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Abstract 
In this paper we consider global fixed-priority preemptive multiprocessor scheduling of constrained-deadline sporadic 
tasks that share resources in a non-nested manner. We develop a novel resource-sharing protocol and a corresponding 
schedulability test for this system. We also develop the first schedulability analysis of priority inheritance protocol for 
the aforementioned system. Finally, we show that these protocols are efficient (based on the developed schedulability 
tests) for a class of priority-assignments called reasonable priority-assignments. 
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Abstract-In this paper we consider global fixed-priority 
preemptive multiprocessor scheduling of constrained-deadline 
sporadic tasks that share resources in a non-nested manner. We 
deyelop a Doyel resource-sharing protocol and a corresponding 
schedulahility test for this system. We also develop the first 
schedulability analysis of priority inheritance protocol for the 
aforementioned s}'stem. Finally, we show that these protocols 
are efficient (based on the deYeioped schedulability tests) 
for a class of priority-assignments called reasonable priority­
assignmenL�. 

L INTRODUCTION 

Multlcore processors are today standard building blocks 
in embedded computer systems but their use for appli­
cations with real-time requirements is non-trivial. This is 
because although a comprehensive toolhox of scheduling 
theories arc available ror a computer with a single processor, 
such a comprehensive toolbox is currently not available 
for multicores. Real-time applications tend to be organized 
as a set of concurrently executing tasks which need to 
share resources (for ex<.unple data structures or 1/0 devices). 
Clearly, a resource-sharing protocol is a crucial component 
in multicore-based embedded real-time systems. Based on 
empirical lin dings about real-world applications [6 [ and 
based on the properties exhibited by the resource-sharing 
protocols that are used successfully in uniprocessor systems, 
we believe that such protocols for multiprocessors should 
fulfill the following requirements: 

RL The protocol should allow a task to request to hold 
a resource and then allow the task to release the 
resource; 

R2. At every instant, a resource should be held by at 
most one task: 

R3. The protocol should ensure the absence of dead­
locks; 

R4. The protocol should take advantage of the parallel 
processing capability of multicores; 

R5. The protocol should have low run-time overhead: 
R6, The protocol should work together with global 

fixed-priority preemptive scheduling, The rationale 
for this requirement is that such scheduling strate-
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gies are supported by many existing operating 
systems [13]; 

R7. The protocol should have an associated schedu­
lability test for global fixed-priority preemptive 
scheduling; 

R8. For priority-assignment schemes that are known 
to offer good performance (deadline monotonic 
(DM) [10], RM-US(x) [I ] and DM-US(x) [12]). the 
combination of the resource-sharing protocol and 
the schedulability test should have the property that 
a large number of task sets can be given pre-run­
time guarantees ror deadline satisraetion; 

R9, Performance (as statcd by RS) should be particu­
larly good for the important special case that the 
duration for which tasks need shared resources is  
small; i t  has been shown that this special case 
applies to most applications in practice [6]. 

The scientific community has already developed resource­
sharing protocols which fulfill these requirements for a 
uniprocessor system. For example, the priority i nheritance 
protocol (PIP) and priority cciling protocol (PCP) IISI 
and the stack resource policy (SRP) [21, Resource-sharing 
protocols [or multiprocessors have also been proposed [or 
Pfair scheduling [4], partitioned scheduling [17], [16] and 
global Earliest Deadline First (EDF) scheduling [4], There 
is  a protocol (called FMLP [4]) which could be used in 
global fixed-priority scheduling but no schedulability test i s  
available for such use. Tn fact, the state-of-art i n  global mul­
tiprocessor schedul ing currently offers no resource-sharing 
protocol with schedulability test. 

Therefore, in this paper, we propose a new resource­
sharing protocol for global fixed-pliority preemptive mul­
tiprocessor scheduling. called PARALLEL-PCP (P-PCP in 
short). We also propose two new schedulability tests; one for 
P-PCP and another for the previously known PTP. These new 
schedulability tests assume non-nested resource accesses; 
this assumption has been shown to he true in most practical 
applications [61, The prior state-of-art in schedulability anal­
ysis o[ global fixed-priority preemptive scheduling without 
resource sharing is the response-time ana1ysis by Bertogna 
and Cirinei [3]. We extend this analysis to incorporate the 
effects of resource sharing based on either P-PCP or PIP. 

P-PCP generalizes PCP to allow lower-priority tasks to 
execute even when PCP would forbid such an execution. 



For example \vhen a higher-priority task has locked some 
shared resource, then PCP docs not allow any lower-priority 
task to lock resources, whereas, as we will see, P-PCP can 
be configured to allow one or more lower-priority tasks to 
lock resources. In this way, unlike PCP, the new protocol P­
PCP allows the parallel processing capability of multicore 
platforms to be used with greater efficiency. 

A common problem in resource sharing in multiprocessor 
systems is that a job may get blocked multiple times by the 
same lower priority job. P-PCP and PIP both suffer from 
this as well but we show that for a certain class of priority­
assignments (which we call reasonable priorit}'-assignmenl, 

and which incl udes popular priority-assignments such as 
deadline monotonic (DM) [10], RM-US(X) [I] and DM­
US(:r) 1121), it holds that the numbcr of timcs that a job 
can be blocked by a lower priority job is small. Conse­
quently, the combination of the protocols discussed in this 
paper and their corresponding schedulability analysis fulfill 
requirements RI-R9. 

