
  

 

 

 

 

 

 

Preemption-light multiprocessor 
scheduling of sporadic tasks with high 
utilisation bound 

 

 
 

 

www.hurray.isep.ipp.pt 

Technical Report 

HURRAY-TR-090907 

Version: 0 

Date: 09-11-2009 

Konstantinos Bletsas 

Björn Andersson 



Technical Report HURRAY-TR-090907 Preemption-light multiprocessor scheduling of sporadic tasks with high utilis

© IPP Hurray! Research Group 
www.hurray.isep.ipp.pt   

1 

Preemption-light multiprocessor scheduling of sporadic tasks with high 
utilisation bound 

Konstantinos Bletsas, Björn Andersson 

IPP-HURRAY! 

Polytechnic Institute of Porto (ISEP-IPP) 

Rua Dr. António Bernardino de Almeida, 431 

4200-072 Porto 

Portugal 

Tel.: +351.22.8340509, Fax: +351.22.8340509 

E-mail:  

http://www.hurray.isep.ipp.pt 

 

Abstract 
Known algorithms capable of scheduling implicit-deadline sporadic tasks over identical processors at up to 100% 
utilisation invariably involve numerous preemptions and migrations.To the challenge of devising a scheduling scheme 
with as few preemptions and migrations as possible, for a given guaranteed utilisation bound, we respond with a new 
algorithm, NPS-F. It is configurable with a parameter, trading off guaranteed schedulable utilisation (up to 100%) vs 
preemptions. For any possible configuration, NPS-F introduces fewer preemptions than any other known algorithm 
matching it in terms of its utilisation bound.  

We also introduce a clustered variant of the algorithm, for use with systems made of multicore chips. It eliminates off-
chip task migrations, which are costly, by dividing processors into independently-scheduled  clusters (each, using the 
non-clustered algorithm). Each cluster is formed out of cores on the same chip. (The cluster size is a parameter to the 
algorithm.) We show that the utilisation bound is only moderately affected. 
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Abstract

Known algorithms capable of scheduling implicit-
deadline sporadic tasks over identical processors at up to
100% utilisation invariably involve numerous preemptions
and migrations. To the challenge of devising a scheduling
scheme with as few preemptions and migrations as possi-
ble, for a given guaranteed utilisation bound, we respond
with a new algorithm, NPS-F. It is configurable with a pa-
rameter, trading off guaranteed schedulable utilisation (up
to 100%) vs preemptions. For any possible configuration,
NPS-F introduces fewer preemptions than any other known
algorithm matching it in terms of its utilisation bound.

We also introduce a clustered variant of the algorithm,
for use with systems made of multicore chips. It eliminates
off-chip task migrations, which are costly, by dividing
processors into independently-scheduled clusters (each,
using the non-clustered algorithm). Each cluster is formed
out of cores on the same chip. (The cluster size is a
parameter to the algorithm.) We show that the utilisation
bound is only moderately affected.

1.. Introduction

Consider the problem of preemptively scheduling n
sporadic tasks (τ1 to τn) on m identical processors (P1

to Pm). A task generates a (potentially infinite) sequence
of jobs, occurring at least Ti time units apart. A job by τi

requires up to Ci time units of execution over the next Ti

time units after its arrival (with Ti, Ci being real numbers
and 0≤Ci≤Ti). A processor executes at most one job at
a time and no job may execute on multiple processors
simultaneously. The utilisation of the task set is defined
as Uτ = 1

m · ∑n
i=1

Ci

Ti
. The utilisation bound UB of a

scheduling algorithm is a threshold such that all task sets
with Uτ≤UB meet their deadlines under said algorithm.

Many multiprocessor scheduling algorithms can be cat-
egorised as either partitioned or global. Under global
scheduling, a single dispatch queue is shared by all
processors and at any moment, the m highest-priority
runnable tasks get to execute on the m processors. Under
partitioning, each task may only execute on a specific
processor and not migrate. Preemptions are limited and
the multiprocessor scheduling problem is reduced to many
uniprocessor scheduling problems (which allows reuse
of many results from uniprocessor scheduling). Yet no
partitioned algorithm can have a utilisation bound above
50% [14]. Conversely, the pfair family of global schedul-
ing algorithms offers utilisation bounds of 100% [9][4] but
at the cost of numerous preemptions [17].

Hybrid approaches aim for combination of strengths:
EDF-fm [5] schedules soft, not hard, real-time tasks at
up to 100% system utilisation with limited tardiness.
Ehd2-SIP [23] and EDDP [24], with utilisation bounds
of 50% and 65%, typically generate few preemptions,
although no respective upper bound is known. Under EKG-
sporadic [7] most tasks utilise a single processor but at
most m−1 utilise two – but never simultaneously. This
algorithm is configurable for utilisation bounds up to 100%
at the cost of increased preemptions. Currently, the most
“preemption-light” (in terms of a proven upper bound
on preemptions) of all schemes with utilisation bounds
above 50% is Notional Processor Scheduling (NPS) [11],
however its utilisation bound is just 66.6̄%. Note that
although EDZL [16] has even fewer preemptions, it is yet
unproven whether its utilisation bound exceeds 50% [15].

