

Real-Time Scheduling with Resource
Sharing on Uniform Multiprocessors

www.hurray.isep.ipp.pt

Technical Report

HURRAY-TR-120902

Version:

Date: 09-10-2012

Gurulingesh Raravi

Vincent Nélis

Björn Andersson

Technical Report HURRAY-TR-120902 Real-Time Scheduling with Resource Sharing

 on Uniform Multiprocessors

© IPP Hurray! Research Group
www.hurray.isep.ipp.pt

1

Real-Time Scheduling with Resource Sharing on Uniform Multiprocessors
Gurulingesh Raravi, Vincent Nélis, Björn Andersson

IPP-HURRAY!

Polytechnic Institute of Porto (ISEP-IPP)

Rua Dr. António Bernardino de Almeida, 431

4200-072 Porto

Portugal

Tel.: +351.22.8340509, Fax: +351.22.8340509

E-mail:

http://www.hurray.isep.ipp.pt

Abstract
Consider the problem of scheduling a set of implicit-deadline sporadic tasks to meet all deadlines on a uniform
multiprocessor platform where each task may access at most one of |R| shared resources and at most once by each job of
that task. The resources have to be accessed in a mutually exclusive manner. We propose an algorithm, GIS-vpr, which
offers the guarantee that if a task set is schedulable to meet deadlines by an optimal task assignment scheme that allows
a task to migrate only when it accesses or releases a resource, then our algorithm also meets the deadlines with the same
restriction on the task migration, if given processors 4 + 6|R| times as fast. The proposed algorithm, by design, limits the
number of migrations per job to at most two. To the best of our knowledge, this is the first result for resource sharing on
uniform multiprocessors with proven performance guarantee.

Real-Time Scheduling with Resource Sharing on Uniform
Multiprocessors

Gurulingesh Raravi
CISTER/INESC-TEC, ISEP,

Polytechnic Institute of Porto,
Porto, Portugal

ghri@isep.ipp.pt

Vincent Nélis
CISTER/INESC-TEC, ISEP,

Polytechnic Institute of Porto,
Porto, Portugal

nelis@isep.ipp.pt

Björn Andersson
Software Engineering Institute,

Carnegie Mellon University,
Pittsburgh, USA

baandersson@sei.cmu.edu

ABSTRACT
Consider the problem of scheduling a set of implicit-deadline
sporadic tasks to meet all deadlines on a uniform multipro-
cessor platform where each task may access at most one of ρ
shared resources and at most once by each job of that task.
The resources have to be accessed in a mutually exclusive
manner. We propose an algorithm, GIS-vpr, which offers
the guarantee that if a task set is schedulable to meet dead-
lines by an optimal task assignment scheme that allows a
task to migrate only when it accesses or releases a resource,
then our algorithm also meets the deadlines with the same
restriction on the task migration, if given processors 4 + 6ρ
times as fast. The proposed algorithm, by design, limits the
number of migrations per job to at most two. To the best
of our knowledge, this is the first result for resource sharing
on uniform multiprocessors with proven performance guar-
antee.

Categories and Subject Descriptors
D.4.7 [Operating Systems]: Organization and Design—
Real-time systems and embedded systems; G.4 [Mathematical

Software]: Algorithm design and analysis

General Terms
Theory

Keywords
real-time scheduling, resource sharing, uniform multiproces-
sors

1. INTRODUCTION
Computers are often used in applications where they in-

teract with the physical world (for example, software in an
autopilot ensures that airplane stays at the right altitude).
Hence, at run-time, the software must finish computations

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
RTNS’12, November 08–09 2012, Pont á Mousson, France
Copyright 2012 ACM 978-1-4503-1409-1/12/11...$15.00 ...$15.00.

at the right time; such systems are referred to as real-time

systems.
A real-time software system is often modeled as a set of

tasks where each task generates a (potentially infinite) se-
quence of jobs. Each job of a task may arrive at any time
once a minimum inter-arrival time has elapsed since the ar-
rival of the previous job of the same task. Each job has an
execution time and a deadline within which it has to com-
plete its execution. Tasks typically share a processor but
in many computer systems, tasks also share other resources
such as data structures, sensors, etc. and such tasks must
be operated in a mutually exclusive manner while accessing
the resource. Even on a uniprocessor platform, the shar-
ing of such resources can have a profound effect on timing
behavior as witnessed by the close-to-failure of the NASA
mission Mars Pathfinder because the resource-sharing pro-
tocol in the operating system was not enabled [12]. Schedul-
ing real-time tasks that share resources on a multiprocessor

platform is more complex. Our goal in this work is to design
an algorithm for scheduling the tasks that share resources
on uniform multiprocessors so as to meet all the deadlines
and to prove its performance.

Commonly, the performance of a scheduling algorithm
is characterized using the notion of utilization bound [13].
This metric has been used to evaluate the scheduling algo-
rithms on uniprocessor (e.g., [13]) and identical multipro-
cessors (e.g., [1]) where the speeds of all the processors are
same. However, it does not translate to algorithms (for
scheduling tasks that share resources) on uniform multi-
processors where processors are characterized by different
speeds, hence we rely on the resource augmentation frame-
work [15] to characterize the performance of the algorithm
under design. We say that an algorithm A has a speed com-

petitive ratio SCRA if, for every real-time task set for which
it is possible to meet the deadlines, it holds that A meets the
deadlines as well if, the speed of each processor is multiplied
by SCRA.

A low speed competitive ratio indicates high performance;
ideally it should be one. A scheduling algorithm with a fi-

nite speed competitive ratio is desirable as well because it
can ensure the designer that deadlines will be met by us-
ing faster processors. Consequently, the real-time systems
community has embraced the development of scheduling al-
gorithms with finite speed competitive ratio, e.g., [3, 4, 8].
Unfortunately, the community has not yet developed a mul-
tiprocessor scheduling algorithm with finite speed compet-
itive ratio for tasks that share resources on uniform mul-
tiprocessors. Therefore, in this paper, we present one and

prove its performance.

Problem Statement: We consider the problem of schedul-
ing implicit-deadline sporadic tasks (in which the deadline of
a task is equal to its minimum inter-arrival time) that share
resources on uniform multiprocessors. We assume that each
task may request at most one resource (known at design
time) and at most once by each job of that task.

Related Work: The problem of scheduling real-time tasks
that share resources has been studied in the past for identi-
cal multiprocessors (e.g., [7,14,16]). However, none of these
algorithms has a proven speed competitive ratio. In a re-
cent significant development, Andersson et al. [2] proposed
an algorithm for scheduling tasks that share resources on
identical multiprocessors with a speed competitive ratio of
12 × 1+3ρ

4m where m and ρ denote the number of proces-
sors and resources, respectively. Later, Raravi et al. [17]
proposed an algorithm for scheduling tasks that share re-
sources on heterogeneous multiprocessors with two distinct

kinds of processors and proved that its speed competitive

ratio is 4 + 6 ×
�

ρ
min(m1,m2)

�
where m1 and m2 denote the

number of processors of first and second kind, respectively1.
Since the uniform multiprocessor platform is not a special
case of the heterogeneous multiprocessor platform with two

distinct kinds of processors, the result of [17] does not triv-

ially translate to the problem under consideration.