The remainder of this paper is organized as follows. Sec­
tion II presents thc systcm modcl and gives a background. 
Section III presents PIP and a new schedulability analysis 
for it under global fixed-priority preemptive scheduling. It 
also discusses the concept of reusonahle priority assignment. 
Using this PIP analysis as the basis, we then develop the 
schedulability analysis for P-PCP; this new protocol and 
its analysis are presented in Section TV. Finally, Section V 
gives concl usions. 

II .  SYSTEM MODEL AND BACKGROUND 

A. System model 

Task model. We assume that jobs arc generated by 
sporadic tasks 1141. and arc schcduled on a multiprocessor 
platfom1 comprised of Tn identical processors. A real-time 
system with shared resources is specified using p shared re­
sources RI, ... ,Rp, andn sporadic tasks T = {TI , ... ,Tn}. 
Each sporadic task Tj (1 ::; i :S. n) is characterized as 

(Ti' Cj, D;), where Ti denotes the minimum inter-alTival 
time, Ci the worst-case execution time, and f)i the relative 
deadl inc. Each job of task Ti rcquircs Ci units of processing 
capacity within Di time units from its release, and this 
processing capacity must be supplied sequentially, i.e., the 
job cannot be scheduled on more than one processor at 
any given time instant. Further, any two successive jobs 
of this task must be released at least Ti time units apart. 
Tn this paper we consider constrained-deadline tasks, i.e., 

IIi : lJi <; Ti• 
Multiprocessor scheduling. We consider global schedul­

ing, i.e., a job is not assigned to any specific processor; 
instead jobs which have arrived but whose execution have 
not finished are stored in a system-wide ready queue shared 
between processors. In this paper, we focus on global fixed­
priority preemptive scheduling. Every task has a base­

priorit.v. We assume that base priorities are unique and 

therefore we order tasks (with no loss of generality) such 
that ror every pair or tasks (Ti,':]) it holds that ir task Ti has 
higher base priority than task Tj then i < .i. We let the base 
priority of a task be a positive integer such that a low number 
signifies a high priority; i.e., priority level 1 i s  the highest 
priority level and priority level n i s  the lowest priority level. 
Protocols presented i n  this paper can temporarily raise the 
priority of a job. Such an elevated priority level is denoted 
as the effective-priority or thc job. 

Shared resources. One can distinguish between a 
resource-sharing protocol and a data-sharing protocol. A 
resource-sharing protocol ensures that at every moment, 
at most one job holds a shared resourcc. A data-sharing 
protocol ensures that the requests to perfonn operations 
on shared-data objects (for example add an element to a 
linked list or remove an element from a linked list) behave 
according to the correctness condition linemizability [8]. A 
resource-sharing protocol satisfies linearizability so i t  is also 
a data-sharing protocol, but a data sharing protocol is not 
neccssarily a rcsource sharing protocol; the protocol may not 
guarantee mutual exclusion. Therefore, this paper focuses on 
the more general concept or resource sharing (it can be used 
to share both resources and data objects). 

We assume that jobs can issue requests ror exclusive 
access to the shared resources RI, . .. : Rp. A request ror 
resource Rf.;: by a job J of task Ti is said to be granted 

as soon as J holds tbe resource. Once J has executed for 
the amount of time it requires R/;:, the request is said to 
be complete and the resource is  said to be released. We 
assume that a task holding a resource may be preempted by 
the processor scheduler but the task still holds the resource 
until it explicitly rcleases the resource. We assume that a 
resource-sharing protocol cannot force a job to release a 
resource. 

A joh of task T'i could request resource R", on multiple 
occasions during its exccution, and wc denote as J.Vu\; the 
maximum number of such requests by any single job of Tj. 
Associated with these requests is the worst-case duration of 
time for which a job uses resource RA:. We denote by Cu, 
the maximum (worst-case) resource usage time among all 
requests for resource Rk by jobs of Ti. Si milarly, let CTi,k 
denote the maximum total resource usage time for resource 
Rh by any single job of Ti (sum of resource usage times 
over all requests for resource RAJ. Further, we denote by 
RSi (c; {H" . . .  , Hp)) the set of all resources accessed 
by jobs of Ti, and denote by r H"l the largest base-priority 
among all tasks that access resource Rk. 

Wc make no assumption on thc order in which the 
resources are requested and we make no assumption on 
where in tbe execution of a job a request takes place. For 
example, two jobs of task Ti may both use resource RI and 
with our model, it i s  permitted that the request for HI is 
performed in the beginning of the first job but in the second 
job, the job executes a little without requesting a resource 



and then requests access to RI. 
In this paper we assume that accesses to shared resources 

are nun-nested, i.e., a job does not request for a shared 
resource whi1e holding another. Note that tasks in our system 
cannot be deadlocked as a consequence of this assumption. 
Nested resource accesses can be handled in our protocol 
however using group locks, just as in the state-of-art [4]. 

Job blocking. A job J of [ask T; is said [0 be directly 

blocked at time t on a request for resource Rk, if the three 
conditions below are true: 

1) at time t, job ,l i s  one of the In highest effective­
priority jobs with remaining execution time; 

2) at time t. resomce Rk is locked by a job having lower 
base-priority than J; 

3) job J made a request for resource HI.' and this request 
has not been granted until time t. 

