoA).The propagation time can be directly 
translated into distance, based on the known signal propagation speed. 
These methods can be applied to many different signals, such as RF, 
acoustic, infrared and ultrasound. 

 
 Angle-of-Arrival (AoA) systems estimate the angle at which signals are 

received and use simple geometric relationships to calculate node 
positions. 
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A more detailed discussion of these methods can be found in [19]. For 
the combining phase, the most popular alternatives are: 
 

 Hyperbolic tri-lateration, which is the most basic and intuitive method, 
locates a node by calculating the intersection of 3 circles. 

 
 Triangulation is used when the direction of the node instead of the 

distance is estimated, as in Angle of Arrival (AoA) systems. The node 
positions are calculated by using the trigonometry laws of sines and 
cosines. 

 
We have opted by the RSS range measurement method since it would not 

involve special hardware design and it could be easily implemented on the 
MICAz mote by using the CC2420 [20] Radio Signal Strength Indicator (RSSI) 
function.  

Since we are estimating distances, the chosen method ought to be 
Lateration. However, this method imposes some practical problems. First, it is a 
computationally expensive method with a high number of floating point 
operations. Since it is probable that later on some of the localization 
computation will be made by the sensor nodes, this presents an issue given that 
the WSN lacks high computational skills. Second, it is highly sensitive to 
distance measurements errors. The RSSI measurements present some error, 
particularly when the nodes are deployed in an indoor environment, due to the 
multiple unpredictable interferences. Hence the lateration algorithm will not 
output a result in cases where it is not possible to find an intersection point (of 
the three circles). 

A much simpler method is presented by Savvides et al. [21] as part of the N-
hop multilateration approach. The main idea is to construct a bounding box for 
each anchor using its position and distance estimate, and then to determine the 
intersection of these boxes. The position of the node is set to the centre of the 
intersection box.  

Figure 7 illustrates the Min–max method for a node with distance estimates 
to three anchors. Note that the estimated position by Min–max is close to the 
true position computed through Lateration (i.e., the intersection of the three 
circles). 
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Figure 7 - Estimated Position by the Min-max algorithm and by Lateration 

 
The bounding box of anchor a is created by adding and subtracting the 

estimated distance (da) from the anchor position (xa, ya) (1): 
 

[ ] [ ]aaaaaaaa dydxdydx ++×−− ,,  (1) 

 
The intersection of the bounding boxes is computed by taking the maximum 

of all coordinate minimums and the minimum of all maximums (2): 
 

( ) ( )[ ] ( ) ( )[ ]iiiiiii dydxdydx i ++×−− min,minmax,max  (2) 

 
The final position is set to the average of both corner coordinates. As for 

Lateration, the final position should only be accepted if the residue is small. 
Figure 8 shows the implementation of the Min-max algorithm. 
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Figure 8 - Min-max implementation 

 
As stated in [22] when noise is introduced in the range measurements, the 

two algorithms (Min-max and Lateration) show different behavior. Figure 9 
shows the sensitivity of Lateration and Min-max when standard deviation 
percentage was varied from 0 to 0.25. 

Lateration outperforms Min-max for precise distance estimates, but Min-max 
takes over for large standard deviations. Min-max is rather insensitive to bias, 
because stretching the bounding boxes has little effect on the position of the 
center. 

For precise distance estimates and a small bias factor Lateration 
outperforms Min–max, but the bottom graph (Figure 9) shows that Min–max is 
probably the preferred technique when the standard deviation rises above 10%. 

 

Receive
 message

Choose the 3 strongest 
measurements

Run Min-max algorithm

Is the RSSI 
measurement 

stronger than X?

Search for messages from 
the same anchor and 

remove them

Forget message

Positioning and 
Localization 
mechanism

TRUE

FALSE

Save position

Do we have N 
messages?

TRUE

FALSE

Save Message to 
buffer

 

// Xcoord and ycoord are the coordinates. AnchorXdist are the 
distances to the anchors 

 

xsum[0]=xcoordA+anchorAdist; ysum[0]=ycoordA+anchorAdist;  

xsum[1]=xcoordB+anchorBdist; ysum[1]=ycoordB+anchorBdist; 

xsum[2]=xcoordC+anchorCdist; ysum[2]=ycoordC+anchorCdist; 

 

xsub[0]=xcoordA-anchorAdist; ysub[0]=ycoordA-anchorAdist;  

xsub[1]=xcoordB-anchorBdist; ysub[1]=ycoordB-anchorBdist; 

xsub[2]=xcoordC-anchorCdist; ysub[2]=ycoordC-anchorCdist; 

 

xmin=xsum[0]; 

ymin=ysum[0]; 

xmax=xsub[0]; 

ymax=ysub[0]; 
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Figure 9 – Sensitivity to deviations on the range measurements by the Min-max and 
Lateration algorithms 

 
On the experimental tests carried out and showed on 4.2, standard deviation 

values exceeded 10% validating the option for this algorithm. 
 
