
  

 

 

 

 

Priority Assignment and Application 
Mapping for Many-Cores Using a Limited 
Migrative Model 

 
 
 

 

Technical Report 

CISTER-TR-140204 

Version:  

Date: 2/11/2014 

Borislav Nikolic 

Konstantinos Bletsas 

Stefan M. Petters 
 



Technical Report CISTER-TR-140204  Priority Assignment and Application Mapping for Many-Cores 

                                                                 Using a Limited Migrative Model 

© CISTER Research Unit 
www.cister.isep.ipp.pt   1 

 

Priority Assignment and Application Mapping for Many-Cores Using a Limited 
Migrative Model 
Borislav Nikolic, Konstantinos Bletsas, Stefan M. Petters 

CISTER Research Unit 

Polytechnic Institute of Porto (ISEP-IPP) 

Rua Dr. António Bernardino de Almeida, 431 

4200-072 Porto 

Portugal 

Tel.: +351.22.8340509, Fax: +351.22.8340509 

E-mail: borni@isep.ipp.pt, ksbs@isep.ipp.pt, smp@isep.ipp.pt 

http://www.cister.isep.ipp.pt 

 
Abstract 
Most of present many-core scheduling and application mapping approaches rely on strict assumptions, e.g. 
uninterruptible availability of all cores, which significantly limits their scope of application. In this paper we 
consider a Limited Migrative Model (LMM). LMM is the novel approach in the real-time embedded domain, which 
gives the possibility to efficiently analyse scenarios that involve occasional core shutdowns for various reasons 
(e.g. energy and thermal management, load balancing, fault tolerance), thus allowing to embrace the full potential 
and flexibility of many-core platforms. The contributions of this work are as follows. First, we propose the 
classification of schedulability guarantees for LMM. Then, we introduce various priority assignment and 
application mapping techniques and subsequently study their impacts on (i) derived schedulability guarantees for 
critical and time-constrained applications, and (ii) the performance of best-effort workload. The experiments show 
that LMM is a valuable approach, even when assuming an uninterruptible availability of all cores, while it exhibits 
clear benefits in cases where, due to necessity to perform occasional core shutdowns, a higher amount of 
flexibility is desired. 

 



Priority Assignment and Application Mapping for
Many-Cores Using a Limited Migrative Model

Borislav Nikolić, Konstantinos Bletsas and Stefan M. Petters
CISTER/INESC-TEC, ISEP

Polytechnic Institute of Porto, Portugal
Email: {borni, ksbs, smp}@isep.ipp.pt

Abstract—Most of present many-core scheduling and ap-
plication mapping approaches rely on strict assumptions, e.g.
uninterruptible availability of all cores, which significantly limits
their scope of application. In this paper we consider a Limited

Migrative Model (LMM ). LMM is the novel approach in
the real-time embedded domain, which gives the possibility to
efficiently analyse scenarios that involve occasional core shutdowns
for various reasons (e.g. energy and thermal management, load
balancing, fault tolerance), thus allowing to embrace the full
potential and flexibility of many-core platforms. The contributions
of this work are as follows. First, we propose the classification
of schedulability guarantees for LMM . Then, we introduce
various priority assignment and application mapping techniques
and subsequently study their impacts on (i) derived schedulability
guarantees for critical and time-constrained applications, and (ii)
the performance of best-effort workload. The experiments show
that LMM is a valuable approach, even when assuming an
uninterruptible availability of all cores, while it exhibits clear
benefits in cases where, due to necessity to perform occasional
core shutdowns, a higher amount of flexibility is desired.

I. INTRODUCTION

The miniaturisation process in the semiconductor technol-
ogy reached the stage where further processing power en-
hancements related to single-cores are no longer affordable [1].
In order to continue the progress of computational devices,
chip manufacturers took a design paradigm shift [2], [3], and
started increasing the number of interconnected cores within
a single chip. Nowadays, platforms containing several cores
(multi-cores) and more than a dozen of cores (many-cores)
have become commonplace in many scientific areas, e.g. high
performance computing, while they are an emerging technology
in others like real-time embedded systems.

Many-cores offer several beneficial possibilities, for in-
stance, to integrate new functionalities and enhance existing
ones, or to do energy/thermal management. However, issues
such as unpredictability, scalability, the need for load balanc-
ing and core shutdowns are some of the challenges which
have to be addressed before many-cores can be integrated
into the real-time embedded domain. The existing state-of-
the-art approaches in many-core scheduling and application
mapping theories are not efficient in addressing all of the
aforementioned challenges though, and this significantly limits
their practical use. For instance, most approaches rely on strict
assumptions, e.g. uninterruptible availability of all cores, which
renders them inapplicable in scenarios where occasional core
shutdowns are desirable and/or necessary for various reasons,
such as energy/thermal management and fault tolerance. Partly,
exceptions are two recent works of Baruah and Guo [4] and
French et al. [5], where the authors discuss the scheduling

of the mixed criticality workload upon unreliable processors,
characterised by two speeds: normal and degraded.

The Limited Migrative Model [6] (LMM ) is based on the
foundations of the multi-kernel paradigm [7] – a novel OS
design [7], [8], [9] and a promising step towards scalable and
predictable many-cores. Moreover, LMM offers the possibility
to efficiently analyse scenarios that involve occasional core
shutdowns, which distinguishes it from the state-of-the-art
approaches. Yet, the schedulability analysis of LMM is still
an unexplored topic.

Contribution: This paper focuses on the schedulability
aspects of LMM . First, we present the classification of
schedulability guarantees (Section IV-B). Then, we propose
a heuristic-based approach for priority assignment and appli-
cation mapping, assuming that the workload is comprised of
applications with different criticality levels1 (Section IV-C).
The objective is to derive schedulability guarantees for critical
and time-constrained applications, and also to optimise the
performance and establish a sense of fairness across best-effort
applications (Section IV-A). Through simulations we study the
impact of various mapping and priority assignment choices on
derived guarantees, as well as on the overall system runtime
behaviour, observed under different conditions (Section V).

II. RELATED WORK

Application mapping on many-core platforms has been
one of the most investigated topics in the last decade [10].
Therefore, in this section we cover only works which are
relevant to the real-time domain. Broadly classified, all state-
of-the-art approaches fall into two categories, namely non-
migrative approaches and migrative approaches. We firstly
introduce these categories, then position LMM in that context,
and finally elaborate on how this paper differs.

Non-migrative approaches (in the multi-core scheduling
theory also known as fully partitioned approaches) assume
that the workload is, at design time, statically assigned to
different intellectual properties (e.g. CPU cores, DSP cores).
Arranging the execution is the responsibility of single-core
scheduler instances [11], that run independently on each core.
Besides analysing the workload distribution with the objective
of maximising the number of scheduled applications (bin-
packing theory), these approaches also evaluate the position

1The approaches established in the real-time domain which address the
schedulability of the mixed-criticality workload have a different perception
of the problem then we do. The former provide schedulability analyses which
take into account possible variations in worst-case execution times, while in our
approach worst-case execution times do not change, but applications require
different types of schedulability guarantees.



of cores within the chip with different objectives: to minimise
the network power consumption [12], to minimise the average
communication delay assuming bandwidth constraints [13], to
derive a thermal-aware placement [14].

Migrative approaches are further classified into semi-
partitioned approaches and global approaches. The first group
(e.g. [15], [16]) assumes a static allocation, such that an
application always executes on the same core (or cores if it
migrates), where migrative applications also obey to static,
offline-based decisions, i.e. always have to execute prescribed
fractions of their work on assigned cores in a given order.
Conversely, approaches termed as global (e.g. Global FP [17]
and Global EDF [18]) comprise the possibility to migrate to,
and execute on every core within the system.