Note that the above definition of blocking does not incl ude 
the case when RI;; is locked by a job having higher base­
priority than J. This is consistent with the notion or blocking 
(that of bcing associated with priority-inversion) in the 
standard literatme on uniprocessor systems [18[. [2[. A job 
is said to be read)' for execution whenever it is not directly 
blocked and not requesting a resource locked by a higher­
base-priority job. 

B. Related work 

For mUltiprocessor systems, there has been a growing 
interest in the area of resource sharing. Rajkumar et al. were 
the first to propose a resource-sharing protocol on multipro­
ccssors [17 [, [15 [, [16 [. Two variants of PCP were presented 
by them ror systems that use partitionedl fixed-priority 
scheduling. Several protocols related to PCP have since been 
proposed for systems scheduled under partitioned dynamic­
priority (EDI') scheduling. Chen and Tripati [5] proposed two 
extensions to the basic protocol, but these extensions were 
only valid for periodic2 (and not sporadic) task systems. 
Further. executions that use resources shared across proces­
sors (global shared-resource executions) were assumed to 
be non-preemptable and nesting was not allowed between 
such global resources and executions that use resources only 
shared within a processor (local shared-resource executions). 
In later work, L6pez et al. [II] presented an implementation 
of SRP for partitioned ED]-i. However, this study required that 
tasks sharing resources be assigned to the s.une processor. 
Gai et al. f7l also presented an implementation of SRP 
ror partitioned EDF and compared it to PCP. They have 
implemented a flrst-in-flrst out (FIFO) queue based spin­
lock for global shared-resource executions, which has the 
potential to waste processing time (tasks can busy-wait 

I Under partition ed scheduling, the tasks are first assigned to processors 
and uniprocessor scheduling algorithms and analysis techniques are used 
on cach processor. 

:2 A periodic Lask is similar to a sporadic task, excepl thalli now denotes 
thc cxact inccr-anival timc instcad of minimum. 

for other tasks accessing global shared-resources). Further, 
accesses to dirrerent global shared-resources are not allowed 
to be nested, and these executions are scheduled in a non­
preemptive manner. 

Tn resource-sharing under global scheduling algorithms, 
there have been a few studies in the past [6[, [9[, [4[. 

Under global 1'llC', Devi et aZ. [61 proposed a FIFO-queue 
based spin-lock implementation ror non-nested resource 
accesses. They also modifled the global EDF scheduler to 
enforce non-preemptive scheduling of executions that use 
shared resources. Holman and Anderson [9] have proposed 
techniques for implementing non-nested resource accesses 
under Pfair global scheduling. They allow FIFO-queue based 
access to locked resources and present different techniques 
for handling short and long shared-resource executions. 
Flexible Multiprocessor Locking Protocol (FMLP), proposed 
by Block et (II. [4[, can be used under partitioned EDF, 

global EDF, and pfair scheduling. They handle short shared­
resource executions using FIFO-queue based spin-locks, and 
long shared-resource executions using priority inheritance 
similar to PCP. Under partitioned scheduling, tbeir ap­
proach requires global shared-resource executions to be non­
preemptive. Further, nested resource accesses are required to 
have group locks (separately for short and long accesses), 
thus negating the benefits of nesting. 

Common to all these previous studies is that none of them 
offer a resource-sharing protocol for global scheduling with 
an associated schedulability test. 

III .  PIP AND ITS ANALYSIS 

In this section, we calculate an upper bound on the 
response time of a task i n  a system using global fixed­
priority scheduling witb resources shared under PIP [18]. 

Before presenting the analysis, we discuss PIP characteris­
tics specific to multiprocessors. 

A. PiP for multiprocessors 

Under PIP, whenever a job .J of task T; i s  directly blocked 
on a resource RI;:, the effective-priority of the job that i s  
holding resomce R "  (say .1' of task 7j) i s  raised t o  i (priority 
inheritance). In addition to direct blocking, job .J may also 
experience interference from other lower priority jobs under 
PIP. For instance, this can happen when the effective-priority 
of a lower priority job is raised above i because of priority 
inheritance. 

On uniprocessors, PIP ensures that J only experiences 
direct blocking (from job .1') and lower priority interference 
from carry-in jobs; jobs that are released before J's release 
time. This is because any lower-base-priority job that is  
released after J cannot execute until J finishes its processing 
requirements. In other words, only those lower-base-priority 
jobs that hold a resource when J is released, can potentially 
interfere with ,l's executions. 

On multiprocessors. PIP can cause interference even from 
lower priority jobs that are released after J's release time. 



This can be explained using the example shown in Figure I. 
It comprises of seven tasks Tl� ... ,T7, three shared resources 
HI, R2 and R:� and Tn = :� processors. Tasks T2 and T7 share 
resource HI, T;� and T(j share R2 and T4 and T5 share H?,. 
Task T1 does not use any shared resource. Initially, when 
task T4 requests resource Ih it gets blocked (time L1 in the 
figure). Prior to L}, jobs of task T6 eU1d T7 had their effective­
priorities i ncreased to 3 and 2 respectively. Further, a new 
job of task Tl is also released at time tl' Thererore in the 
interval (tl' t2l task T4 cannot execute, because three tasks 
with higher effective priority execute on the three available 
processors. In this interval T4 expe1iences inte1ference from 
jobs of tasks Ta and T7. Later on in the interval (t3, t4], 
the job of Tij that is directly blocking T4 executes. However 
during this interval, a new job of task T7 is released and 
i t  locks resource Ill. Then at t4 jobs of tasks T1, T2 and 
Ta arrive, and T2 blocks raising the effective priority of the 
new job of T7. Then in the interval (t'1� t.')], task 7'1 again 
experiences interference from a new job of task T7. 