 

4.2 Achieving localization 
 
In order to achieve localization a table that could relate Distance and RSSI 

was built. This table allows the conversion of the RSSI measurements into 
distance for later use by the Min-max algorithm, on the Control Station and on 
the Pursuer Robot.  

Four motes were placed around the Pursuer Robot setup to send 
broadcasts at certain power levels. Another mote was placed on top of the 
Pursuer connected to a MIB510 interface board [23]. This board enabled the 
interface through the serial port with a laptop running a serial port logging 
software. The purpose of this mote was to gather the broadcast messages and 
specially the received RSSI values and relay them to the serial port. 

Figure 10 shows the setup of the experiment. 
 
 
 
 
 

 
 
 
Figure 10 - Experiment setup 
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Experiments were made with power levels 3, 4, 5 and 6 of the MICAz mote, 

varying from -25 dBm to -15 dBm respectively.  
The following graph (Figure 11) shows the plot of Distance vs RSSI for three 

of the tested power levels. A good linearity is important since it allows a more 
accurate translation from RSSI to Distance. As showed the results for the TX 
power level 5 present the best results. For the lower power level (power level 3), 
some linearity was found for a small distance of 90 cm. For the next two power 
levels better linearity was found. Yet, power level 4 only presented accurate 
results until a maximum of 120 cm away from the transmitter. This would 
prevent a lower granularity for the deployed sensor network. With power level 5, 
more accurate results were achieved at higher distances. This allowed a 
granularity of 180 cm which was enough for the constricted indoor environment 
where the test-bed was to be deployed.  

 

Distance vs RSSI
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Figure 11 - Distance vs RSSI obtained at different TX Power Levels 

 
 
Notice the placement of the four motes around the robot in Figure 10. By 

placing the motes in that shape it was possible to test the effect that different 
antenna orientations had on the RSSI values received by the mote on the robot 
and to find the spread of RSSI values that were likely to be found at a given 
distance even with different antenna orientations. 

Histograms were built with the received values from the four motes at 
different distances for power level 5. Some of them are presented below (Figure 
12). 
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Figure 12 - Histograms for the RSSI at different distances 

 
 
The histograms in Figure 12 show the RSSI levels received at different 

distances by the four motes surrounding the robot. These results provided us 
with knowledge of which RSSI values were expected to be found at different 
distances.  

Based on this experimental information was possible to build the table 
showed on Figure 13 that relates the RSSI values with the distance to the 
anchor. 

 
 
 

 
 
 
 
 

Figure 13 - RSSI to Distance Table 

 
The algorithm presented in Figure 13 was implemented both in the Pursuer 

robot and in the Control Station to enable the translation from RSSI level to 
distance.  

224 225 226 227 228 229 230

RSSI level

229 230 231 232 233 234 235 236 237 238

RSSI level

218 219 220 221 222 223 224

RSSI level

218 219 220 221 222 223 224 225 226 227

RSSI level

a) 30 cm away b) 60 cm away 

c) 90 cm away d) 130 cm away 

 

if (rssi >= 235)    range = 0.15; 

else if (rssi < 235 && rssi >= 227) range = 0.45; 

else if (rssi < 227 && rssi >= 226 ) range = 0.75; 

else if (rssi < 226 && rssi >= 224 )  range = 1.05; 

else if (rssi < 223 && rssi >= 220)  range = 1.35; 

else if (rssi < 220 && rssi >= 219) range = 1.50; 

else if (rssi <= 219)   range = 1.65; 
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Because multiple RSSI values were found for the same distance in certain 
cases, most of the times due to the mote’s antenna orientation, the algorithm 
was built by establishing a correspondence between discrete range levels and 
the spread of RSSI values encountered for that same range. 

 
 

4.3 Implementation of the localization system 
 
Two different approaches were implemented, based on the same 

localization mechanism. The first results in a positioning mechanism for the 
Pursuer robot, while the second works as the localization method of the 
Intruder. 

Figure 14 shows the two implementations of the localization mechanism 
used on the application. 

 

 
Figure 14 - Representation of the two implementations for the localization 

 
 
For the Pursuer positioning, all the WSN nodes periodically broadcast a 

RSSI message which contains the node (x,y) coordinates and address (1b). 
These messages are received by the mote on the Pursuer robot and are then 
processed in the robot. For the Intruder localization, the robot initiates the 
process by announcing his presence sending a broadcast message similar to 
the latter but without coordinates (1a). This message is then received by the 
WSN and relayed to the Control Station in an “Intruder Alert message” (2a). The 
Control Station then processes these messages and instructs the Pursuer 
where to go (2b).  