Contributions and Significance of this work: The re-
cent result by Andersson et al. [2] for the problem of re-
source sharing on identical multiprocessors raised the fol-
lowing question: is it possible to design an algorithm for
scheduling tasks that share resources on uniform multipro-
cessors with a finite speed competitive ratio. In this work,
we answer this question in the affirmative by designing an
algorithm, GIS-vpr, using some of the techniques discussed
in [2].

The algorithm, GIS-vpr, offers the guarantee that if a task
set is schedulable to meet deadlines by an optimal task as-
signment scheme that allows task migrations when it ac-
cesses or releases a resource, then our algorithm also meets
deadlines with the same restriction on task migrations, if
given processors 4 + 6ρ times as fast. It also ensures that
the number of migrations per job is at most two.

We believe that the significance of this work is two-fold.
First, for the problem of scheduling tasks that share re-
sources on uniform multiprocessors, no previous algorithm
exists and hence our algorithm is the first for this prob-
lem with a finite speed competitive ratio. Second, we hope
that that this work will inspire some research towards de-
signing new algorithms for the problem under consideration
with a better speed competitive ratio or for a more generic
resource sharing model where tasks can access multiple re-
sources and/or every job of these tasks can access the re-
sources more than once.

The remainder of this paper is organized as follows. Sec-
tion 2 describes the task, resource and platform model that
we are considering in this work. Section 3 gives an overview
of the proposed algorithm. The algorithm is described in
Section 4 and its performance in terms of speed competitive

1The resource sharing model considered in [2,17] is same as
in this work, i.e., each task can access at most one resource
and at most once by each job of that task.

ratio is proven in Section 5. Finally, Section 6 concludes
with a discussion on few interesting properties of the pro-
posed algorithm.

2. SYSTEM MODEL AND ASSUMPTIONS
We consider the problem of scheduling a task set τ =

{τ1, τ2, . . . , τn} of n implicit-deadline sporadic tasks that
share a set of ρ resources R = {r1, r2, . . . , rρ} on a uniform
multiprocessor platform π = {π1,π2, . . . ,πm} of m proces-
sors.

Each task τi ∈ τ is characterized by three parameters:
a worst-case execution time Ci, a period Ti and a deadline
Di (which is equal to its period Ti). Each task τi releases
a (potentially infinite) sequence of jobs, with the first job
released at any time during the system execution and sub-
sequent jobs released at least Ti time units apart. Each job
released by a task τi has to complete its execution within Di

time units from its release. We allow preemptive scheduling

of tasks.
In the computing platform, a processor πp ∈ π is of speed

sp where 1 ≤ p ≤ m; for ease of explanation, we consider
that processors are indexed such that s1 ≤ s2 ≤ . . . ≤ sm.
If, for a time interval of duration L and for a processor πp of
speed sp, a job executes during the entire time interval on
πp then the job performs L × sp units of execution during
this time interval.

The set of shared resources comprising ρ resources that
tasks need in addition to the m processors is denoted by
R = {r1, r2, . . . , rρ}. We assume that each task may access
at most one shared resource from R, and further each job
of that task may request the resource at most once during
its execution. The resource (if any) used by the task τi is
denoted by r(i), i.e., r(i) = rk or r(i) = φ, where k ∈ [1, ρ].

For convenience, we use the following notations. The uti-

lization of the task τi is denoted by ui and is defined as

ui
def
= Ci

Ti
. It is easy to see that if a job of task τi executes

only on processor πp of speed sp then it performs its Ci units
of execution by executing for Ci

sp
time units. For this reason,

we define Ci,p
def
= Ci

sp
. Analogously, we define ui,p

def
= Ci

sp×Ti
.

Also, we make use of constrained-deadline tasks — the
deadline of such a task is less than or equal to its minimum
inter-arrival time (i.e., Di ≤ Ti). For a constrained-deadline

task τi, its density is denoted as δi and is defined by δi
def
=

Ci
min(Di,Ti)

= Ci
Di

. Similar to ui,p, we define δi,p as δi,p
def
=

Ci
sp×Di

.

Finally, we assume that a job cannot execute in parallel,
i.e., it cannot run on two or more processors simultaneously.

3. OVERVIEW OF OUR ALGORITHM
The proposed algorithm, GIS-vpr, relies on the concept of

virtual processors to design the solution for the problem un-
der consideration. Virtual processors are logical constructs,
used as task assignment targets by our algorithm. A virtual
processor acts equivalent to a physical processor with speed
1
f and we assume that it can be “emulated” on a physical

processor of speed 1, using no more than 1
f of its processing

capacity. One intuitive way of achieving this is by dividing
time into short slots of length S and using 1

f ×S time units
in each slot to serve the workload of virtual processor. By
selecting S, we can then make the speed of the emulated pro-

D
e
si

g
n

T
im

e
T

im
e

R
u
n

D
is

p
a
tc

h

{ using preemptive−EDF using non−preemptive−EDF using preemptive−EDF

Phase−C

Deadline of the job

Phase−A Phase−B

t

The phase−A of a task is{ The phase−B of a task accessing a The phase−C of a task is

Job of τi arrives

t+ Ti

assigned to vpac ∈ V PAC resource is assigned to vpb ∈ V PB assigned to vpac ∈ V PAC

Figure 1: Three execution phases of a job along with the
design-time and run-time decisions of GIS-vpr algorithm.

cessor arbitrarily close to 1
f (and in practice, S need rarely

be impractically short) [6].
The algorithm, GIS-vpr, can be summarized in four steps.

Steps 1-3 are executed at design time and only step 4 needs
to be executed at run time.

Step 1–Creation of subtasks. Split the task execution
into three phases as shown in Figure 1 — in essence cre-
ate three constrained-deadline subtasks out of each implicit-
deadline sporadic task and make different scheduling provi-
sions for each of them.

• phase-A: the task has arrived and not yet made a
request for the resource

• phase-B: the task has requested the resource and is
either using (also referred to as holding) it or waiting
for it and

• phase-C: the task has released the resource and yet
to finish its execution

A task which does not access any of the shared resources
is split into only phase-A.

The “arrival” of both phase-B and phase-C subtasks have
fixed offsets from the arrival of the respective phase-A sub-
task. This guarantees that the subtasks have the same
inter-arrival time as the original task thereby exhibiting no
jitter in their arrival times. The manner in which these
constrained-deadline subtasks are created and their param-
eters, i.e., worst-case execution time, period and deadline
are determined is described in Section 4.1.

Step 2–Creation of virtual processors. Create two
sets of virtual processors, namely, VPAC and VPB virtual
processors from the given physical processors. The specifica-
tion of the virtual processors and their creation is discussed
in Section 4.2.

Step 3–Task assignment. The phase-A and phase-C
subtasks created from each task are assigned to the same vir-
tual processor in VPAC, whereas the corresponding phase-B
subtask is assigned to a virtual processor in VPB. This step
is discussed in Section 4.3.

Step 4–Task scheduling. All the phase-A and phase-C
subtasks are scheduled using preemptive Earliest-Deadline-
First (EDF) algorithm [13] on their assigned virtual pro-
cessors in VPAC. All the phase-B subtasks are scheduled
using non-preemptive EDF algorithm on their assigned vir-
tual processors in VPB to ensure mutual exclusion while
accessing the shared resources.