B. Response time analysis under PIP 

In this section, we calculate an upper bound on the 
respon�e time of ta�k Ti, scheduled using global fixed-priority 
scheduler with resource sharing under PIP. We let the 
response time of a job be the time from when the job alTives 
until its execution has finished. We let the response time of 
a task be the maximum response time that is possible for 
jobs released by this task under the assumption that all jobs 
from all tasks are released according to the specifications 
given in Section II-A. We let RTi denote an upper bound 
on the response time of task Ti. 

Intuitively, RTj depends on three parameters: I) the 
execution time Cj of task Tj,. 2) the amount of time that a job 
of Ti needs to wait before being granted resources it requests, 
and 3) the amount of execution by other jobs that have higher 
effective-priority than Ti. Note that if there are less than m 
jobs at some time instant that execute at higher effective­
priority than Ti, then they do not delay the execution of 
Ti; only when all the processors are busy with such higher 
priority executions can the execution or Tj be delayed. 
Therefore, the maximum delay that jobs of higher effective­
priority can cause is the sum of such executions divided 
by the number of processors rn. Specifically, this maximum 
delay occurs when all the higher priority executions are 
packed from Jeft-to-right on them processors, followed by 
the executions of Ti. nT" can therefore be calculated as 
follows: 

lUi =Ci + time_to_\vait3ocresources_held_by_othectasks 
executions wiLh erTective-priorit.y higher than i 

+ ��--'---=---'--=--'-'-'--'c="----'----=-"---'-'�� 
rn 

(\) 

Elaborating on this equation gives us 

lUi =Ci + f) Hi + �V hp.;riSl>l 
+ 

vFhp;OSl>l + vFh]J�nsl'l + 1.VllJi 

'" 

where the terms are as described below. 

(2) 

• DB" denotes an upper bound on the amount or direct 
blocking that Ti experiences; 

• Hlhp�d8T) (direct shared-resource) denotes an upper 
bound on the amount of execution that tasks with a 
higher base-priority than T; can perform, when holding 
a resource that is also used by Ti (resources in RSi). 1J1Ji + {'Vhpjrisr) therefore is an upper bound on the 
amount of time that any job of Ti needs to wait before 
being granted resources it requests. 

• TVh.p;031') (other shared-resource) denotes an upper 
bound on the amount of execution that tasks with a 
higher base-priority than T; can perform, when holding 
a resource not in 'RS;; 

• g'hp,inH) (no shared-resource) denotes an upper bound 
on the amount of execution that tasks with a higher 
base-priority than Ti CeU1 perform, when they do not 
hold any shared resources; 

• HTtpt denotes an upper bound on the amount or exe­
cution that tasks with a lower base-priority than T/. can 
perform, when having an effective-priority greater than 

(osT! (rlsr) Ti. H7hPi - + Y'VhPi + lFlpi therefore is an upper 
bound on the amount of executions with effective­
priority higher than Ti. 

The variables above with 'W' denote 'workload'. We lind 
it convenient however to rewrite Equation (2) into 

(3) 

with the obvious connection of the variables to the 
variables in Equation (2). These variables with 'T' denote 
'interference'. In the remainder of this section, we derive 
equations for each of the aforementioned tenl1S. 

Workload upper hound for a task. To upper bound the 
total workload of a task Tl in the interval RTf, we use the 
dispatch and execution pattern shown in Figure 2. Under 
this pattenl, which was first considered by Bertogna and 
Cirinei [3], the carry-in job is assumed to execute as-Iate­
as possible and every successive job is assumed to execute 
as-soon-as possible within the interval. It is easy to see that 
this pattern maximizes the amount or execution rrom jobs of 
T[ in the interval of interest. We generalize this worst-case 
execution pattern as shown in  Figure 3, giving importance to 
a ce1tain portion x of the entire execution C1 (for example, 
executions that use shared resources). In this pattenl. we 
assume that the ;c units of relevant executions happen as­
late-as possible for the carry-in job and as-soon-as possible 
for every successive job within the interval. It is easy to see 
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that this pattern maximizes the <.unount of relevant executions 
of jobs of Tl in the interval of interest3. 

We define the following notations for each task 7Z, based 
on the general worst-case execution pattern. 

'T ( ) - It - :" + D, J 1\1 t,.T - T, 
W,lt, ,E) �xN,(t, x) + min {x, t - x + D, - T,N,(t, x)} 

(4) 

(5) 

N,(t,:c) denotes the total number of jobs of task TI whose 
x relevant units completely execute within the interval of 
length t (including the carry-in joh), W,tt, ,e) gives the total 
workload of jobs of task T" considering that :" of the C, 
execution units are relevant [or this computation. We also 
define W,tt, :r) = Il for t < Il, 

JThis pattern is not pessimistic hecallse the software code of task Tl 
could he such that in one path (carry-in job) the x relevant executions are 
performed al the end, whereas in ,mother

'
path (other jobs) lhese execuLions 

arc perform cd at thc bcginning. 