The intruder detection mechanism and the following mission dispatch to the 
Pursuer Robot are covered in more detail in the diagram of Figure 15.  
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Figure 15 - Diagram of the intruder detection and localization mechanism 

 
This process is repeated several times until the Pursuer Robot reaches the 

Intruder. A node placed on top of the Intruder robot broadcasts messages at a 
pre-programmed transmission power and timing rate. The WSN nodes that 
receive that Intruder message, save the received RSSI and build a new 
message with that recorded value and their coordinates and send it to the 
control station. The Control Station is expected to receive multiple messages of 
this kind from different nodes. As soon as a sufficient number of messages is 
received the Intruder, position is calculated based on the same algorithm used 
for the Pursuer Positioning service. This position is then relayed to the Pursuer 
robot. A virtual display of both the Pursuer and Intruder robots is built based on 
status messages from the Pursuer Robot and on the Intruder Localization 
mechanism respectably, as presented in 5.4. 

The localization mechanism presented a maximum error of approximately 70 
cm. We did not expect better results for the localization mechanism, as stated in 
[24], there are many sources of RSSI variability like: 

 
Transmitter variability: Different transmitters behave differently even when 

they are configured exactly in the same way. In practice, this means that when 
a transmitter is configured to send packets at a power level of d dBm then the 
transmitter will send these packets at a power level that is very close to d dBm 
but not necessarily exactly equal to d dBm. This can alter the received signal 
strength indication and thus it can lead to inaccurate distance estimation.  

Receiver variability: The sensitivity of the receivers across different radio 
chips is different. In practice, this means that the RSSI value recorded at 
different receivers can be different even when all the other parameters that 
affect the received signal strength are kept constant. 

Antenna orientation: Each antenna has its own radiation pattern that is not 
uniform. In practice, this means that the RSSI value recorded at the receiver for 
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a given pair of communicating nodes and for a given distance between them 
varies as the pairwise antenna orientations of the transmitter and the receiver 
are changed. 

Multi-path fading and shadowing in the RF channel: in indoor 
environments, the transmitter signal gets reflected after hitting on walls or other 
objects. Both the original signal, as well as the reflected signal reach the 
receiver almost at the same time since they both travel at the speed of light. As 
a result, the receiver is not able to distinguish the two signals and it measures 
the received signal strength for both of them.  

Battery condition can influence both the received RSSI as well as the 
transmission signal strength. When using old batteries, despite the nodes are 
configured in the same way, different RSSI readings are observed.  

 
All the above reasons may cause error on the RSSI measurements 

eventually leading to a wrong position computation.  
From the tests it was found that the standard deviation on the range 

measurements exceeded 10%. Indeed, the minimum standard deviation 
observed was 13.4% for the distance of 60 cm but values like 25% were 
obtained for other distances. Hence, the choice of the Min-max algorithm for the 
computation of the position did not impose significant error comparing to the 
lateration algorithm and may in fact improve the outcome since it is not so 
sensitive to distance measurement errors. 
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Section 5 - On the Test-bed Application Design 
 
 

5.1 On the Sensor Nodes 
 
The test-bed application is based on the sensor nodes programming. They 

are the entity responsible for allowing intruder detection, and for providing the 
positioning for the pursuer robot. The WSN consist of 20 MICAz motes 
deployed in a grid topology in an indoor environment. Figure 16 shows a view of 
a region of the WSN deployment area where four sensor nodes are showed. 

 

 
Figure 16 - Test-bed WSN sensor nodes 

 
In order to support the localization service for the application, two message 

frame types were built. The first is the RSSI message periodically broadcasted 
by every mote ( 

 
Figure 17 a) ). This frame format is used by the WSN nodes and by the 

Intruder mote to send periodic messages for RSSI identification by the receiver. 
The difference between the two cases is the non-filling of the Coordinates field 
by the Intruder mote and the different Message ID field. The Intruder Alarm 
Message (Figure 17 b) ) is used by the WSN nodes to relay the measured 
Intruder message RSSI together with the coordinates of the WSN node to the 
Control Station. 
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a) RSSI broadcast Message 

 

 

b) Intruder Alarm Message 

  

 

 

 

 
Figure 17 – Message types in the WSN  

 
The flowchart below (Figure 18) shows the operation of the WSN nodes. 

Notice that each node has different coordinates pre-programmed. 
 

 
Figure 18 - WSN node workings 

 
The Pursuer Robot WSN Interface and the Base Station WSN Interface 

behave in a similar manner. Both are responsible for filtering the message id 
field from the received frame, and processing the respective message, relaying 
the data through the serial port. 