We introduce a new algorithm NPS-F, configurable for
utilisation bounds from 75% up to 100% (traded off with
preemptions). NPS-F has better upper bounds on preemp-
tions than any known algorithm matching it in terms of
utilisation bound. We also introduce a clustered variant
of NPS-F (for systems made of multicore chips) with
somewhat lower utilisation bound but which eliminates the
costliest (in terms of overhead) type of migrations. These



are the migrations between cores on different chips, which
cause cache misses necessitating main memory I/O and
severely hurting performance [18][6].

NPS-F stands for “Notional Processor Scheduling –
Fractional capacity”. It is related to NPS [11] though the
reader need not be familiar. The relation is discussed later.

In this paper, Section 2 discusses concepts prerequisite
to understanding the approach. Section 3 introduces NPS-
F and quantifies its performance in terms of schedulable
utilisation and preemptions. Section 4 does the same for
the clustered variant. Section 5 concludes.

2.. Useful concepts

2.1. On periodic reserves

A periodic reserve is a kind of server, for scheduling
one or more sporadic tasks. It is a fixed-length time
window, available periodically, every S time units (an
interval termed the “timeslot length”). Time within the
reserve is exclusively for the execution of tasks served by
it (e.g. under EDF policy). Conversely, tasks served by
the reserve cannot execute outside its bounds. Figure 1(a)
provides an example of multiple tasks scheduled within a
periodic reserve, under EDF.

Suppose that S ≤ TMIN
δ , where TMIN is the shortest

of the interarrival times of all tasks served by the reserve
and δ is a positive integer. It then holds (see Theorem 5 in
the Appendix) that implicit-deadline tasks of cumulative
utilisation U are always schedulable under EDF by a
reserve of length inflate(U) ·S, with inflate(U) given by:

inflate(U) =
(δ + 1) · U

U + δ
(1)

The inverse function,

deflate(U) def= inflate−1(U) =
δ · U

(δ + 1) − U
(2)

represents the maximum cumulative task utilisation that
a periodic reserve of size U · S may accommodate (with
S = TMIN

δ ). The quantity

α(U) def= inflate(U) − U =
U · (1 − U)

U + δ
(3)

is termed inflation. It expresses, by which amount the pro-
cessor capacity allocated for a reserve should exceed the
cumulative utilisation of the respective workload served,
so as to ensure schedulability of all tasks served by the
reserve, even under the most unfavorable arrival phasings,
relative to the start/end of a reserve. Figure 2 plots the
functions inflate, deflate and α for different values of δ.
The higher the value of δ, the lesser the inflation.

Figure 1. Scheduling multiple tasks within
(a) a single periodic reserve (b) temporally
adjacent reserves on different processors.
Observe that in example (b), wherein the two
reserves summed match in duration the sin-
gle reserve in the first example (with identical
arrivals and timeslot length), task execution
intervals are identical to those in case (a).

2.2. Utilising multiple adjacent reserves

Typically, each reserve is implemented on a particular
processor – see Figure 1(a). However, multiple temporally
adjacent, “staggered” reserves on different processors, all
serving the same tasks, act as a “distributed reserve”. In
terms of processing capacity for tasks served (ignoring dis-
patching/migration overheads), such a distributed reserve
is equivalent to a conventional reserve of the aggregate
length implemented on a single processor (see illustration
in Figure 1(b)). In [11], when such a distributed reserve
has 100% of the processing capacity of a processor, it is
dubbed notional processor. By extension, if this capacity
is below 100%, it is termed fractional-capacity notional
processor. A notional processor is formally represented as(

(a0, a1, ..., az), (h0, h1, ..., hz−1), ω
)

with 0=a0<a1<. . .<az≤1, hu∈{P1,P2,. . . ,Pm},
∀u∈{1,2,. . .,z − 1} and 0≤ω< 1. The semantics are that
on time instant t, the notional processor in consideration
is mapped to processor Phr

, r being the integer for which:

ar · S ≤ (t − ω · S) modulo S < ar+1 · S (4)

If az=1, the notional processor is full-capacity (i.e. always
mapped to some physical processor, on every instant); else,
it is of fractional capacity deflate(az).

There is one run queue per notional processor and one
dispatcher per physical processor.
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Figure 2. Functions inflate, deflate and α, for
different values of parameter δ.

Figure 3. Alternative approaches to mapping
notional to physical processors.

3.. The new algorithm NPS-F

Consider assignment of n tasks (in no particular order)
over infinite unit-capacity bins (b1, b2, . . .) using First-
Fit bin-packing. (First-Fit assigns tasks one by one to the
lowest-indexed bin possible, subject to previous assign-
ments). Post-assignment, as tasks are finite, only some m′′

(finite) bins (b1 to bm′′) have been assigned tasks. Let Up

denote the cumulative utilisation of tasks assigned to bp.
Our approach schedules the tasks on each bin bp on

a corresponding notional processor P̃p of (fractional) ca-
pacity inflate(Up). In turn, all m′′ notional processors are
implemented upon the m physical processors (P1 to Pm).

In an example, Figure 3(a) depicts bin utilisations after
bin-packing and Figure 3(b) shows the processing capacity
requirements for corresponding notional processors.