Waiting time before granting of resources. For every 
request of a shared resource RI.: E nSf, a job of task Ti may 
be directly blocked by some lower base-priority job J, Le" 
in the worst-case J locked Ilk just before it was requested 
by the job of 7i. Note that once the job of Ti is blocked, .J 
is executed with clTective-priority i. 1l1ercfore we can set 

lJiJ, � N"k max {C"d (6) 
(1)-;) A.(RI;;ERSd k:[{kERS;. 

Whenever a job of task Ti requests a shared resource Rl.,:, 
it may so happen that all the higher base-priority jobs that 
use RI;: also request the resource at the same time. In this 
case, Ti will have to wait for each of these resource requests 
to complete in sequence, even though other processors are 
available, Further, when Ric is being locked by these higher 
priority jobs, more such higher base-priority jobs could be 
released that also request resource Rh. All these requests 
must be satisfied before the job of 7j, can get access to Rk. 
Therefore we set 

(7) 

Higher effective-priority executions. The remaining in­
terference of higher base-priority jobs, i,e., executions with 
resources not shared with Ti (Ihp;08T)) and executions with 
no shared resources (Ihp1n.�r)), can be expressed as: 



When a job J of task 7i is either blocked or executing on 
one or the Tn processors, it may so happen that a joh with a 
base-priority lower than J executes on another processor and 
locks a resource. Later on, this lower priority job may have 
its effective-priority higher than that of J, thereby causing 
interference to .l's execution. This can happen even when 
the resource locked by the lower priority job is not used by 
J. Tn the worst-case, it is then possible that all those shared­
resource executions or lower priority jobs whose crreetive­
priority can be higher than i, may interfere with J. This 
interference can therefore be upper bounded as fo1lows: 

Ll>i W, (liT" LxJI"cRSIArR" l<i CT"x) 
Ill'i = (10) 

'm 
Improvement for high hase-priority tasks. Equalion (3) 

can be further improved for tasks that have the .,n highest 
base-priorities. This is because such tasks do not suffer 
from inte1ference due to execution of lower p1iority tasks 
(Ilpi), no shared-resource execution of higher priority tasks 
(I hp�nsJ») and other shared-resource execution of higher 
priority tasks (Ihp�03J'». These can bc explained as roHows. 
Consider any task 7;, 1 :s; i ::S In. For a job with base­
priority lower than i to have effective-priority higher than 
i, some job with base-priority higher than 'i must block on 
a resource request. Therefore, at any time instant, there can 
be at most i-I jobs whose effective-priorities are increased 
from lower than i to higher than i. Suppose there are k such 
johs at some time instant. Then it must also hold that there 
are k jobs with base-priority higher than 'i that are blocked. 
In other \vords, the total number of ready jobs that have 
effective-priority higher than i Gobs competing with task 
Ti) can never be greater than i -1 at any time instant. Since 
there are tn (> i - 1) available processors, none of these 
i - 1 jobs can interfere \\,ith the jobs of T", except when they 
are using shared resources that are also requested by jobs 
of 7". The following theorem is a direct consequence of the 
above discussions. 

Theorem 1: Consider a constrained deadline sporadic 
task system T { T1 � . , . , Tn} that share resources 
Rl, ... , Rp under PIP. Let this system be scheduled on 'm 
processors using a global fixed-priority preemptive scheduler 
such that task Ti has higher base-priority than task Tj for all 
i < j. Then RTi is given as: 

{C\ + DEi + Ihp�d'�f") 'f :S '!II 

RTi = C\ + DEi + Ihp�d'�f") (11) 
+Ihp�OIW) + Ihp�n,!'I') + IlIh Otherwise 

where IJRi, IhJf;(L�r), Ihp;oST), Ihp.;rL�r» and IlPi are 
given by Equations (6). (7). (8), (9) and (10) respectively. 

C Reasonable priority as,\,ignmenf 

Consider the calculations in Equation (11) which describe 
the response time upper bound of a job of task 7i' There is a 

term which describes lower priority interference (TlpJ and 
it states that a lower priority task 7[ may interrcre with the 
job of 7;, multiple times. It may appear that a lower priority 
task delays Ti, as much as if its executions with any shared 
resource was done at a priority higher than 7;. And it may 
appear that this would have a severe negative effect on the 
ability to meet deadlines, It turns out (as will be seen in 
this section) that this is not the case for a class of priority­
assignments called reasonable priority assignment. 

Definition I: A priority-assignment to tasks is reasonahle 

if Di :s; DJ for every pair (Ti,Tj) such that Ti and 7j arc two 
of the '(I.-Tn lowest base-priority tasks and 7i has higher base­
priority than T.j. 

The definition of reasol1nble priority-assixnment is in­
teresting because it encompasses the priority-assignment 
schemes DM [10], RM-US(X) [I] and DM-US(X) [12]. which 
are all known to offer good pe1formance among global fixed­
priority schedulers. 

