IPP HURRAY!

www.hurray.isep.ipp.pt

Technical Report

On the implementation of real-time slot-
based task-splitting scheduling algorithms
for multiprocessor systems

Paulo Baltarejo Sousa
Konstantinos Bletsas
Eduardo Tovar

Bjorn Andersson

HURRAY-TR-110903
Version:
Date: 9/19/2011

Technical Report HURRAY-TR-110903 On the implementation of real-time slot-based task-splitting scheduling

algorithms for multiprocessor systems

On the implementation of real-time slot-based task-splitting scheduling
algorithms for multiprocessor systems

Paulo Baltarejo Sousa, Konstantinos Bletsas, Eduardo Tovar, BjAﬂrn Andersson

IPP-HURRAY!

Polytechnic Institute of Porto (ISEP-IPP)

Rua Dr. Anténio Bernardino de Almeida, 431

4200-072 Porto

Portugal

Tel.: +351.22.8340509, Fax: +351.22.8340509

E-mail: pbsousa@dei.isep.ipp.pt, ksbs@isep.ipp.pt, emt@dei.isep.ipp.pt, baa@isep.ipp.pt
http://www.hurray.isep.ipp.pt

Abstract

In this paper we discuss challenges and design principles of an implementation of slot-based task- splitting algorithms
into the Linux 2.6.34 version. We show that this kernel version is provided with the required features for implementing
such scheduling algorithms. We show that the real behavior of the scheduling algorithm is very close to the theoretical.
We run and discuss experiments on 4-core and 24-core machines.

© IPP Hurray! Research Group 1
www.hurray.isep.ipp.pt

On the implementation of real-time slot-based task-splitting

scheduling algorithms for multiprocessor systems

Paulo Baltarejo Sousa
CISTER-ISEP Research Center, Polytechnic Institute of Porto
Rua Dr. Anténio Bernardino de Almeida 431, 4200-072 PORTO, Portugal
pbsQisep.ipp.pt

Konstantinos Bletsas
CISTER-ISEP Research Center, Polytechnic Institute of Porto
Rua Dr. Anténio Bernardino de Almeida 431, 4200-072 PORTO, Portugal

ksbs@isep.ipp.pt

Eduardo Tovar
CISTER-ISEP Research Center, Polytechnic Institute of Porto
Rua Dr. Anténio Bernardino de Almeida 431, 4200-072 PORTO, Portugal

emt@isep.ipp.pt

Bjorn Andersson
Software Engineering Institute, Carnegie Mellon University
Pittsburgh, USA
baandersson@sei.cmu.edu

Abstract

In this paper we discuss challenges and design principles of an implementation of slot-based task-
splitting algorithms into the Linux 2.6.34 version. We show that this kernel version is provided with
the required features for implementing such scheduling algorithms. We show that the real behavior of
the scheduling algorithm is very close to the theoretical. We run and discuss experiments on 4-core and

24-core machines.

1 Introduction

Nowadays, multiprocessors implemented on a single
chip (called multicores) are mainstream computing
technology and it is expected that the number of
cores per chip continue increasing. They may provide
great computing capacity if appropriate scheduling
algorithms are devised. Real-time scheduling algo-
rithms for multiprocessors are categorized as: global,

partitioned and semi-partitioned.

Global scheduling algorithms store tasks in one
global queue, shared by all processors. Tasks can mi-
grate from one processor to another; that is, a task
can be preempted during its execution and resume
its execution on another processor. At any moment
the m (assuming m processors) highest-priority tasks
are selected for execution on the m processors. Some
algorithms of this category can achieve a utilization

bound of 100%, but generate too many preemptions.

Partitioned scheduling algorithms partition the
task set and assign all tasks in a partition to the
same processor. Hence, tasks cannot migrate be-
tween processors. Such algorithms involve few pre-
emptions but their utilization bound is at most 50%.

Semi-partitioning (also known as task-splitting)
scheduling algorithms assign most tasks (called non-
split tasks) to just one processor but some tasks
(called split tasks) are assigned to two or more pro-
cessors. Uniprocessor dispatchers are then used on
each processor but they are modified to ensure that
a split task never executes on two or more processors
simultaneously.

Several multiprocessor scheduling algorithms
have been implemented and tested using vanilla
Linux kernel. Litmus®T [1] provides a modu-
lar framework for different scheduling algorithms
(global-EDF, pfair algorithms). Kato et al. [2] cre-
ated a modular framework, called RESCH, for using
other algorithms than Litmus®T (partitioned, semi-
partitioned scheduling). Faggioli et al. [3] imple-
mented global-EDF in the Linux kernel and made it
compliant with POSIX interfaces.

In this paper we address the Real-time TAsk-
Splitting scheduling algorithms (ReTAS) frame-
work [11] that implements a specific type of semi-
partitioned scheduling: slot-based task-splitting
multiprocessor scheduling algorithms [4, 5, 6]. Slot-
based task-splitting scheduling algorithms assign
most tasks to just one processor and a few to only
two processors. They subdivide the time into equal-
duration timeslots and each timeslot processor is
composed by one or more time reserves. These re-
serves are used to execute tasks. Reserves used for
split tasks, which execute on two processors, must
be carefully positioned to avoid overlapping in time.

The remainder of this paper is structured as fol-
lows. Section 2 provides a description of the main
features of the slot-based task-splitting scheduling al-
gorithms. Section 3 discusses some challenges and
design principles to implement this kind of algo-
rithms. A detailed description of our implementa-
tion is presented in Section 4 while in Section 5 we
discuss the discrepancy between theory and practice.
Finally, in Section 6 conclusions are drawn.

2 Slot-based task-splitting

Slot-based task-splitting algorithms have two impor-
tant components: (i) the task assigning; and (ii) the
dispatching algorithm. The task assigning algorithm

executes prior runtime and besides assigning tasks
to processors is also responsible for computing all
parameters required by the dispatching algorithm.
The dispatching algorithm works over the timeslot
and selects tasks to be executed by processors.

The Sporadic-EKG (S-EKG) [4] extends the pe-
riodic task set model of EKG [7] to sporadic task
set models. This approach assures that the number
of split tasks is bounded (there are at most m — 1
split tasks), each split task executes on only two pro-
cessors and the non-split tasks execute on only one
processor. The beginning and end of each times-
lot are synchronized across all processors. The end
of a timeslot of processor p contains a reserve and
the beginning of a timeslot of processor p + 1 con-
tains another reserve, and these two reserves sup-
ply processing capacity for a split task. As non-split
tasks execute only on one processor they are sched-
uled according to the uniprocessor EDF scheduling
algorithm. A detailed description of that algorithm
with an example can be found at [8].

While EKG versions are based on the task, the
NPS-F [5,6] uses an approach based on bins. Each
bin is assigned one or more tasks and there is a one
to one relation between each bin and each notional
processor. Then, the notional processor schedules
tasks of each bin under the EDF scheduling pol-
icy. The time is split into equal-duration timeslots
and each timeslot is composed by one or more time
reserves. Each notional processor is assigned one
reserve in one physical processor. However, up to
m — 1 notional processors could be assigned to two
reserves, which means that these notional proces-
sors are implemented upon two physical processor
reserves, while the remaining notional processors are
implemented upon one physical processor reserve.

