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Abstract 

Applications of Unmanned Aerial Vehicles (UAVs) for data collection are a promising means to extend Internet-of-
Things (IoT) networks into remote and hostile areas, and areas with no access to power supplies. Adequate design 
of velocity control and communication decisions of UAVs is critical to minimize the data packet losses of ground 
IoT nodes resulting from overflowing buffers and transmission failure. However, online velocity control and 
communication decision-making is challenging in UAV-enabled IoT networks, due to the lack of the up-to-date 
knowledge on the state of the IoT nodes, e.g., battery energy, buffer length and channel conditions, at the UAV. 
Current methodology using reinforcement learning complements real-time solutions to small-scale decision 
problems in static IoT networks. However, reinforcement learning is impractical for the online velocity control and 
communication decision in the UAV-enabled IoT network, due to its rapidly growing complexity (also known as the 
curse-of-dimensionality). This article discusses the design of onboard deep Q-network to deliver the online velocity 
control and communication decision of UAVs. The onboard deep Q-network can jointly determine the optimal 
patrol velocity of the UAV and decide the IoT node to be interrogated for data collection, thereby minimizing 
asymptotically the data packet loss of the IoT networks.  
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Abstract—Applications of Unmanned Aerial Vehicles
(UAVs) for data collection are a promising means to extend
Internet-of-Things (IoT) networks into remote and hostile
areas, and areas with no access to power supplies. Adequate
design of velocity control and communication decisions of
UAVs is critical to minimize the data packet losses of ground
IoT nodes resulting from overflowing buffers and transmission
failure. However, online velocity control and communication
decision-making is challenging in UAV-enabled IoT networks,
due to the lack of the up-to-date knowledge on the state
of the IoT nodes, e.g., battery energy, buffer length and
channel conditions, at the UAV. Current methodology using
reinforcement learning complements real-time solutions to
small-scale decision problems in static IoT networks. However,
reinforcement learning is impractical for the online velocity
control and communication decision in the UAV-enabled IoT
network, due to its rapidly growing complexity (also known as
the curse-of-dimensionality). This article discusses the design
of onboard deep Q-network to deliver the online velocity
control and communication decision of UAVs. The onboard
deep Q-network can jointly determine the optimal patrol
velocity of the UAV and decide the IoT node to be interrogated
for data collection, thereby minimizing asymptotically the data
packet loss of the IoT networks.

Index Terms—Unmanned aerial vehicle, Internet-of-Things,
Velocity control, Data capture, Deep reinforcement learning

I. UAV-ENABLED IOT NETWORKS

A. Background

Recent advances in scalable Internet-of-Things (IoT)

networks and renewable energy have enabled the deploy-

ment of a large number of energy harvesting powered

IoT nodes over large areas with limited persistent power

supply, for sustainable sensing of weather, environmental

pollutions, or traffic and road conditions. The IoT nodes

can progressively harvest energy from multiple renewable

energy sources, e.g., solar panel [1], electret-based wind

turbine [2], or wireless power transfer [3]. Sensory data can

be collected from the energy harvesting powered IoT nodes.

For assisting data collection in IoT networks, Unmanned

Aerial Vehicles (UAVs), also known as drones, can act as

an aerial platform to communicate with the IoT nodes and

capture valuable environmental data.

A UAV can be employed to visit the large number of IoT

nodes deployed in the area of interest, and move sufficiently

close to the node that is scheduled to transfer data, thanks

to UAVs’ excellent mobility and maneuverability [4]. The

UAV assists the ground nodes in performing task computing

after the ground nodes offload their computation tasks to

the UAV [5].

As a long-range wireless communication technology,

low-power wide area network (LPWAN) has been deployed

to provide connectivity to IoT networks in rural areas, e.g.,

in the agricultural and farming sectors. LPWAN provides

long-range transmissions of up to 10 km at the expense of

low data rates (typically in the order of tens of kilobits per

seconds) and subsequently high transmission latencies [6].

On the contrary, the UAV can physically approach each

individual IoT node by exploiting the excellent mobility and

flexibility of a UAV. A short, line-of-sight (LoS)-dominant

communication link between the UAV and an IoT node can

enjoy a significant channel gain and support high-speed data

transmission [7].