Subtasks of τi WCET Deadline Period

τA
i CA

i DA
i =

CA
i

Ci
× Ti

2 TA
i = Ti

τB
i CB

i DB
i = Ti

2 TB
i = Ti

τC
i CC

i DC
i =

CC
i

Ci
× Ti

2 TC
i = Ti

Table 1: The three constrained-deadline subtasks that are
derived form a given implicit-deadline task τi

4. THE NEW ALGORITHM GIS-vpr

In this section, we describe the new algorithm, GIS-vpr,
in detail and also provide its pseudo-code.

4.1 Creating the Subtasks
In this section, we describe how the algorithm, GIS-vpr,

creates constrained-deadline subtasks, i.e., phase-A, phase-B
and phase-C subtasks from the given set of implicit-deadline
tasks and how it sets the parameters, i.e., execution time,
period and deadline of these derived tasks.

From each implicit-deadline task τi ∈ τ , it creates three
constrained-deadline subtasks τA

i , τB
i and τC

i corresponding
to phase-A, phase-B and phase-C of the execution of τi, re-
spectively. In the rest of the paper, the superscript A,B and
C will be used in the notations corresponding to phase-A,
phase-B and phase-C subtasks, respectively. For example,
CA

i , CB
i and CC

i denote the worst-case execution time of
task τi ∈ τ before accessing the resource r(i) (phase-A),
while holding the resource r(i) (phase-B) and after releas-
ing r(i) (phase-C), respectively. Note that ∀τi ∈ τ : Ci =
CA

i + CB
i + CC

i .
The parameters of the three subtasks τA

i , τB
i and τC

i that
are derived from each τi ∈ τ are set as shown in Table 1.
Note that DA

i + DB
i + DC

i ≤ Ti = Di. This is essential as
it ensures that if the subtasks, τA

i , τB
i and τC

i derived from
τi meet their deadlines then the original task τi meets its
deadline as well. Finally, we group these derived subtasks
into the following task sets:

τA = {τA
i | i ∈ [1, n]} (1)

τB,rk = {τB
i | i ∈ [1, n] and r(i) = rk} (2)

τC = {τC
i | i ∈ [1, n]} (3)

As opposed to the given task set τ which contains implicit-
deadline tasks, these derived task sets contain constrained-
deadline tasks. Also, observe that the task set τA is derived
such that the density of every subtask τA

i ∈ τA is twice the
utilization of the corresponding task τi ∈ τ . Formally,

∀τA
i ∈ τA : δAi =

CA
i

DA
i

=
CA

i

CA
i ×Ti

2Ci

=
2Ci

Ti
= 2ui (4)

Analogously,

∀τC
i ∈ τC : δCi =

CC
i

DC
i

=
CC

i

CC
i ×Ti

2Ci

=
2Ci

Ti
= 2ui

Also, note that the execution requirements and densities
of the derived subtasks are with respect to a processor of
speed 1. On a processor πp of speed sp, these terms must
be divided by sp, i.e.,

∀τA
i ∈ τA : CA

i,p =
CA

i

sp
, δAi,p =

δAi
sp

(5)

...

...

1 m32

...

...

Physical processors

Virtual processors

Virtual processors

1

2

..
.

..
.

..
.

..
.

...
..
.

V PAC

V PB

ρ

Figure 2: Creation of m(1 + ρ) virtual processors from m
physical processors of a uniform multiprocessor platform.

In contrast, the periods and deadlines of these subtasks are
independent of the processor speed. The same holds for each
task τC

i ∈ τC and τB
i ∈ τB,rk , ∀rk ∈ R.

4.2 Dimensioning the Virtual Processors on Uni-
form Multiprocessor Platform

In this section, we describe the creation of virtual proces-
sors from the given physical processors of a uniform multi-
processor computing platform.

We create m(1 + ρ) virtual processors from the given m
physical processors. Precisely, we create the virtual proces-
sors with following specifications:

• m virtual processors (denoted as VPAC): From
each physical processor πp of speed sp, we create one
virtual processor of speed sp × 2

2+3ρ . So, in total, m
such virtual processors are created from m physical
processors. These are used to schedule phase-A and
phase-C subtasks and are referred to as ‘VPAC virtual
processors’.

• m×ρ virtual processors (denoted as VPB): From
each physical processor πp of speed sp, we create ρ vir-
tual processors of speed sp × 3

2+3ρ . So, in total, m× ρ
such virtual processors are created from m physical
processors. These are used to schedule phase-B sub-
tasks and are referred to as ‘VPB virtual processors’.

In other words, from each physical processor πp, we create
1 + ρ virtual processors, i.e., one VPAC and ρ VPB virtual
processors as shown by each column in Figure 2. Observe
that no virtual processor is created using more than one
physical processor, i.e., the capacity of a virtual processor
comes only from one physical processor.

We now show that, from one physical processor πp of speed
sp, it is indeed possible to create one VPAC and ρ VPB

virtual processors as per the specifications given earlier and
hence the given uniform multiprocessor platform π can be
dimensioned accordingly to obtain the above specified set of
virtual processors.

Lemma 1. The given uniform multiprocessor platform π
can be dimensioned as mentioned above to obtain the set of

virtual processors, VPAC and VPB.

Algorithm 1: GIS-vpr(τ,π, R): for scheduling tasks
that share resources on uniform multiprocessors

// Lines 1-9 execute offline; line 10 executes
at run time.

1 Create the sets τA, τB,rk and τC of subtasks from the
given task set τ as described in Section 4.1;

2 Create VPAC and VPB virtual processors from the
given set π of processors as described in Section 4.2;

3 Assign all the subtasks τA
i ∈ τA to the VPAC virtual

processors using the algorithm GIS (see [10] for details);
4 foreach τi ∈ τ do

5 if τi requests a resource rk (i.e., r(i) = rk) then

6 Assign τB
i to the k’th virtual processor created

from the m’th (i.e., the fastest) physical
processor;

7 end

8 end

9 Assign every subtask τC
i ∈ τC to that virtual processor

in VPAC to which the corresponding subtask τA
i ∈ τA

has been assigned on line 3;
10 Schedule (i) all the subtasks of τA and τC on VPAC

virtual processors using preemptive EDF and (ii) all the
subtasks of τB

i on VPB virtual processor using
non-preemptive EDF;

Proof. The proof is a direct consequence of the fact that
each physical processor can emulate its associated VPAC

virtual processor and its ρ VPB virtual processors, as per
the specifications of the virtual processors. Indeed, for each
πp ∈ π, we have

1× (sp × 2
2 + 3ρ

)

� �� �
VPAC virtual processor

+ ρ× (sp × 3
2 + 3ρ

)

� �� �
VPB virtual processors

=
2sp + 3ρsp
2 + 3ρ

= sp

Hence the proof.

We now describe the rest of the steps in the algorithm
to schedule the tasks that share the resources on uniform
multiprocessors by providing the pseudo-code.

4.3 Pseudo-code of GIS-vpr

The pseudo-code of GIS-vpr is shown in Algorithm 1.
The algorithm works as follows.

