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Abstract—Consider the problem of scheduling a set of
implicit-deadline sporadic tasks to meet all deadlines on
a heterogeneous multiprocessor platform. We consider a
restricted case where the maximum utilization of any task on
any processor in the system is no greater than one. We use
an algorithm proposed in [1] (we refer to it as LP-EE) from
state-of-the-art for assigning tasks to heterogeneous multi-
processor platform and (re-)prove its performance guarantee
for this restricted case but for a stronger adversary. We show
that if a task set can be scheduled to meet deadlines on a
heterogeneous multiprocessor platform by an optimal task
assignment scheme that allows task migrations then LP-EE
meets deadlines as well with no migrations if given processors
twice as fast.

Keywords-heterogeneous multiprocessor, task migrations,
real-time scheduling.

I. INTRODUCTION

A heterogeneous multiprocessor platform is a computer
system where (i) not all processors are of the same type
and (ii) the execution time of a task depends on the
processor on which it executes. Many chip makers offer or
plan to offer products for computers with different types
of processors. The Cell processor is a single chip com-
prising one main processor (Power4) and eight so-called
synergistic processors (optimized for executing SIMD
instructions) [2]. NVIDIA (and also AMD) offers general
purpose graphics processor units which together with a
normal processor are found in most personal computers
today [3]. The Intel Sandy Bridge processor [4] is a single
chip comprising an x86 multicore processor and a graphics
processor. The AMD Fusion processor is a planned single
chip comprising an x86 multicore processor and a set of
accelerator processors for both embedded platforms [5]
and desktops [6]. In a joint effort, ARM and NVIDIA are
planning to offer chips comprising one general-purpose
and one graphics processor [7]. It is clear that the above
mentioned chips are key components in heterogeneous
multiprocessor systems and such systems are increasingly
used in practice.
An algorithm for deciding whether or not an implicit-

deadline task set can be scheduled on a heterogeneous
platform exists [8] but it assumes that tasks can migrate.
This assumption is often unrealistic in practice, since pro-
cessors with different functionalities typically have differ-
ent instruction sets. Thus, the problem of assigning tasks to
processors and then scheduling them with a uniprocessor
scheduling algorithm (i.e., without migration) is of much

greater practical significance. It requires solving two sub-
problems: (i) assigning tasks to processors and (ii) once
tasks are assigned to processors, performing a uniproces-
sor scheduling on each processor. The latter problem is
well-understood (e.g., one may use Earliest Deadline First
scheduling [9]) – the difficult part is the task assignment.
The task assignment on a heterogeneous multiprocessor

platform is modeled as Zero-One Integer Linear Pro-
gramming (ILP) in [1][10]. Such a formulation can be
solved directly but has high computational complexity. In
particular, the decision problem ILP is NP-complete and
even with knowledge of the structure of the constraints in
the modeling of heterogeneous multiprocessor scheduling,
no polynomial-time algorithm is known ([11], p. 245).
Via relaxation of ILP formulation to Linear Program (LP)
and certain tricks [12], better time-complexity can be
attained [1][10]. (Polynomial time-complexity for the al-
gorithm in [10] and for the special case of fixed number
of processors, the algorithm in [10] has polynomial time-
complexity as well). Both approaches [1][10] offer a per-
formance guarantee that if a task set can be scheduled to
meet deadlines on a heterogeneous platform by an optimal
task assignment scheme that does not allow task migra-
tions then these approaches meet deadlines as well without
allowing task migrations if given processors twice as fast.
In this paper, we address the problem of scheduling a set

of implicit-deadline sporadic tasks to meet all deadlines
on a heterogeneous multiprocessor platform but for a
stronger adversary. We consider a restricted case where
the maximum utilization of any task on any processor in
the system is no greater than one. We use the approach
proposed in [1] (for convenience, we refer to it as Linear
Programming with Exhaustive Enumeration, abbreviated
as LP-EE, described in Section III-A), and (re-)prove
its performance guarantee for this restricted case but for
a stronger adversary (i.e., the set of algorithms against
which we evaluate the performance of our algorithm) that
allows task migrations. We show that, if a task set can be
scheduled to meet deadlines on a heterogeneous platform
by an optimal task assignment scheme that allows task
migrations then LP-EE meets deadlines as well without
allowing task migrations (i.e., partitioned scheduling) if
given processors twice as fast.
We would like to reiterate that, the claim in this

paper is stronger than the previous state-of-the-art ap-
proaches [1][10], as the adversary is more powerful since
it allows task migrations.



Minimize U subject to the following constraints :
C1.