The difference lies on the extra RS232-to-TTL converter hardware that is 
placed on the Pursuer Robot to interface the mesh cube hardware. The 
schematic for this circuit was developed within this project and is showed in 
Annex 3 as well as the correspondent board layout. 

 
 
 
 
 

Source Address Message ID Coordinates 

8 bits  8 bits  32 bits   8 bits 

8 bits  8 bits  32 bits 

Message ID Source Address Coordinates RSSI Value 

Message ID = 11 – RSSI Broadcast Message  

Message ID = 22 – Intruder Alarm Message 



On a Test-bed Application for the ART-WiSe Framework On the Test-bed Application Design 

24 

5.2 On the Pursuer Robot  
 
To enable the chase of the Intruder a Pursuer robot was developed. It 

accepts the missions from the Control Station and it features autonomous 
behavior. A picture of the Pursuer robot is presented in Figure 19. 

 
Figure 19 - The Pursuer robot 

 
 The block diagram in Figure 20 depicts the Pursuer robot architecture and 

the connections with the other test-bed entities. The test-bed entities which 
interact with the Pursuer are the WSN for positioning, the Control Station for 
mission dispatching and other eventual pursuer robots.  

 
 
 
 
 
 
 
 
 
 
 

 

 
 
 
 
 
Figure 20 - Pursuer architecture and connections with other test-bed application entities 
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The Local Control block that appears in Figure 20 encompasses two 

fundamental software modules: Communications and Navigation. The first is 
responsible for maintaining all the necessary communications while the second 
deals with all the navigation issues to get the robot from one place to another.  
 
 

5.2.1 Communications 
 

The communications module of the Pursuer includes all the interface 
mechanisms linking Pursuer - Control Station and Pursuer – WSN, allowing the 
robot to run the WSN Positioning System and maintain communication with the 
Control Station, informing it of his current status. This communication is made in 
a broadcast fashion using the UDP/IP Protocol, since we envisage adding more 
Pursuer Robots in a near future and those robots must know the position of the 
other team members at all time. 

Communications made between the Pursuer and the Control Station use the 
following message structure (Figure 21): 

 
Figure 21 – Message structure for communications between Pursuer and Control 

Station. 

 
The Message Type field identifies the contents of the message. Next, the ID 

field identifies the source of the message. The next blocks of data give multiple 
information about the mission the robot is currently running: Mission type, 
Number of Waypoints on the mission, the Current Waypoint and the coordinates 
of the next ones. 

The last groups of data provide information about the current robot Position 
(X, Y, THETA), and of his internal state. 

Msg Type ID 

Mission type Number of waypoints Current waypoint Next waypoints 

Robot State Position  X  Y  THETA 

Data 

Message type 1 – Pursuer status message (from the Pursuer robot) 

Message type 2 – Mission update message (from the Control Station) 
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This same data structure is used for the messages coming from the Control 
Station. However, these come with a different Message Type field and just 
some of the other fields are used.  

The following example (Figure 22) shows how the Control Station instructs 
the Pursuer with a new mission message: 

 
Figure 22 - New Mission message for the Pursuer 

 
The WSN Positioning System works by reading the beacon messages from 

the WSN motes and running the Min-max algorithm on these readings. These 
beacon messages use the frame type specified at Figure 17 b) and are received 
by the WSN interface of the Pursuer robot. Messages are then processed and 
relayed for processing by the Robot according to the diagram in Figure 23. 

 
 

 
Figure 23 - Diagram of the interface with the WSN 
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5.2.2 Navigation Module  
 

The navigation module encompasses the following tasks: 
 

 obstacle avoidance; 
 mission control; 

 
The obstacle avoidance uses the two IR sensors for obstacle detection 

providing a detection range from 20 to 150 cm. The avoidance is merely 
reactive. The reading of the IR sensors values is made by interfacing the I2C 
bus.  

The mission control software is responsible for executing the mission 
dispatched from the Control Station and for updating the current mission status 
continuously. Figure 24 shows the navigation algorithm used in the robot. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 24 - Navigation algorithm 

 

while(1) { 
if (OBSTACLE) { 

  Avoid_obstacle();  // use reactive behavior to avoid the obstacle 
} 
if (!OBSTACLE) {   
 if (STATE == DONE_AVOIDING_OBSTACLE) 
  { 
   Start_walking(); 
   STATE = WALK_SAFE_DISTANCE; 
  } 
 if (STATE == WALK_SAFE_DISTANCE) 
  { 
   If ( Distance > S1 ) { 
    STOP(); 
    Update_position_WSN; 
    STATE = NAVIGATING; 
  } 
 
    // Start/Continue mission execution 

if (MISSION_UPDATE)  /* If there was a mission update from the 
control station in the meanwhile */ 

   { 
    Update_waypoints(); 
    Adjust_heading(); 
   } 
  if (STATE == NAVIGATING) 
   { 
    if ( POSITION == WAYPOINT) { 
     MISSION_UPDATE = TRUE; 
     } 
    else { // we’re not there yet… 
     Start_walking(); 
     if (Distance > S2) { 
      Update_position_WSN; 
      Adjust_heading(); 
      } 
    } 
   } 
 } 
} 
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It starts by doing the obstacle avoidance. If the path is clear then it proceeds 

by navigating towards the destination waypoint. This is done by adjusting the 
heading in the direction of the waypoint and by moving a pre-programmed 
distance in a straight line. Position is then calculated through the WSN 
positioning mechanism and the heading is found and adjusted accordingly.  The 
process is repeated until the destination waypoint is reached. 