On line 1, it creates the sets τA, τB,rk and τC of constrained-
deadline subtasks from the given set τ of implicit-deadline
tasks as described in Section 4.1.

On line 2, it creates m VPAC and m × ρ VPB virtual
processors from the given m physical processors as discussed
in Section 4.2.

On line 3, it assigns the set of phase-A subtasks, τA,
on VPAC virtual processors using GIS algorithm. The al-
gorithm, GIS, was proposed by Gonzalez and Ibarra and
Sahni [10] for non-migratively scheduling a set of implicit-
deadline sporadic tasks that do not share resources on uni-
form multiprocessors. It has a speed competitive ratio of
two. Actually, [10] studied the problem of non-preemptively
scheduling non-periodic tasks that do not share resources on
uniform multiprocessors for minimizing the makespan. It is

easily shown that these two problems are equivalent. The
abbreviation GIS comes from author names of [10].

On lines 4–8, it assigns all the phase-B subtasks that ac-
cess the same shared resource to the same VPB virtual pro-
cessor. Specifically, all the subtasks accessing the resource
rk, ∀k ∈ [1, ρ], are assigned to the k’th VPB virtual pro-
cessor created from the fastest physical processor, πm. This
technique serves two purpose. Firstly, it ensures mutual ex-
clusion between the tasks accessing the same resource (as all
the subtasks sharing the resource are assigned to the same
virtual processor and are executed in a non-preemptive way).
Secondly, it minimizes the blocking time of a task related to
resource sharing by effectively creating the equivalent of a
hypothetical single virtual processor whereupon every task
would execute as fast as on the fastest processor in the sys-
tem. The blocking time of a task that wants to access a
resource is defined as the time duration during which it is
blocked by a lower priority task holding that resource.

Observe that GIS-vpr assigns all the phase-B subtasks
only to those VPB virtual processors that are created from
the fastest physical processor πm, hence leaving all the other
VPB virtual processors idle. It is therefore natural to think
that creating VPB virtual processors only from the fastest
physical processor might be a good idea. However, it turns
out that, from the perspective of speed competitive ratio, it
offers no benefit.

Since more than one virtual processors are created from a
single physical processor, there might be frequent “context
switches” between those virtual processors. Even with VPB

virtual processors involved in these “context switches”, the
mutual exclusion property while accessing the resources is
not affected. This is because a VPB virtual processor can
only be preempted by a virtual processor that is either run-
ning a task that does not access the same resource or does
not access a resource at all.
On line 9, it assigns every phase-C subtask, τC

i , to that
virtual processor in VPAC to which the corresponding phase-
A subtask, τA

i , has been assigned. Such an assignment does
not endanger the schedulability of the tasks assigned on the
VPAC virtual processors as there is a precedence constraint
between these subtasks — this is formally proven later in
Lemma 9 in Section 5.2. Also, such an assignment ensures
that the number of migrations per job is restricted to at
most two. This is easy to verify because both phase-A and
phase-C of a task execute on the same physical processor
as they are assigned to the same virtual processor and only
phase-B subtask might have to execute on different physical
processor as the virtual processor to which phase-B of the
task is assigned might have been created from a different
physical processor.
On line 10, it schedules the tasks executing in their phase-

A and phase-C on VPAC virtual processors using preemptive

EDF and tasks executing in their phase-B on VPB virtual
processors using non-preemptive EDF.
The reason for using preemptive EDF for scheduling phase-

A and phase-C subtasks is that it is an optimal uniprocessor
scheduling algorithm [9, 13]. EDF is optimal in the sense
that it always meets all the deadlines of tasks assigned to a
processor if there exists a schedule that meets all the dead-
lines. The reason for using non-preemptive EDF to schedule
phase-B subtasks is twofold: (i) its non-preemptive prop-
erty facilitates in achieving mutual exclusion while accessing
the shared resources and (ii) its speed competitive ratio is

known [2].
Also, for preemptive EDF scheduling, the following result

has been shown in [3] (an easily obtained generalization of
the result in [13]) which we make use of while proving the
performance of GIS-vpr.

Lemma 2. (From Theorem 2 in [3]: utilization-based schedu-

lability test)

Let τ [πp] denote the tasks assigned on a processor πp of speed

sp. If
�

τi∈τ [πp]
ui ≤ sp and tasks are scheduled with pre-

emptive EDF on πp then all deadlines are met.

Note that in Algorithm 1, lines 1–9 execute at design time

and only line 10 executes at run time.
The algorithm, GIS-vpr, is named after the fact that it

makes use of the algorithm, GIS, for assigning some of the
subtasks on virtual processors.

5. PERFORMANCE ANALYSIS OF THE AL-
GORITHM GIS-vpr

In this section, we prove the speed competitive ratio of
the proposed algorithm. But first we present some nota-
tions and useful results that are used later while proving the
performance of GIS-vpr.

5.1 Few Notations
Let π denote a uniform multiprocessor platform of m pro-

cessors, {π1,π2, . . . ,πm}. The speed of a processor πp is sp.
For ease of explanation, we consider that processors are or-
dered in increasing order of their speed, i.e., s1 ≤ s2 ≤ . . . ≤
sm. Let π × s denote a uniform multiprocessor platform in
which the speed of each processor πp is s times that of the
corresponding processor in π. The platform π×s is obtained
by multiplying the speed of each processor in platform π by
a real number, s > 0. We use πm to denote a uniprocessor
platform with speed sm and πm×s to denote a uniprocessor
platform with speed sm × s.

Let sched(A, τ,π) denote a predicate to signify that a task
set τ that does not share resources meets all its deadlines

when scheduled by algorithm A on platform π. The term
meets all its deadlines in this and other predicates means
‘meets deadlines for every possible arrival of tasks that is
valid as per the given parameters of τ ’.

Let feas(nmo, τ,π) signify that there exists a non-migrative-

offline preemptive schedule which meets all deadlines of
tasks in τ that do not share resources on platform π. Here,
non-migrative schedule (also referred to as partitioned sched-
ule) refers to a schedule in which all the jobs of a task execute
on the same processor to which the task has been assigned
(and hence different jobs of the same task are not allowed
to migrate to a different processor). In this and other pred-
icates, the term offline schedule refers to a schedule which
(i) can contain inserted idle times and (ii) can be generated
using the knowledge of future job arrival times (irrespective
of whether such knowledge is available in practice).

The predicate sched(A, τ, R,π) signifies that the task set
τ sharing the resources from a set R meets all its deadlines

when scheduled by algorithm A on platform π with restricted

migration. In this and other predicates, the term (i) ‘shar-
ing the resources’ has the same meaning as discussed in Sec-
tion 2 and (ii) ‘restricted migration’ indicates that a job can
only migrate when it accesses or releases the resource. Also,
replacing the set R of resources by a single resource rk in

this and other related predicates signifies that the tasks in
τ share a single resource rk, where 1 ≤ k ≤ ρ.

Let feas(rmo, τ, R,π) denote a predicate to signify that
there exists a restricted-migration-offline preemptive sched-
ule which meets all the deadlines of tasks in τ on platform
π when tasks are ‘sharing the resources’ from R.