Lemma 1: For a reasonable priority-assignment, we can 
calculate Equation (10) using: 

(12) 

Proof When we calculate RTi, we are only interested 
in perrorming calculations ror R'J:j :s; Di because otherwise 
we cannot guarantee that deadlines are met. Therefore, in 
the expressions used for calculating Ilpi we can assume 
RTi :s; D;,. We also know that Dj :s; Dj because the priority­
assignment is reasonable, where j is the index of a task 
with lower base-priority than Tj, Further, we also know that 
Dj :s; Tj because of the assumption of constrained-deadline 
tasks. Comhining all these observations gives us that in the 
calculation of Ilpi., we can assume R'1j, ::S '1.i. Then, using 
the knowledge that RT; C; T, in the expression for W,(t.:r) 
gives us the statement of the lemma. • 

Thus we have seen that the use of a reasonable priority­
assignment is efficient because a job will only experience 
at most two interferences from a lower base-priority job for 
each shared resource, 

TV, P-PCP ANI) ITS ANALYSIS 

In this section we present the P-PCP resource-sharing 
protocol and calculate an upper bound on the response 
time of a task in a system that uses global fixed-priority 
scheduling and P-PCP. 

A. P-PCP 

0:; (1 ::S i :s; n) denotes a tuning parameter in P-PCP 
that offers a trade-off between the allowable lower-priority 
inte1ference for jobs of T; and the amount of executions 
that can be scheduled in parallel. A lower value for Cl:i 
implies that fewer jobs with base-priority lower than i 
are simultaneously allowed to execute at effective-priority 
higher than 'r. Although this reduces the interference for jobs 



of 7i, it also reduces the number of jobs that can be executed 
in parallel. Parallelism can be increased by using a higher 
value for 0' i, which also increases the interference for jobs 
of Ti. 

BeCore presenting P-PCP, we introduce some notations 
below which are defined for each time instant. 

• PT}�: Effective-priority of currently active job of task 
Ti. PTYi = 'i when Ti does not hold a resource and it 
can he modi lied by the protocol otherwise, temporarily 
raising the priority of the job. 

• P PTY;: The pseudo effective-priority of currently ac­
tive job of task Ti. It is the largest effective-priority 
that the job can have when it is holding the resource 
that it has currently locked. If it has not locked ,my 
resource, then the pseudo effective-priority is the same 
as its base-priority. If the job has locked resource Ilk, 
then PP1'Y; = rRk 1-

• POPUP;: n,e number of jobs with base-priority lower 
than i, but pseudo effective-priority higher than i. 

• IIPR;: The number of jobs with base-priority higher 
than 'i that have currently locked some shared resource. 

• MIN C;: A task index j such that among all jobs 
with base-priority lower than i and pseudo effective­
priority higher than '14, the job corresponding to this 
index (say holding resource R,J has the smallest worst­
case resource usage time (Cj,,,.). 

The main idea of P-PCP can be explained as follows. 
A job is allowed to lock a shared resource if the 

following invariant remains true: the total number of 

jobs with base-priority less than i and pseudo effective­
priority greater than i is at most (}'i (PO PU P; :S. (l'i) 
for all i. Otherwise the job is suspended. even if the 
resource being requested is available. If the aforementioned 
invariant remains true, then it is guaranteed that jobs of 
task Ti will not experience lower-priority interference from 
more than C\:i jobs simultaneously. This reduced interference 
comes at a price however; that of suspension of jobs even 
when the requested resource is not locked. In order for the 
arorementioned invariant to hold in our protocol, we require 

that the (}:'i, 's satisfy the following properties: each (Xi is 

a positive integer and 0:1 2: 0:2 2: ... 2: 0."(1. 
The global Jlxed-priority scheduling algorithm with P­

PCP is given by Algorithm 1. This algorithm executes at 
every time that any of the following events occurs: (i) a job 
arrives, (ii) a job finishes execution, (iii) a job requests a 
resource ,md (iv) a job releases a resource. The algorithm 
prioritizes jobs based on their effective priorities at the 
current time, i.e., the currently active job of task Tj has 
higher priority than the currently active job or task Ii ill 
PT}j < P'FYj. If a joh is not requesting any resource at 
the current time, then it is immediately scheduled (Lines 4 
and 5). On the other hand, if it requests a re�ource that 

4Hach such job has locked a 5hared resource. 

is currently locked, then PIP is employed (Line 9). If the 
resource heing requested is not locked, the condition in 
Line 11 is used to make a decision. A job J' with lower 
base-priority than J has higher pseudo effective-priority, if 
it has locked a resource which can also be requested by 
a job that has higher base-priority theUl J. And therefore 
it is possible that .1' contributes to PO PU Pj for some j, 
s.t. 1 :S. j < i. Similarly, jobs with base-priority higher 
than i that have locked some shared resources, may also 
contribute to POPU PJ for some j, S.t. 1 :<: .i < i. If there 
are already (t; such jobs (HPR; + POPUP; 2" 0.;), then 
granting this resource to job .1 may lead to a violation of the 
invariant POPU Pj :<: OJ. This follows from the fact that 
J can also potentially contribute to POPUPj. Therefore 
the request is granted in Line 12 only when there are at 
most 0-i - 1 « OJ) such jobs. Note that the condition in 
Line 11 is not necessary (but only sufficient) to guarantee 
the invariant. We however usc it because this enables us to 
derive the �chedulability te�t in Section IV-B. If J is denied 
access to the resource and suspended, then the effective­
priority of the job corresponding to task index AIINC; is 
increased to i (Line 15). This ensures that the number of 
jobs in PO PU Pi is reduced as quickly as possibles, thereby 
reducing the suspension time of Ti. 