 
  

5.3 On the Intruder Robot 
 
The intruder robot architecture is simpler than the one of the pursuer. It does 

not have to include the WSN interface and the robot is remotely controlled by a 
human operator (Figure 25). The WSN locates him via a MICAz mote mounted 
on board whose function is to periodically send a broadcast message at a pre-
programmed power level. It can be considered as if the robot was announcing 
his position. By doing this, we did not have to be concerned with the WSN 
sensing capabilities by choosing the best type of sensors for this task, which 
was not our primary goal. 

 
 
 
 
 
 
 
 
 

Figure 25 - Intruder communications with the remote control 
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Figure 26 shows the Intruder robot. 
 

 
Figure 26- Intruder robot carrying a mote 

 
The Intruder runs a server application that listens for incoming connections 

on his TCP/IP 15000 port for enabling the remote control of the robot (Figure 
25). This connection is established wirelessly, through an IEEE 802.11 link, 
from a remote machine running the client application and with joystick input. 

Figure 27 shows a flowchart of the server application software, running in 
the Intruder Robot. This software consists of two threads running in parallel. 
The main thread listens to the data that comes from the TCP/IP connection 
established by the remote client, and sets the speed of the right and left wheels 
accordingly. The other thread behaves as a software watchdog. This thread is a 
part of some safety concerns we had with the intruder software design. Since 
the robot operates remotely through a wireless connection and sometimes may 
be driven merely based on the robot camera images, accidents can easily 
happen. This is particularly acute when the robot is driven at maximum speed 
(about 1.6 m/s). Additionally, wireless communications may experience 
communication failures. This can also happen if the robot’s battery power level 
drops bellow a certain threshold, preventing it from maintaining communications 
with the Intruder Remote Control. Eventually, the last value in the I2C bus, 
correspondent to the motor speed sent by the remote operator would be 
sustained, which could result in damage to the robot. 

To tackle these problems the following solutions were developed: 
 

 Watchdog thread – This thread is a part of the server application 
running on the robot. It is a basic implementation of a software watchdog. 
In general, there is a shared variable between this one and the main 
thread, which is continuously incremented by the watchdog thread and 
reset by the main thread while there is data in the communication socket. 
If the value of the variable exceeds the pre-programmed value the main 
thread does not reset the variable. The robot is stopped by the watchdog 
thread and the main thread will be closed as well as the connection with 
the remote station. Then, the main thread will restart and wait for another 
connection. 
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 Obstacle Detection – Because of operator error, it is possible the 
robot will be driven into an obstacle. By taking advantage of the two IR 
sensors on the robot, the main thread on the server application stops the 
robot if an obstacle is sensed at close range (approximately 20 cm). 
Then, only commands that drive the robot away from the obstacle are 
accepted. 

 
 Joystick enable button – To prevent the accidental dispatch of 

commands to the robot, the input of the joystick is only accepted if the 
operator is holding the FIRE button. 

 
 

Figure 27 - Diagram of the server application software in the Intruder Robot 

 
Figure 28 depicts the client application software used by an operator to 

remotely control the Intruder Robot. The main program launches two threads, 
one responsible for continuously sending the control actions to the robot and 
therefore maintaining the connection with it, and the other one responsible for 
receiving data from the robot (IR sensors, speed…). Simultaneously, the main 
program reads the joystick input and processes it. It allows the remote control of 
both the motion of the robot, setting the speed of the right and left wheels, and 
of the IP camera in the robot through the CGI interface of the camera.  
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Figure 28 - Diagram of the client software application for the Intruder (Intruder 

Remote Control) 

 
 

 
 

Figure 29 - View from the IP camera on the Intruder 

 
The IP camera image is displayed in a GTK window (Figure 29) allowing the 

remote operation of the intruder. 
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5.4 On the Control Station 
 
The control station runs an application on a Personal Computer running 

Linux, with a user interface made on GTK+. It has communications capabilities 
for both IEEE 802.11 and IEEE 802.15.4, the first for communications with the 
pursuer robot, and the second for receiving messages from the WSN 
concerning intruder detection. The position is then calculated and displayed in a 
3D virtual representation of the test-bed set, built with OPENGL. 