Two alternatives (equivalent, in terms of scheduling
potential) exist for mapping notional processors to physical
ones. Under flat mapping (Figure 3(c)), each notional
processor (and thus, each task) migrates between at most
two physical processors. Under semi-partitioned mapping
(Figure 3(d)), m notional processors (and the associated
tasks) always stay on one physical processor, but the rest
may need to migrate between many. The two approaches
are described in pseudocode in Figure 4. A mapping is
feasible (whether flat or semi-partitioned) if and only if:

m′′∑
p=1

inflate(Up) ≤ m (5)

3.1. Utilisation bound

Theorem 1. Assume First-Fit bin-packing with item sizes
in the range (0, 1] over an infinite set of bins {b1, b2, . . .}.
Let m′′ denote the index of the highest-indexed utilised
bin, after bin-packing. Let Up denote the utilised capacity
of bin bp, ∀p ∈ {1, 2, . . .}. If m′′≥2, it holds that∑m′′

p=1 Up

m′′ >
1
2

(6)

Proof: Let τf denote the first task, during the bin-
packing procedure, to be assigned to bin bm′′ and let uf

denote the utilisation of τf . It then holds that

uf +
m′′−1∑
p=1

Up >
(m′′ − 1) + 1

2
=

m′′

2

or else τf would have been assigned to one of bins b1 to
bm′′−1 (from Theorem 4 in [25], applied with parameter
β = 1 – most pessimistically). Thus, after assigning τf

3



1. procedure map_notional_processors() is
2. last_h:=1;
3. last_a:=0;
4. last_ω:=0;
5. if (MAPPING_MODE=="FLAT") then
6. for np:=1 to m" do
7. ω[np]:=(last_ω+last_a) modulo 1;
8. last_ω:=ω[np];
9. a[np][0]:=0;

10. h[np][0]:=last_h;
11. if (ω[np]+inflate(U[np])<1) then
12. a[np][1]:=inflate(U[np]);
13. last_a:=a[np][1];
14. else //spans two CPUs
15. a[np][1]:=1-ω[np];
16. h[np][1]:=last_h+1;
17. last_h:=last_h+1;
18. a[np][2]:=inflate(U[np]);
19. last_a:=a[np][2];
20. end if
21. end for
22. else //(MAPPING_MODE=="SEMI-PARTITIONED")
23. for np:=1 to m do
24. a[np][0]:=0;
25. a[np][1]:=inflate(U[np]);
26. h[np][0]:=np;
27. tmp:=last_ω+1-inflate(U[np]);
27. ω[np][0]:=fractional_part_of(tmp);
28. last_ω:=ω[np][0];
29. end for
30. last_ω:=0; //rewind;
31. spent:=0; //rewind;
32. for np:=m+1 to m" do
33. a[np][0]:=0;
34. h[np][0]:=last_h;
35. z:=1;
36. acc:=0;
37. ω[np]:=last_ω; //initialise
38. while (acc<U[np]) do
39. if (acc+1-inflate(U[last_h])-spent<U[np])then
40. a[np][z]:=acc+(1-inflate(U[last_h]))-spent;
41. h[np][z]:=last_h;
42. acc:=a[np][z];
43. z:=z+1;
44. last_h:=last_h+1;
45. spent:=0;
46. else
47. a[np][z]:=U[np];
48. h[np][z]=last_h;
49. last_ω:=(last_ω+U[np]) modulo 1;
50. spent:=a[np][z]-a[np][z-1];
51. end if
52. end while
53. end for
54. end if
55. end procedure

Figure 4. Notional processor implementation.

and even before assigning any other yet unassigned tasks
(which cannot decrease any Up), it holds that

m′′∑
p=1

Up ≥ uf +
m′′−1∑
p=1

Up >
m′′

2
⇒
∑m′′

p=1 Up

m′′ >
1
2

Theorem 2. For any set U = {U1, U2, · · · , Um′′} of (not
necessarily distinct) real numbers in the range (0,1],

m′′∑
p=1

inflate(Up) ≤ m′′ · inflate

(∑m′′

p=1 Up

m′′

)

Proof: If m′′=1, proof is trivial. If m′′≥2, let q, r be
integers such that Uq = minm′′

p=1{Up} Ur = maxm′′
p=1{Up}.

The function inflate is continuous and
infinitely differentiable and d

dU inflate(U)>0 and
d2

dU2 inflate(U)<0, ∀U ∈ [0, 1]. Therefore,

2 · inflate
(Uq + Ur

2

)
≥ inflate(Uq) + inflate(Ur)

Let us obtain a modified set U(1) =
{U (1)

1 , U
(1)
2 , · · · , U

(1)
m′′} by setting Uq and Ur equal to

Uq+Ur

2 . Then,
∑m′′

p=1 inflate(U (1)
p ) ≥∑m′′

p=1 inflate(Up).
By repeating the procedure forever, each time

with different q, r for the resulting modified set
U(2), U(3),. . ., we converge to the set U(∞) with
U

(∞)
1 =U

(∞)
2 =. . .=U

(∞)
m′′ = 1

m′′ ·
∑m′′

p=1 Up. Then, since ∀k:∑m′′

p=1inflate(U (k+1)
p )≥∑m′′

p=1inflate(U (k)
p ), it holds that

m′′∑
p=1

inflate(U (∞)
p ) ≥

m′′∑
p=1

inflate(Up) ⇒

m′′∑
p=1

inflate(Up) ≤ m′′ · inflate
(

1
m′′ ·

m′′∑
p=1

Up

)
(7)

Lemma 1. α(U) < 1
2·δ+1 · U, ∀U ∈ ( 1

2 , 1]

Proof: The function α is strictly decreasing and non-
negative over [12 , 1]. Thus, for any U∈(1

2 ,1], it holds that:

α(U)
U

<
α( 1

2 )
1
2

=
1

2 · δ + 1
⇒ α(U) <

1
2 · δ + 1

· U (8)

Theorem 3. The utilisation bound of NPS-F is 2·δ+1
2·δ+2 .