Algorithm 1 Global fixed-priority scheduling with P-PCP 
Input: Vi : 1 ::; i ::; n, ni., the tuning parameters . 

1: for each job J in priority order (based on PlY) do 
2: Let i denote the index of the task to which J belongs. 
3: if there me unassigned processors then 
4: if J is not requesting any resource then 
5: Assign a processor to J. 
6: else 
7: Let Rk denote the resource that J is requesting. 
)3: if ilk is locked then 
9: PTlj +--- i, if RI.: is locked by Ij nnd j > i. 

10: else 

11: if IIPRi + POPUPi < 0i then 
12: 
13: 
14: 
15: 
16: 

Assign a processor to J. 
else 

if POPUPi > 0 then 
PTl'j ;- i, where j = J.UI.iVC1. 

end if 
17: end if 
18: end if 
19: end if 
20: end if 
21: end for 

We now illustrate P-PCP using an example. It comprises 
of tasks 71: . . .  : 78, shared resources Ri,···, R3 and 'Tn = 3 
processors. Tasks 73 and 78 request resource Ill. 74 and 
77 request R'b and 15. To and T'2 request resource R:�. The 
schedule of this example under PIP is shown in Figure 4 
and its schedule under P-PCP is shown in Figure 5. Under 

5 AL each lime insLaIll, M 1 He'!, poims lO a job which has the �mallesL 
resource usage time among all jobs ill POPUP1• 
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Figure 4. Example under PIP (m = :1) 

P-PCP we have assumed that Q'i = 3 for all i s.t. i s;: 5 and 
0:; = 2 otherwise. Under PIP, resource request or task 77 at 
time t is granted, which then leads to a large lower priority 
interference for task 75. In contrast, under P-PCP, the 
request is not granted and task 77 is suspended. As a result, 
the lower priority interference of task 7G reduces, thereby 
decreasing its response time. This example illustrates how 
Qi helps to reduce the lower priority interference for task 
75, at the expense of introducing suspension delay for task 
77. The rollowing lemma proves the invariant preserved by 
P-PCP. 

Lemma 2: At every time instant and for each task Ti, 
POPUP, <; Cl,. 

Proof We prove this lemma by contradiction. Suppose 
there exists some time t and task 7i for which the above 
condition does not hold. Then there exists some time instant 
t' (<; t) such that: I) the above condition was true an 
instant before tt (it was certainly true at time 0), 2) a 
request ror resource Rk by a task 71 with 1 > .; was 
granted at tf and as a result of this action P PT1� became 
smaller than'; (if there are many such tasks then consider 
the one with the lowest base-priOlity among them), and 3) 
the above condition was false at an instant after l.'. This 
follows from the fact that pseudo effective-priorities (and 
therefore POPUPi) increase only when a resource request 
is granted. Just herore task 7{ was granted resource Rk, 
there were at least (}:i jobs that had base-priority lower 
than i but pseudo effective-priority greater than .;. Suppose 
x of these 0:'1 jobs have base-priOlity smaller than land 
the remaining have base-priority between I and 'i. Then 
H P 11, :> (t, - X and POPU P, :> x by definition. Therefore 
HPR, + POPUP, :> (Xi :> Ct[. The last inequality follows 
from the fact that Ti has higher base-priority than T/. Thus 

we have arrived at a contradiction because the job of task 
71 should have been suspended according to Line 11 or 
Algorithm I. • 

B. Response time analysis under P-PCP 

We now derive the response time upper bound for task 
7i. scheduled using global fixed-priority scheduling with 
resources shared under P-PCP. Higher priority interference 
from no shared-resource execution (Ihp,;lIRI") is identical 
to that under PTP, because P-PCP behaves identical to 
PIP when dealing with execution that docs not usc any 
shared resource. Similarly, direct blocking (DBJ and higher 
priorit� interference from direct shared-resource execution 
(Ihp�( 8T") are identical to that under PIP. This follows from 
the fact that even under P-PCP a job of task 7i. requesting 
resource ill., has to wait for at most one lower priority job 
(the one with largest resource usage time) and all higher 
priority jobs to release the resource. 

For each request or a resource R./;; by a job or task Ti, the 
job may suspend when condition in Line I I  of Algorithm I 
is violated. If the job is suspended, then there are two con­
tributing factors to consider: 1) suspension from lower base­
priority jobs; PO PU Pi (considered here), and 2) suspension 
from higher base-priority jobs; H PHi (considered later). In 
the worst-case, the job has to wait for every lower priority 
joh from POPU Pi to I1nish in sequence. Note that once the 
joh or Ti is suspended, no new lower priority job (say or task 
7t) can lock resources such that it increases PO PrJ Pi.- This 
is because H P R, + PO PU PI in this case would be at least 
as much as Ctl (� 0'1). Since POPU Pi. s;: Of is always true, 
there are at most ni such lower priority jobs. Therefore, the 
maximum suspension time from lower base-priority jobs is 
bounded by 
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liigure 5. Example under P-PCP (m = 3) 

S'U,Sf,k = Sum of G:i largest values in {(7" ,; I (l > i) /\ (Rj I- R,.)}  
(13) 

Then the total suspension time over an resource requests 
is  bounded by 

(14) 

k:[{k E::RS,: 