As is evident, fully and semi-partitioned approaches are
rigid, do not have the flexibility to support runtime load
balancing and are not resilient to core shutdowns. Conversely,
by allowing every application to execute on every core, global
approaches inherently support load balancing, however, this
amount of flexibility comes at a price – the necessity to
maintain global structures (e.g. ready-queue) poses serious
challenges when attempting practical implementations [19].

Gujarati et al. [20] introduced a model called APA, where
each application may execute on an arbitrary number of cores,
based on processor affinities. Baruah and Brandenburg [21]
proposed the feasibility analysis for that model.

LMM [6] is an approach that has similarities with the APA
model, in a sense that each application can execute only on
a pre-selected subset of cores, which are decided at design
time. Yet, in APA affinities are considered to be inputs, while
in LMM the system designer decides the candidate cores. At
runtime, an application can execute on any of the candidate
cores, while migrations occur only on job boundaries (no job-
level migrations). The greatest distinction of LMM from all
the existing approaches is that release/migration decisions are
explicitly detached from scheduling decisions, and are made
by the applications themselves, not by scheduler entities. That
is, the application decides on which core it will release its job,
while a local kernel on that core is responsible to schedule it in
a single-core fashion. This contributes to the scalability of the
approach, and yet gives the flexibility to perform runtime load
balancing. More details about LMM are given in Section III.

Assuming LMM , we already estimated the overheads of
workload migrations [6], studied the worst-case communica-
tion delays [22] and studied the worst-case memory traffic
delays [23]. In this paper we focus on the schedulability aspects
of LMM , which is the last outstanding part that is necessary
before developing a unified analysis for LMM .

III. MODEL

A. Hardware

The platform under consideration is a many-core system
comprised of n homogeneous cores: M = {M1, ...,Mn

}.
Practical examples are Single-Chip-Cloud Computer manufac-
tured by Intel [2] and the Tilera family of processors [3]. As
already mentioned (Section II), the state-of-the art approaches
have a common underlining assumption that the system always
operates with the full capacity (all cores are always opera-
tional). Conversely, in this paper occasional core shutdowns

d1 d4

App 1 App 2 App 3 App m

Core 2 Core n

Kernel 1 Kernel 2

Core 1

. . .

. . .

d6d3 2 d5

Kernel n

id d

Fig. 1: Architectural structure of LMM

are allowed for various beneficial reasons, e.g. power/thermal
management. Once a core is selected for shutting down, it will
continue to execute the already assigned workload, however, it
will reject new job releases. When the last previously assigned
job completes, the core will become temporarily unavailable
(e.g. sleep interval, cooling period). Depending on the purpose,
a system designer might choose to apply more/less aggressive
load balancing strategies, involving more/less frequent core
shutdowns. As a means to control that, we introduce a param-
eter K, which symbolises the maximum number of concurrent
core shutdowns. In this work we do not elaborate on the value
of K, but only assume that it has already been specified.

B. Software Layers in LMM

In LMM , each core runs an independent kernel instance.
Kernels are mutually connected, provide the basic communica-
tion infrastructure and form the multi-kernel entity. Each kernel
exposes some of its functionalities to applications located on its
core via system calls. Applications invoke system calls in order
to communicate with other applications located on the same or
other cores. Each kernel runs its own single-core fixed-priority
scheduler with preemptions [11]. Kernels are also responsible
for shutting down/rebooting the cores and performing necessary
workload migrations. Practical examples of multi-kernel OSs
are Barrelfish [7], fos [8] and Quest-V [9].

Each application can execute only on the respective subset
of cores, selected at design time. The process of deciding the
candidate cores for every application, we term mapping (one of
the main contributions of this paper). On each of the selected
cores, a copy of the executable code of that application exists,
encapsulated within an entity called dispatcher. Dispatchers
of the same application (each located on a different core)
communicate with each other via agreement protocols [6] and
derive release/migration decisions, i.e. will the migration occur,
and if so, which core (dispatcher) will accommodate the next
job. An elected dispatcher releases the next job on its core
on behalf of the entire application. Once the job execution
completes, the agreement protocol is performed again, so as
to elect the core (dispatcher) for the next job release, and so
on. Figure 1 illustrates the assumed model.

Notice, that in LMM each kernel performs the schedul-
ing in a single-core fashion, similar to fully partitioned ap-
proaches. Yet, LMM supports application migrations, similar
to global approaches. Thus, it appears that LMM embraces
the favourable aspects from both concepts (scalability from the
former and flexibility from the later). This possibility arises
due to a very distinctive way the release/migration decisions
are made – via agreement protocols, as briefly described in the
previous paragraph. More details about LMM and agreement
protocols are available in the following works [6], [22], [23].



The execution workload is represented with a sporadic
application-set A = {a1, ..., az}, where each application
a
i

hP
i

, T
i

, C
i

,D
i

i is characterised by its default priority – P
i

,
a minimum inter-arrival period – T

i

, a required execution time
– C

i

and a set of dispatchers – D
i

. Each dispatcher d
j

of an
application a

i

has an individual priority P
j

, which is less than
or equal to the default priority of its application, but not greater
than it, i.e. 8d

j

2 D
i

: P
j

 P
i

. The priority assignment upon
dispatchers is also one of the main contributions of this paper,
as summarised in Section IV-A. The elected dispatcher d

j

releases a job J
j

on its core, where the job inherits dispatcher’s
priority – P

j

. Jobs have implicit deadlines, a job released at
time instant t, needs to execute for C

i

time units before t+T
i

.
If it fails to do so, it has missed its deadline. Note, allowing
dispatchers of the same application to have different priorities
implies that job priorities of one application are not necessarily
constant, but depend on dispatchers which are elected to release
them. This is also a novel concept in the real-time domain.

C. Workload Classification

Every application in the system can be classified into one of
the categories: Safety-Critical Applications (SCA), Real-Time
Applications (RTA) and Best-Effort Applications (BEA). SCA
are considered to be the highest-priority workload in the whole
system. Therefore, strong guarantees regarding their schedula-
bility requirements should be provided, ensuring that no missed
deadlines of SCA will occur, even under circumstances that
involve core shutdowns. RTA represent the medium-priority
workload, and also require schedulability guarantees. However,
the guarantees only need to hold when the system is working
with the full capacity (no core shutdowns). Finally, BEA
present the lowest-priority workload in the system. BEA can
tolerate missed deadlines, however, that has an impact on
the quality of service. Hence, we do not focus on deriving
schedulability guarantees for BEA, but instead try to establish
a notion of fairness, e.g. by spreading missed deadlines as
evenly as possible across all BEA. This decision is motivated by
the fact that, in many practical scenarios, maintaining all non-
critical functionalities with reduced quality is more desirable
than cancelling some of them (e.g. multimedia applications).
The assumed workload classification and respectively posed re-
quirements are inspired by the existing workload classification
which is well established in the real-time embedded area [24].

IV. PROPOSED APPROACH

A. Work Objectives

The objective of this work can be summarised with the
following statement. Given the application-set A, the platform
M and the maximum allowed number of concurrent core
shutdowns K, assign priorities to dispatchers and map them
onto the platform (A ! M), such that:

• No missed deadline of SCA occurs, assuming that the
system exhibits at most K concurrent core shutdowns.

• No missed deadline or RTA occurs when the system
is working with the full capacity (no core shutdowns).

• The ratio of missed BEA deadlines is spread across all
BEA as evenly as possible.

As already known, the application mapping for many-
cores is an NP-Hard problem [12], hence searching for the

optimal solution is, in most cases, prohibitively expensive.
Nonetheless, even with infinite computational capacities, in this
particular case the optimal solution could not be found at design
time, since the ”optimality” directly depends on core shutdown
decisions, which are made at runtime. Therefore, we explore
an alternative, heuristic-based approach, with the objective of
finding a sub-optimal solution of acceptable quality.