There is one fundamental difference between S-
EKG and NPS-F algorithms. NPS-F can potentially
generate a higher number of split tasks than S-EKG.
Another difference is related to the dispatching al-
gorithm. The S-EKG allows non-split tasks to be
executed on the split task reserves (in the case when
these tasks are not ready to be executed) while NPS-
F does not; that is, each notional processor executes
only on its reserve(s).

Fig. 1 shows a generic execution timeline pro-
duced by these scheduling algorithms. The time is
divided into equal-duration timeslots of length S.
Each timeslot is divided up to 3 reserves: z[p], y[p]
and N[p]. Reserve z[p] is located in the beginning of
the timeslot and is reserved to execute the task or no-
tional processor split between processors p and p— 1.
Reserve y[p] is located in the end of the timeslot and

is reserved to execute the task or notional processor
split between processors p and p + 1. The remain-
ing part (N[p]) of the timeslot is used to execute
non-split tasks or notional processors that execute
on only one processor.

N y N
Py P, ‘ INJz Py ‘ 131
x N y x N y
P oA P p [
}
E x N E x N
B
H H »
'
0 S 28

FIGURE 1: Ezecution timeline example.

In the remainder of this paper, we will discuss the
implementation of S-EKG and NPS-F algorithms in
4-core and 24-core machines supported by the Linux
2.6.34 kernel version.

3 Challenges and design prin-
ciples for implementing slot-
based task-splitting

In [9] a set of challenges and a set of design princi-
ples for the S-EKG implementation were discussed.
However, in this paper we will implement NPS-F as
well and for this reason we will need to adapt the
design principles. In this section, we will do so as
follows: each processor should have its own runqueue
(the queue that stores ready jobs). The runqueue of
each processor should map the ready tasks with its
reserves; that is, which ready tasks are allowed to
execute on each reserve. Since some tasks may ex-
ecute on two processors, what is the best approach
for that? If tasks are stored locally on each proces-
sor, whenever a task migrates from one processor to
another processor, it requires locking both processor
runqueues for moving that task from one runqueue to
the other runqueue. However, in the case of the NPS-
F this could imply moving more than one task. Since
the frequency of migration may be high, it turns out
that this is not the best approach; so we adopted a
different approach. We defined a runqueue per no-
tional processor so each notional processor stores all
ready tasks assigned to it. Then, we map each no-
tional processor to processor reserves.

As it is intuitive from observing two consecutive
timeslots in Fig. 1, whenever a split task consumes

its reserve on processor p, it has to immediately re-
sume execution on its reserve on processor p+1. Due
to many sources of unpredictability (e.g. interrupts)
in a real operating system, this precision is not pos-
sible. Consequently, this can prevent the dispatcher
of processor p+ 1 to select the split task because pro-
cessor p has not yet relinquished that task. In order
to handle this issue, one option could be that pro-
cessor p + 1 sends an inter-processor interrupt (IPI)
to processor p to relinquish the split task, and an-
other could be that processor p + 1 sets up timer x
time units in future to force the invocation of its dis-
patcher. Two reasons have forced us to choose the
latter. First, we know that if a dispatcher has not yet
relinquished the split task it was because something
is preventing it from doing so, such as, the execu-
tion of an interrupt service routine (ISR). Second,
the use of IPIs will create some dependency between
processors that could embarrass the scalability of the
dispatcher.

4 Implementation of slot-based
task-splitting

4.1 Assumptions about the architec-
ture

We assume identical processors, which means that
(i) all processors have the same instruction set
and data layout (e.g. big-endian/little-endian) and
(ii) all processors execute at the same speed.

We also assume that the execution speed of a
processor does not depend on activities on another
processor (for example whether the other processor
is busy or idle or which task it is busy executing)
and also does not change at runtime. In practice,
this implies that (i) if the system supports simulta-
neous multithreading (Intel calls it hyperthreading)
then this feature must be disabled and (ii) features
that allow processors to change their speed (for ex-
ample power and thermal management) must be dis-
abled.

We assume that each processor has a local timer
providing two functions. One function allows read-
ing the current real-time (that is not calendar time)
as an integer. Another function makes it possible to
set up the timer to generate an interrupt at x time
units in the future, where x can be specified.

4.2 Why vanilla Linux kernel?

The vanilla Linux kernel 2.6.34 was chosen to imple-
ment the scheduling algorithms S-EKG [4] and NPS-
F [5,6]. That kernel version provides the required
mechanisms to satisfy the previously mentioned de-
sign principles: (i) each processor holds its own run-
queue and it is easy to add new fields to it; (ii) it
has already implemented red-black trees that are bal-
anced binary trees whose nodes are sorted by a key
and most the operations are done in O(logn) time;
(iii) it has the high resolution timers infrastructure
that offers a nanosecond time unit resolution, and
timers can be set on a per-processor basis; (iv) it
is very simple to add new system calls and, finally,
(v) it comes with the modular scheduling infrastruc-
ture that easily enables adding a new scheduling pol-
icy to the kernel.

4.3 ReTAS implementation

The vanilla Linux kernel 2.6.34 has three native
scheduling modules: RT (Real-Time); CFS (Com-
pletely Fair Scheduling) and Idle. Those modules
are hierarchically organized by priority in a linked
list; the module with highest priority is the RT, the
one with the lowest is the Idle module. Starting with
the highest priority module, the dispatcher looks for
a runnable task of each module in a decreasing order
of priority.

We added a new scheduling policy module, called
ReTAS, on top of the native Linux module hierarchy,
thus becoming the highest priority module. That
module implements the S-EKG and NPS-F schedul-
ing algorithms. The ReTAS implementation consists
on a set of modifications to the Linux 2.6.34 kernel in
order to support the S-EKG and NPS-F scheduling
algorithms and also the cluster version of the NPS-
F, called C-NPS-F [5]. These scheduling policies
are identified by the SCHED_S_EKG and SCHED_NPS_F
macros.

Since the assigning algorithm is executed prior
to runtime, in the next sections we will focus only on
the kernel implementation; that is, on the dispatch-
ing algorithms.

4.3.1 ReTAS tasks

To differentiate these tasks from other tasks present
in the system, we refer to these tasks as ReTAS
tasks. Listing 1 shows the pseudo-algorithm of Re-
TAS tasks. They are periodic tasks and are always
present in the system. Each loop iteraction is con-

sidered a job. Note that the first job of each task
appears in the system at timeO + offset (timeO is
set equal to all tasks in the system) and the remain-
ing jobs are activated according to the period. The
delay until function sleeps a task until the absolute
time specified by arrival.

arrival:=time0 + offset;
while (true)

delay_until (arrival);
execute () ;
arrival:=arrival + period;

}
Listing 1: ReTAS task pseudo-algorithm.