Also, some of the above described predicates will be used
by adding a suffix -δ (where applicable, i.e., for non-migrative
scheduling of constrained-deadline subtasks corresponding
to different phases) to the scheduling algorithm (or algo-
rithm class). Such predicates with suffix -δ signify that the
schedulability of τ other than just being established via some
exact test, must additionally be ascertainable via a (poten-
tially pessimistic) density-based uniprocessor schedulability
test (similar to Lemma 2). That is, for τ [πp] of tasks as-
signed on a processor πp of speed sp, to meet deadlines, it
must hold that

�
τi∈τ [πp]

δi ≤ sp. For example, the pred-

icate sched(A-δ, τ,π) signifies that the tasks in τ which do
not share resources is ascertained schedulable by algorithm
A on platform π using the density-based schedulability test
of algorithm A.
Finally, the term ‘multiply (resp., divide) the processor

speeds in platform π by a real number, x > 0’ means that
multiply (resp., divide) the speed of every processor in π by
x resulting in a new platform, π × x.

5.2 Useful Results
In this section, we present few previously known (Lemma 3-

6) and some new results (Lemma 7-11 and Corollary 1) that
we use while proving the speed competitive ratio of our al-
gorithm, GIS-vpr, in Section 5.3.
Lemma 3 states that the speed competitive ratio of al-

gorithm, GIS, proposed in [10] is 2. As mentioned earlier,
the algorithm, GIS, non-migratively schedules the implicit-
deadline sporadic tasks that do not share resources on uni-
form multiprocessor platform.

Lemma 3 (From Theorem 2.1 in [10]).

feas(nmo, τ,π) ⇒ sched(GIS, τ,π × 2)

Lemma 4 states that the speed competitive ratio of non-
migrative-offline, non-preemptive EDF is 3 for scheduling
a set of implicit-deadline sporadic tasks that do not share
resources on a single processor (say, πm ∈ π).

Lemma 4 (From Lemma 2 in [2])).

feas(nmo-np, τ,πm) ⇒ sched(nm-np-EDF, τ,πm × 3)

The following lemma states that if an implicit-deadline
sporadic task set τ that does not share resources is schedu-
lable by nm-np-EDF on a uniprocessor platform say, πm×3,
then the task set is also schedulable by nm-np-EDF on a uni-
form multiprocessor platform π × 3. This trivially holds if
tasks are only scheduled on processor πm ∈ π × 3, keeping
the additional processors idle.

Lemma 5.
sched(nm-np-EDF, τ,πm × 3) ⇒

sched(nm-np-EDF, τ,π × 3)

Combining Lemma 4 and Lemma 5 gives: if an implicit-
deadline sporadic task set τ that does not share resources
is non-migrative-offline, non-preemptive schedulable on a
uniprocessor, say πm, then the task set is also schedulable
by nm-np-EDF on a uniform multiprocessor platform π× 3.

Lemma 6.

feas(nmo-np, τ,πm) ⇒ sched(nm-np-EDF, τ,π × 3)

We now show that if an implicit-deadline task set τ that
does not share resources is non-migrative-offline schedulable
on a uniform multiprocessor platform π then the constrained-
deadline task set τA (which does not share resources as well)
that is derived from τ (as described in Section 4.1) is also
non-migrative offline schedulable on platform π × 2 (e.g.,
by non-migrative preemptive EDF). This is shown with the
help of a density-based schedulability test by exploiting the
fact that, on a processor πp, the density of a task τA

i ∈ τA is
always twice the utilization of the corresponding task τi ∈ τ
(see Expression (4)). Hence, the density of the task τA

i ∈ τA

on a twice faster platform π× 2 is equal to the utilization of
the corresponding task τi ∈ τ on platform π.

Lemma 7.

feas(nmo, τ,π) ⇒ feas(nmo-δ, τA,π × 2)

Proof. Suppose there exists a non-migrative-offline sched-
ule for task set τ on platform π in which all the deadlines
are met. Hence, in that schedule, from Lemma 2, it must
hold that:

∀πp ∈ π :
�

τi∈τ [πp]

ui

sp
≤ 1 (6)

where τ [πp] denotes the set of tasks that are assigned to
processor πp.

We now show that there must also exist a non-migrative-
offline schedule for the derived task set τA on platform π×2
in which all the deadlines are met. By definition of τA, we
know that, for every task τi ∈ τ there exists a task τA

i ∈ τA.
Also, from Expression (4), we know that δAi of τA

i ∈ τA is
twice the ui of τi ∈ τ .

Let us assign the tasks in τA on platform π×2 as follows:
if τi ∈ τ is assigned to πp ∈ π in the non-migrative-offline
schedule which meets all the deadlines, then we also assign
τA
i to πp ∈ π × 2. From the fact that this assignment of
τA (which is identical to the assignment of τ) is made on a
platform twice faster (on which the densities of tasks will be
halved according to expression (5)) and from Expressions (4)
and (6), we get:

∀πp ∈ π × 2 :
�

τA
i ∈τA[πp]

δAi
sp

≤ 1 (7)

which satisfies density-based schedulability test of non-migrative
EDF on uniform multiprocessors. Hence, τA is non-migrative-
offline schedulable on π × 2.

The following lemma is an extension of Lemma 3 obtained
by applying density-based test instead of utilization-based
test and on faster platforms.

Lemma 8.

feas(nmo-δ, τA,π × 2) ⇒ sched(GIS-δ, τA,π × 4)

Proof. Let us assume that the left-hand side predicate
feas(nmo-δ, τA,π × 2) holds true. From Expression (4), we
know that the density of every task in τA is twice the utiliza-
tion of the corresponding task in τ . Hence, from the reason-
ing similar to the one provided in the previous lemma, the

t

slo
pe

 =

DA
i

δ
A
i
=
2u

i

CA
i

CA
i + CC

i

Ti ≥ DA
i +DB

i +DC
i

2(CA
i + CB

i + CC
i)

Figure 3: Assigning phase-C subtasks to the same virtual
processor as the respective phase-A subtasks (earlier as-
signed using a density-based test) preserves schedulability.

predicate feas(nmo, τ,π) must hold true as well. Then, from
Lemma 3, sched(GIS, τ,π×2) must hold true. But again, us-
ing the fact that density of every task in τA is twice the uti-
lization of the corresponding task in τ , sched(GIS-δ, τA,π×
4) must hold true as well, from a similar reasoning as used
in the previous lemma. Hence the proof.

The following lemma states that if tasks from τA are pre-
emptive EDF schedulable on a processor πp then we can
assign the respective phase-C subtasks from τC as well onto
processor πp and after this assignment, the entire set of tasks
assigned to processor πp is preemptive EDF schedulable.

Lemma 9. Let τA[πp] denote the set of phase-A subtasks

assigned on processor πp of speed sp. If τA[πp] is preemptive-

EDF schedulable on πp, i.e.,

δτA[πp]
def
=

�

τA
i ∈τA[p]

δAi ≤ sp

then τA[πp] ∪ τC [πp] (where τC [πp] is the set of respective

phase-C subtasks whose arrivals have fixed offset from the

arrival of respective phase-A subtasks) is also preemptive-

EDF schedulable on processor πp.