Proof: An equivalent claim is that every task set with
cumulative utilisation not above 2·δ+1

2·δ+2 · m is schedulable
by NPS-F over m physical processors. This, we will prove.

Recall (Inequality 5) that the m′′ notional processors
can be mapped to m physical processors if and only if∑m′′

p=1 inflate(Up) ≤ m. Also, from Theorem 2:

m′′∑
p=1

inflate(Up) ≤ m′′ · inflate

(∑m′′

p=1 Up

m′′

)
(9)

Therefore, for schedulability, it suffices that

m′′ · inflate
(∑m′′

p=1 Up

m′′

)
≤ m (10)

If m′′=1, the condition is trivially met. If m′′≥2, let Ū

denote
∑m′′

p=1 Up

m′′ . Then, Inequality 10 becomes:

m′′ · inflate
(
Ū
) ≤ m ⇔ m′′ · (Ū + α(Ū)) ≤ m (11)
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From Theorem 1: Ū > 1
2 . Thus, by applying Lemma 1 to

Inequality 11, it suffices for schedulability that

m′′ · (Ū +
1

2 · δ + 1
· Ū) ≤ m ⇔

m′′ · Ū · 2 · δ + 2
2 · δ + 1

≤ m ⇔ m′′ · Ū ≤ 2 · δ + 1
2 · δ + 2

· m (12)

But m′′ · Ū equals the cumulative utilisation of the task
set. Therefore, any task set of cumulative utilisation up to
2·δ+1
2·δ+2 · m is schedulable, which proves the theorem.

3.2. Upper bound on preemptions

Definition 1. A task with outstanding computation at time
t, is said to be preempted at time t if it executes on
processor p just before t but not just after t.

By this definition, which we believe captures the notion
of preemption used in the research community, a job that
starts executing is not preempted, nor is one that finishes
executing. Also, a job executing both just before and just
after t but on different processors is, by the same definition,
preempted at time t. Such a preemption is a migration.

With flat mapping:
• type-α1: Occurring when the reserve implementing a
notional processor runs out. One such preemption per
notional processor per timeslot occurs. It is potentially
a migration.

• type-β1: Occurring whenever a notional processor mi-
grates to another physical processor. One such preemption
per physical processor per timeslot occurs. It is always a
migration.

With semi-partitioned mapping:
• type-α2: Occurring when the reserve implementing a
notional processor runs out. One such preemption per
notional processor per timeslot occurs. For notional pro-
cessors P̃1 to P̃m it is never a migration.

• type-β2: Occurring whenever a notional processor mi-
grates to another physical processor. One such preemption
per physical processor per timeslot occurs. It is always a
migration.

Thus, during an interval of length Δt, overall preemp-
tions (including migrations) cannot exceed

Npr(Δt) = Narr(Δt) +
⌈

Δt

S

⌉
· m′′

︸ ︷︷ ︸
type-α

+
⌈

Δt

S

⌉
· m︸ ︷︷ ︸

type-β

= Narr(Δt) +
⌈

Δt

S

⌉
· (m + m′′) (13)

where Narr(Δt) is an upper bound on task arrivals within
the interval. We next eliminate m′′ from Equation 13:

Corollary 1. For any task set τ with Uτ ≤ 1: m′′ < 2 ·m

UB δ = 1 δ = 2 δ = 3 δ = 4 δ→∞
NPS-F 75% 83.3̄% 87.5% 90% →100%

EKG-spor. [7] 65.7% 79.8% 85.6% 88.9% →100%

Table 1. Comparison of utilisation bounds

Proof: From Theorem 1 follows that
∑m′′

p=1 Up>
m′′
2 .

But
∑m′′

p=1 Up =
∑n

i=1
Ci

Ti
= m · Uτ ≤ m. Therefore,

m > m′′
2 ⇒ m′′ < 2 · m

Thus from Equation 13 and Corollary 1, we obtain:

Npr(Δt) < Narr(Δt) +
⌈

Δt

S

⌉
· 3 · m ⇒

Npr(Δt) < Narr(Δt) +
⌈

Δt

TMIN

⌉
· 3 · m · δ (14)

This bound for preemptions is the same as for the variant
of EKG for sporadic tasks [7], which also uses a parameter
δ, with the same semantics as in NPS-F (i.e. trading off
schedulable utilisation vs preemptions). However, for the
same δ, NPS-F always has higher utilisation bound (see
Table 1 and, for proof, Theorem 6 in the Appendix). More-
over, the algorithm in [7] cannot schedule any task set
whose utilisation exceeds its utilisation bound. NPS-F thus
dominates that scheme without causing more preemptions.

Yet a comparison, in terms of preemptions, of NPS-F
with the original NPS [11] is more complicated. NPS has a
utilisation bound of 66.6̄%, lower than that of even NPS-F
with δ=1. Yet its preemption bound is seemingly lower
than that of NPS-F. For a given task set schedulable by
both algorithms, are preemptions under NPS fewer than
under NPS-F with δ=1?