B. Case study: road surveillance

A large number of IoT nodes powered by renewable

energy sources can be deployed to monitor road traffic

and emergency [8]. Every IoT node is equipped with solar

panels, wind power generators, or wireless power receivers

to harvest energy to power its operations. In particular, the

battery energy of the IoT nodes can be drastically different

from each other, depending on the ambient environmental

conditions of the individual nodes. Each IoT node generates

data packets at an application-specific sampling rate, and

buffers the data packets awaiting transmission.

Figure 1 provides an example of the use of a UAV

to the surveillance of traffic violations, accidents or other

road emergency, where the IoT nodes can be lightweight

cameras and portable tachymeters deployed on roadside to

take videos or images and collect environmental data. The

UAV equipped with a wireless transceiver and an onboard

processor is instructed to fly over an unpopulated area with

little to no 5G service but a need for bursty transmissions of

high-bandwidth data, e.g., high-resolution images or videos.

The UAV can select the IoT nodes to collect their data.

Moreover, the UAV can decide to either forward any urgent

data immediately to a remote command post; or buffer other

data until the next time it passes and offload the data to

the command post. In most cases, the urgent data which

requires a fast response is small in size, while other data

could be large and can benefit from the relatively short-

range transmissions between the UAV and the command
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Fig. 1: UAV-enabled IoT networks deployed in unpopulated regions, where a large number of IoT-x nodes serve as data sources with
sensing ability, e.g., monitoring the traffic violations, accidents or other road emergency. The UAV is employed to collect the data
from the IoT nodes at different time.

post when the UAV is passing the command post and

enjoying an excellent channel condition.

The flight trajectory of the UAV can be carefully planned

beforehand, so that all the IoT nodes are accessible to

the UAV [9]. For the example of Figure 1, the UAV can

fly along the highway. The UAV can carry out a velocity

control and data capture (VCDC) strategy online to decide

its cruise speed (by selecting the next waypoint), and the

next IoT node which will upload its data to the UAV as the

UAV is approaching the next waypoint. The UAV sends a

short beacon message to notify the selected IoT node of the

decisions. The node can also measure the signal-to-noise

ratio (SNR) of the channel from the beacon message. The

state information of the selected IoT node, i.e., the battery

level, data queue length and channel condition, can be put

in a control segment of the data packet that is transmitted

to the UAV.

C. Motivation and contributions

This article is motivated to address the research chal-

lenges and opportunities of online UAV velocity control

and IoT transmission schedule. Specifically, we formulate a

discrete-time Markov Decision Process (MDP) to minimize

the network cost resulting from the buffer overflow and

failed transmissions of the IoT nodes. Deep reinforcement

learning is applied onboard to learn the optimal velocity

control and IoT node selection strategies of the UAV at

every MDP state.

As shown in Figure 1, the IoT nodes with finite data

buffers undergo random data arrivals. Selecting an IoT node

for data collection may result in a buffer overflow at other

unselected nodes, since new data arrivals at those nodes

may have to be dropped if their buffers are already full

and overflow. Particularly, selecting an IoT node with a

poor channel condition gives rise to the packet errors of

its transmissions or the buffer overflows of other nodes.

Moreover, the UAV may not have the complete, instanta-

neous knowledge of every IoT node, due to limited radio

coverage of the IoT nodes. The IoT nodes can only report

their states when polled, and send the states together with

their respective data. In this sense, it is important to design

(or more adequately, learn online) the appropriate velocity

control and communication schedule of the UAV, which

captures the underlying structure of the data and energy

arrivals at the IoT nodes and adapts the speed and the node

selection of the UAV to the structure.

II. CHALLENGES AND OPPORTUNITIES

A. What is velocity control and data capture?

Given the movement of the UAV, the time-varying wire-

less channel between each IoT node and the UAV can

suffer from independent signal fading. Having an IoT node

transmit during the instants when the channel quality is

poor is likely to result in packet reception errors at the

UAV. Moreover, the IoT nodes with random data arrivals

buffer the data to be collected in the data queue with a

finite buffer size. The new data packets have to be dropped

when the data queue overflows.

The harvested energy from solar, wind, wireless power

transfer, or other renewable energy sources can be affected

by cloudy or rainy weather, windless environment, or

interference from existing wireless networks. As a result,

the battery energy of the IoT nodes can be time-varying and

substantially differ from each other. Some IoT nodes can
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deplete the battery energy quickly before the data packets

in its queue are exported.