Proof. We know that the task set τA[πp] is preemptive-
EDF schedulable on πp, i.e., δτA[πp] ≤ sp. To show that

τA[πp]∪τC [πp] is also schedulable on processor πp, it is suffi-
cient to show that the demand-bound function

2, DBF(τA[πp]∪
τC [πp], t), of task set τA[πp]∪τC [πp], never exceeds δτA[πp]×
t at any instant t [5].
The following must hold for every phase-A subtask τA

i ∈
τA and respective phase-C task τC

i ∈τC :

DBF
�
{τA

i } ∪ {τC
i }, t

�
≤ t× δAi = t× CA

i

DA
i

(8)

This can be verified from Figure 3 since the maximum“slope”
to any point in the graph of DBF({τA

i } ∪ {τC
i }, t) from the

origin is δAi =
CA

i
DA

i
(which is equal to 2ui of τi ∈ τ , as per our

choice of DA
i), at abscissa t = DA

i . Summing Equation (8)
for all the tasks τA

i ∈ τA[πp] and the corresponding tasks

2The demand bound function of a task τi, dbf(τi, t), is the
maximum possible execution demand by jobs of τi, that have
both arrival and deadline within any interval of length t.
The demand bound function of a task set τ is defined as:
DBF(τ, t) =

�
τi∈τ dbf(τi, t) [5].

1 τi Oi

Ti/2 Ti/2 Ti/2 Ti/2 Ti/2 Ti/2 Ti/2 Ti/2

2 τi
Ci

Ti Ti Ti Ti

Ci Ci Ci

3 τi Oi

ri,jTi/2 Ti/2 Ti/2 Ti/2 Ti/2 Ti/2 Ti/2 Ti/2

2Oi

Ci/2 Ci/2 Ci/2 Ci/2

s�i,j

si,j

ai,j ai,j+1

a�i,j+1a�i,j

Figure 4: Visualization of the reasoning of Lemma 10.

τC
i ∈ τC [πp] yields:

DBF(τA[πp] ∪ τC [πp], t) ≤ t×
�

τA
i ∈τA[πp]

δAi = t× δτA[πp]

Hence the proof.

We now show that if tasks in τ sharing the resource rk ∈
R are non-migrative-offline, non-preemptive schedulable on
platform π then the derived task set τB,rk is also non-migrative-
offline, non-preemptive schedulable on a single dedicated
processor which is the fastest, i.e., on processor πm, but with
its speed multiplied by 2. Intuitively, this speedup factor of
2 comes from the fact that we have halved the deadlines of
tasks in τB,rk compared to the deadlines of corresponding
tasks in τ — this is formally proven in Corollary 1. This
corollary is a consequence of the following two lemmas. The
reader may want to skip the remainder of this section now
and revisit it later.

Lemma 10. If τ �Ci, Di, Ti� denotes a task set in which

each task τi is characterized by the 3-tuple �Ci, Di, Ti� and

shares the resource rk, then it holds that

feas(nmo-np, τ �Ci, Di, Ti� , rk,π) ⇒

feas(nmo-np, τ

�
Ci

2
,
Di

2
,
Ti

2

�
, rk,π) (9)

Proof. We assume that the left-hand side predicate holds
true and then we show that the right-hand side predicate
holds true as well. Let us denote by P any job-arrival pat-
tern that can be generated by the task set τ

�Ci
2 , Di

2 , Ti
2

�
.

Let ai,j denote the arrival time of the jth job of τi in P
(see the first schedule in Figure 4). The question is: “Given
all these arrival times ai,j , does there exist any schedule of
τ
�Ci

2 , Di
2 , Ti

2

�
in which all the deadlines of jobs are met?”.

To answer this question, let us create the job-arrival pattern
P � as follows. For every job-arrival ai,j , we create a job-
arrival a�

i,j = 2 × ai,j and P � is defined as the set of all the
job arrival times a�

i,j . One can easily see that the job-arrival
pattern P � can be generated by the task set τ �Ci, Di, Ti�.
Since the predicate feas(nmo-np, τ �Ci, Di, Ti� , rk,π) is true
we know that there exists a schedule for this job-arrival pat-
tern P � in which every job of each task τi ∈ τ �Ci, Di, Ti�
executes for Ci time units and meets its deadline (see the
second schedule in Figure 4). If s�i,j denotes the start-of-
execution time of the jth job of task τi ∈ τ �Ci, Di, Ti� in

that schedule, then we define by si,j =
s�i,j
2 the start-of-

execution time of the jth job of task τi ∈ τ
�Ci

2 , Di
2 , Ti

2

�
. It

Ci

τi Oi

τi Oi

2× Ti 2× Ti 2× Ti 2× Ti

Ti Ti Ti Ti Ti Ti Ti Ti

Ci Ci Ci Ci Ci Ci Ci

τi Oi

2× Ti 2× Ti 2× Ti 2× Ti

Ci idle Ci idle Ci idle Ci idle

1

2

3

ai,j a�i,j

ai,j

Figure 5: Visualization of the reasoning of Lemma 11.

can be easily seen that the resulting schedule for this task
set τ

�Ci
2 , Di

2 , Ti
2

�
also meets all the deadlines (see the third

schedule in Figure 4). Hence the lemma.

Lemma 11. If τ �Ci, Di, Ti� denotes a task set in which

each task τi is characterized by the 3-tuple �Ci, Di, Ti� and

shares the resource rk, then it holds that

feas(nmo-np, τ �Ci, Di, Ti� , rk,π) ⇒
feas(nmo-np, τ �Ci, Di, 2× Ti� , rk,π) (10)

Proof. We assume that the left-hand side predicate holds
true and then we show that the right-hand side predicate
holds true as well. Let us denote by P any job-arrival pat-
tern that can be generated by the task set τ �Ci, Di, 2× Ti�.
Let ai,j denote the arrival time of the jth job of τi in P
(see the first schedule in Figure 5). The question is: “Given
all these arrival times ai,j , does there exist any schedule
of τ �Ci, Di, 2× Ti� in which all the deadlines of jobs are
met?”. To answer this question, let us create the job-arrival
pattern P � as follows. For every job arrival ai,j , insert a
new job-arrival a�

i,j = ai,j + Ti (see the second schedule in
Figure 5 — marked by dotted arrows). One can easily see
that the job-arrival pattern P � composed of all the ai,j and
a�
i,j can be generated by the task set τ �Ci, Di, Ti�. Since

feas(nmo-np, τ �Ci, Di, Ti� , rk,π) is true we know that there
exists a schedule for this job-arrival pattern P � in which all
the deadlines are met. Thus, by copying this schedule but
replacing the execution of every job arriving at one of the
instants a�

i,j (for all task τi) with an idle time of length Ci,
we obtain a schedule for the task set τ �Ci, Di, 2× Ti� in
which all the deadlines are met as well (as seen in the third
schedule in Figure 5). Hence the lemma.