The answer is that it depends on the task set. Indeed,
NPS can, retroactively, be described, as NPS-F with semi-
partitioned mapping and δ = 1 with two differences:
(D1) different bin-packing and (D2) sub-optimal sizing of
notional processors indexed m + 1 or higher. D1 alone
renders comparisons dependent on the actual task set.
However, D2 affects typical behavior, as we will explain:

For NPS, the upper bound on preemptions is

Npr(Δt) = Narr(Δt) +
⌈

Δt

TMIN

⌉
·
(
2 · m +

m

3

)
which appears lower than the respective upper bound for
NPS-F (see Inequality 14). However, it also holds that, for
both NPS and NPS-F(δ=1),

Npr(Δt) = Narr(Δt) +
⌈

Δt

TMIN

⌉
· (m + m′′)

where m′′ is the number of notional processors 1.

1. Note that the terminology differs slightly in [11]. In [11], where
semi-partitioned mapping is used, notional processors indexed 1 to m
are conflated with the physical processors to which they are mapped and
are not explicitly termed notional.

5



It is because of the fact that m′′ could not exceed
m + �m

3 	 under NPS, due to its relative inefficiency (D2)
that NPS appears more preemption-light than NPS-F(δ=1).
It is this same inefficiency that limits the utilisation bound
of NPS to 66.6% (vs 75% for NPS-F(δ=1)). Inversely
reasoning, due to NPS-F being more efficient in utilising
processing capacity, it is likelier that fewer bins are needed
to accommodate the same task set under NPS-F(δ=1)
compared to NPS, than vice versa. In turn, this would mean
fewer preemptions. In this light, it is not correct to say that
NPS-F(δ=1) is more preemption-intensive than NPS.

4.. Clustered variant of NPS-F

We now introduce a derivative of NPS-F, motivated by
desire to (i) adapt scheduling approaches to the state of the
art in chip design, i.e. multicores; (ii) alleviate a weakness,
i.e. that migrations, though limited, may be costly.

4.1. On multicores and processor clusters

Multicore chips are by now mainstream and common –
even in embedded systems [8]. The major manufacturers
already offer affordable dual-,triple- [1], quad-, six- [21]
and eight-cores. Common to most latest designs is a top-
level cache shared by all cores [20][21][19][22][3][2][1].

In such architectures, reads and writes on the the same
data by different cores of the same chip, necessitate less
main memory I/O, compared to cores from different chips.
In particular, when a task migrates from core P1 to core P2

on the same chip, the task state that P2 needs is already
on-chip. This is important for performance because top-
level cache misses, by causing accesses to main memory,
impact performance far more than do lower-level cache
misses [18][6]. Indeed, were P1 and P2 on different chips,
top-level cache misses would be likely.

We leverage this by dividing processors into (non-
overlapping) clusters, independently scheduled under NPS-
F. Each cluster is formed by the cores of a given respective
chip. This ensures that off-chip migrations never occur.
Therefore, our approach does not cause additional top-level
misses (and associated main memory I/O). Performance
losses due to task migration are thus kept in check.
In the general case, eliminating off-chip migrations also
helps handle other issues: cache coherency, locking, per-
processor OS data structures.

The concept of processor clusters is well-known in the
the literature, including recent work [12][26][13]. Calan-
drino et al. [13] share motivation with us (experimenting
with EDF-scheduled clusters over multicores, so as to
reduce migration and preemption costs relative to global
EDF). Yet, the utilisation bound in [13] is just 50%. Shin

et al. [26] aim to improve schedulability but allow for over-
lapping clusters (which runs counter to our motivation).

4.2. The modified algorithm

Let μ (a divisor of m) denote the cluster size. We thus
have m

μ clusters, Q1 to Qm
µ

, of μ processors each. Cluster
Qq is formed by processors P(q−1)·μ+1 to P(q−1)·μ+μ.

All that our clustered algorithm does is partition the task
set into subsets, each of which can provably be scheduled
over one cluster using NPS-F. To describe it, it thus suffices
to explain how this partitioning is performed – follow the
pseudocode of Figure 5 in parallel with our comments.

To each cluster Qq corresponds a different set of bins
(b(q)

1 , b
(q)
2 , b

(q)
3 , . . .). Tasks are assigned one by one, with

clusters tested for assignment in order of index. Inequal-
ity 5 (sufficient and necessary condition for schedulability
under NPS-F) becomes in the context of a cluster:

m′′(q)∑
p=1

inflate(U (q)
p ) ≤ μ (15)

If a task can be assigned First-Fit to (one of) the bins of
the cluster in consideration while satisfying Inequality 15,
it is assigned there; else, the next cluster is considered.
Therefore, post-assignment, all clusters are schedulable.
Note, however, that in a generalisation of previous seman-
tics, during bin-packing, m′′(q) refers to the number of
utilised bins pertaining to cluster Qq at the given point in
the execution of the algorithm and, after every assignment,
its value is updated accordingly.

Note also that, although infinite bins correspond to each
cluster, only a finite number thereof are potential assign-
ment targets during bin-packing. If, prior to attempting to
assign some task τi within some cluster Qk, only bins b

(q)
1

to b
(q)
k of Qq have tasks already assigned to them, we then

need only test bins b
(q)
1 to (at most) b

(q)
k+1 as assignment

targets for τi. If it cannot be assigned to b
(q)
k+1 (as the only

task there) while also satisfying Inequality 15, this would
also hold for b

(q)
k+2 onwards. We can thus move on to Qq+1.