In such UAV-enabled IoT networks, it is critical to jointly

determine the patrol velocity of the UAV and schedule

the data transmission of the IoT nodes, so as to minimize

the packet losses resulting from overflowing buffers and

channel fading. Inadequate VCDC at the UAV can schedule

some of the IoT nodes with short data queue lengths and

poor link qualities to transmit. The battery energy of these

IoT nodes drains (due to packet (re)transmissions), while

some others with good link qualities but not promptly

scheduled can have their buffers overflow. Furthermore, in

practice, the complete up-to-date knowledge of the battery

level and data queue length of all the IoT nodes is not

available at the UAV due to non-negligible signaling delay

and overhead. This makes the online UAV velocity control

and IoT transmission schedule non-trivial.

B. State of the art

The motion of a UAV is designed to assist a point-

to-point communication between the UAV and a ground

device [10], by taking into account the propulsion energy

consumption of the UAV. An algorithm is developed to

improve energy efficiency, subject to the constraints on

the UAV’s trajectory, including its initial/final locations and

velocities, and maximum speed. In [11], the UAV trajectory

planning with the velocity control is exploited for charging

the ground sensors. The problem formulation and solution

imply that the hovering location and duration can be

designed to enhance the wireless power transfer efficiency.

In [12], the UAV is employed to provide emergent data

communications to a remote area. A UAV deployment al-

gorithm is studied to control the flight velocity and altitude

to reduce deployment time of the UAV with guaranteed

network coverage. The existing trajectory planning and

communication scheduling approaches in the literature use

offline deterministic optimization theories to improve the

network coverage or reduce the energy consumption of

the UAV. Based on the specific statistical distributions,

the transitions of the network states are formulated as

a probabilistic random process. In contrast, this article

focuses on the online VCDC problem which minimizes the

data loss caused by buffer overflows at the IoT nodes and

poor channels, where the UAV has no a-priori knowledge

of the state dynamics.

In our recent works [9] and [13], we start to explore

learning-based joint optimization of the UAV speed and

IoT transmission. In [9], we study an energy-efficient data

relaying scheme to balance the battery lifetime of the UAVs,

where the UAV moves at a predetermined velocity. In [13],

a double Q-learning-based scheduling algorithm is devel-

oped to select the IoT node for data collection and wireless

power transfer along the flight trajectory of the UAV. This

article generalizes the ideas of [9] and [13] to jointly

optimize the UAV speed and communication schedule in

the absence of the complete instantaneous knowledge of

the IoT nodes at the UAV. Deep reinforcement learning is

applied onboard to learn the underlying characteristics of

data and energy arrivals at the IoT nodes, and deliver the

optimal velocity control and communication schedule in

real-time.

C. Markov decision process for velocity control and data

capture

The trajectory and altitude (i.e., the waypoints) of the

UAV are predesigned to allow the UAV to patrol over

the area where the IoT nodes are distributed. The opti-

mization of the UAV velocity control and IoT transmission

schedule needs to be conducted in real-time over the entire

VCDC process. The correlation between the scheduling

decisions of different time slots needs to be captured,

and to validate the long-term optimality of VCDC. For

this reason, a discrete-time MDP is typically the suitable

model to discretize the VCDC problem with the network

states consisting of the battery energy and the data queue

length of the IoT nodes, channel conditions between the

UAV and the IoT nodes, and waypoints of the UAV. The

UAV can take the actions to control the instantaneous

patrol velocity, and select the IoT nodes. The future battery

energy and data queue length of every IoT node can be

affected by the VCDC decisions of the UAV, which leads

to a non-negligible impact on the future actions of the

UAV. The actions of VCDC can be modeled as a discrete-

time random process since the data arrival and queueing

process of sensory data at every IoT node are random and

independent. Particularly, the actions of VCDC are also

partially controllable at the UAV.

Note that the VCDC problem is different from travelling

salesman problem (TSP) in the sense that all the possible

waypoints are daisy chained in a loop and the VCDC

strategy decides the next waypoint of the UAV for the next

time slot on-the-fly. In other words, the VCDC strategy

decides the patrol speed of the UAV in real-time. This is

done by the UAV flying along the loop repeatedly and

learning online the underlying patterns of the data and

energy arrivals at all the IoT nodes.