Corollary 1. Let τ �Ci, Di, Ti� denote a task set in which

each task τi is characterized by the 3-tuple �Ci, Di, Ti� and

shares the resource rk, and let τB,rk denote the set of phase-

B subtasks derived from τ �Ci, Di, Ti�. It holds that

feas(nmo-np, τ �Ci, Di, Ti� , rk,π) ⇒

feas(nmo-np, τB,rk , rk,πm × 2) (11)

Proof. The proof is a consequence of Lemma 10 and
Lemma 11. From Lemma 10, we know that:

feas(nmo-np, τ �Ci, Di, Ti� , rk,π) ⇒

feas(nmo-np, τ

�
Ci

2
,
Di

2
,
Ti

2

�
, rk,π) (12)

From Lemma 11, we know that:

feas(nmo-np, τ

�
Ci

2
,
Di

2
,
Ti

2

�
, rk,π) ⇒

feas(nmo-np, τ

�
Ci

2
,
Di

2
, Ti

�
, rk,π) (13)

Combining Expression (12) and Expression (13), we get:

feas(nmo-np, τ �Ci, Di, Ti� , rk,π) ⇒

feas(nmo-np, τ

�
Ci

2
,
Di

2
, Ti

�
, rk,π) (14)

Since dividing the execution requirements of the tasks by a
factor of 2 is equivalent to doubling the speed of the com-
puting platform, the following must hold:

feas(nmo-np, τ

�
Ci

2
,
Di

2
, Ti

�
, rk,π) ⇒

feas(nmo-np, τ

�
Ci,

Di

2
, Ti

�
, rk,π × 2) (15)

Combining Expression (14) and Expression (15), we get:

feas(nmo-np, τ �Ci, Di, Ti� , rk,π) ⇒

feas(nmo-np, τ

�
Ci,

Di

2
, Ti

�
, rk,π × 2) (16)

Now consider phase-B scheduling. For each resource rk ∈
R, since rk is accessed in a mutually exclusive way, all the
tasks that access resource rk must execute sequentially. So,
if tasks in τ sharing the resource rk are non-migrative-offline,
non-preemptive schedulable on platform π comprising pro-
cessors π1,π2, . . . ,πm with speeds s1, s2, . . ., sm (with πm

being the processor with highest speed) then the task set τ
is also non-migrative-offline, non-preemptive schedulable on
a single dedicated processor which is the fastest, i.e., πm.
This can be written as:

feas(nmo-np, τ �Ci, Di, Ti� , rk,π) ⇒
feas(nmo-np, τ �Ci, Di, Ti� , rk,πm) (17)

Applying the above expression to a task set τ
�
Ci,

Di
2 , Ti

�

and twice faster platform, we get:

feas(nmo-np, τ

�
Ci,

Di

2
, Ti

�
, rk,π × 2) ⇒

feas(nmo-np, τ

�
Ci,

Di

2
, Ti

�
, rk,πm × 2) (18)

Since the tasks in τB,rk have the same parameters as the
tasks in the task set τ

�
Ci,

Di
2 , Ti

�
(with CB

i ≤ Ci), the
following must hold:

feas(nmo-np, τ

�
Ci,

Di

2
, Ti

�
, rk,πm × 2) ⇒

feas(nmo-np, τB,rk , rk,πm × 2) (19)

Now combining Expressions (18) and (19), we get:

feas(nmo-np, τ

�
Ci,

Di

2
, Ti

�
, rk,π × 2) ⇒

feas(nmo-np, τB,rk , rk,πm × 2) (20)

Finally, merging Expression (16) and (20) yields:

feas(nmo-np, τ �Ci, Di, Ti� , rk,π) ⇒

feas(nmo-np, τB,rk , rk,πm × 2)

Hence the proof.

5.3 The Speed Competitive Ratio of the Algo-
rithm GIS-vpr

We now prove the speed competitive ratio of the proposed
algorithm.

Theorem 1. The speed competitive ratio of the algorithm,

GIS-vpr, is 4 + 6ρ.

Proof. We prove the claim by considering the scheduling
of tasks in each of the three phases independently and then
merging the results from these three scenarios.

Consider phase-A scheduling. Combining Lemma 7 and
Lemma 8, yields:

feas(nmo, τ,π) ⇒ sched(GIS-δ, τA,π × 4) (21)

Consider phase-C scheduling. Note that GIS-vpr assigned
a phase-C subtask, τC

i ∈ τC , to the same virtual processor
to which the corresponding phase-A subtask, τA

i ∈ τA, is
assigned (see line 13 in Algorithm 1). For convenience, let
GIS-δ-cp denote such a task assignment policy, i.e., using
GIS-δ to assign phase-A subtasks and ‘copying’ the assign-
ment for respective phase-C subtasks. Lemma 9 showed that
such an assignment preserves schedulability of the relevant
tasks. From Lemma 9 and Expression (21), we get:

feas(nmo, τ,π) ⇒ sched(GIS-δ-cp, τA ∪ τC ,π × 4) (22)

Now consider phase-B scheduling. For each resource rk ∈
R, since rk is accessed in a mutually exclusive way, all the
tasks that access resource rk must execute sequentially. So,
if tasks in τ sharing the resource rk are non-migrative-offline,
non-preemptive schedulable on platform π then the derived
task set τB,rk is also non-migrative-offline, non-preemptive
schedulable on a single dedicated processor which is the
fastest, i.e., πm but with its speed multiplied by a factor
of 2. Recall that this was formally proven in Corollary 1
(with the help of Lemma 10 and Lemma 11). Hence, we can
write:

∀rk ∈ R : feas(nmo-np, τ, rk,π) ⇒

feas(nmo-np, τB,rk , rk,πm × 2) (23)

If we add additional m− 1 processors (from the left-hand
side predicate) to the right-hand side predicate and leave
these additional processors idle, then the above result can
be re-written as:

∀rk ∈ R : feas(nmo-np, τ, rk,π) ⇒

feas(nmo-np, τB,rk , rk,π × 2) (24)

Let us add additional processors to the left-hand side
predicate of Lemma 6 and keep these processors idle while
scheduling. Using this information, we can rewrite Lemma 6
as follows:

feas(nmo-np, τ,π) ⇒ sched(nm-np-EDF, τ,π × 3) (25)

Applying Expression (25) to task set τB,rk and multiply-
ing the processor speeds by 2 on both left-hand and right-
hand side platforms, yields:

∀rk ∈ R : feas(nmo-np, τB,rk , rk,π × 2) ⇒

sched(nm-np-EDF, τB,rk , rk,π × 6) (26)

Combining Expression (24) and Expression (26), we get:

∀rk ∈ R : feas(nmo-np, τ, rk,π) ⇒

sched(nm-np-EDF, τB,rk , rk,π × 6) (27)

Let us combine the results obtained for task sets τA ∪
τC and τB,rk . “Dividing the processor speeds” in Expres-
sion (22) by 4 + 6ρ, we get:

feas

�
nmo, τ,π × 1

4 + 6ρ

�
⇒

sched

�
GIS-δ-cp, τA ∪ τC ,π × 2

2 + 3ρ

�
(28)

“Dividing the processor speeds” in Expression (27) by 4+6ρ,
we get:

∀rk ∈ R :

feas

�
nmo-np, τ, rk,π × 1

4 + 6ρ

�
⇒

sched

�
nm-np-EDF, τB,rk , rk,π × 3

2 + 3ρ

�
(29)

The specifications of the processors in the right-hand side
predicates of Expression (28) and Expression (29) match
those of the virtual processors that GIS-vpr created. Re-
call that GIS-vpr assigned phase-A and phase-C subtasks
to VPAC virtual processors and phase-B subtasks to VPB

virtual processors. Hence, combining Expression (28) and ρ
instances of Expression (29), yields:

feas

�
rmo, τ, R,π × 1

4 + 6ρ

�
⇒

sched (GIS-vpr, τ, R,π) (30)

Finally,“multiplying the processor speeds”in Expression (30)
by 4 + 6ρ yields:

feas (rmo, τ, R,π) ⇒
sched (GIS-vpr, τ, R,π × (4 + 6ρ))

Hence the theorem.