Our description of (non-clustered) NPS-F, did not rely
on any particular ordering of tasks during bin-packing.
However, for the clustered variant, we assume that tasks
with utilisation 2·δ+1

2·δ+2 · μ
μ+1 or higher (i) are indexed in

order of decreasing utilisation and (ii) precede all tasks
with utilisation below 2·δ+1

2·δ+2 · μ
μ+1 . This allows for a higher

utilisation bound than would be possible if task ordering
were arbitrary (as will be seen in the proof of Theorem 4).

We use the notation NPS-Fm:μ for the clustered algo-
rithm, meaning that we have m

μ clusters of μ processors
each, with each cluster scheduled by NPS-F. Non-clustered
NPS-F can thus be described as NPS-Fm:m. By UBm:μ,
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1. for i:=1 to n do //tasks already ordered
2. unassigned:=TRUE;
3. q:=1;
4. while (unassigned==TRUE) do

5. assign τi First-Fit over b
(q)
1 , b

(q)
2 , b

(q)
3 , . . .

so that Ineq. 15 is satisfied.
6. if (task was assigned in line 5) then
7. unassigned:=FALSE;
9. else

10. if (q==m/μ) then //last cluster
11. exit(FAILURE);
12. else
13. q:=q+1; //next cluster
14. end if
15. end if
16. end while
17. end for

Figure 5. Bin-packing over clusters

we denote the utilisation bound of NPS-Fm:μ. In notation,
we can also use fixed values in place of m and μ.

4.3. Utilisation bound

Theorem 4. UBm:μ 
≤ 2·δ+1
2·δ+2 · μ

μ+1 ∀μ ≥ 2

Proof: We will prove the claim by showing that every
task set with Uτ ≤ 2·δ+1

2·δ+2 · μ
μ+1 is schedulable.

Assume that an unschedulable task set with Uτ ≤
2·δ+1
2·δ+2 · μ

μ+1 exists. Then, some task τf with utilisation uf

will fail to be assigned to some cluster, subject to existing
assignments. We explore two mutually exclusive cases:

• uf > 2·δ+1
2·δ+2 · μ

μ+1 :
Then, due to the task ordering, all tasks previously as-
signed had utilisations no less than uf> 2·δ+1

2·δ+2 · μ
μ+1≥ 1

2
– and each is the only task in its bin. Moreover,
on every cluster at least μ such tasks are already
assigned (or, from Inequality 5 the assignment of τf

would not have failed). Thus, on every cluster Qq

the cumulative utilisation of tasks already assigned
exceeds μ · 2·δ+1

2·δ+2 · μ
μ+1 before attempting to assign

τf .
• uf ≤ 2·δ+1

2·δ+2 · μ
μ+1 :

Since τf could not be assigned, we deduce that, on
every cluster Qq, the cumulative utilisation of tasks
already assigned exceeds μ·UBμ:μ, if incremented by
uf (or τf would have been assigned). Therefore (from
Theorem 3) the cumulative utilisation of tasks already
assigned before the attempt to assign τf exceeds

μ · 2 · δ + 1
2 · δ + 2

− uf ≥

μ · 2 · δ + 1
2 · δ + 2

− 2 · δ + 1
2 · δ + 2

· μ

μ + 1
= μ · 2 · δ + 1

2 · δ + 2
· μ

μ + 1

In any case, for every cluster Qq, the cumulative utilisation
of tasks already assigned to Qq exceeds μ · 2·δ+1

2·δ+2 · μ
μ+1 .

Therefore, the entire system is utilised by more than 2·δ+1
2·δ+2 ·

UB δ = 1 δ = 2 δ = 3 δ = 4 δ→∞
UBm:2 50% 55.5̄% 58.3̄% 60% →66.6̄%
UBm:3 56.25% 62.5% 65.625% 67.5% →75%
UBm:4 60% 66.6̄% 70% 72% →80%
UBm:6 64.2% 71.4% 75% 77.1% →85.7%
UBm:8 66.6̄% 74.0% 77.7̄% 80% →88.8̄%
UBm:16 70.5% 78.4% 82.3% 84.7% →94.1̄%
UBm:m 75% 83.3̄% 87.5% 90% →100%
UB[7] 65.7% 79.8% 85.6% 88.9% →100%

Table 2. Utilisation bounds of NPSm:μ (for
various μ) vs non-clustered NPS-F and [7]

μ
μ+1 even before attempting to assign τf . This contradicts
the initial assumption that Uτ ≤ 2·δ+1

2·δ+2 · μ
μ+1 .

By inspection, the utilisation bounds of NPS-Fm:μ and
non-clustered NPS-F converge, as μ increases. Therefore,
as cores per chip increase in the near future, NPS-Fm:μ

becomes increasingly practical and attractive. Table 2 com-
pares the utilisation bound of NPS-Fm:μ for different μ and
δ with that of non-clustered NPS-F and the algorithm in [7]
(also suffering from off-chip task migrations).

At present, we view μ=4 as the most relevant cluster
size (given current chip offerings). This motivates one opti-
misation to the algorithm, which raises its utilisation bound
for δ=1 (the most interesting setting, in our view, by virtue
of being the most preemption-light) to 5

8=62.5% (up from
60%). This is achieved merely by a more restrictive task
ordering, wherein tasks with utilisation 1

2 or higher (i) are
indexed in order of decreasing utilisation and (ii) precede
all other tasks. For proof, see the Appendix (Theorem 7).