B. Schedulability

Since different application classes have different schedula-
bility requirements, in this section we focus on the classification
of schedulability guarantees, which will be subsequently used
when assigning priorities and while mapping.

1) Offline Schedulability Guarantees: If a dispatcher of
an application passes an offline schedulability test, performed
at design time, it means that the application can execute on its
core as long as it is operational and will never miss a deadline
due to the other workload residing on the same core. The test
is performed by computing the worst-case response time for a
fully preemptive fixed-priority system [11], treating that core as
an independent single-core device and assuming the workload
that can be generated by all dispatchers existing on that core.

R

n+1
i

= C

i

+
X

8d

j

2M
x

:P
j

>P

i

⇠
R

n

i

T

j

⇡
⇥ C

j

(1)

The worst-case response time of a job released by a dis-
patcher d

i

on the core M
x

consists of two terms (Equation 1).
The first is the execution time of that job – C

i

. Additionally,
any higher priority dispatcher d

j

residing on the same core
M

x

may release a job which can preempt the execution of the
job under analysis, therefore from every such dispatcher the
maximum possible interference has to be computed (the second
term in Equation 1). Note, that Equation 1 has a recursive
notion, thus is solved iteratively. If the computed value is
less than or equal to the minimum inter-arrival period, i.e.
Rn+1

i

 T
i

, an application is considered offline schedulable
with its dispatcher d

i

on the core M
x

.

2) Online Schedulability Test: If a dispatcher is not offline
schedulable, it does not mean that a job of its application can
never execute on that core without missing a deadline. It only
implies that the ability to do so depends on the higher priority
workload residing on that core at the moment of observation,
i.e. which of the higher priority dispatchers are elected by their
respective applications to release the jobs on their cores. Thus,
in order to determine whether it can release a job and provide
the guarantees that the deadline will not be missed, a dispatcher
has to perform an online response time test (Equation 2).

R

n+1
i

= C

i

+
X

8J

j

2RQ(M
x

):P
j

>P

i

f
C

j

+
X

8d

k

2M
x

:P
k

>P

i

⇠
t + R

n

i

� r

k

T

k

⇡
⇥C

k

(2)

The response time consists of the execution time C
i

,
augmented by the higher priority content of the ready-queue
RQ(M

x

), where fC
j

 C
j

stands for the remaining execution
time of every higher-priority ready-queue job J

j

, observed at
the time instant t. A conservative assumption is that all higher
priority dispatchers will be elected for their future releases,
thus, the potential interference has to be considered from every
such dispatcher d

k

. It is calculated as the maximum number of
occurrences in the interval between the next job release of d

k

occurring at r
k

� t, and the absolute response time t + Rn

i

.



ap

ac

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

y

3/5

4/6

M x

M

Fig. 2: Example of semi-schedulability
Notice, that r

k

and t are absolute values, thus are represented
with lower-case characters. Equation 2 is also recursive, and
if a computed value is less than or equal to the minimum
inter-arrival period (Rn+1

i

 T
i

), the application is online
schedulable at the instant t on the core of its dispatcher d

i

.

By passing the online schedulability test, the application
gets guarantees from the system that its next job, released at t,
can be executed on the core of its dispatcher d

i

without missing
a deadline. The guarantees are valid only for the next job, once
its execution is completed the test should be performed again.
At this stage, a reader may raise two very valid concerns:
• Is it practical to perform a recursive computation online?
• Is it practical to manage remaining execution times?

We address these concerns in the following way. For cases
where solving Equation 2 might be prohibitively expensive,
we propose a modification of the online schedulability test. A
test is agnostic wits respect to remaining execution times and
completes within a single iteration (Equation 3).

R

i

= C

i

+
X

8J

s

2RQ(M
x

):P
s

>P

i

min{C
s

, r

s

� T

s

+ R

s

� t}+

X

8J

u

2RQ(M
x

):P
u

>P

i

C

u

+
X

8d

k

2M
x

:P
k

>P

i

⇠
t + T

i

� r

k

T

k

⇡
⇥ C

k

(3)

When compared to Equation 2, the first term is the same,
while the computation of the interference due to future releases
(the last term) is not recursive any more and is computed within
a single iteration for the interval T

i

. Conversely, the ready-
queue content (the second and the third term) is computed
differently. First, for each higher-priority job J

s

, released at
r
s

� T
s

, which has either offline or online guarantees that
its execution will complete until r

s

� T
s

+ R
s

, we compute
its remaining execution time by finding the smaller between
(i) its total execution time and (ii) the difference between
its worst-case response time, expressed in absolute values,
and the current time instant t. For each higher-priority job
J
u

, which has been released without guarantees, we have to
assume that its remaining execution time is equal to its worst-
case execution time, because it may miss a deadline. Note,
intermediate approaches are also possible, e.g. the remaining
execution times are available, but the computation should
be performed within a single iteration, and vice versa. For
such approaches online schedulability tests can be derived by
modifying Equations 2-3, which we do not cover, due to space
constraints. In Section V we evaluate how the knowledge about
the remaining execution times and the allowed number of
iterations influence the efficiency of online schedulability tests.

3) Semi-Schedulability Guarantees: Even though multi-
ple dispatchers of an application might be offline schedulable,
each job will be executed by only one of them (an elected
dispatcher), thus leaving the other dispatchers idle. We exploit
this fact and recognise another form of guarantees, termed semi-
schedulability. An application is semi-schedulable if none of its
dispatchers is offline schedulable, however, at any time instant
at least one is online-schedulable.

ac

ap

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

aq

20 2221

3/5

6/15

7/15

M x

M y

Fig. 3: Non-synchronised semi-schedulability
Consider two applications a

p

and a
c

, where the first one
has a higher priority (P

p

> P
c

), and each dispatcher inherits a
priority of a respective application, i.e. 8d

i

2 D
p

: P
i

= P
p

and
8d

j

2 D
c

: P
j

= P
c

. Let a
p

and a
c

share two common cores
- M

x

and M
y

, and let a
p

be offline schedulable on both of
them. Additionally, assume that a

c

is not offline schedulable on
either, but the absence of a

p

would make a
c

offline schedulable
on both M

x

and M
y

. Since a
p

can execute only on one core
at any time instant, say M

x

, a core M
y

might be able to
accommodate a

c

. And vice versa. Figure 2 illustrates one such
example. The fractions represent execution times and minimum
inter-arrival periods (C/T ). Formally:

Definition 1. An application a
c

is considered semi-schedulable
with respect to a higher priority application a

p

, if a
c

and
a
p

share at least two common cores, on which a
p

is offline
schedulable and a

c

is not, but the absence of a
p

would make
a
c

offline schedulable on both of them. a
c

is called a semi-
schedulable child and a

p

is called a semi-schedulable parent.

Semi-schedulability provides guarantees that, even though
an application does not have offline schedulable dispatchers,
at any time instant there will be at least one which can claim
online schedulability, thus will be able to safely execute without
missing a deadline. Semi-schedulability creates a co-scheduling
parent-child relationship, which implies that, at certain points
during runtime, some dispatchers may be prevented from being
elected. Hence, semi-schedulable applications will have less
flexibility when electing dispatchers for their next job releases.
However, this does not violate the statement from Section II
that the scheduling decision of each application is made by the
application itself. This is possible because all the information
that is necessary for deriving a release/migration decision
(e.g. the workload state on candidate cores) is available to
the dispatchers from their local kernels and is communicated
during the agreement protocol. Semi-schedulability guarantees
hold as long as both common cores remain operational (neither
one is selected for shutting down).