In the Linux operating system a process is an
instance of a program in execution. To manage
all processes, the kernel uses an instance of struct
task_struct data structure for each process. In or-
der to manage ReTAS tasks, some fields were added
to the struct task_struct data structure (see List-
ing 2). notional _cpu-id field is used to associate
the task with the notional processor. Fields cpul
and cpu?2 are used to set the logical identifier of pro-
cessor(s) in which the task will be executed on. The
absolute deadline and also the arrival of each job
are set on the deadline and arrival fields of the
retas_job_param data structure, respectively.

struct retas_task {
int notional_cpu-id;
struct retas_task_param task_param {
unsigned long long deadline; //D_i
}task_param ;
struct retas_job_param job_param/{
unsigned long long deadline; //d_ij
unsigned long long arrival; //a_ij
}job_param;
int cpul;
int cpu2;

¥
struct task_struct {

s.éfuct retas_task retas_task;
+s
Listing 2: Fields added to struct task_struct
kernel data structure.

4.3.2 Notional processors

As mentioned before, ReTAS tasks are assigned to
notional processors. Therefore, notional processors
act as a runqueue. Each notional processor is an in-
stance of struct notional_cpu data structure (see
Listing 3), which is identified by a numerical iden-
tifier (id). Field cpu is set with the logical identi-
fier of the physical processor that, in a specific time
instant, is executing a task from that notional pro-
cessor. The purpose of the flag will be explained in

Section 4.3.5. Each notional processor organizes all
ready jobs in a red-black tree, whose root is the field
root_tasks, according to the job absolute deadline.
The lock field is used to serialize the insertion and
remotion operations over the red-black tree specially
for notional processors that are executed by two pro-
cessors. edf field points to the task with the earli-
est deadline stored in the red-black tree. Note that
notional_cpus is a vector defined as global variable.

struct notional_cpuf{

int id;

atomic_t cpu;

atomic_t flag;
raw_spinlock_t lock;
struct rb_root root_tasksj;
struct task_struct xedf;

b

struct notional_cpu notional_cpus]|
NRNOTIONAL_CPUS | ;

Listing 3: struct notional_cpu data structure.

4.3.3 Timeslot reserves

Each processor needs to know the composition
of its timeslot. So, per-processor an instance
of the struct timeslot (Listing 4) is defined.
Fields timeslot_length, begin_curr_timeslot,
reserve_length and timer are used to set the time
division into time reserves. They are also used to
identify in each time reserve a given time instant t
falls in. When a timer expires, the timer callback
sets the current task to be preempted and this au-
tomatically triggers the invocation of the dispacther.
And taking into account the current reserve, the dis-
pacther (that will be described on the next section)
tries to pick a task from either the notional proces-
sor pointed by notional_cpu (for the first option)
or notional processor pointed by alt_notional_cpu
(for the second option).

struct timeslot_reserve({

struct notional_cpu *notional_cpu; J/first
option
struct notional_.cpu =*alt_notional_cpu; //

second option
unsigned long long reserve_length;

}s

struct timeslot {

unsigned long long timeslot_length;

unsigned long long begin_curr_timeslot;

struct timeslot_-reserve notional_cpus]|
NRNCPUS_PER.CPU |;

struct hrtimer timer;

)

Listing 4: struct timeslot data structure.

4.3.4 ReTAS scheduling module

In the vanilla Linux kernel each processor holds a
runqueue of all runnable tasks assigned to it. The
scheduling algorithm uses this runqueue to select
the “best” process to be executed. The information
for these processes is stored in a per-processor data
structure called struct rq (Listing 5). Many func-
tions that compose the Linux’s modular scheduling
framework have an instance of this data structure as
argument. Listing 5 shows the new data structures
required by the ReTAS scheduling module added to
the Linux native struct rq. The purpose of the
struct timeslot data structure was described in
the previous section.

struct retas_rq {

int post_schedule;

struct timeslot timeslot;
struct release release;

struct resched-cpu resched-cpu;

}s

struct rq {

s.éfuct retas_.rq retas_rq;

}s

Listing 5: struct retas_rq added to struct rq.

According to the rules of the Linux’s modu-
lar scheduling framework, each module must imple-
ment a set of functions specified in the sched_class
data structure. Listing 6 shows the definition
of retas_sched_class, which implements the Re-
TAS module. The first field (next), is a pointer
to the next sched class in the hierarchy. Since
retas_sched _class is declared as the highest pri-
ority scheduler module that field points to the
rt_sched_class, which implements the two POSIX
real-time policies (SCHED_FIFO and SCHED.RR). The
other fields are functions that act as callbacks to spe-
cific events.

static const struct sched_class
retas_sched_class = {

.next = &rt_sched_class ,

.enqueue_-task = enqueue_-task_retas,

.dequeue_task = dequeue_task_retas,

.check_preempt_curr = check_preempt_curr_retas

)
.pick_next_task = pick_next_task_retas,

i
Listing 6: retas_sched_class scheduling class.

The enqueue_task.retas (Listing 7) is called
whenever a ReTAS job enters into a runnable state.
It receives two pointers, one for the runqueue of
the processor that is running this code (rq) and an-
other to the task that is entering in a runnable state
(p). Then, it updates the job absolute deadline by
suming the job arrival time (this field is updated

through the job release procedure that will be de-
scribed Section 4.3.6) to the task relative deadline,
and inserts it into the red-black tree of its notional
processor. Additionally, it checks if this job (in the
case of being a split task) could be executed by other
processor; that is, if it is a split task could happen
that when a job is released on this processor could
correspond to its reserve on the other processor. If
that is the case, then an IPI is sent to the other pro-
cessor, using the resched_cpu function.

static void

enqueue_task_retas (struct rq *rq, struct
task_struct *p, int wakeup,bool flag)

{

int cpu;

p—>retas_task .job_param.deadline=p—>retas_task
.job_param. arrival4+p—>retas_task.
task_param . deadline;

insert_task(¬ional_cpus [p—>retas_task.
notional_cpu-id], p);

cpu=check_for_running_on_other_cpus(p, rq—>cpu

)
if (cpul=—1){
resched_cpu(cpu);

}

return ;

}

Listing 7: enqueue_task_retas function.

When a ReTAS job is no longer runnable, then
the dequeue_task retas function is called that un-
does the work of the enqueue_task retas function
(see Listing 8); that is, it removes the task from the
notional processor.

static void
dequeue_task_retas (struct rq *rq, struct
task_struct *p, int sleep)

{
remove_task(¬ional_cpus[p—>retas_task.
notional_cpu-id], p);
return ;
}

Listing 8: dequeue_task_retas function.

As the name suggests, the check preempt_curr
_retas function (Listing 9) checks whether the cur-
rently running task must be preempted or not. This
function is called following the enqueuing or de-
queuing of a task and it checks if there is any
ReTAS jobs to be executed. If so, it checks if
that job is available; that is, if it is not being
executed by another processor (to handle this is-
sue, we use the atomic_t cpu field defined on
the struct notional_cpu) it sets a flag that in-
dicates to the dispatcher that the currently run-
ning task must be preempted, otherwise it sets up
a local timer (defined in the struct resched_cpu
resched_cpu) to expire some time later (throught
set_resched cpu_timer_expires, which will trig-
ger, at timer expiration, the invocation of the dis-
patcher).

static void
check_preempt_curr_retas(struct rq *rq, struct
task_struct xp, int sync)

struct task_struct *t=NULL;

int cpu;

t=get_edf_task (get_current_notional_cpu(&rq—>
retas_rq.timeslot));

if (1t){
t=get_edf_task (get_current_alt_notional_cpu(&
rq—>retas_rq.timeslot));

}
P ()]
if (t!=rq—>curr){
cpu=is_executing_on_other_cpu (t—>retas_task.
notional_cpu-id, rq—>cpu);
if (cpu==—1){
set_tsk_need_resched (rq—>curr) ;

else{
set_resched_cpu_timer_expires(rq);

Listing 9: check_preempt_curr_retas function.