The VCDC actions of the UAV can be optimized in a

long-term stochastic control process, where the optimality

is achieved in regards of a specific metric, e.g., packet loss

stemming from both overflowing buffers and unsuccessful

data transmissions of the IoT nodes. The optimal policy of

the MDP can be obtained by taking classical approaches,

e.g., value iteration or policy iteration [3]. In particular,

the value iteration iteratively optimizes an estimate of the

action-value function, while the policy iteration updates the

policy at each step and obtains the action-value function

with this new policy. It is assumed that the transition of the

network states and the packet loss at the states are known

to the UAV in prior. The value/policy iteration method

repeatedly updates the estimate of the optimal action-value

function according to the Bellman optimality equation.

When the Bellman optimality equation converges, the cost

function is minimized. The MDP model is stabilized. How-

ever, the action-value function of the MDP can only be
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evaluated offline since the UAV has the prior knowledge

on the transition of the network states and the packet loss

at all the states, which is not applicable to the online VCDC

problem.

Q-learning, one of the most popular reinforcement learn-

ing techniques, can minimize the expected long-term accu-

mulated discounted costs (i.e., the expected packet loss of

the IoT nodes) in small-scale static IoT networks [14]. Q-

value of the action-value function can be learned as the

expected accumulated discounted cost when the UAV takes

an action following one of the VCDC strategies thereafter.

The future actions of the UAV can be determined by

using the gained experience and the current action-value

function. By learning the action-value function, the optimal

scheduling strategy can be obtained without the transition

and/or cost functions. However, Q-learning is known to

suffer from the well-known curse-of-dimensionality, which

is impractical for the online VCDC problem due to a large

number of network states and actions in UAV-enabled IoT

networks.

In contrast, this paper aims to enable autonomous UAVs

to control online its own velocity and its selection of IoT

nodes to transmit data to the UAVs, so as to minimize the

loss of valuable IoT data. Each network state of the MDP

consists of waypoints of the UAV on the trajectory, the

battery levels and data queue lengths of the IoT nodes. The

VCDC actions of the MDP are the instantaneous patrol

speed of the UAV, and the selection of IoT nodes for data

transmission. The state space and the action space of VCDC

can be exceedingly large and grow increasingly fast with

the number of MDP states and actions, hence the dynamic

programming based approach in [3] and the reinforcement

learning algorithm in [14] are not applicable to the VCDC

problem in UAV-enabled IoT networks.

III. ONBOARD DEEP REINFORCEMENT LEARNING FOR

ONLINE VCDC

A. Architecture of onboard deep reinforcement learning

To circumvent the curse-of-dimensionality problem of

reinforcement learning, deep reinforcement learning can

be developed according to two typical neural network

models, i.e., convolutional neural network (CNN) or deep

Q-network. A CNN architecture can contain a bunch of

convolution, pooling, and fully connected layers. To con-

struct a CNN, numerous parameters have to be determined

in priori, such as the number of layers, the order of layers,

and the type of each layer. The setting of the parameters

can make the CNN architecture large and, hence, result in

high complexity of the design and implementation.

Deep reinforcement learning can be used to develop a

new onboard deep Q-networks (ObDRL) for the online

control and plan for VCDC. The ObDRL scheme can be

designed to minimize the data packet loss of the entire

system by training the onboard deep Q-network at the

UAV. The onboard deep Q-network can jointly optimize the

instantaneous patrol velocity of the UAV and the selection

of the IoT nodes, with extended state and action spaces of

the above-mentioned MDP.

Network  
cost

Velocity control of the UAV

Scheduling data transmission 
of the IoT nodesIoT-x

IoT-x

IoT-x

IoT-x

Environment

States of IoT 
nodes

Actions

Transmitting 
data

Inputs Min(cost)

Onboard Deep Reinforcement Learning

Experience 

replay memory

Store the 
states

States of 
the UAV

Fig. 2: Architecture of the onboard deep Q-networks for jointly
optimizing the instantaneous patrol velocity of the UAV and the
selection of the IoT node for the data transmission.

Figure 2 shows the architecture of the onboard deep Q-

network. The network cost is the packet loss resulting from

the buffer overflow and failed transmissions of the IoT

nodes. The UAV observes the current network state, i.e.,

the battery energy and data queue length of the selected

IoT nodes, the channel quality, and the waypoint of the

UAV, from the real-world environment. Deep reinforcement

learning can train the deep Q-network by taking the current

network state and immediate network cost as the input and

evaluating the corresponding Q-value. The onboard deep

Q-network can approximate the Q-value to minimize the

network cost by learning the optimal VCDC strategies of

the UAV at each network state. Moreover, the onboard deep

Q-network can measure the quality of the VCDC strategy

in a given network state of the MDP model. When the

optimal velocity is allocated to the UAV and the optimal

IoT node is scheduled to transmit data in the environment,

new network states and cost can be obtained and used as

the next inputs to further train the onboard deep Q-network.