4.4. Upper bound on preemptions

Each of the m
μ clusters is independently scheduled under

(non-clustered) NPS-F. Therefore, preemptions on cluster
Qq within an interval of Δt time units are bounded by

Nq
pr(Δt) = Nq

arr +
⌈

Δt

TMIN

⌉
· 3 · μ · δ (16)

from Equation 14 (via substitution of m by μ). Over the
entire system, preemptions are thus bounded by

Nm:μ
pr =

m
µ∑

q=1

Nq
pr(Δt) =

m
µ∑

q=1

Nq
arr(Δt) +

m
µ∑

q=1

(⌈
Δt

TMIN

⌉
· 3 · μ · δ

)

= Narr(Δt) +
⌈

Δt

TMIN

⌉
· 3 · μ · δ · m

μ

= Narr(Δt) +
⌈

Δt

TMIN

⌉
3 · m · δ (17)
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This bound is the same as that for non-clustered NPS-F
(Equation 14) and is not dependent on μ. In reality though,
we need not use the same timeslot length on all clusters.
Each cluster Qq could use a (hopefully longer) timeslot

Sq =
1
δ
· min

τi assign-
ed to Qq

Ti

instead of 1
δ · TMIN. This optimisation has no downside

and will reduce preemptions in most cases. In fact, it
cures another weakness of NPS-F, also present in [7]: that,
a single task with too short an interarrival time would
force an accordingly short timeslot (leading to numerous
preemptions). With per-cluster timeslot selection, the effect
is localised to one cluster.

5.. Conclusion

We introduced a new multiprocessor real-time schedul-
ing scheme in two variants: NPS-F “proper” (i.e. non-
clustered) and NPS-Fm:μ (i.e. clustered). Both variants
aim for high schedulable utilisation with as few preemp-
tions as possible. Using this metric, NPS-F “dethrones”
the algorithm in [7] and offers a utilisation bound of
75% even at its most preemption-light setting. However,
some preemptions under NPS-F may be costly migrations.
Still, technological advances, in the form of multicores
with shared caches, offer a way of mitigating this. NPS-
Fm:μ, which can be described as “per chip” (rather than
“per processor”) partitioning, eliminates migrations across
chip boundaries (which are the costliest). The moderate
decrease in the utilisation bound, relative to NPS-F, is less
pronounced the greater the cluster size – and cores per chip
are bound to increase, in turn permitting greater cluster
sizes. NPS-Fm:μ is a thus a scalable scheduling approach.
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Appendix

Theorem 5. A periodic reserve can always accommodate
implicit-deadline tasks of cumulative utilisation U ≤ 1,
scheduled under EDF, if it measures (δ+1)·U

U+δ ·S, provided
that the timeslot length S does not exceed 1

δ times the
interarrival time of any task served.

Proof: Assume a deadline miss (the earliest one by a
task served by the reserve) at t=tm. Then, let tm − L
denote the earliest time before tm such that, all sub-
intervals of [tm − L, tm) which lie within the periodic
reserve, will have been busy. Then, let td denote the
cumulative execution requirement, over [tm − L, tm), of
all jobs by tasks served by the reserve which arrived at
t=tm−L or later and whose deadlines lie no later than tm.

Additionally, let tϕ denote the cumulative time available
to tasks served by the reserve (i.e. the time lying inside
the reserve). The missed deadline at tm means:

td > tϕ (18)

Regarding td, it follows from [10] that

td ≤
∑
τi∈τ

⌊
L

Ti

⌋
· Ci

(18)
=⇒

∑
τi∈τ

⌊
L

Ti

⌋
· Ci > tϕ (19)

At this point we note that∑
τi∈τ

⌊
L

Ti

⌋
· Ci ≤

∑
τi∈τ

(
L

Ti
· Ci

)
= L ·

∑
τi∈τ

Ci

Ti
= L · U

(19)
=⇒L · U > tϕ ⇒ U >

tϕ

L
(20)

Inequality 20 states that as long as, within any interval of
length L ≥ S, it holds that tϕ (i.e. the time available for the
execution of tasks served by the reserve), as a fraction of L
(i.e. the interval length), is no less than U , then deadlines
by tasks served by the reserve will always be met. Thus,
for deadlines to always be met, a sufficient condition is:

U ≤ tϕ

L
(21)

Time for the execution of tasks served by the reserve is
available as periodic time windows of length x · S ≤ S
(corresponding to the reserves), interleaved by time win-
dows of length S − x · S (during which, tasks served by
the reserve cannot execute). Then, the most unfavorable
selection of an offset, relative to reserve boundaries, as
the start of an interval of a given length (in terms of
time available to tasks served by the reserve, within said
interval) is immediately past the end of a reserve. Then, of
all time windows of length L ≥ S, the one within which,
the cumulative time belonging to reserves (i.e. tϕ), divided
by L is minimised, is the one with L = δ ·S +(S −x ·S)
(because it ends just as the next reserve begins). In that
case, tϕ = δ · x · S and

tϕ

L
=

δ · x · S
δ · S + (S − x · S)

=
δ · x

δ + 1 − x

(21)⇒

U ≤ δ · x
δ + 1 − x

⇒ x ≥ (δ + 1) · U
U + δ

(22)

which proves the theorem.

Theorem 6. For a given value of δ, the utilisation bound
of NPS-F is greater than that of the algorithm in [7].