The relationship between a parent and a child application is
not trivial to analyse, and if the executions are not synchronised
well, it can cause the child to miss deadlines. One such example
is given in Figure 3. An application a

c

is semi-schedulable
with respect to a

p

. Additionally, an application a
q

exists in the
system, with the priority lower than that of a

p

, but higher than
that of a

c

, i.e. P
p

> P
q

> P
c

. On both the cores, M
x

and M
y

,
the applications a

p

and a
q

are offline schedulable. a
c

is not,
but the absence of a

p

would also make it offline schedulable.
These conclusions can be reached by solving Equation 1 for
this example, with the job parameters given as fractions C/T in
Figure 3. Due to space constraints, the computation is omitted.

a
p

completed its first job on M
x

, but for the next release at
t = 5 decided to migrate to M

y

and stays there until the end of
the example. In order to release its job, a

c

runs its agreement



protocol at t = 6 and realises that the semi-schedulable parent
is on M

y

, hence goes to M
x

. However, until its deadline, a
job of a

c

can not complete the execution, due to the higher
priority workload of a

q

and thus misses the deadline.

As seen, migrations of a parent application can make a
child application unschedulable, even when organising their
executions on different cores. In this example the first execution
of a

p

on M
x

delayed an execution of a
q

and created a
workload backlog which consequently delayed the execution of
a
c

. Due to this delay, a
q

requested more execution time than
what is exhibited in the offline schedulability test performed
for a

c

, thus making it only a necessary but not a sufficient
condition for semi-schedulability (i.e. the Equation 1 shows
that a

q

induces 6 time units of interference to a
c

in the interval
between its release and completion, while in the given example
it sums up to 9 time units). Therefore, before performing
the migration, a parent application should check whether its
actions cause the unschedulability of its child. In our example,
through its agreement protocol at t = 5, a

p

should have
checked whether its migration to M

y

would cause a
c

to be
unschedulable on M

x

, and if so, act accordingly (i.e. either
continue executing on M

x

, or go to some other core).

Therefore, during its agreement protocol at time instant t,
a parent application should perform an online schedulability
test for the next job release of a child application a occurring
at r

a

. It is equivalent to performing an online schedulability
test for an artificial application a0, with all the properties of a,
except the release is at r

a

0 = t and the period is extended to
T
a

0 = T
a

+r
a

� t. An illustrative example is given in Figure 4,
and Theorem 1 provides the proof.

Theorem 1. Consider an application a, which is on the
core M

x

a semi-schedulable child with respect to a parent
application a

p

. Also consider that after a time instant t, any
new release of a

p

will occur on cores other than M
x

. Observed
at t, the next future release of a, occurring at r

a

, will be
schedulable if and only if an artificial application a0 with the
same priority and the execution time (P

a

0 = P
a

^ C
a

0 = C
a

),
but with the extended period T

a

0 = T
a

+ r
a

� t, released on
M

x

at the time instant t is online schedulable.

Proof: Proven by contradiction.

• Assume that a0 is online schedulable, but a is not.
As a is not schedulable, it did not receive the required C

a

execution time units during its period (the interval between r
a

and r
a

+T
a

). Since a0 is schedulable and has the same schedu-
lability requirements (C

a

0 = C
a

), this means that it performed
some computation before r

a

. The fact that it performed some
computation during the interval between r

a

0 and r
a

, suggests
that an eventual busy interval of higher priority backlog caused
by a

p

completed before r
a

. Thus, the offline schedulability
condition (Equation 1) is sufficient, since it covers the worst-
case. As a is offline schedulable on M

x

excluding a
p

, it has to
be online schedulable as well. Contradiction has been reached.

• Assume that a0 is not online schedulable, but a is. As a
is schedulable, it received the required C

a

execution time units
during its period (the interval between r

a

and r
a

+ T
a

). Since
a0 has a larger period (the interval between r

a

0 and r
a

+T
a

) of
which a period of a is just a subset, it should have got at least
the same amount of the execution time. As C

a

0 = C
a

, a0 has
to be schedulable as well. Contradiction has been reached.

ra

aT

aTra

a

a’

t = ra’

a’T

+

Fig. 4: Future release schedulability
The implications of Theorem 1 are that, during its release,

a semi-schedulable parent application can perform the online
schedulability test for the next future release of its semi-
schedulable child and make a choice regarding its own future
executions, such that the schedulability of a child application
is preserved on at least one of semi-schedulable cores. By co-
scheduling their executions, semi-schedulable applications can
safely co-exist within the system (see Theorem 2).

Theorem 2. Consider two semi-schedulable applications, a
parent a

p

and a child a
c

, which share only two cores - M
x

and M
y

. Assuming that M
x

and M
y

are fully operational,
a
p

and a
c

can safely co-exist within the same system without
missed deadlines.

Proof: Proven by induction. Observe the time interval
between two consecutive releases of a

p

, termed step.

• Step one. Since this is the first release of a
p

, no backlog
workload exists which can jeopardise the schedulability of a

c

,
thus an offline schedulability excluding a

p

(which holds) is
sufficient. Two scenarios are possible. If a

c

has already released
a job, a

p

may safely select either the other core, or one of
the cores which a

p

and a
c

do not have in common. If a
c

didn’t release its first job yet, a
p

can, due to the inexistence
of backlog, safely choose any of the cores and leave the other
core for a

c

. Note, that a
c

also has the possibility to choose one
of the cores which it does not share with a

p

. In either case, the
next release of a

c

will be online schedulable.

• Step n+1. At the beginning of the step n+1, a
p

releases
its job. As the assumption is that until the end of the step n
no missed deadlines occurred, let us assume that the previous
completed execution of the job of a

c

occurred on M
x

. If the
new execution of a

c

already started before the step n + 1, it
had either safely continued its execution on the same core, or
had selected some of the non-shared cores. Conversely, if the
new release of a

c

is yet to occur, then by applying Theorem 1
and Equation 2, a

p

will check whether it can migrate to M
x

and force a
c

to go to M
y

(or other cores), or not. In either
case, the next release of a

c

will be online schedulable.

4) Blind Synchronisation: So far we have proven that,
as long as both semi-schedulable cores remain operational,
semi-schedulable applications may safely co-reside in the same
system and organise their executions in such a way that none
of them misses a deadline. Yet, if the online schedulability test
in not performed by solving Equation 2, but rather by solving
a more pessimistic Equation 3, occasionally it may happen that
the test reports the unschedulability of the child on both cores.
In such cases, both semi-schedulable applications temporarily
enter a blind synchronisation mode. By Definition 1, if a parent
always executes on one semi-schedulable core, and the child
on another, none of them can miss a deadline. We exploit that
fact during the blind synchronisation mode, as follows:



Rule 1. If, the core last used, from the semi-schedulable core
pair, by each of the two applications (parent/child), is different,
then each of the applications should choose the same core as
before, over the other one.

Rule 2. If, the core last used, from the semi-schedulable core
pair, by each of the two applications (parent/child), is the same,
then whichever of them was released last on that core, should
choose that core over the other one; the other application
should accordingly choose the latter one over the former.

Rule 3. Both semi-schedulable applications can freely execute
on other cores which are not semi-schedulable.

Since there were no missed deadlines prior to the blind
synchronisation mode, and given that during it no migrations
of semi-schedulable applications across semi-schedulable cores
will occur, from Definition 1 and Rules 1-3 it follows that no
missed deadlines of these applications can occur.

5) Discussion: Semi-schedulability was earlier defined in
the context of application pairs, i.e. a child application can have
only one parent application, and vice versa. Yet, it is trivial
to see that Theorems 1-2 also hold even under an extended
definition of semi-schedulability wherein a parent application
may have multiple semi-schedulable children applications but
each child still has only one parent. For example, a 4-dispatcher
parent may share two cores with one child and two different
cores with another child. One could also consider allowing the
children of the same parent to share cores with each other.
However, such an extended model (i) would require additional
proofs and (ii) more importantly, it would additionally reduce
the flexibility of the approach, due to the necessity to perform
co-scheduling not just between a parent and its children, but
also between the children of a common parent. Hence, at this
point we just conjecture the multiple-children approach, but do
not employ it due to aforementioned reasons. In fact, in the
experiments we only consider a 1:1 parent-child relationship.