The pick next_task retas function selects the
job to be executed by the current processor (see List-
ing 10). This function is called by the dispatcher
whenever the currently running task is marked to
be preempted or when a task finishes its execution.
First, it tries to get highest priority ReTAS job from
the first notional processor and, if there is no job it
checks the second notional processor. If there is one
ReTAS job ready to be executed (and it is not the
current executing job) then, the next step is to lock
the notional processor to that processor (this is done
in the lock notional cpu function and this locking
mechanism will be described in Section 4.3.5). If this
notional processor is locked it sets up a local timer to
expire some time later and returns NULL, otherwise
it returns the pointer to that job.

static struct task_struct x*
pick_next_task_retas (struct rq *rq)

struct task_struct *xt=NULL;

int cpu;

t=get_edf_task (get_current_notional_cpu(&rq—>
retas_rq.timeslot));

if('t){//it is assumed that these tasks (of
alt_notional_cpu) execute only on this cpu

t=get_edf_task (get_current_alt_notional_cpu(&
rq—>retas_rq.timeslot));

}
if(t){
cpu=lock_notional_cpu(t—>retas_task.
notional_cpu-id , rq—>cpu);
if (cpul=—1){
set_-resched_cpu-timer_expires (rq,t—>
retas_task.notional_cpu-id);
t=NULL;
goto pick_ret;

pick_ret:
return t;

}

Listing 10: picknext_task_retas function.

4.3.5 Locking a notional processor

Whenever there is a shared resource there is the
need to create a synchronization mechanism to se-
rialize the access to that resource. In this imple-
mentation a notional processor can be shared by
up two physical processors. So, to serialize the
access to those notional processors two functions
are used (see Listing 11): lockmotional_cpu and
unlock notional _cpu. The locking is done in the
pickmnext_task_retas function. As it can be seen
from Listing 11, first it identifies the physical proces-
sor that is executing tasks from that notional proces-
sor. Next, it tries to add one to the atomic_t flag
variable using the atomic_add_unless kernel func-
tion. But this operation only succeds if the value is
not one; that is, if it is zero, otherwise, it fails. In the
first case, success, it atomically adds one to the flag
and sets the cpu variable with the logical identifier
of the current processor. And this way it locks the
notional processor to that processor. In the second
case, failure, the notional processor could be locked
by other processor or by the current processor. If it
is locked by the current processor nothing changes,
otherwise the logical number of the processor is re-
turned and the dispatcher cannot pick any job from
that notional processor.

In order to unlock the notional processor, when-
ever a ReTAS job is the prev or the next task in the
context of the context_swicth function, which is in-
vocated by schedule function (see Listing 13), it will
enforce the execution of the post_schedule retas
function (see Listing 12) to unlock the notional pro-
cessor. Unlocking means setting the flag variable
equal to zero and the cpu variable equal to —1.

int lock_notional_cpu(int ncpu, int cpu)
{
int ret=atomic_read(¬ional_cpus[ncpu].cpu);
if (atomic_add_unless(¬ional_cpus [ncpu]. flag
;1,104
atomic_set(¬ional_cpus [ncpu].cpu,cpu);
ret=cpu;

if (ret==cpu)
ret=—1;
return ret;

}

void unlock_notional_cpu(int ncpu, int cpu)

{
int x;
x=atomic_read(¬ional_cpus [ncpu].cpu);
if (x=cpu){
atomic_set(¬ional_cpus [ncpu].cpu,—1);
atomic_set(¬ional_cpus [ncpu]. flag ,0) ;

}
}
Listing 11:
functions.

Lock and unlock notional processor

void

post_schedule_retas (struct rq x*rq)
{
int i, ncpu=-1;
if (rq—>retas_rq.post_schedule){
if (rq—>curr—>policy=—SCHED_S_EKG ||
—>policy=SCHED_NPS_F) {
ncpu=rq—>curr—>retas_task.notional_cpu.id;

rq—>curr

for (i=0;i<rq—>retas_rq.timeslot.
nr_notional_cpus;i++){
if (likely (rq—>retas_rq.timeslot .
notional_cpus[i].notional_cpu)){
if (rq—>retas_rq.timeslot.notional_cpus[i].
notional_cpu—>id!=ncpu){

unlock_notional_cpu(rg—>retas_rq.timeslot.
notional_cpus[i]. notional_cpu—>id ,rq—>
cpu) ;

}
}
}

rq—>retas_-rq.post-schedule = 0;

Listing 12: post_schedule_retas function.

static inline wvoid
context_switch (struct rq xrq, struct
task_-struct =xprev,
struct task_struct s*next)

{

if (prev—>policy=SCHED_S_EKG ||
=—SCHED_NPS_F ||
next—>policy=SCHED_S_EKG | |
SCHED_NPS_F)
rq—>retas_rq.post_-schedule = 1;

prev—>policy

next—>policy=—

switch_to (prev, next, prev);

.

asmlinkage void
--sched schedule(void)

struct task_struct *prev, xnext;
struct rq *rq;

put_prev_task(rq, prev);
next = pick_next_task (rq);

context_switch(rq, prev, next); /x unlocks
the rq */

post_schedule_retas(rq);
}
Listing 13:
functions.

context_swicth and schedule

4.3.6 Job release mechanism

The job release mechanism is supported by the
struct release and is set per-processor. It is com-
posed by a red-black tree and a timer. The idea is the
following: a job is put in the waiting state, next, it
is inserted into a red-black tree ordered by the abso-
lute arrival time and, finally, a timer is set to expire
at the earliest arrival time of all jobs stored into the
red-black tree. When the timer expires, the job with
earliest arrival time is removed from the red-black
tree and its state changes to running, consequently,

it becomes ready. The timer is armed to expire at
the earliest arrival time of remaining jobs stored into
the red-black tree. This procedure is triggered by the
delay until system call that specifies the absolute
arrival time of a job. One feature of this mechanism
is that the next release of a job is done on the pro-
cessor where it finishes its execution; that is, where
it executes the delay until system call.

5 From theory to practice

Usually, real-time scheduling algorithms for multi-
processor systems are supported by a set of assump-
tions that have no correspondence in the real-world.
The evaluation of the discrepancy between theory
and practice is here addressed taking into account
two real-world phenomena: jitter and overhead. For
convenience we define jitter as being the time from
when an event must occur until it actually occurs.
We have identified three sources of jitter: reserve,
release and context switch. We also define overhead
as the time that the current executing task is blocked
by something else not related to the scheduling algo-
rithm. We have identified two sources for the over-
head: interrupts and release.