∑m
j=1

x
j
i = 1 (i = 1, 2, · · · , n)

C2.
∑n

i=1

(

x
j
i · u

j
i

)

≤ U (j = 1, 2, · · · ,m)
C3. x

j
i is a non-negative integer (i = 1, 2, · · · , n);

(j = 1, 2, · · · ,m)

Figure 1. ILP formulation – ILP-Feas(τ,Π)

II. SYSTEM MODEL AND ASSUMPTIONS
A. System Model
We consider the problem of scheduling implicit-

deadline sporadic tasks on a heterogeneous multiprocessor
platform for a restricted case (i.e., when the maximum
utilization of a task in the system is no greater than one).
The system is specified as follows:

• Computing Platform (denoted as Π): The comput-
ing platform consists of m processors. A processor
is denoted as πj ∈ Π, where j ∈ {1, · · · ,m}.

• Task Set (denoted as τ ): The task set comprises n
implicit-deadline sporadic tasks (i.e., for each task, its
deadline is equal to its minimum inter-arrival time).
A task is denoted as τi ∈ τ , where i ∈ {1, · · · , n}.

• Utilization (denoted as U ): The utilization of a task
τi on a processor πj is given by uj

i , a non-negative
real number.

B. Assumptions
We make the following assumptions:
• Independent tasks: The executions of jobs are inde-
pendent, i.e., they do not share any resources and do
not have any data dependency.

• Migrations: In our approach, we constrain the sys-
tem by assuming that the tasks are not allowed to mi-
grate between processors. However, in our adversary,
we relax this constraint on the system by allowing
jobs to migrate between processors thereby making
the adversary more powerful.

• Task utilization: The maximum utilization of any
task on any processor in the system is no greater
than one, i.e., ∀i, j : uj

i ≤ 1.
• No job parallelism: A job can be executing on at
most one processor at any time instant.

III. THE METHODOLOGY: LINEAR PROGRAMMING
WITH EXHAUSTIVE ENUMERATION (LP-EE)

A. Background and Previous Result
We briefly describe the approach proposed in [1] be-

fore proceeding to discuss how we intend to use it and
(re-)prove its performance for a stronger adversary.
In [1], the problem of assigning tasks to processors has

been formulated as Zero-One ILP as shown in Figure 1.
Here U denotes the maximum capacity of any processor
that is used and is set as the objective function (to be
minimized). U ≤ 1 implies that the sum of utilization of
tasks assigned to any processor is less than or equal to
the available capacity on that processor. The variable xj

i

(referred to as indicator variable) indicate the assignment
of task τi to processor πj , i.e., xj

i = 1 implies that τi is
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Figure 2. LP formulation – LP-Feas(τ,Π)

entirely assigned to processor πj (such tasks are referred
to as integrally assigned tasks), xj

i = 0 implies that τi
is not assigned to processor πj . The first constraint (C1)
indicates that every task must be assigned to processors.
The second constraint (C2) indicates that no processor
capacity should be used more than U. The third constraint
(C3) indicates that the indicator variables must be non-
negative integers.
Since, ILP is NP-complete, the formulation is relaxed to

LP by allowing the indicator variables to be non-negative
real numbers (instead of just 0 or 1). The relaxed LP
formulation is shown in Figure 2. As we can see, the
only change in LP-Feas(τ,Π) formulation compared to
ILP-Feas(τ,Π) formulation is that, the C3 constraint now
allows xj

i variables to take real numbers instead of just 0
or 1. The semantics of the xj

i variable remain the same,
in addition, 0 < xj

i < 1 indicates that fraction xj
i of τi

is assigned to processor πj (such tasks are referred to as
fractionally assigned tasks).
Then a two-step algorithm (referred to as LP-EE) is

proposed to assign tasks on a heterogeneous platform. The
algorithm is as follows:
1) The LP formulation is solved using an LP solver such
as IBM ILOG CPLEX [13]). If xj

i = 1 then task τi
is (integrally) assigned to processor πj . Using certain
tricks [12], it is shown that there exists a solution to
LP-Feas(τ,Π) in which all but at most (m− 1) tasks
are integrally assigned to processors.

2) The remaining at most (m − 1) tasks are integrally
assigned on the remaining capacity of the processors
using exhaustive enumeration.

Finally, the performance guarantee of this algorithm is
proven which is stated as Lemma 1 below.

Lemma 1. (from Theorem 3 in [1])
If there is a feasible mapping of a task set τ on a hetero-
geneous platform Π in which at most half the capacity of
every processor is used, then it is guaranteed that LP-EE
generates a feasible mapping (as well) of τ on Π.