Note, that the semi-schedulability property can be also
studied from the perspective of mode changes [25], where
the (in)existence of semi-schedulable applications on respective
cores can be perceived as different system modes. Conse-
quently, the analysis can be performed at design time, provid-
ing conditions under which semi-schedulable applications can
migrate between cores. Thus, when releasing its job, a parent
does not need to perform an online schedulability test for the
next child’s release. This is a potential topic for future work.

Let us now summarise how the aforementioned schedulabil-
ity constructs are used at runtime. When an application runs its
agreement protocol, all its dispatchers on currently operational
cores participate. For clarity purposes, let us simplify the
protocol to the extent that every dispatcher reports with a single
variable s 2 {>,?} about the service it can offer, regarding
the next job release on its core. > means that a dispatcher can
guarantee the execution on its core without missing a deadline,
and ? that no guarantees can be provided.

• If a dispatcher is offline schedulable and its core is not
selected for shutting down s = >.

• If a dispatcher is a semi-schedulable parent and its
execution will not cause the online unschedulability of a semi-
schedulable child on all common cores and its core is not
selected for shutting down s = >.

#1 #2 #3 #4 #5 #6 #7 #8 #9 #101

10

20

30

40

50

60

70

80

90

100

Dispatcher

Pr
io

rit
y

 

 

4−dispatcher SCA with priority 90
3−dispatcher SCA with priority 85
10−dispatcher RTA with priority 80
6−dispatcher RTA with priority 60
8−dispatcher RTA with priority 40
3−dispatcher BEA with priority 30

Fig. 5: Example of priority assignment upon dispatchers

• If a dispatcher is a semi-schedulable child and it passes
the online schedulablity test on its core and its core is not
selected for shutting down s = >.

• If a dispatcher is not offline schedulable, nor semi-
schedulable parent or child, and it passes the online schedula-
bility test and its core is not selected for shutting down s = >.

• In all other cases s = ?.

How to elect a dispatcher, when multiple or none report
s = >, depends on the purpose of the system and is outside the
scope of this paper. Hence, in our simulation-based evaluation,
when these circumstances arise, in the former case we elect a
random dispatcher of those which reported s = >, while in the
later any random dispatcher.

C. Priority Assignment and Mapping Process

The priority assignment and the mapping are mutually
dependent activities, hence we present them in an interleaved
fashion. We start with the most critical workload – SCA.

1) Mapping SCA: Since these applications tolerate no
missed deadlines even under the worst-case conditions (with at
most K concurrent core shutdowns), the fundamental mapping
requirement for each SCA is to have at least K+1 dispatchers,
and all of them mapped as offline schedulable. If any dispatcher
can not be mapped as offline schedulable, a mapping process
declares a failure. Therefore, to all SCA dispatchers we as-
sign the default priorities of their respective applications (see
applications with the priorities 90 and 85 in Figure 5).

SCA commence the mapping on an empty system, so most
(if not all) of their dispatchers will have the possibility to
choose from multiple places on the grid. We make an analogy
with the bin-packing theory; dispatchers represent elements,
cores symbolise bins, and the possibility of an element to
fit in the bin is equivalent to testing a dispatcher’s response-
time on a core (Equation 1), where higher response-time is
interpreted as a better mapping option (i.e. more efficiently
packed elements). As an additional constraint, dispatchers of
the same application can not go to the same core. We investigate
three possible mapping options for SCA: (i) Best-Fit, (ii) Worst-
Fit, (iii) Alternate-Fit (alternately mapping dispatchers of an
application with the Best-Fit and Worst-Fit techniques).

2) Mapping RTA: Once all SCA are mapped, we focus
on mapping RTA. As stated in Section IV-A, RTA require
schedulability guarantees when the system is fully opera-
tional. Therefore, the first dispatcher of each RTA is assigned



the application’s priority and subsequently mapped as offline
schedulable. If this is not possible, the second dispatcher is
also assigned the application’s priority, and both are attempted
to be simultaneously mapped as semi-schedulable children of
some already mapped higher priority application which is a
potential semi-schedulable parent. If this is not possible either,
the mapping process declares failure. When choosing the core
to map the first dispatcher (in the case of offline schedulability)
or when choosing the semi-schedulable parent to map the first
and the second dispatcher (in the case of semi-schedulability),
possible mapping options are similar to that of SCA: (i) Best-
Fit, (ii) Worst-Fit and (iii) Alternate-Fit. Once this is done, there
is no need to keep the priority of the rest of the application’s
dispatchers at the same level. Indeed, decreasing their priorities
allows to preserve more schedulability resources for lower-
priority RTA whose mapping did not start yet. Hence, after
fulfilling the mapping condition (offline schedulability or semi-
schedulability), the rest of the dispatchers of an application are
assigned linearly decreasing priorities, with the last dispatcher
having the least possible system priority, and they all undergo
speculative mapping (see the next paragraph). An example
of RTA priority assignment is given in Figure 5, where the
application with the priority 80 managed to claim offline
schedulability, while applications with priorities 60 and 40
could only claim semi-schedulability.

3) Speculative mapping: Unlike previous mapping stages,
where the focus was on providing schedulability guarantees,
when mapping speculatively the emphasis is on improving the
system’s overall runtime behaviour. In other words, dispatchers
should not be necessarily mapped to cores where they can
claim offline or semi-schedulability, but rather to cores where
they have a high chance of claiming online schedulability at
runtime. Therefore, the criterion for mapping is no longer the
response-time, but the per-core utilisation, which is calculated
as the sum of the utilisations of all contained dispatchers. The
individual per-dispatcher utilisations are computed as follows:
each dispatcher carries a fraction of the application’s utilisation,
but offline schedulable and semi-schedulable ones carry double
the weight, as likelier to be elected.

We explain the speculative mapping with an illustrative
example given in Figure 6, where dispatchers of the same color
belong to the same application. For simplicity reasons, assume
that (i) all applications have the same utilisation u, (ii) each
dispatcher is either offline or semi-schedulable, and (iii) each
dispatcher inherits the priority of its application. Consider that a
dispatcher d6, which belongs to the application with the lowest
priority, will undergo a speculative mapping. Core 1 and Core 2
are not possible mapping options, because the application of d6
already has dispatchers there (d4 and d5, respectively). From
the remaining cores (Cores 3-5), a dispatcher is mapped to
the one with the globally minimal utilisation. For example,
the utilisation of Core 3 is equal to the sum of utilisations
of d2 and d8. Their individual utilisations are 1

3u and 1
2u, as

their applications have 3 and 2 dispatchers, respectively. After
computing the utilisation of every core, the conclusion is that
the best mapping option is Core 4 (see Table I).

4) Mapping BEA: When mapping BEA the objective is
to spread the ratios of BEA missed deadlines across all BEA
as evenly as possible, i.e. maintain this particular notion of
fairness, as described in Section IV-A. Thus, all BEA dis-
patchers are mapped speculatively. In order to further equalise

Kernel 1

Core 1

Kernel 2

Core 2 Core 3 Core 4 Core 5

Kernel 4

d1

Kernel 5

d2

d6

Kernel 3

dd d34 d57 d8 10d d11d9

Fig. 6: Example of speculative mapping
Core 1 Core 2 Core 3 Core 4 Core 5

N/A N/A 5
6u

1
2u

5
6u

TABLE I: Speculative mapping computation
the consumption of schedulability resources, we assign linearly
decreasing priorities to dispatchers of the same application (see
the application with the priority 30 in Figure 5). In many cases
this allows the first dispatcher of a lower priority application
to have a higher priority than the second and subsequent
dispatchers of some higher priority applications (even RTA),
which gives it a scheduling precedence and contributes to the
intended fairness.