5.1 Sources of jitter

Theoretically, when a reserve ends one assumes that
jobs are instantaneously switched, but in practice
this is not true. Fig. 2 shows ResJ; x, which repre-
sents the measured reserve jitter of job 7;; and de-
notes the discrepancy between the time when the job
Tik should (re)start executing (at the beginning of
the reserve A, where A could be z, N or y) and when
it actually (re)starts. It should be mentioned that
the timers are set up to fire when the reserve should
begin, but, unfortunately, there is always a drift be-
tween this time and the time instant at which the
timer fires. Then, the timer callback executes and,
in most cases, sets the current task to be preempted
triggering the invocation of the dispatcher. The dis-
patcher selects a task according to the dispatching
algorithm and switches the current task with the se-
lected task.

a) Theory
Reserve A-1 1 Reserve A
I
TR
J g
Beginning of
reserve A
b) Practice
Reserve A-1 Reserve A
1 ResJix
e »
L] Ll
T: Ml | T

»
»

/]

When reserve A
should start

S

Timer expiration for
beginning the reserve A

FIGURE 2: Reserve jitter.

In theory it is typically assumed that a release
of a job is instantaneous and becomes ready immedi-
ately. In practice, however, something very different
is observed. RelJ;) (release jitter of job 7) de-
notes the difference in time from when the job 7;
should arrive until it is inserted in the ready queue
(see Fig. 3). The following steps take place in prac-
tice. First, a timer expires to wake up the job and,
as mentioned before, there is always a drift between
the time instant when the timer should expire and
when it actually expires. Next, the job is removed
from the release queue and inserted into the ready
queue.

a) Theory

74 1s ready to be
executed

b) Practice

RelJ;i

7, is ready to be
executed

7 should arrive

Timer interrupt for waking
up Zij

FIGURE 3: Release jitter.

A final important source of jitter is the con-
text switching. A context switch is the procedure
for switching processor from one job to another.

In theory, the time required to switch jobs is usu-
ally neglected. However, switching from one pro-
cess to another requires a certain amount of time
for saving and loading registers, among other oper-
ations. CtswJ; (context switch jitter of job 7, 1)
denotes the difference in time from when the job 7; j
should start executing until it actually (re)starts (see
Fig. 4). Note that, we consider the context switch
time incurred by the EDF scheduling policy, because
the context switch time incurred by reserves are ac-
counted for by ResJ.

a) Theory

7. | T

L

»

t

7, - finishes its
execution

T Starts its
execution

b) Practice

Ctswl
<

»
|‘ r|

] L

T Tik

»
»

]

7. finishes its
execution

T starts its
execution

FIGURE 4: Context switch jitter.

5.2 Sources of overhead

Usually, in theory, we ignore interrupts, but in prac-
tice they are one of main sources of timing unpre-
dictability in this kind of system. In practice, when
an interrupt arises the processor suspends the execu-
tion of the current job in order to execute the asso-
ciated ISR. IntO;, (interrupt overhead of job T; 1)
denotes the time during which job 7; is prevented
from executing due to the execution of an ISR (see
Fig. 5).

When a job is executing on a processor, jobs of
other tasks could appear in the system. In our imple-
mentation, to release a job, the processor stops what
it is doing to release that job. RelO; y (release over-
head of job 7; 1) denotes the time during which job
Tii; 1s prevented from executing due to the releases
of other jobs (see Fig. 6).

a) Theory

<
x Tik
_/

b) Practice
IntO;y,
Qe
Tik &N ISR | Tik

/

Interrupt arises

Interrupt arises

FIGURE 5: Interrupt overhead.
a) Theory
Tik o
4 I
b) Practice
RelO,
Tik %J | Tik N
4z \ [
/ 7, 1s woken up and inserted
nto the ready queue

FIGURE 6: Release overhead.

5.3 Experimental setup

In order to evaluate the discrepancy between theory
and practice, we have conducted a range of exper-
iments with 4-core (Intel(R) Core(TM) i7 CPU @
2.67GHz) and 24-core (AMD Opteron (TM) Proces-
sor 6168 @ 1.90GHz) machines with real-time tasks
executing empty for-loops. In order to make the en-
vironment more controlled, we (i) set runlevel to 1
(that is no windowing system), (ii) disabled network
interface and also the filesystem journal mechanism,
(iii) all interrupts are handled by the last processor
and (iv) setup one non real-time task per core, as
a background task, to ensure that the kernel idle
threads never start executing.

We generated 17 random task sets, which utiliza-
tion target varied from 0.88 and 0.885. The period
and utilization of tasks varied from 5 ms up to 50 ms
and from 0.1 up to 1.0, respectively. The number of
tasks varied from 6 up to 28 tasks in the case of the
4-core machine. The time duration of each experi-
ment was approximately 1000 s. All task sets were

scheduled using the S-EKG and NPS-F scheduling al-
gorithms (which have comparable jitter /overheads).
Since each experiment took 1000 s, the whole set of
experiments took 34000 s.

5.4 Discussion of results

We collected the maximum values observed for each
type of jitter and also for each type of overhead ir-
respective of the algorithm used (S-EKG or NPS-F).
Table 1 presents the experimental results for: reserve
jitter (ResJ), release jitter (RelJ), context switch
jitter (CtswJ), the overhead of interrupt 20 (related
to the hard disk) and the overhead of tick. Note
that, we do not directly present the release overhead.
Rather, since, the release overhead is part of what is
experienced as release jitter, we simply present the
worst-case RelJ (which also accounts for RelO). The
column identified with MAX .« gives the maximum
value observed in all experiments. The third col-
umn (AVG,,) gives the average value experimented
by the task that experienced the MAX,,.x value. The
fourth column (MINy,.x) gives the minimum of the
collected values (note that is the minimum of the
maximum values). The last column displays the av-
erage value of the task that experienced the MIN,
value. Before analyzing the results, we draw the at-
tention of the reader to the time unit, ps, which
means that the impact of those jitters/overheads is
relatively small. Recall that the period of tasks in
the various experiments varied from 5 ms up to 50
ms.

The highest ResJ values were constantly experi-
enced by split tasks. This is due to the task migra-
tion mechanism required for split tasks (described in
Section 4). In that mechanism, if a task is not avail-
able, a timer is set to expire some time later. The
value chosen for this delay was 5 us.

The MAX ,.x RelJ value is too high (31.834 pus),
but comparing both AVG,, (0.329 us and 0.369 ps)

observed shows that something prevented the release
mechanism of doing that job release. The reason for
this is related to the unprectability of the underlying
operating system. There are many sources of un-
predictability in a Linux kernel: (i) interrupts are
the events with the highest priority, consequently
when one arises, the processor execution switches
to handle the interrupt (usually interrupts arise in
an unpredictable fashion); (ii) on Symmetric Multi
Processing (SMP) systems there are multiple kernel
threads running on different processors in parallel,
and those can simultaneously operate on shared ker-
nel data structures requiring serialization on access
to such data; (iii) disabling and enabling preemption
features used in many parts of the kernel code can
postpone some scheduling decisions; (iv) the high
resolution timer infrastructure is based on local Ad-
vanced Programmable Interrupt Controller (APIC),
disabling and enabling local interrupts can disrupt
the precision of that timer and, finally, (v) the hard-
ware that Linux typically runs on does not provide
the necessary determinism, which would permit the
timing behavior of the system to be predictable with
all latencies being time-bounded and known prior to
run-time.