B. Onboard deep Q-networks for online VCDC

Deep reinforcement learning can be conducted over

multiple episodes to approximate the minimum of the Q-

values in the deep Q-network, by adapting a set of learning

weights. Each episode is a number of consecutive time

epochs, where the deep Q-network is trained to find the

optimal actions for the VCDC (i.e., the velocity of the UAV

and transmission schedule of the IoT nodes). As shown in

Figure 2, in every episode, the deep Q-network updates the

learning weight at the current network state to minimize the

mean-squared Bellman error, by optimizing an immediate

network cost. By learning and minimizing the network cost

iteratively, ObDRL can achieve the optimality of velocity

control and transmission scheduling asymptotically, with

the growing state and action sizes/spaces.

Experience replay can be carried out with deep reinforce-

ment learning to randomize over the network states and
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the actions of the UAV at each episode in the deep Q-

network [15]. The network states and actions for online

VCDC at every episode are stored in a dataset on the

UAV, pooled over many episodes into the memory allocated

for the experience replay. The experience in the deep Q-

network contains a number of samples (or minibatches)

and can be accordingly updated during the learning. The

experience replay can remove oscillations or divergence in

the observation of the network states from the environment

and smooth over changes in the data distribution, thereby

reducing the variance of learning updates in the deep

reinforcement learning.

An ✏-greedy policy can be utilized to balance the network

cost minimization with respect to the UAV velocity control

and IoT transmission scheduling decisions already known

with trying some new actions of the UAV to obtain the

knowledge previously unknown. Specifically, the UAV can

randomly determine its instantaneous velocity and the IoT

node for data transmission according to a probability ✏. This

explores the unknown knowledge of VCDC. Meanwhile,

the network cost can still be minimized based on the

knowledge of VCDC already learned with 1− ✏.

IV. PERFORMANCE ENHANCEMENT

A. Implementation of ObDRL

The data packet generation rate of the IoT node is 100

data packets, where each data packet has 128 bytes. The

required bit error rate (BER) of the channel can be 0.05%,

however, the BER can be configured depending on the

traffic type and quality-of-service (QoS) requirement of

the applications, as well as the transmission capability of

the UAV. The battery readings are continuous variables

with variance difficult to be traced in real-time. Therefore,

to improve the tractability of the performance and for

illustration convenience, the battery capacity of the IoT

node is discretized to 50 levels, where the battery readings

can be lower rounded to the closest discrete level. The

replay memory size can be 5000. The transmit power of

the UAV can be set to 100 milliwatts. The simulation

parameters are also listed in Table I.

TABLE I: TensorFlow configurations

Parameters Values

Packet generation rate 100

Packet size 128 bytes

Required BER 0.05%

Battery levels 50

Replay memory size 5000

Transmit power of the UAV 100 mW

ObDRL is implemented in Python 3.5 by

using Keras deep learning library with Google

TensorFlow as the backend engine. Three fully-

connected hidden layers are created by using

tensorflow.layers.dense(inputs, dimensionality of the output

space, activation function). Then, an optimizer function

tensorflow.train.AdamOptimizer().minimize(loss function)

is called to minimize the loss function. The optimizer is

imported from the Keras library. For online training the

ObDRL, the memory stores the learning outcomes, a.k.a.

experience at every step, using the quadruplet <state,

action, cost, next state>. The memory is updated by

calling the function memory.add sample(state, action, cost,

next state), and the experiences are retrieved by calling the

function memory.sample(batch size).

B. Numerical analysis

For performance comparison, we also simulate three ex-

isting techniques as the performance benchmarks, namely,

Constant Velocity Data Queue (CVDQ), Constant Velocity

Highest Channel Quality (CVHC), and Constant Velocity

Random Scheduling (CVRS). CVDQ is a greedy policy

based on the data queue lengths of the IoT nodes, where the

UAV maintains the constant velocity. Assuming hypothet-

ically that the data queue lengths of the IoT nodes within

the radio range of the UAV are known to the UAV (which

is not the case in the proposed ObDRL approach). The IoT

node with the longest queue is selected to transmit data.