Note, that during the entire mapping process, an ordered list
of all dispatchers that are still not mapped is maintained. The
ordering criterion is the non-increasing priority. The dispatchers
are removed from the list and subsequently mapped in that
order (e.g. in the example given in Figure 5 first the application
with the priority 90 is entirely mapped, then also entirely the
application with the priority 85, then the dispatchers 1 � 3 of
that with the priority 80, then the dispatchers 1�2 of that with
the priority 60, etc.). The rationale for this decision is that
a currently mapped dispatcher does not have an influence on
already mapped (higher-priority) workload, which reduces the
complexity of the entire process from sub-quadratic – O(|d|2)
to linear – O(|d|), where |d| denotes the total number of
dispatchers in the application-set. Also note, that re-orderings
of the list may occasionally be required in cases where RTA
claim semi-schedulability, and hence the priorities of their
respective unmapped dispatchers have to be elevated.

V. EVALUATION

LMM should be compared with the most similar model
- APA [20]. However, for that model several crucial aspects
have not yet been defined. For instance, how to perform the
mapping, which entity controls the migrations (the application
or the scheduler), which scheduling policy is employed, how to
handle core shutdowns? While these aspects are not defined,
performing a fair and meaningful comparison between APA
and LMM is not possible. Therefore, we focus solely on
LMM and explore the impacts of different priority assignment
and mapping strategies on the aspects which we consider
the most relevant: (i) schedulability guarantees, (ii) the run-
time behaviour assuming no core shutdowns, (iii) the runtime
behaviour assuming core shutdowns. The simulations were
performed on the extended version of the simulator SPARTS
[26]. The simulation parameters are summarised in Table II.
An asterisk sign denotes a uniformly distributed random value.

Platform size 10 ⇥ 10 Application-set size 200
Simulated time 100 sec Application utilisation (0 - 0.7]*

SCA period [30 - 50]* msec RTA period [30 - 100]* msec
BEA period [0.1 - 1]* sec SCA, RTA, BEA 10%, 20%, 70%

TABLE II: Simulation parameters

Experiment 1 (RTA Priorities and Semi-Schedulability):
In this experiment we investigate the impacts of different prior-



25 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

System Utilisation (in %)

Sc
he

du
la

bl
e 

Ap
pl

ic
at

io
n−

Se
ts

 (i
n 

%
)

 

 

RTA Same Priority
RTA Decreasing Priorities without SS
RTA Decreasing Priorities with SS

(a) RTA priorities and Semi-Schedulability

40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

System Utilisation (in %)

Sc
he

du
la

bl
e 

Ap
pl

ic
at

io
n−

Se
ts

 (i
n 

%
)

 

 

SCA = RTA = BEA = 6
SCA = RTA = BEA = 8
SCA = RTA = BEA = 10
SCA = RTA = BEA = 12

(b) Number of dispatchers

40 50 60 70 80 90 100
20

30

40

50

60

70

80

90

100

System Utilisation (in %)

Sc
he

du
la

bl
e 

Ap
pl

ic
at

io
n−

Se
ts

 (i
n 

%
)

 

 

Worst−Fit
Alternate−Fit
Best−Fit

(c) Mapping strategies

0 1 2 5 unconstrained

5

10

15

20

25

30

35

Su
cc

es
sf

ul
 o

nl
in

e 
sc

he
du

la
bi

lit
y 

te
st

s 
(in

 %
)

Number of allowed iterations

(d) Test using remaining execution times

0 1 2 5 unconstrained

5

10

15

20

25

30

Su
cc

es
sf

ul
 o

nl
in

e 
sc

he
du

la
bi

lit
y 

te
st

s 
(in

 %
)

Number of allowed iterations

 

 

Non−agnostic w.r.t. remaining execution times
Agnostic w.r.t. remaining execution times

(e) Test not using remaining execution times
65 70 75 80 85 90 95 100

0

10

20

30

40

50

60

70

80

90

100

System Utilisation (in %)

D
is

tri
bu

tio
n 

of
 B

EA
 d

ea
dl

in
e 

m
is

s 
ra

tio
s 

(in
%

)

 

 

RTA = BEA = 2
RTA = BEA = 4
RTA = BEA = 6
RTA = BEA = 8
RTA = BEA = 10

(f) Number of dispatchers without shutdowns

0.15 0.3 0.45 0.6 0.75 0.9
0.001

0.01

0.1

1

10

Core Shutdown Probability Parameter P

Av
er

ag
e 

R
TA

 m
is

se
d 

de
ad

lin
es

 (i
n 

%
), 

lo
g 

sc
al

e

 

 

RTA = BEA = 1
RTA = BEA = 2
RTA = BEA = 4
RTA = BEA = 6
RTA = BEA = 8
RTA = BEA = 10

(g) Number of dispatchers with shutdowns
65 70 75 80 85 90 95 100

0

10

20

30

40

50

60

70

80

90

100

System Utilisation (in %)

D
is

tri
bu

tio
n 

of
 B

EA
 d

ea
dl

in
e 

m
is

s 
ra

tio
s 

(in
%

)

 

 

Worst−Fit
Alternative−Fit
Best−Fit

(h) Mapping strategies without shutdowns

0.15 0.3 0.45 0.6 0.75 0.9
0

0.02

0.04

0.06

0.08

0.1

0.12

Core Shutdown Probability Parameter P

Av
er

ag
e 

R
TA

 m
is

se
d 

de
ad

lin
es

 (i
n 

%
)

 

 

Worst−Fit
Alternate−Fit
Best−Fit

(i) Mapping strategies with shutdowns
Fig. 7: Experimental evaluation

ity assignment techniques as well as the semi-schedulability on
the provided schedulability guarantees. Recall (Section IV-A),
a mapping is valid only if all requirements regarding schedu-
lability guarantees are fulfilled, that is (i) every dispatcher of
every SCA is offline schedulable, and (ii) every RTA has at least
one dispatcher as offline schedulable, or a pair of dispatchers
as semi-schedulable children. All application-sets, for which a
mapping can be found, such that the aforementioned objectives
are fulfilled, we refer to as schedulable.

In this experiment each application consists of 8 dispach-
ers, and the mapping is performed by employing the Best-
Fit mapping technique. We analysed 3 different approaches,
(i) all dispatchers of one application have the same priority,
(ii) the priority assignment upon dispatchers is performed as
described in Section IV-C, and (iii) the priority assignment is
as in the previous case, but the semi-schedulability property
(SS) is employed. We varied the system utilisation (x-axis)
and observed the amount of schedulable application-sets (y-
axis). Figure 7a shows that, assigning priorities as described
in Section IV-C is an efficient strategy. Specifically, allowing
dispatchers of RTA to have decreasing priorities helps to
preserve more schedulability resources for lower-priority RTA
that are yet to be mapped. Additionally, the tests reported a

noticeable improvement when the SS technique is employed.
As these strategies have proven to be beneficial, in the rest of
the experiments both the semi-schedulability and the priority
assignment, as proposed in Section IV-C, are employed.

Experiment 2 (Number of dispatchers): In this exper-
iment we investigate how the number of SCA dispatchers
impacts provided schedulability guarantees. Again, the Best-
Fit mapping technique was employed. We analysed 4 different
cases, where each application has 6, 8, 10 and 12 dispatchers.
The varied parameter is the system utilisation (x-axis), while
the observed value is the number of schedulable application-
sets (y-axis). Figure 7b demonstrates that the price of having
more SCA dispatchers is expensive in terms of schedulability
resources, however, at the same time it improves the resilience
of the system and allows a higher number of concurrent core
shutdowns without SCA missed deadlines.