Note that, the LP-EE algorithm does not make any
assumption on the maximum utilization of a task, i.e., it
is applicable to a generic case in which the maximum
utilization of a task on a processor in the system can
exceed one, i.e., ∃i, j : uj

i > 1.

B. New Result

Now, with the knowledge of the algorithm proposed
in [1] and its performance guarantee, let us proceed to
discuss the approach in which the adversary is migrative.



Lemma 2. If a task set τ is feasible on a heteroge-
neous platform Π with task migrations permitted then
LP-Feas(τ,Π) gives a solution with U ≤ 1.

Proof: It is shown in Theorem 2 in [1] that if τ is
feasible on Π then ILP-Feas(τ,Π) gives a solution with
U ≤ 1. Since LP-Feas(τ,Π) is a relaxed formulation of
ILP-Feas(τ,Π), U returned by LP-Feas(τ,Π) is no greater
than U returned by ILP-Feas(τ,Π). Hence, the proof.
Throughout this paper, we illustrate the concepts with a

(randomly generated) running example. Consider a fea-
sible task set τ with seven tasks to be scheduled on
a heterogeneous platform Π with three processors. The
utilization of tasks on each processor is shown in Table I.

(τi ↓)(u
j
i →) u

1
i

u
2
i

u
3
i

τ1 0.087002 0.066455 1.952548
τ2 1.294308 0.528062 0.906763
τ3 0.802204 0.488072 1.240208
τ4 0.448277 1.076216 1.825816
τ5 0.573124 1.287740 0.982321
τ6 0.148060 1.933626 0.654599
τ7 0.331234 1.284164 0.814624

Table I
AN EXAMPLE TASK SET TO ILLUSTRATE CONCEPTS.

Formulating this system as a linear program using
LP-Feas(τ,Π) shown in Figure 2 and inputting it to an
LP solver, we obtain the solution shown in Table II and
U = 0.999999. It indicates that τ is feasible on Π. The
values in Table II correspond to indicator variables which
indicate the task assignment to processors. For example,
τ1 is integrally assigned to π2, τ2 is fractionally assigned
to π2 and π3, and so on.

(τi ↓)(πi →) π1 π2 π3

τ1 0.000000 1.000000 0.000000
τ2 0.000000 0.843599 0.156401
τ3 0.000000 1.000000 0.000000
τ4 1.000000 0.000000 0.000000
τ5 0.126375 0.000000 0.873625
τ6 1.0000 0.0000 0.0000
τ7 1.0000 0.0000 0.0000

Table II
A SOLUTION (I.E., THE VALUES OF xj

i VARIABLES) BY LP SOLVER TO
THE TASK SET SHOWN IN TABLE I.

Now, if we “divide the result in Lemma 2 by 2”, i.e.,
divide the utilization of every task on every processor by
a factor of 2 (we refer this new task set as τ ′), and divide
the speed of every processor by 2 (we refer this new task
set as Π′), we get the following result.

Corollary 1. If a task set τ ′ is feasible on a heteroge-
neous platform Π′ with task migrations permitted then
LP-Feas(τ ′,Π′) gives a solution with U ≤ 1.

Lemma 3. If LP-Feas(τ ′,Π′) gives a solution with U ≤ 1
then LP-Feas(τ ′,Π) gives a solution with U ≤ 0.5.

Proof: Let us assume that LP-Feas(τ ′,Π′) gives a
solution with U ≤ 1. To show that LP-Feas(τ ′,Π) gives a
solution with U ≤ 0.5 it suffices to show that there exists a
solution with U ≤ 0.5) – then LP-Feas(τ ′,Π) will output
the same solution or a better one (i.e., with even lower U).
Let uj

i and uj′

i respectively denote the utilizations of
a task τi ∈ τ ′ on processor πj ∈ Π and on processor
π

′

j ∈ Π
′ . Then, by definition (of Π and Π

′ ), it holds that:

u
j
i =

u
j′

i

2
(1)

Let xj′

i denote the indicator variables for the solution
output by LP-Feas(τ ′,Π′). Let xj

i denote the indicator
variables for the LP-Feas(τ ′,Π) problem instance. Let us
copy the values of xj

i into xj′
i , i.e.,

∀i, j : xj
i = x

j′

i (2)

Now, consider the three conditions listed in Figure 2. It is
easy to see that conditions C1 and C3 hold true. Now, let
us analyze C2. Using Expression 1 and 2, we get:

n
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j
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We know (by assumption) that
∑n

i=1

(

xj′

i · uj′

i

)

≤ U and
U ≤ 1. Hence,

1
2
·

n
∑

i=1

(

x
j′

i · u
j′

i

)

≤
1
2

Hence, there exists a solution with U ≤ 1

2
which satis-

fies C1 − C3. Thus, LP − Feas(τ ′,Π) (which tries to
minimize U) definitely finds such a solution.
Combining Corollary 1 and Lemma 3, we get:

Corollary 2. If a task set τ ′ is feasible on a heteroge-
neous platform Π′ with task migrations permitted then
LP-Feas(τ ′,Π) gives a solution with U ≤ 0.5.