CVHC is a greedy policy based on the channel qualities

of the IoT nodes, where the node with the highest SNR is

selected to transmit data. CVRS schedules randomly an IoT

node at a time to transmit data, and the VCDC decision is

independent of the battery level, queue length and channel

condition of the IoT node, and the UAV’s velocity.

Figure 3 presents the network cost of ObDRL with

regards to the episodes (i.e., learning time) given the

discount factor of 0.99. The number of IoT nodes and

the maximum length of their data queues are set to 300

nodes and 20 packets, respectively. It can be observed in the

figure that the network cost of ObDRL that takes advantage

of deep reinforcement learning substantially drops from

episode 1 to episode 350. In particular, the network cost

with ObDRL quickly falls within the initial 70 episodes.

The performance of ObDRL converges within about 360

episodes, and remains relatively stable afterwards. This is

because the deep Q-network gets trained at the beginning of

the learning process. After a number of episodes, ObDRL

can store a set of the MDP states and the corresponding

actions as the learning experience in the replay memory.

Based on the experience, the learning weights in ObDRL

can be optimally updated to approximate the action outputs

of the UAV for VCDC more accurately.

In Figure 3, we also observe that ObDRL outperforms

CVDQ, CVHC, and CVRS by 75.5%, 77.3%, and 84.9%,

respectively. This is because ObDRL can be adequately

trained to optimize the VCDC decisions of the UAV with an

increasing number of episodes. At every learning iteration,

the deep Q-network can reduce the mean-squared Bellman

error, by minimizing the loss function.

Figure 4 shows the network cost of ObDRL with an

increasing number of IoT nodes. As observed, ObDRL

can reduce the network cost to a great extent when the

maximum queue length of the IoT nodes increases from

10 to 50. Moreover, ObDRL achieves a lower packet loss

than CVDQ, CVHC, and CVRS, while the performance
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Fig. 4: Network cost with the onboard deep Q-network in terms
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gains keep growing with the network size. The reason is

that ObDRL learns the pattern of the IoT nodes’ energy

consumption and data queue states to make the VCDC

decisions which minimize the data packet loss of the entire

network.

Figure 5 shows the patrol velocity control on the UAV by

applying ObDRL, with the increasing number of learning

episodes. It can be observed that the velocity of the UAV

varies drastically at the beginning of the training process of

ObDRL. With an increasing number of episodes, ObDRL

learns the network dynamics and the variation of the

velocity is significantly reduced. The results in Figure 5 also

reveal a significant insight that the velocity of the UAV is

adjusted frequently when the number of IoT nodes is large,

given the same data queue length of the IoT nodes. This is

due to the fact that the states of the IoT nodes exhibit more

variations and changes in a large-scale ground IoT network

than a small-scale one. The UAV has to accelerate and

decelerate more frequently to minimize the overall packet

loss of all the IoT nodes in the network.

Figure 6 shows the patrol velocity of the UAV with

regards to the number of IoT nodes. As observed, the

patrol velocity raises with an increase of network size.

This is because the UAV has to accelerate the flight for

collecting data from more IoT nodes in order to reduce

buffer overflow. Furthermore, increasing the maximum data

queue length of the IoT node can reduce the instantaneous

velocity of the UAV. A larger data queue of the IoT node

can hold more data packets. This allows an extended data

transmission time between the IoT node and the UAV,

which can slow down the UAV’s flight.
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Fig. 5: Patrol velocity of the UAV with ObDRL.
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V. CONCLUSIONS

In this article, design of online velocity control and

data capture decision in UAV-enabled IoT networks was

presented. An architecture of onboard deep Q-network was

built, which can minimize the overall data packet losses

of the IoT nodes resulting from overflowing buffers and

transmission failure. Instantaneous patrol velocity of the

UAV and scheduling the data transmission of the IoT

nodes were also optimally determined without up-to-date

knowledge of the network states. It is found that for training

the onboard deep Q-network, experience replay can be

conducted with deep reinforcement learning to store the

network states and actions at every learning episode. The

onboard deep Q-network can be typically implemented by

using Keras deep learning library with Google TensorFlow.

Finally, scalability of the IoT network and data queue

lengths of the nodes can have a strong impact on the

velocity control and data capture of the UAV.
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