Experiment 3 (Mapping strategies): This experiment
focuses on different mapping techniques. Each application has
8 dispatchers. We analysed 3 different approaches, where the
applications were mapped with (i) the Worst-Fit technique, (ii)
the Alternate-Fit technique and (iii) the Best-Fit technique,
as described in Section IV-C. Again, the varied parameter
is the system utilisation (x-axis), while the observed value



is the number of schedulable application-sets (y-axis). From
Figure 7c it is visible that the Worst-Fit manages to map
the least number of application-sets as schedulable. The other
two techniques perform similar to each other, although the
Alternate-Fit shows marginal improvements, because it tends to
distribute the dispatchers more diversely, which in some cases
results in better opportunities for semi-schedulability.

Experiment 4 (Online tests w/o remaining execution
times): As the online schedulability tests are performed fre-
quently, the performance of LMM depends on the trade-off
between the complexity and the efficiency of these tests. In
some scenarios performing the test by solving Equation 2 may
be undesirably expensive, as it requires a fixed-point search
algorithm and also the knowledge about remaining execution
times. For that purpose, we proposed a lighter test (Equation 3),
where a single computation is performed without the knowl-
edge about the remaining execution times. In this experiment
we want to investigate if the lighter tests are practical.

Each application has 8 dispatchers, and the Best-Fit map-
ping technique is employed. The system utilisation is fixed to
80%. We simulated 100 seconds of execution and measured
the number of successful online schedulability tests. First,
the tests were performed by taking into account the actual
remaining execution times. We varied the number of allowed
iterative computations, and if the value is not obtained within
a given limit, a single computation is performed by assuming
R0

i

= T
i

in Equation 2. Figure 7d shows how the success
ratio of the online schedulability test (y-axis) changes with
the number of allowed iterations (x-axis). As seen, even if we
allow just two iterations, the efficiency of the test compared to
the exact test (i.e. unconstrained iterations) is barely affected.
This is because the test converges fast anyway, almost always
within few iterations. This is not surprising, as the applications
contributing interference, in the recurrence relation, are few (i.e.
just those that have dispatchers on the processor considered),
unlike in global scheduling. In this sense, the analysis of LMM
is quite scalable. Similarly, Figure 7e shows the success ratio of
the online schedulability tests, but this time by being agnostic
with respect to remaining execution times. We also plotted the
average value from the previous figure, in order to ease the
visual comparison. The trends are similar to the previous case,
only a few iterations are needed. Moreover, being agnostic
with respect to remaining execution times, as expected, has
a negative effect, however the same is very mild. Thus, a light
online test which is agnostic and has the limit of 5 iterations
manages to succeed in more than 90% of the cases which were
successful by the exact test (Equation 2). This crucial finding
further motivates the research related to LMM .

Experiment 5 (Number of dispatchers and runtime):
In this experiment, we investigate how the number of RTA
and BEA dispatchers influences the runtime behaviour of the
system. In other words, is it beneficial to have more RTA and
BEA dispatchers? We set K = 7, i.e. a system should allow
at most 7 concurrent core shutdowns. Thus, all SCA have 8
dispatchers. The number of RTA and BEA dispatchers is varied
in the range [1�10]. The Best-Fit mapping technique was used.
Let us first observe the behaviour of the system when no core
shutdowns occur. Given that in these conditions no SCA, nor
RTA missed deadlines can occur, of interest is the distribution
of BEA missed deadline ratios. The execution was simulated
for different system utilisations, and BEA missed deadlines

were captured. Figure 7f shows that schemes with fewer
dispatchers are more rigid and concentrate all BEA missed
deadlines among very few applications. Conversely, schemes
with more dispatchers clearly benefit from their flexibility,
in a sense that BEA missed deadlines are evenly distributed
among all applications. These trends do not reach a saturation
point, but show systematic improvements as the number of
dispatchers increases. This also validates the efficiency of the
priority assignment techniques, and proves that by assigning
priorities in a strategic manner we can benefit from the high
number of dispatchers per application, and yet efficiently avoid
the ”suffocation effect” among applications. Note, for RTA =
BEA = 1, all BEA missed deadline ratios are 100%. For better
clarity, this case is omitted from Figure 7f.

We again investigate the runtime behaviour, but this time
assuming core shutdowns. The duration of each shutdown is 1
second. In this and the next experiment the parameter P stands
for the individual per-core probability of being selected for at
least one shutdown, P 2 for at least two shutdowns, etc. All
shutdowns of all cores must occur within the simulated interval
of 100 seconds. Time instants at which each individual core will
experience a shutdown were randomly generated, but without
violating a constraint that at most K = 7 of them could be
selected concurrently. We fixed the system utilisation to 80%
and varied the parameter P (x-axis) and observed the average
number of RTA missed deadlines (y-axis). Figure 7h, shows a
clear benefit of having more dispatchers, for every value of P .
A slight increase in the number of dispatchers may improve
the resilience towards core shutdowns even by one order of
magnitude, while any additional increase clearly contributes to
the system flexibility to tolerate more frequent core shutdowns.

Experiment 6 (Mapping strategies and runtime): In this
experiment, we investigate how different mapping techniques
influence the runtime behaviour of the system. Again, K = 7.
Each application has 8 dispatchers. First, we observe the system
behaviour when no core shutdowns occur and focus on the
distribution of BEA missed deadline ratios. We simulated all 3
proposed mapping techniques for different system utilisations
(x-axis) and captured the ratio of BEA missed deadlines (y-
axis). Figure 7h shows the results. It is noticeable that the Best-
Fit technique achieves the best results, although the differences
are very subtle and almost negligible.

Now, we investigate the runtime behaviour, but with core
shutdowns. The system utilisation is 80% and the parameter P
is varied (x-axis). We focus on RTA missed deadlines (y-axis).
Figure 7i suggests that all techniques demonstrate a comparable
performance.

Experiment 7 (Blind synchronisation): In this exper-
iment, we investigate how often the blind synchronisation
mode (BSM) occurs. We assume a setup identical to that of
Experiment 4, with the only difference that now we focus on
the releases of semi-schedulable applications which cause the
BSM (y-axis). The varied parameter is the allowed number of
iterations in the schedulability test recurrence (x-axis). For each
value of the allowed number of iterations we performed the
simulations, assuming two types of online schedulability tests,
ones which are agnostic with respect to remaining execution
times, and ones which are not. Figure 8 shows the results. It
comes at no surprise that the agnostic tests, due to being more
pessimistic, cause more frequent occurrences of the BSM, than
the respective non-agnostic ones. However, the differences are



0 1 2 5 unconstrained
0

0.5

1

1.5

Number of allowed iterations

Am
ou

nt
 o

f r
el

ea
se

s 
tri

gg
er

in
g 

bl
in

d 
sy

nc
hr

on
is

at
io

n 
(in

 %
)

 

 

Non−agnostic w.r.t. remaining execution times
Agnostic w.r.t. remaining execution times

Fig. 8: Blind synchronisation mode

negligible. The explanation for this finding is twofold. First,
Experiment 4 demonstrated that the pessimism of the agnostic
tests, when compared to the respective non-agnostic ones, is not
significant. Second, in many cases, the BSM requires specific
(worst-case) conditions, which do not occur frequently during
runtime.

As expected, allowing more iterations decreases the occur-
rences of the BSM, because the respective online schedulability
tests become less pessimistic. This coincides with the findings
of Experiment 4. In any case, even when using the most
pessimistic tests (e.g. Equation 3), the BSM is triggered, on
average, in just 1.5% of the releases of semi-schedulable
applications. This shows that the conditions leading to the
BSM arise very rarely during runtime, and also shows that
for many semi-schedulable application pairs the BSM cannot
occur, not even theoretically, irrespective of the employed
online schedulability test.