The same reasons could be given to explain the
MAXax Ctswd value. However, usually the mag-
nitude of CtswJ is not too high, because this oper-
ation is done by the scheduler, which executes in a
controlled context.

In Table 1, we present the overhead results of two
ISRs: irq20 and tick (tick is a periodic timer inter-
rupt used by the system to do a set of operations,like
for instance invoking the scheduler). The reason for
this is, 7720 can be configured to be executed by one
specific processor but tick cannot. In our opinion, it
does not make sense to present other values besides
MAX 1ax, because in these experiments this is a spo-
radic and rare event. In contrast, tick is periodic
with a frequency of approximately 1 ms. The values
observed show that this overhead is very small.

| MAXmax (1s) AVGy (ps) | MINwax (us) AVG, (us) |
ResJ 8.824 5.255 7.919 5.833
RelJ 31.834 0.329 10.029 0.369
CtswJ 2.218 0.424 0.587 0.305
IntO - irq20 24.226 - - -
IntO - tick 0.571 0.272 0.408 0.243
TABLE 1: FEzxperimental results (4-core

machine).

10

| | MAXmax (1) AVGy (ps) | MINpax (us) AVG,, (us) |
ResJ 48.087 8.493 19.243 9.498
RelJ 37.264 0.731 11.609 0.848
TABLE 2: FEzxperimental results (24-core
machine).

Because of space limitations, in this paper our
analysis is focused on 4-core machine results, in [10]
some results of a set of experiments with the 24-core
machine are presented. Nevertheless, Table 2 shows
some results related to the ResJ and RelJ on the 24-
core machine. The explanation for the MAX .« val-
ues is the same that was given for the 4-core machine
results. The AVG,, values are in all cases higher than
those for the 4-core machines. This is due to the
speed of the processors: 4-core processors operate at
2.67GHz while 24-core processors operate at 1.9GHz.

6 Conclusions

We have presented the Real-time TAsk-Splitting
scheduling algorithms (ReTAS) framework that
implements S-EKG and NPS-F slot-based task-
splitting scheduling algorithms. The main purpose
of this framework is to show that slot-based task-
splitting scheduling algorithms can be implemented
in a real-operating system (using the vanilla Linux
kernel) and work in practice. Using this framework
we have identified and measured the real-operating
system jitters and overheads. In spite of the unpre-
dictability of the Linux kernel we observed a good
correspondence between theory and practice. These
good results are due to: (i) the controlled experi-
mental environment; (ii) the use of the local high-
resolution timers and (iii) the fact that these schedul-
ing algorithms only involve very limited synchroniza-
tion on shared system resources between processors.

Acknowledgements

This work was supported by the CISTER Research
Unit (608 FCT) and also by the REHEAT project,
ref. FCOMP-01-0124-FEDER-~010045 funded by
FEDER funds through COMPETE (POFC - Oper-
ational Programme "Thematic Factors of Competi-
tiveness) and by National Funds (PT), through the
FCT - Portuguese Foundation for Science and Tech-
nology.

11

References

[1] J. M. Calandrino, H. Leontyev, A. Block, U.

C. Devi, and J. H. Anderson, LITMUSET
A Testbed for Empirically Comparing Real-
Time Multiprocessor Schedulers, in proceedings
of 27th TEEE Real-Time Systems Symposium
(RTSS 06), Rio de Janeiro, Brazil, pp. 111-126,
2006.

S. Kato and R. Rajkumar and Y. Ishikawa,
A Loadable Real-Time Scheduler Suite for
Multicore Platforms, in Technical Report
CMU-ECE-TR09-12, 2009. Available on-
line:http://www.ece.cmu.edu/~shinpei/papers
/techrep09.pdf.

D. Faggioli and M. Trimarchi and F. Checconi
and C. Scordino, An EDF scheduling class for
the Linuzx kernel, in proceedings of 11th Real-
Time Linux Workshop (RTLWS 09), Dresden,
Germany, pp. 197-204, 2009.

B. Andersson and K. Bletsas, Sporadic Multi-
processor Scheduling with Few Preemptions, in
proceedings of 20th Euromicro Conference on
Real-Time Systems (ECRTS 08), Prague, Czech
Republic, pp. 243-252, 2008.

K. Bletsas and B. Andersson, Notional proces-
sors: an approach for multiprocessor schedul-
ing, in proceedings of 15th IEEE Real-Time and
Embedded Technology and Applications Sym-
posium (RTAS 09), San Francisco, CA, USA,
pp. 3-12, 2009.

K. Bletsas and B. Andersson, Preemption-light
multiprocessor scheduling of sporadic tasks with
high wutilisation bound, in proceedings of 30th
IEEE Real-Time Systems Symposium (RTSS
09), Washington, DC, USA, pp. 385-394, 2009.

B. Andersson and E. Tovar, Multiprocessor
Scheduling with Few Preemption, in proceedings
of 12th IEEE International Conference on Em-
bedded and Real-Time Computing Systems and
Application (RTCSA 06), Sydney, Australia,
pp- 322-334, 2006.

[8] P. B. Sousa and B. Andersson and E. Tovar, Im-
plementing Slot-Based Task-Splitting Multipro-
cessor Scheduling, in proceedings of 6th IEEE
International Symposium on Industrial Embed-
ded Systems (SIES 11), Visteras, Sweden, pp.
256—265, 2011.

P. B. Sousa and B. Andersson and E. To-
var, Challenges and Design Principles for
Implementing Slot-Based Task-Splitting Multi-
processor Scheduling, in Work in Progress
(WiP) session of the 31st IEEE Real-
Time Systems Symposium (RTSS 10), San

12

[10]

Diego, CA, USA, 2010. Available online:
http://cse.unl.edu/rtss2008/archive/rtss2010/
WIP2010/5.pdf

P. B. Sousa K. Bletsas and E. Tovar and B.
Andersson, On the implementation of real-time
slot-based task-splitting scheduling algorithms
for multiprocessor systems, (extended version of
this paper) in Technical Report HURRAY-TR-
110903, 2011.

P. B. Sousa, ReTAS. Available online:
http://webpages.cister.isep.ipp.pt/ pbsousa/retas/.

A Task set generator

Before explaining the task set generator, we describe the algorithm of the task used to run the experiments.
We classified these tasks as real-time tasks executing empty for-loops. Listing 14 shows part of the task
code. Each task receives a set of arguments (see Table 3). As their names suggest some of them are the
minimum and the maximum of some task parameter. These parameters are used by get_time _value function
to generate time values between min and max, like min_offset_time and max_offset_time The idea behind
this approach is to have a flexible task implementation that allows the use fixed and also randomly (using

uniform distribution) generated parameters.