The control station instructs the Pursuer robot where to go (Intruder 
location), and updates this information constantly (Figure 15). This information 
also includes the waypoints the robot needs to reach in order to take the short 
and most effective path to the Intruder location. This algorithm is static. Several 
areas are defined statically as well as the correspondent waypoints to follow in 
order to reach the destination area when it is not possible to move in a straight 
line Figure 30 shows the four waypoints used by the Pursuer in the test-bed 
layout.  

 

 
Figure 30 - Pursuer waypoints on the test-bed layout 

 
The Control Station also displays assorted information related to the pursuer 

robot status: position, heading, mission status, waypoints. The diagram on 
Figure 31 depicts the internal architecture of the Control Station application.  

The main thread is responsible for configuring the OPENGL and the GTK 
environments. It also launches the Communications Thread. This thread takes 
care of all communications to and from the Control Station. It listens for Status 
Messages from the Pursuer, Intruder Alert Messages from the WSN and 
images from the IP Camera on the Pursuer. 

 
 
 

Waypoint 1 Waypoint 2 

Waypoint 3 Waypoint 4 



On a Test-bed Application for the ART-WiSe Framework On the Test-bed Application Design 

33 

 
 

Figure 31 - Diagram of the software on the Control Station 

 
Figure 32 shows two screenshots of the GUI (Graphic User Interface) of the 

Control Station showing the Intruder capture. On the left hand side of the 
window (the black part), we can see the OPENGL representation of the WSN. 
The Pursuer is represented by a green cube and the position of the Intruder by 
a red square. The white cones represent the sensor nodes. In the right pane, 
some information about the Pursuer current status is displayed as well as the 
view from the IP camera of the Pursuer. 

 
 
 

 
a) 
 

Pursuer approaching 
Intruder. 

The Pursuer has visual 
contact over the intruder 
(the one appearing). 
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b) 

Figure 32 - The Control Station GUI screenshots 

 
The previous screenshots enable the user to see what the Pursuer “sees” 

when chasing a target and the virtual representation of the test-bed scenario 
while the pursuit is running, all of this through the GUI in the Control Station. 

 

 
Figure 33 - Current test-bed deployment 

 
Figure 33 presents a view of the current test-bed deployment showing a 

pursuit in progress.  
 

Pursuer is much 
closer to the 
intrusion area now! 

Now the Pursuer is closer to 
the intruder. 
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Section 6 - Lessons learned and future work 
 
This project was about starting up a test-bed application for the ART-WiSe 

framework – an architecture for real-time communications in WSNs. 
In the scope of this work a vast amount of different technologies were 

embraced: robotics, wireless communications, wireless sensor networks and 
linux programming, are some examples. Additionally, the specification of the 
test-bed application was only achieved after a long analysis of other field trials 
in the WSN area and a lot of investigation of relevant and potential application 
domains. The development of the localization mechanism for the application 
also involved the analysis of different localization methods, while searching for 
the most adequate for this particular application, and a lot of testing while tuning 
the system.  

The chosen application has proven to be an interesting way of 
demonstrating the ART-WiSe architecture in the medium-term. Nevertheless, 
some improvements regarding the application design were identified and 
eventually will be done later on. One of them would be to compute the 
localization of the intruder in the sensor network itself instead of doing this in the 
Control Station. This will eventually allow a faster identification of the intrusion 
area by increasing the performance of the application.  

Still regarding the localization matter, despite the success of the 
implementation of the positioning system for the Pursuer robot, some 
improvements are also envisaged on this matter. We believe that by using an 
extended Kalman filter it will be possible to achieve better results on the 
positioning, particularly when fusing odometry information with the positioning 
system. It is also expected that a smaller granularity for the WSN can be 
achieved by obtaining a better behavior in an outdoor deployment since there 
will be almost no obstacles for message transmission by the positioning system, 
reducing the multi-path fading and shadowing effect on the range 
measurements.   

The inclusion of the IEEE 802.15.4/ZigBee protocol stack under 
development in the WSN nodes is a major step in order to completely fulfill the 
test-bed objectives since it will allow the actual assessment of the ART-WiSe 
architecture. This assessment is also depending on the inclusion of access 
points capable of bridging the Tier 1 with the Tier 2, as well as the development 
of some kind of database for logging important performance data. As soon as 
the task of including the IEEE 802.15.4/ZigBee implementation becomes 
completed some other new improvements can be made to the test-bed 
application. For example, by adding a simple cluster-tree topology network to 
the implementation it will be possible to provide a more efficient mechanism to 
the localization of the intruders. It will also be possible to use routing tables and 
therefore to support multi-hop communication (which is one of the requirements 
for Tier 1).  