Our example task set (shown in Table I), after dividing
by 2, is shown in Table III. Formulating this system as a
linear program using LP-Feas(τ ′,Π) and inputting it to an
LP solver, we obtain the solution that is same as the one
shown in Table II but with U = 0.499999.

(τi ↓)(u
j
i →) u

1
i

u
2
i

u
3
i

τ1 0.043501 0.033227 0.976274
τ2 0.647153 0.264030 0.453381
τ3 0.401102 0.244036 0.620103
τ4 0.224138 0.538108 0.912908
τ5 0.286561 0.643870 0.491160
τ6 0.074030 0.966813 0.327299
τ7 0.165616 0.642082 0.407311

Table III
TRANSFORMED TASK SET OBTAINED AFTER DIVIDING THE ORIGINAL

TASK SET (SHOWN IN TABLE I) BY 2.

We know the upper bound on the number of fractionally
assigned tasks in the assignment corresponding to the LP
solver solution for the LP-Feas(τ ′,Π′) formulation [1]:

Fact 1. If there are tasks that were fractionally assigned,
in accordance with the solution returned by LP solver after



solving LP-Feas(τ ′,Π) formulation, then there can be at
most m− 1 such tasks.

We now combine all the intermediate results to prove
the performance of LP-EE (for the restricted case) but for
a stronger adversary.

Theorem 1. If a task set τ ′ is feasible on a heterogeneous
platform Π′ with task migrations permitted then LP-EE
succeeds in assigning τ ′ on Π as well (with no task
migrations, i.e., partitioned scheduling), where each pro-
cessor in Π is at most twice faster than the corresponding
processor in Π′.

Proof: Let us assume that τ ′ is feasible on a hetero-
geneous platform Π′ with task migrations. Now, we show
that LP-EE succeeds in assigning τ ′ on Π. We know that:
O1 From Corollary 2: If a task set τ ′ is feasible on

a heterogeneous platform Π′ with task migrations
permitted then LP-Feas(τ ′,Π) gives a solution with
U ≤ 0.5 – all processors in Π are used at most half
their capacity.

O2 From Fact 1: If there are tasks that were fractionally
assigned, in accordance with the solution returned by
LP solver after solving LP-Feas(τ ′,Π) formulation,
then there can be at most m− 1 such tasks.

O3 From system model: ∀i ∈ τ, j ∈ Π : uj
i ≤ 1. Hence,

∀i ∈ τ ′, j ∈ Π : uj′

i ≤ 0.5

Hence, the remaining at most m − 1 fractional tasks
can be integrally assigned in the remaining capacity of
the processors, for example, assign each of these tasks
to a different processor – this results in a schedulable
assignment (follows from O1 and O3). We can then use
EDF [9] to schedule the tasks assigned on each processor.
Since Exhaustive Enumeration looks for all the possible

valid assignments for assigning the remaining at most m−
1 tasks, it succeeds in finding a schedulable assignment
(such as the one described above – assign each of these
tasks to a different processor).
Hence, the proof.
Coming back to our example task set τ ′, the solu-

tion provided by the LP solver (see Table II) has two
fractionally assigned tasks, i.e., τ2 and τ5. We can see
from the solution (ignoring the fractional assignment of
τ2 and τ5) that π1, π2 and π3 have remaining utiliza-
tions of 0.536216, 0.722737 and 1.000000 respectively on
computing platform Π (where a processor speed is twice
the corresponding processor speed in Π′). Hence, we can
assign τ2 to π2 and τ5 to π1 without violating the EDF
schedulability test on any processor.

IV. SUMMARY
We used an existing approach [1] from state-of-the-

art for assigning tasks on a heterogeneous multiprocessor
platform and (re-)proved its performance guarantee for a
restricted case but with a stronger adversary. We showed
that if a task set (in which the maximum utilization of a
task is no greater than one) can be scheduled to meet
deadlines on a heterogeneous platform by an optimal

task assignment scheme that allows task migrations then
LP-EE meets deadlines as well with no migrations if given
processors twice as fast.
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