Proof: It suffices to show that UBNPS-F − UB [7] >
0 ∀δ (where UBNPS-F, UB [7] denote the respective utili-
sation bounds, which are functions of δ). By inspection,

UBNPS-F =
2 · δ + 1
2 · δ + 2

>
2 · δ

2 · δ + 1
= 1 − 2 · α(

1
2
) (23)
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and

UB [7] = 4 · (
√

δ · (δ + 1)− δ) + 1 = 1− 2 ·α(U0) (24)

where U0 =
√

δ · (δ + 1) − δ. Hence

(23), (24) ⇒ UBNPS-F − UB [7] > 2 ·
(

α(U0) − α(
1
2
)
)

But α(U0) > α( 1
2 ), because the function α(U) has a

maximum at U = U0. Hence UBNPS-F − UB [7] > 0.

Theorem 7. For δ = 1, if tasks are ordered such that
tasks with utilisation 1

2 or higher (i) are indexed in order
of decreasing utilisation and (ii) precede all other tasks,
it holds that UBm:4 = 5

8 .

Proof: We will first show that every task set τ with
Uτ ≤ 5

8 is schedulable. Suppose that an unschedulable
task set existed with Uτ ≤ 5

8 . Then, the bin-packing
algorithm would encounter a task τf with utilisation uf

not assignable to any bin of any cluster (subject to as-
signments already made) and would exit declaring failure
(Figure 5, line 11). (Recall that m′′(q) denotes the index
of the highest-indexed bin associated with Qq with tasks
assigned to it, immediately before attempting to assign τf .)
Regarding τf , one of these mutually exclusive cases holds:

• Case 1: 5
8 < uf ≤ 1

Then, due to the task ordering, all previously assigned
tasks had utilisations above uf > 5

8 . Also, every
cluster has no fewer than μ = 4 tasks assigned to
it, (or else τf would have been assigned). Therefore
every one of the m

4 clusters has tasks assigned to it
of cumulative utilisation above 4 · 5

8 = 5
2 .

• Case 2: 1
2 < uf ≤ 5

8
Then, due to the task ordering, all previously assigned
tasks had utilisations above uf > 1

2 . This also means
that each assigned task is the single task assigned to
its bin. Thus, in every cluster Qq, bins b

(q)
1 to b

(q)

m′′(q)

are all utilised above 1
2 . Also, from Inequality 15, it

holds for every cluster Qq that m′′(q)>3 (or the as-
signment of τf would not have failed). Thus, for each
cluster Qq, two complementary possibilities remain:

– Case 2a: m′′(q) = 4
The assignment of τf failed, thus it could not
be assigned neither to some bin among b

(q)
1 to

b
(q)

m′′(q) (together with other tasks) nor to b
(q)

m′′(q)+1
(on its own), while also satisfying Inequality 15.
In particular, from the failed assignment attempt

on b
(q)

m′′(q)+1
, we deduce from Inequality 15 that

inflate(uf ) +
m′′(q)∑
p=1

inflate(U (q)
p ) > μ

m′′(q)=4
μ=4
=⇒

4∑
p=1

inflate(U (q)
p ) > 4 − inflate(uf ) ≥

4 − inflate
(

5
8

)
=

42
13

Th. 2⇒ 4 · inflate(Ū (q)) >
42
13

⇒

inflate(Ū (q)) >
21
26

⇒ Ū (q) >
21
31

But then, Qq has tasks of cumulative utilisation
above 4 · 21

31 = 84
31 > 5

2 already assigned to it
prior to the attempt to assign τf .

– Case 2b: m′′(q) ≥ 5
Then, bins b

(q)
1 to b

(q)
5 , each have a task assigned

to them, prior to the attempted assignment of
τf . Due to the task ordering, these tasks all
have utilisations no less than uf (which in turn
exceeds 1

2 , as per the assumption of Case 2b).
Thus, Qq has tasks already assigned to it of
cumulative utilisation above 5 · 1

2 = 5
2 , before

attempting to assign τf .

In either Case 2a/b, the cumulative utilisation of tasks
assigned to Qq exceeds 5

2 before trying to assign τf .
• Case 3: 0 < uf ≤ 1

2
The utilisation bound of (non-clustered) NPS-F is 3

4 .
Therefore, on a 4-processor cluster, tasks of cumula-
tive utilisation up to 3

4 ·4=3 are always schedulable
under NPS-F. Hence, if the cumulative utilisation of
tasks already assigned to some cluster Qq before
attempting to assign τf did not exceed 5

2 , then it
would have been possible to assign τf (of utilisation
uf < 1

2 ) to Qq. But τf could not be assigned, subject
to previous assignments, hence, on every cluster, the
cumulative utilisation of tasks already assigned before
the attempt to assign τf exceeds 5

2 .

In any case, if some task cannot be assigned, subject
to prior assignments, then every one of the m

4 clusters
already has tasks assigned to it of cumulative utilisation
above 5

2 , before attempting to assign τf . This would mean
that the cumulative utilisation of tasks assigned to any
of the m

4 clusters (a subset of τ ) exceeds m
4 ·52= 5

8 ·m.
Therefore, τ cannot be unschedulable unless Uτ > 5

8 –
which contradicts the assumption that Uτ ≤ 5

8 . Therefore
UBm:4 
< 5

8 . To show that, in fact, UBm:4 = 5
8 , it suffices

to find an unschedulable task set with Uτ arbitrarily close
to 5

8 . This is the case for a set of 5 · k + 1 tasks, each of
utilisation 1

2 + ε, if m=4·k and k→∞ and ε→0+.
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