Quantifying, generating and mitigating radio interference in Low-Power Wireless Networks PhD. Dissertation Defence

MSc. Claro A. Noda Díaz

Guimarães, Oct 28, 2015-University of Minho

Motivation

Why Low-Power Wireless Technology?

- New opportunities to enhance quality of life, boost efficient energy usage, etc
- Intensified innovation with extensive application usage cases, across many industries
- Free rein of technology diversity, operation **constrained** into ISM bands
- Rapid deployment and sustained market adoption

Motivation

Wireless Devices Proliferation

Motivation

Research Challenge

• How to design reliable and predictable communication protocols for *low-power wireless networks* operating in an *uncontrollable shared wireless medium*?

Interference Generation Interference Assessment Radio Resource Adaptation Constructive Interference

Current Practice

- PRR is the metric used for link quality estimation
- PRR is affected by many factors
- There is a need to assess interference impact on PRR, **isolated** from other factors
- Lack of systematic validation of low-power protocols **under interference**

Interference Generation Interference Assessment Radio Resource Adaptation Constructive Interference

Dependable Low-Power Wireless

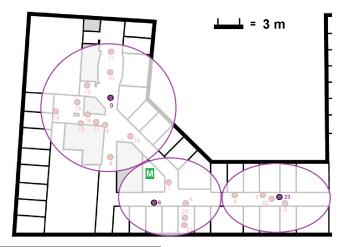
- Requires accurate interference quantification
- Radio resource adaptation to mitigate interference
- Extensive experimentation and validation

Interference Generation Interference Assessment Radio Resource Adaptation Constructive Interference

Thesis Contributions

- JamLab: a solution to **augment** a low-power wireless testbed with repeatable interference generation
- CQ: a wireless channel quality metric to meaningfully **quantify** interference
- Packet size and erasure codes adaptation based on our channel quality metric
- Constructive Baseband Interference (CBI) to the rescue?

Interference Generation Interference Assessment Radio Resource Adaptation Constructive Interference


JamLab: Interference Emulation and (Re)Generation

TmoteSky sensor node, based on CC2420 Low-Power Radio

Interference Generation Interference Assessment Radio Resource Adaptation Constructive Interference

JamLab: Interference Emulation and (Re)Generation

JamLab deployment on SICS Testbed (Kista, Sweden)

Interference Generation Interference Assessment Radio Resource Adaptation Constructive Interference

JamLab Augmented Testbeds

- Low-cost infrastructure for **repeatable** and **realistic** interference emulation
- Aids in designing interference mitigation techniques
- Starting point for **development** and **testing** of dependable low-power solutions

Interference Generation Interference Assessment Radio Resource Adaptation Constructive Interference

- Relies on receiver channel energy detection
- Does **not** require **packet transmissions**: no side effect on the channel—**scales** with node density
- Based on the temporal channel availability
- Accounts for interference only
- Meaningfully quantifies the channel quality: strong correlation with PRR

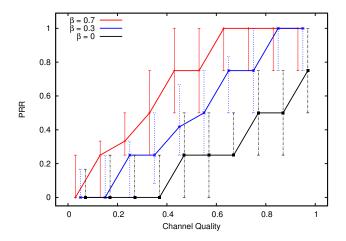
Interference Generation Interference Assessment Radio Resource Adaptation Constructive Interference

- Relies on receiver channel energy detection
- Does **not** require **packet transmissions**: no side effect on the channel—**scales** with node density
- Based on the temporal channel availability
- Accounts for interference only
- Meaningfully quantifies the channel quality: strong correlation with PRR

Interference Generation Interference Assessment Radio Resource Adaptation Constructive Interference

- Relies on receiver channel energy detection
- Does **not** require **packet transmissions**: no side effect on the channel—**scales** with node density
- Based on the temporal channel availability
- Accounts for interference only
- Meaningfully quantifies the channel quality: strong correlation with PRR

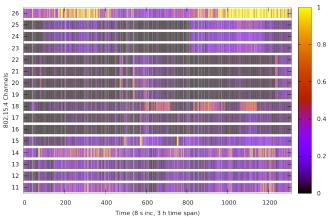
Interference Generation Interference Assessment Radio Resource Adaptation Constructive Interference


- Relies on receiver channel energy detection
- Does **not** require **packet transmissions**: no side effect on the channel—**scales** with node density
- Based on the temporal channel availability
- Accounts for interference only
- Meaningfully quantifies the channel quality: strong correlation with PRR

Interference Generation Interference Assessment Radio Resource Adaptation Constructive Interference

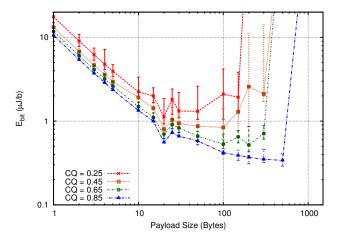
- Relies on receiver channel energy detection
- Does **not** require **packet transmissions**: no side effect on the channel—**scales** with node density
- Based on the temporal channel availability
- Accounts for **interference only**
- Meaningfully quantifies the channel quality: strong correlation with PRR

Interference Generation Interference Assessment Radio Resource Adaptation Constructive Interference

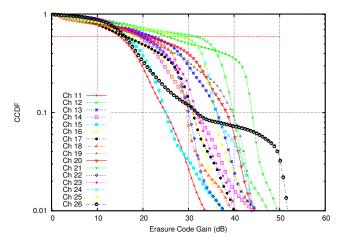

Quantifying Interference (CQ)

Interference Generation Interference Assessment Radio Resource Adaptation Constructive Interference

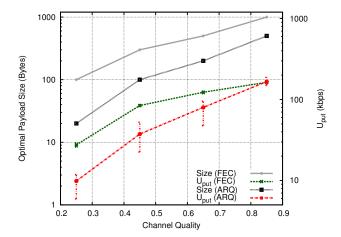
Measurements and Interference Traces (CQ)


CQ Metric, THR = -77 dBm, t = 0.5 ms, b = 1.0

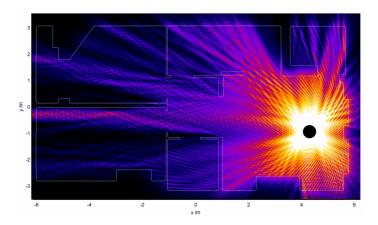
Nov. 2010, Library of the Faculty of Engineering University of Porto


Interference Generation Interference Assessment Radio Resource Adaptation Constructive Interference

Resource Adaptation: Packet Size


Interference Generation Interference Assessment Radio Resource Adaptation Constructive Interference

Resource Adaptation: Why Erasure Codes?

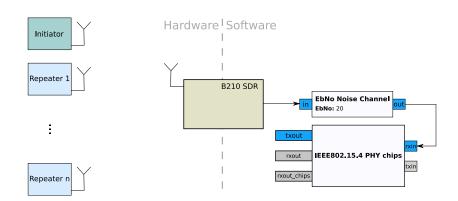

Interference Generation Interference Assessment Radio Resource Adaptation Constructive Interference

Erasure Code Adaptation

Interference Generation Interference Assessment Radio Resource Adaptation **Constructive Interference**

CBI: Carrier Propagation and Sender Diversity

Helmhurts by Jason Cole (ICL)


Interference Generation Interference Assessment Radio Resource Adaptation Constructive Interference

CBI Scalability

- As the number of concurrent repeaters increases, the composite signal becomes vulnerable to noise
- Link quality is compromised, **unless** there is enough **power imbalance**

Interference Generation Interference Assessment Radio Resource Adaptation **Constructive Interference**

Wireless Configuration