Along this project, many new issues kept emerging. Some of them were 
related to the cooperation of wireless sensor networks with mobile entities like 
mobile robots. This application can be looked at as an example of how a WSN 
can take advantage of mobile robots, in this case by helping to secure the 
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deployment area. Besides this obvious application, one can envisage other 
functions like the introduction of mobility to the network. For instance, some 
events may need a greater coverage by the network. Mobile robots could be 
used to grant that, if configured as access points (i.e. using the envisaged ART-
WiSe architecture), by moving them to the desired region.  

The employment of mobile robots can be particularly useful when targeting 
harsh environments or very large areas where it is not feasible to have people 
carrying on such tasks.  

This WSN/mobile robots cooperation may also be a way of improving the 
limited capabilities of the robots. In this work, a simple method for positioning a 
mobile robot through RSSI measurements was proposed. This may be one of 
many services the sensor network can grant to a mobile robot. Another way of 
improving the mobile robot capabilities is for the robot to take advantage of the 
WSN sensing abilities. Despite no real sensors were used in the deployed 
network, it is possible to easily equip the nodes with sensors of different kind 
(e.g. temperature, noise, moisture). This will provide a higher coverage of the 
area reducing the amount of equipment we would eventually need to acquire in 
order to achieve the same results with a mobile robot. Herewith, multiple kinds 
of events can be triggered by the WSN for later inspection by the robots. 

Like it was previously mentioned, the test-bed development effort is a work 
in progress and it will be carried on until all the envisaged objectives for the Art-
WiSe architecture become accomplished and maybe in the future, as a support 
for other researches on WSNs. 
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Annex 1 – MICAz Datasheet 
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WIRELESS MEASUREMENT SYSTEM

MICAz 

MICAz 

The MICAz is a 2.4 GHz, IEEE 
802.15.4 compliant, Mote module 
used for enabling low-power, 
wireless, sensor networks. The 
MICAz Mote features several new 
capabilities that enhance the overall 
functionality of Crossbow’s MICA 
family of wireless sensor networking 
products. These features include:

• IEEE 802.15.4/ZigBee  compliant 
RF transceiver

• 2.4 to 2.4835 GHz, a globally 
compatible ISM band

• Direct sequence spread spectrum 
radio which is resistant to RF 
interference and provides inherent 
data security

• 250 kbps data rate
• Runs TinyOS 1.1.7 and higher, 

including Crossbow’s reliable 
mesh networking stack software 
modules

• Plug and play with all of 
Crossbow’s sensor boards, data 
acquisition boards, gateways, and 
software

TinyOS is a small, open-source, 
energy-efficient, software operating 
system developed by UC Berkeley 
which supports large scale, self-
configuring sensor networks. The 
source code software development 
tools are publicly available at:
http://webs.cs.berkeley.edu/tos

Processor & Radio 
Platform (MPR2400CA)  
Using TinyOS, a single processor 
board can be configured to run 
your sensor application/processing 
and the mesh networking radio 
stack simultaneously. The MICAz 
(MPR2400CA) IEEE 802.15.4 radio 
offers both high speed (250 kbps) 
and hardware security (AES-128). 
The MICAz 51-pin expansion 
connector supports Analog Inputs, 
Digital I/O, I2C, SPI and UART 
interfaces. These interfaces make it 
easy to connect to a wide variety of 
external peripherals.

Sensor Boards
Crossbow offers a variety of sensor 
and data acquisition boards for 
the MICAz Mote. All of these 
boards connect to the MICAz via 
the standard 51-pin expansion 
connector. Custom sensor and data 
acquisition boards are also available. 
Please contact Crossbow for 
additional information.

Base Stations
A base station allows the 
aggregation of sensor network 
data onto a PC or other computer 
platform. Any MICAz Mote can 
function as a base station by 

• IEEE 802.15.4, Tiny, Wireless  
Measurement System

• Designed Specifically for Deeply 
Embedded Sensor Networks

• 250 kbps, High Data Rate Radio 

• Wireless Communications with 
Every Node as Router Capability

• Expansion Connector for Light, 
Temperature, RH, Barometric  
Pressure, Acceleration/Seismic, 
Acoustic, Magnetic and other 
Crossbow Sensor Boards

Applications
• Indoor Building Monitoring and 

Security

• Acoustic, Video, Vibration and 
Other High Speed Sensor Data

• Large Scale Sensor Networks 
(1000+ Points)

• ZigBee Compliant Systems and  
Sensors

        Document Part Number: 6020-0060-03 Rev A

A member of the ZigBee Alliance

-

MPR2400CA Block Diagram
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Document Part Number: 6020-0060-03 Rev A

plugging the MPR2400CA Processor/Radio Board into an MIB510CA/
MIB520CA serial/USB interface board. The MIB510CA provides an RS-
232 serial interface while the MIB520 provides a USB interface for both 
programming and data communications. Crossbow also offers a stand-alone 
gateway solution, the MIB600CA for TCP/IP-based Ethernet networks. 