6. DISCUSSIONS AND CONCLUSIONS
We now highlight couple of interesting features of the pro-

posed solution.
First, the algorithm, GIS-vpr, by design, limits the num-

ber of migrations per job to at most two. Recall that GIS-vpr
assigns both phase-A and phase-C executions of a task τi
to the same VPAC virtual processor say, vpac ∈ VPAC, and
phase-B of the task τi to another VPB virtual processor say,
vpb ∈ VPB. Since the algorithm creates each virtual pro-
cessor from a single physical processor, it is clear that both
phase-A and phase-C of a task are assigned to the same
physical processor. Since the virtual processor in VPB to
which phase-B of task τi is assigned can come from a differ-
ent physical processor, migration of a task can only occur at
time instants when task τi requests or releases the resource.

Thus, the algorithm limits the number of migrations per job
to at most two.

Second, the solution proposed in this work can be used
as a framework. That is, the designer replaces algorithm
GIS with any partitioning algorithm for uniform multipro-
cessors (whose speed competitive ratio is known) and a new
speed competitive ratio can be derived for the resulting al-
gorithm accordingly. For example, by replacing GIS with
a fully polynomial-time approximation scheme [11] and by
changing the specification of virtual processors accordingly,
an algorithm with a better speed competitive ratio can be
obtained.

Finally, recall that we use only one VPB virtual proces-
sor (i.e., the one created from the fastest physical processor)
from each group while assigning the phase-B subtasks and
keep the rest of the VPB virtual processors idle. It is nat-
ural to think that creating phase-B virtual processors only
from the fastest physical processor might be a good idea.
However, it turns out that, from the perspective of speed
competitive ratio, it offers no benefit.

To conclude, in this work, we presented an algorithm,
GIS-vpr, to schedule implicit-deadline sporadic tasks on uni-
form multiprocessors where each task can access at most one
resource. We proved the speed competitive ratio of GIS-vpr
to be 4 + 6ρ. We also showed that this algorithm limits the
number of migrations per job to at most two. To the best
of our knowledge, this is the first algorithm for scheduling
tasks that share resources on uniform multiprocessors with
a proven speed competitive ratio. As part of the future
work, we intend to extend this algorithm to a generic re-
source sharing model where tasks can access more than one
resource and can access the resource more than once.

7. ACKNOWLEDGMENTS
This work was partially supported by FCT(Portuguese

Foundation for Science and Technology) and by ERDF (Eu-
ropean Regional Development Fund) through COMPETE
(Operational Programme ’Thematic Factors of Competitive-
ness’), within REHEAT project, ref. FCOMP-01-0124-FED-
ER-010045; by FCT and the EU ARTEMIS JU funding,
within RECOMP project, ref. ARTEMIS/0202/2009, JU
grant nr. 100202; by FCT and ESF through POPH, under
PhD grant SFRH/BD/66771/2009.

8. REFERENCES
[1] B. Andersson, S. Baruah, and J. Jonsson.

Static-Priority Scheduling on Multiprocessors. In
Proceedings of the 22nd

IEEE Real-Time Systems

Symposium, pages 193–202, 2001.
[2] B. Andersson and A. Easwaran. Provably Good

Multiprocessor Scheduling with Resource Sharing.
Journal of Real-Time System, 46(2):153–159, 2010.

[3] B. Andersson and E. Tovar. Competitive Analysis of
Partitioned Scheduling on Uniform Multiprocessors. In
Proceedings of the 15th International Workshop on

Parallel and Distributed Real-Time Systems, pages
1–8, 2007.

[4] S. Baruah and N. Fisher. The Partitioned
Dynamic-priority Scheduling of Sporadic Task
Systems. Real-Time Systems, 36(3):199–226, Aug.
2007.

[5] S. Baruah, A. Mok, and L. Rosier. Preemptively
Scheduling Hard-Real-Time Sporadic Tasks on One
Processor. In IEEE Real-Time Systems Symposium,
pages 182–190, 1990.

[6] K. Bletsas and B. Andersson. Notional Processors: An
Approach for Multiprocessor Scheduling. In
Proceedings of the 15th IEEE International Real-Time

and Embedded Technology and Applications

Symposium, pages 3–12, 2009.
[7] A. Block, H. Leontyev, B. Brandenburg, and

J. Anderson. A Flexible Real-Time Locking Protocol
for Multiprocessors. In Proceedings of the 13th IEEE

International Conference on Embedded and Real-Time

Computing Systems and Applications, pages 47–56,
2007.

[8] R. Davis, T. Rothvoß, S. Baruah, and A. Burns. Exact
quantification of the sub-optimality of uniprocessor
fixed priority pre-emptive scheduling. Real-Time

Systems, 43(3), Nov. 2009.
[9] M. Dertouzos. Control Robotics: The Procedural

Control of Physical Processes. In Proceedings of IFIP

Congress (IFIP’74), pages 807–813, 1974.
[10] T. Gonzalez, O. Ibarra, and S. Sahni. Bounds for LPT

Schedules on Uniform Processors. SIAM Journal on

Computing, 6(1):155–166, 1977.
[11] E. Horowitz and S. Sahni. Exact and Approximate

Algorithms for Scheduling Nonidentical Processors.
Journal of ACM, 23:317–327, 1976.

[12] M. Jones. What Happened on Mars?
http://www.ece.cmu.edu/ raj/mars.html, 1997.

[13] C. Liu and J. Layland. Scheduling Algorithms for
Multiprogramming in a Hard Real-Time Environment.
Journal of the ACM, 20:46–61, 1973.

[14] M. López, J. L. Dı́az, and D. F. Garćıa. Utilization
Bounds for EDF Scheduling on Real-Time
Multiprocessor Systems. Real-Time Systems Journal,
28:39–68, 2004.

[15] C. Phillips, C. Stein, E. Torng, and J. Wein. Optimal
Time-Critical Scheduling via Resource Augmentation.
In Proceedings of the 29th ACM Symposium on Theory

of Computing, pages 140–149, 1997.
[16] R. Rajkumar, L. Sha, and J. Lehoczky. Real-Time

Synchronization Protocols for Multiprocessors. In 9th

IEEE Real-Time Systems Symposium, pages 259 –269,
1988.

[17] G. Raravi, B. Andersson, and K. Bletsas. Provably
Good Scheduling of Sporadic Tasks with Resource
Sharing on a Two-type Heterogeneous Multiprocessor
Platform. In 15th International Conference on

Principles of Distributed Systems (OPODIS), Lecture
Notes in Computer Science, pages 528–543. Springer,
2011.