Argument

| Description

task_id
release_time
min_exec_time
max_exec_time

deadline

nr_jobs
seed

min_inter_arrival_time
max_inter_arrival_time

min_offset_time
max_offset_time

The logical identifier of the task

This variable is set with the time zero of the experiment
The minimum execution time of the task

The maximum execution time of the task

The minimum inter arrival time of the task

The maximum inter arrival time of the task

The relative deadline of the task

The minimum offset time of the first task release
The maximum offset time of the first task release
The number of jobs of the task

Seed for random generator

unsigned long long inline get_-time_value (unsigned long long min,

if (min==max)
return min;

TABLE 3:

Task arguments.

unsigned long long max)

return (min + ((1.0xrand () /RANDMAX) *(max—min)));

void

{

unsigned long long

i,ten_ns;

inline do_work (unsigned long long smin,unsigned long long xmax)

ten_ns=get_time_value (*min,*max) /10;

for (i=0; i<ten_ns;
asm volatile

i++){
(7) nopﬂ

asm volatile
}
}

int main(int

{
unsigned long long nj=0;
unsigned long h=0,1=0;

(u nop”

argc, charxx

1)
)

argv)

int task_id=atoi(argv[1l]);

unsigned long long
unsigned long long
unsigned long long
unsigned long long
unsigned long long
unsigned long long
unsigned long long
unsigned long long
unsigned long long
unsigned long long
srand (seed) ;

release_time=(unsigned long long)atoll (argv[2]);
min_exec-time=(unsigned long long)atoll (argv[3]);
max-exec-time=(unsigned long long)atoll (argv [4])
min_inter_arrival_time=(unsigned long long)atoll (argv[5]);
max_inter_arrival_time=(unsigned long long)atoll (argv[6]) ;
deadline=(unsigned long long)atoll (argv|[7]) ;
min_offset_-time=(unsigned long long)atoll (argv[8]);
max-offset_time=(unsigned long long)atoll (argv[9]);
nr_jobs=atoll (argv [10]);

seed=(unsigned long long)atoll (argv[11]);

3
3

release_time = release_time + get_-time_value(min_offset_-time ,max_offset_time);

nj=0;
while (nj<nr_jobs){

l=(unsigned long)release_time;

h=release_time >>32;

syscall (._NR_retas_delay_until ,h,1);
do_work(&min_exec_time ,&max_exec_time) ;

release_time = release_time + get_time_value(min_inter_arrival_time , max_inter_arrival_time);

nj++;

return 0;

13

Listing 14: ReTAS task code.

Listing 16 shows part of the task set generator code. It receives a set of input parameters (see Table 4)
and outputs a text file (see Listing 15). The procedure used to generate task sets is very simple. First,
it iteratively generates the utilization of each task, using the uniform distribution with UMIN and UMAX as
parameters. Then, it sums the utilization of all tasks (SumUi) generated until that iteration. If SumUi fall in
the range between UTARGMIN and UTARGMAX then the procedure finishes, but if SumUi exceeds UTARGMAX, it
discards all generated values and restarts the procedure. Second, it generates the minimal interarrival time
of each task. Finally, it writes to the file name file the task set parameters.

Generally C; is computed multiply U; by T; (C; = T; *U;), however, three parameters are set using min_*
and max_*. Let us show how to compute them: the min_inter_arrival_time is set with the value gener-
ated, but the max_inter_arrival_time is computed by multiplying min_inter_arrival_time by the factor;
the max_exec_time is computed by mulpitlying min_inter_arrival_time by U;, but the min_exec_time is
computed dividing max_exec_time by the factor; the mim_offset_time is set with the number of tasks mul-
tiplying by one second and the max_offset_time is computed multiplying max_offset_time by the factor.
Note that, the factor has to be greater or equal to 1.

Listing 15 shows a task set example generated. The time unit is ns and the format of the file is the
following: It is composed by 8 columns separated by commas and the mapping between file columns and
task arguments presented in Table 3 is done by the following order: task_id, min_exec_time, max_exec_time,
min inter arrival time, max_inter _arrival time, deadlinemin offset_time and max offset_time. Since
the min_* and max_* of task parameters are equal to each other, this means that the factor value was set
equal to 1, otherwise they will be different.

Parameter | Description |

m Number of processors

UTARGMIN The minimum utilization target of each processor
UTARGMAX The maximum utilization target of each processor
TMIN The minimal interarrival time of tasks

TMAX The maximum interarrival time of tasks

UMIN The minimal utilization of tasks

UMAX The maximum utilization of tasks

Factor Factor to determine the range of each parameter
file name The output file name

seed Seed for random generator

TABLE 4: Input parameters.

1,2049267,2049267,15989152,15989152,15989152,2500000000,2500000000 ,
2,4696466 ,4696466 ,20601285,20601285,20601285,2500000000,2500000000 ,
3,1704351,1704351,15847839,15847839,15847839,2500000000,2500000000 ,
4,4304547,4304547,21097998,21097998,21097998,2500000000,2500000000 ,
5,1369002,1369002,6049432,6049432,6049432,2500000000,2500000000,

Listing 15: Task set generator output file.

void get_ui(int m, double UTARGMIN, double UTARGMAX, double UMIN, double UMAX, double *Ui, int x
nr_tasks)
{

int i, n=0,flag=1;

double SumUi=0.0, factor ,u;

*nr_-tasks =0;

while (flag) {

n=0;

SumUi=0.0;

for (i=0;i<NR.-TASKS && flag;i++){
factor=(double)rand () /RANDMAX;
u=UMIN+factor * (UMAX-UMIN) ;
Ui[n]=u;
n++;

14

SumUit=u;
if ((SumUi/(1.0+m)) >= UTARGMIN && (SumUi/(1.0+m)) <= UTARGMAX) {
flag =0;
telse{
if ((SumUi/(1.0xm)) > UTARGMAX) {
break;

}

}

if (i==NR_TASKS){

if(flag){

printf(”Warning: maximum number of tasks achieved!\n”);
exit(—1);

}
}

*nr_tasks=n;

void get_ti(unsigned long long TMIN, unsigned long long TMAX, unsigned long long *Ti, int nr_tasks)

int i;

double factor;

for (i=0;i<nr_tasks;i++){
factor=(double)rand () /RANDMAX;
Ti[i]=TMINt-factor * (TMAX-TMIN) ;
}

int main(int argc, charxx argv)

{

int nr_tasks=0,m;

char file_name [20];

unsigned long long TMIN,TMAX, Ti [NR_.TASKS] , seed;

double Ui [NR-TASKS], UTARGMIN,UTARGMAX, UMIN,UMAX, factor ;

m=atoi(argv [1]);
UTARGMIN=atof (argv [2]) ;
UTARGMAX=atof (argv [3])
TMIN=atoll (argv [4]) ;
TMAX=atoll (argv [5]) ;
UMIN=atof (argv [6]) ;
UMAX=atof (argv [7]) ;

strepy (filecname ,argv [8]) ;
seed=atoll (argv [9]) ;
factor=atof (argv[10]);
srand (seed) ;

get_ui (m, UTARGMIN, UTARGMAX, UMIN,UMAX, Ui, &nr_tasks);
get_ti (TMIN,TMAX, Ti, nr_tasks);

write_2_file (argv [8],nr_tasks , Ui, Ti,m,UTARGMIN,UTARGMAX, UMIN, UMAX, TMIN , TMAX, factor) ;

return 0;

}
Listing 16: Task set generator.