To bound the suspension time from higher priority jobs, 

we consider the interference Ihp�OijT) .  Note that only shared 
resource execution of higher priority jobs can contlibute to 
suspension time of task Ti (these are the jobs in H Pili). Two 
observations can be made for this interference. I) At each 
time instant that the job of Ti is suspended, all the jobs in 
H P R; are scheduled. This is because they all have priority 
higher than that of T, and they all hold shared resources. 2) If 
in any time interval the number of such higher priority jobs 
is smaller than 0:; (II P Ri < nd, then the job of Tj, cannot 
be suspended in that interval unless PO PU Pj > O. In the 
latter case, SUSi defined above accounts for the suspension 
time. Therefore, suspension from higher priority jobs can be 
bounded as 

To bound the lower priority interference IIp,j, we use the 
same equation as for PIP which was shown in  Equation (10). 
For reasonable priority-assignment schemes however, it is 
possible to do better when tasks have deadline equal to 
period. Note that, under reasonable priority assignment, the 
number of jobs from a task with priority lower than Tj 

that can inherit a priority higher than Ti is at most two 
Uust like we showed in Section Ill-C). Further, since we 
use P-PCP, there can be at most ni lower priority jobs 
that can simultaneously have priority higher than Tj . Let us 
imagine the worst-case situation for PTP as characterized by 
Equation (10). Let us choose one of the tasks Tl with priority 
lower than Ti. We can move the arrival times of jobs of task 
Tl to the right and observe how HTt ( . . . ) changes. Continue 
doing this as long as W, ( . . . ) docs not change. Once ,V, ( . . . ) 
starts to change however, stop and observe this amount of 
shifting that has been done; call this value shiftJ. Note that 
after this value, for ever time unit more of shifting, the 
amount of work done by T[ i s  reduced by one. Compute the 
value shifLI for each task Tl with base-priority lower than Ti. 
Let A denote a tuple of tasks; these tasks all have lower base­
priority than Tj and arc sorted in ascending order of f-ihift,!. 
For the first IJ, tasks in A. usc W,(" ,) from PIP. For the 

remaining tasks use vV, (RT/, E:r:( R." ERSdA(lR", l <i) CTI,.r) 
where RTf = RTi - mill!>! E:r:( H;,; ERS:jA(lH",l<i) CT".T' 
Thus lower priority interference can be bounded by 

IIp, �(l>{)" iC.� lFi ( RTi '�x;1 FI,,, CR,S()J\(- R", - < ' I  C'T1 ,,,, )  
'iTo 

m, 
(16) 

Whenever the total number of lower priority tasks is 
strictly greater than 0i (n - i > OJ), Ilpi has a tighter 
bound under P-PCP when compared to PIP, assuming task 
deadlines are equal to their respective periods and reasonable 
priority assignments are used. The following theorem is a 
direct consequence of above discussions. 



Theorem 2: Consider a constrained deadhne sporadic 
task system T fTb ' "  : Tn} that share resources 
H" . . . , H" under P-PCP. Let this system be scheduled 
on Tn processors using a global fixed-priority preemptive 
scheduler such that task Tr has higher base-priority than task 
Tj for all i < .i . Then liT; is given as: 

RTj = Cj + DBi + S'IL"i + Ihp�d,�r) + IhPl"''''1 + Ihp,jYlxr') + Il1h 
( 1 7) 

h DB II (dST) II (o.�r) II . (n.�r) . w ere j" 8V . .  "i, IPi ' IPi , IPi are gIven 
by Equations (6), (14). (7), (15) and (9) respectively. And 
Tlp'i i s  given by Equation ( 1 6) if priority assignment i s  
reasonable and tasks have deadllne equal to period, and by 
Equation ( 1 0) otherwise. 

Configuring p·PCP. When Qi = 1 for all i, 1 "" i "" n, 
P-PCP is identical to PCP. Similarly, when O:i, = II. [or all 
i, 1 :S -£ :S 'fI , P-PCP is identical to PIP. It follows [rom 
the fact that in this special case. P-PCP does not induce 
any lower pliOlity suspension (S'U.Si = 0) and the bounds on 
Ilpi and Il"tp,;()'� [') under P-PCP are identical to those under 
PTP. 

Tn general, it is always beneficial to set Cti = r� for the 
Tn highest base-priority tasks (i "" m). This follows from 
h t· h II II Inu) II (o.,r) 0 t' t e act t at PI. = 7Pi = 7Pi = 8U8t = or 

these tasks when Cti = n. For other tasks we consider setting 
OJ = In. In this case, the bound on Ihp;oST) under P-PCP 
is  identical to that under PIP. The bound on Ilpi under P­
PCP, on the other hand. can be tighter in  comparison to PIP. 
However, since P-PCP also has the additional suspension 
term SUSi, the protocols cannot be compared based on the 
given analysis. 

V. CONCLUSIONS 

We have presented a new resource-sharing protocol, P­
PCP, and developed schedulability analysis for global fixed­
priority preemptive multiprocessor scheduling under P-PCP 
as well as under PTP. These fulfill many of the requirements 
that application developers have; in particular the new pro­
tocol allows the parallel processing capability of multicores 
to be better used. 

We left two important questions open: 

Q l .  How to tighten the upper bound on the lower­
priority interference and the suspension term in P­
PCP" 

Q2. Is it possible to design an efficient resource-sharing 
protocol and corresponding schedulability analysis 
for nested resource requests? 
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