Discussion: Assigning priorities as proposed in Sec-
tion IV-C proved to be an efficient approach. Also, the
semi-schedulability exhibited a huge impact on schedulability
guarantees, which we consider very beneficial. Assigning the
application’s default priority to all K + 1 dispatchers of SCA
is costly, in terms of schedulability resources, but achieves the
required schedulability guarrantee (i.e. at up to K concurrent
core shutdowns). Understandably, providing strong guarrantees
to SCA, for the event of core shutdowns (which is the main
objective), commensurately ”withholds” resources from RTA
and BEA, but this is mitigated to a large extent by the flexibility
of LMM .

Having more RTA and BEA dispatchers proved to be
beneficial in both schemes, with and without core shutdowns.
Due to the efficient priority assignment technique, schedulabil-
ity guarantees for RTA are not influenced by the number of
dispatchers per application. The additional system flexibility,
brought by multiple dispatchers, indirectly through RTA and
directly through BEA, contributes to the equal distribution of
missed deadlines among BEA (assuming no core shutdowns)
and minimises the number of RTA missed deadlines (assum-
ing core shutdowns). However, as the number of dispatchers
increases, the benefits from additional dispatchers start to level
off, which may be an important factor when the communication
delays [22] are taken into account.

Mapping with different mapping strategies has almost neg-
ligible effects. The Alternate-Fit approach is the most effi-

cient in providing schedulability guarantees, while the Best-
Fit technique is the best in terms of runtime behaviour, both
with and without core shutdowns. The Worst-Fit approach
performs worse than both the aforementioned techniques, in
all investigated categories and its use cannot be justified.

Performing a light online schedulability test (agnostic with
respect to remaining execution times, with at most 5 iterations)
is in more than 90% of the cases as good as performing an exact
test (Equation 2), while in only 0.04% of the releases of semi-
schedulable applications it causes the blind synchronisation
mode.

It is apparent that there is no single strategy which yields the
best results under all circumstances. Facts such as the purpose
of the system, the amount and the nature of the workload,
the maximum number of concurrent core shutdowns K, core
shutdown policies, the tolerable amount of RTA/BEA missed
deadlines, are only few factors, out of many, which a system
designer should take into account when choosing the strategy.
We perceive the mapping process as an adaptive activity, where
different strategies are attempted until reaching the solution
with (i) the necessary amount of schedulability guarantees, (ii)
the acceptable level of flexibility and resilience towards core
shutdowns, and (iii) the satisfactory runtime performance.

VI. CONCLUSIONS AND FUTURE WORK

In this paper we studied the Limited Migrative Model
(LMM ). We have classified the schedulability guarantees and
subsequently proposed a heuristic-based method for priority
assignment and application mapping. We elaborated on various
mapping choices and analysed their impacts on the system. The
experiments showed that LMM is a valuable approach even
in scenarios where all cores are available, while it shows clear
benefits in cases where a higher amount of flexibility is appreci-
ated due to necessity to perform occasional core shutdowns. As
future work, we plan to enhance the analysis to address more
rigorous core shutdown and core failure scenarios. Also, we
plan to extend the approach by migration-related overheads [6],
communication and memory traffic analyses [22], [23], so as
to unify the on-core and network analyses for LMM . Finally,
how to provide a fair comparison of LMM against similar
approaches (e.g. APA [20]) is an interesting problem to study.

REFERENCES

[1] M. Lundstrom, “Moore’s law forever?” Science, 2003.
[2] Intel, The Single-chip Cloud Computer,

www.intel.com/content/www/us/en/research/
intel-labs-single-chip-cloud-computer.html.

[3] Tilera, TILE64
TM

Processor,
www.tilera.com/products/processors/TILE64.

[4] S. Baruah and Z. Guo, “Mixed-criticality scheduling upon varying-speed
processors,” in 34rd RTSS, 2013.

[5] A. French, Z. Guo, and B. Sanjoy, “Scheduling mixed-criticality work-
loads upon unreliable processors,” in 11th WS Models & Algorithms for
Planning & Scheduling Problems, 2013.

[6] B. Nikolić and S. M. Petters, “Towards network-on-chip agreement
protocols,” in 12th EMSOFT, 2012.

[7] A. Baumann, P. Barham, P.-E. Dagand, T. Harris, R. Isaacs, S. Peter,
T. Roscoe, A. Schüpbach, and A. Singhania, “The multikernel: A new
os architecture for scalable multicore systems,” in SOSP, 2009.

[8] D. Wentzlaff and A. Agarwal, “Factored operating systems (fos): the
case for a scalable operating system for multicores,” SIGOPS Oper. Syst.
Rev., 2009.



[9] M. D. Y. Li and R. West, “Quest-v: A virtualized multikernel for high-
confidence systems,” Tech. Rep., http://www.cs.bu.edu/⇠richwest/quest.
html.

[10] P. K. Sahu and S. Chattopadhyay, “A survey on application mapping
strategies for network-on-chip design,” J. Syst. Arch., 2013.

[11] C. L. Liu and J. W. Layland, “Scheduling algorithms for multiprogram-
ming in a hard-real-time environment,” J. ACM, 1973.

[12] J. Hu and R. Marculescu, “Energy-aware mapping for tile-based noc
architectures under performance constraints,” in 8th ASPDAC, 2003.

[13] S. Murali and G. De Micheli, “Bandwidth-constrained mapping of cores
onto noc architectures,” in 7th DATE, 2004, pp. 20 896–.

[14] W. Hung, C. Addo-quaye, T. Theocharides, Y. Xie, N. Vijaykrishnan,
and M. J. Irwin, “Thermal-aware ip virtualization and placement for
networks-on-chip architecture,” in Int. Conf. Comp. Design, 2004.

[15] K. Bletsas and B. Andersson, “Preemption-light multiprocessor schedul-
ing of sporadic tasks with high utilisation bound,” in 30th RTSS, 2009.

[16] S. Kato, N. Yamasaki, and Y. Ishikawa, “Semi-partitioned scheduling of
sporadic task systems on multiprocessors,” in 21st ECRTS, 2009.

[17] T. P. Baker, “An analysis of fixed-priority schedulability on a multipro-
cessor,” Real-Time Syst. J., 2006.

[18] S. Baruah and T. Baker, “Schedulability analysis of global edf,” Real-
Time Syst. J., 2008.

[19] A. Bastoni, B. B. Brandenburg, and J. H. Anderson, “An empirical
comparison of global, partitioned, and clustered multiprocessor edf
schedulers,” in 31st RTSS, 2010.

[20] A. Gujarati, F. Cerqueira, and B. Brandenburg, “Schedulability analysis
of the linux push and pull scheduler with arbitrary processor affinities,”
in 25th ECRTS, 2013.

[21] S. Baruah and B. Brandenburg, “Multiprocessor feasibility analysis of
recurrent task systems with specified processor affinities,” in 34rd RTSS,
2013.

[22] B. Nikolić, P. M. Yomsi, and S. M. Petters, “Worst-case communication
delay analysis for many-cores using a limited migrative model,” Tech.
Rep., available at: http://www.cister.isep.ipp.pt/people/Borislav+Nikolic/
publications/.

[23] ——, “Worst-case memory traffic analysis for many-cores using a
limited migrative model,” in 19th RTCSA, 2013.

[24] S. A. Brandt, S. Banachowski, C. Lin, and T. Bisson, “Dynamic
integrated scheduling of hard real-time, soft real-time and non-real-time
processes,” in 24th RTSS, Cancun, Mexico, Dec 2003.

[25] J. Real and A. Crespo, “Mode change protocols for real-time systems:
A survey and a new proposal,” Real-Time Syst. J., 2004.

[26] B. Nikolić, M. A. Awan, and S. M. Petters, “SPARTS: Simulator for
power aware and real-time systems,” in 8th IEEE ICESS, 2011.