15

B Periodicity

B.1 Job release mechanism

The vanilla Linux kernel does not support any mechanism that sleeps a task until a specific absolute time. This
is important for implementing periodically arriving tasks without suffering from cumulative drift. We have
implemented a mechanism that allows that: job release mechanism. This mechanism was briefly described
in Section 4, so, here we will described it with more detail.

This procedure is supported by the struct release data structure (see Listing 17) and is composed
by two functions: system call delay until and timer callback wake up_job. The struct release data
structure is defined per-processor and is composed by an red-black tree (which root is the root_tasks), by
a struct task_struct pointer that points to the task stored in the red-black tree with earliest (erf field)
and a high resolution timer (timer field).

struct release {
struct rb_root root_tasksj;
struct task_struct *erf;
struct hrtimer timer;
}release;

Listing 17: struct release data structure.

This procedure is triggered by delay until system call invocation (see Listing 19). Since, this procedure
must be as faster as possible, the first steps are disabling the local interrupts and also preemptions. This
system call has two 32 bits arguments (h and 1) that specify the next arrival time of the current executing
task. Actually, this is a 64 bits variable, therefore, the next steps merge the two 32 bits variables into one
64 bits variable called arrival time. In the Linux kernel, rq->curr points to the current executing task on
the current processor. After we get the pointer to the current task, then, we have to set up the next release
of the job. The first step is checking if the arrival_time value is higher than the current time, returned by
retas_clock function. If it is no deadline miss occurred, otherwise, a deadline miss occurred.

In the former case, a set of steps must be done in order to relinquish the task from processor and set up
the timer expiration for the next release: (i) the state of the current task is changed to TASK_INTERRUPTIBLE;
then, (ii) the current task is inserted into the release red-black tree ordered by absolute arrival time using
the insert_job function that returns the pointer to the task with the earliest release time; (iii) if the earliest
release task is the current task, then the timer expiration must be set accordingly with its arrival time.
However, it must be checked if the next release is larger than the current time plus a safe time interval
(EPSILON) - the purpose of the EPSILON is to assure that when the delay_until returns the timer was not
set to expire in the past. Otherwise, the timer is set up to expire for the minimal time instant in future.

In the later case, a deadline miss occurred, the task continues in the running state (the set of steps done
in this case are only for logging and statistical purposes).

Finally, the preemption and interrupts are enabled again and the task must be relinquished from processor.
For that, and schedule function is invoked.

When the release timer expires the wake_up_job callback is invoked. Due to the same reasons given for
the delay until system call the local interrupts and preemption are disabled. After that, a loop is executed
and all tasks whose arrival time fall into the current time plus a safe time interval (EPSILON) are removed
from the release red-black tree, their state are changed to TASK_RUNNING state and finally, are inserted into
the ready red-black tree. The next timer expiration is set according to the following rules: if there is at
least one task on the release red-black tree, the timer is set up to expire according to the task with earliest
arrival, otherwise, it sets the timer to expiration with a large value that, in practice, this timer will not expire.
Finally, the local interrupts and preemption are enabled.

asmlinkage long

sys_-retas_delay_until (unsigned long h, unsigned long 1)
{

struct rq *xrq=NULL;

struct task_struct *p=NULL;

struct hrtimer *timer=NULL;

unsigned long long arrival_time;

16

unsigned long flags;
local_irg-save (flags);
preempt_disable () ;

arrival_time=0; arrival_time=h;

arrival_time <<=32;arrival_time|=1;

rq = cpu-rq(smp-processor-id ());

timer=&rq—>retas_rq.release.timer;

rq—>curr—>retas_task .job_param.arrival = arrival_time;

if (arrival_time > retas_clock ()){

rq—>curr—>state=TASK_INTERRUPTIBLE ;

p=insert_job (rq, rg—>curr);

if (p—>retas_task.job_param.arrival < ktime_to_ns(timer—>_expires) + EPSILON){

__hrtimer_start_-range_ns (timer, ns_to_ktime(p—>retas_task.job_param.arrival) 0,

HRTIMER-MODE_ABS_PINNED, 0) ;

}

else(
_dequeue_task_retas(rq, rq—>curr);
retas_stat_-miss_deadline (rq—>curr);
atomic_inc(&rq—>curr—>retas_task.job_param.nr);
_enqueue_task_retas(rq, rq—>curr);

local_irq-restore (flags);
preempt_enable_no_resched () ;
schedule () ;

return 0;

Listing 18: delay_until system call.

static enum hrtimer_restart
wake_up_job(struct hrtimer xtimer)

struct rq xrq;

struct task_struct x*p;
int wake_up-the_job;

unsigned long flags;

local_irg-save (flags);
preempt_disable () ;
rq= cpu-rq(smp_processor_id ());
do{
wake_up-the_job = 0;
p=peek_erf_job (rq);
TF(p){
if (p—>retas_task.job_param.arrival <= retas_clock () + EPSILON){
remove_job(rq,p);
if (p—>exit_state!=EXIT_DEAD && p—>exit_state!=EXIT_ZOMBIE) {
wake_up-the_job = 1;
atomic_inc(&p—>retas_task.job_param.nr);
p—>state=TASK RUNNING;
activate_task (rq, p, 0);

}while (wake_up_the_job);
p=peek_erf_job (rq);
if (p){

hrtimer_set_expires (timer, ns_to_ktime(p—>retas_task.job_param.arrival));

else{// set the timer to a wvalue which is so large that this timer will not expire.
hrtimer_set_expires (timer, ktime_set (KTIME.SEC.MAX, 0));

}

local_irg-restore (flags);

preempt_enable_no_resched () ;

return HRTIMERRESTART;

Listing 19: wake_up_job timer callback.

17

C 24-core machine experimental results

We generated 17 random task sets with an utilization target between 0.88 and 0,885. The period and
utilization of tasks varied from 5 ms up to 50 ms and from 0.1 up to 1.0, respectively. The number of tasks
varied from 74 up to 191 tasks in the case of the 24-core machine. The time duration of each experiment
was approximately 1000 s. All task sets were scheduled using the S-EKG and NPS-F scheduling algorithms
(which have comparable jitter /overheads). Since each experiment took 1000 s, the whole set of experiments
took 34000 s.

Table 5 presents the experimental results observed in the experiments ran on 24-core machine. There
are two values that require more attention. The MIN,. value observed for the Ctsw.J is smaller than the
AVG,, of task that experienced the MAX,,,x, which denotes that some kind of tasks incur more overheads
than others. The task that experienced the MAX,,.x is a split task that executes on processor 21 and 22
and the task that experienced MIN,,,.x is a non-split task that executes on a dedicated processor; that is, the
task assigning algorithm generated an assigning that this processor only executed non-split tasks.

| | MAXmax (1s) AVGy (ps) | MINpax (us) AVG, (us) |

ResJ 48.087 8.493 19.243 9.498
RelJ 37.264 0.731 11.609 0.848
Ctsw.J 9.743 1.223 1.009 0.542
IntO - irq20 35.584 - - -
IntO - tick 6.431 1.307 1.064 0.755

TABLE 5: More experimental results (24-
core machine).

18