MIB520CA Mote Interface Board 

Notes
15 MHz steps for compliance with IEEE 802.15.4/D18-2003.

Specifications subject to change without notice

Processor/Radio Board MPR2400CA Remarks

Processor Performance

Program Flash Memory 128K bytes

Measurement (Serial) Flash 512K bytes > 100,000 Measurements 

Configuration EEPROM 4K bytes

Serial Communications UART 0-3V transmission levels

Analog to Digital Converter 10 bit ADC 8 channel, 0-3V input

Other Interfaces Digital I/O,I2C,SPI

Current Draw 8 mA Active mode

< 15 µA Sleep mode

RF Transceiver

Frequency band1 2400 MHz to 2483.5 MHz ISM band, programmable in 1 MHz steps

Transmit (TX) data rate 250 kbps

RF power -24 dBm to 0 dBm

Receive Sensitivity -90 dBm (min), -94 dBm (typ)

Adjacent channel rejection 47 dB + 5 MHz channel spacing

38 dB - 5 MHz channel spacing

Outdoor Range 75 m to 100 m 1/2 wave dipole antenna, LOS

Indoor Range 20 m to 30 m 1/2 wave dipole antenna

Current Draw 19.7 mA Receive mode

11 mA TX, -10 dBm

14 mA TX, -5 dBm

17.4 mA TX, 0 dBm

20 µA Idle mode, voltage regular on

1 µA Sleep mode, voltage regulator off

Electromechanical

Battery 2X AA batteries Attached pack

External Power 2.7 V - 3.3 V Molex connector provided

User Interface 3 LEDs Red, green and yellow

Size (in) 2.25 x 1.25 x 0.25 Excluding battery pack

       (mm) 58 x 32 x 7 Excluding battery pack

Weight  (oz) 0.7 Excluding batteries

             (grams) 18 Excluding batteries

Expansion Connector 51-pin All major I/O signals

Ordering Information

Model Description

MOTE-KIT2400CB 2.4 GHz MICAz Developer’s Kit (8x MPR2400CA, 4x MTS310CA, 3x MTS300CA, 1x MDA300CA, 1x MIB600CA, 1x MIB510CA)

MPR2400CA 2.4 GHz Processor/Radio Board

MIB600CA Mote Interface Board 

Notes
15 MHz steps for compliance with IEEE 802.15.4/D18-2003.

Specifications subject to change without notice
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Annex 2 – WifiBot Datasheet 
 
 



High mobility 4x4 
platform
Modular and open 
architecture
Fully programmable 
under Linux
Embedded LAN and mesh 
WI-FI networking

Multi-purpose robot
WiFiBoT 4G is a robot which is characterized above all by a great flexibility 
allowing it to be used in multiple environments and situations. Its mechanical 
design and its four wheel drive allow this robot to evolve over irregular 
surfaces or  even small obstacles. Its small dimensions and its low weight 
make it easily transportable and perfect to explore narrow places. 

As a system, WiFiBoT 4G is opened to all kind of uses and applications. The
robot offers an entire world of expansion possibilities at different levels. It 
features an embedded 400MHz AMD calculator under Linux and a large
choice of interfaces like embedded Ethernet, RS232, I²C, USB, as well as
standard and mesh WiFi !

www.wifibot.com



Included Features

Calculator:

Interfaces:

WiFi:

Sensors:

Speed Control:

Motors:

Dimensions:

Batteries:

4x Ethernet 10/100 BaseT
1x USB (NC)
1x I²C bus
1x RS232 port (Debug)

1x Pan-Tilt IP camera
2x IR range sensors
4x 300 CPR codewheel
Battery level

Independent PID 
for each motor

4x motors 7.2V
50:1
8.87Kg/cm
120 rpm

Length  : 28 cm
Width   : 30 cm
Height  : 20 cm
Weight : 4.5Kg

9.6V NiMh 
9500 mAH 
2h autonomy
Easy replacement
Charger included

MIPS CPU AMD Au1500
400 MHz
RAM 64 MB
Flash Storage 32 MB

WiFi 802.11b
Seamless Roaming
Mesh Network (OLSR)
WLAN AP, Bridge, Client
Bridge / Router
1x Antenna 5dBi

Infrastructure

Ad-hoc Bridge or Mesh Swarm

Bridge or Mesh Infrastructure

AP or Ad-hoc Bridge Stand Alone

4G Cube 
Configuration

Mode of 
Operation

Stand alone

Swarm
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Annex 3 – RS232 to TTL Converter PCB layout 
 






