

Response time analysis of Multiframe mixed
criticality systems with arbitrary deadlines

Journal Paper

*CISTER Research Centre

CISTER-TR-200603

2020/11

Ishfaq Hussain*

Muhammad Ali Awan*

Pedro F. Souto

Konstantinos Bletsas*

Benny Åkesson*

Eduardo Tovar*

Journal Paper CISTER-TR-200603 Response time analysis of Multiframe mixed criticality ...

© 2020 CISTER Research Center
www.cister-labs.pt

1

Response time analysis of Multiframe mixed criticality systems with arbitrary
deadlines

Ishfaq Hussain*, Muhammad Ali Awan*, Pedro F. Souto, Konstantinos Bletsas*, Benny Åkesson*,
Eduardo Tovar*

*CISTER Research Centre

Polytechnic Institute of Porto (ISEP P.Porto)

Rua Dr. António Bernardino de Almeida, 431

4200-072 Porto

Portugal

Tel.: +351.22.8340509, Fax: +351.22.8321159

E-mail: hussa@isep.ipp.pt, awa@isep.ipp.pt, ksbs@isep.ipp.pt, kbake@isep.ipp.pt, emt@isep.ipp.pt

https://www.cister-labs.pt

Abstract
The well-known model of Vestal aims to avoid excessive pessimism in the quan-tifi_cation of the processing
requirements of mixed-criticality systems, while stillguaranteeing the timeliness of higher-criticality functions. This
can bring im-portant savings in system costs, and indirectly help meet size, weight andpower constraints. This
efficiency is promoted via the use of multiple worst-case execution time (WCET) estimates for the same task, with
each such esti-mate characterized by a con_fidence associated with a different criticality level.However, even this
approach can be very pessimistic when the WCET of suc-cessive instances of the same task can vary greatly
according to a known pat-tern, as in MP3 and MPEG codecs or the processing of ADVB video streams.In this
paper, we present a schedulability analysis for the new multiframemixed-criticality model, which allows tasks to
have multiple, periodically re-peating, WCETs in the same mode of operation. Our work extends both theanalysis
techniques for Static Mixed-Criticality scheduling (SMC) and Adap-tive Mixed-Criticality scheduling (AMC), on one
hand, and the schedulabil-ity analysis for multiframe task systems on the other. A constrained-deadlinemodel is
initially targeted, and then extended to the more general, but alsomore complex, arbitrary-deadline scenario. The
corresponding optimal prior-ity assignment for our schedulability analysis is also identi_fied. Our proposedworst-
case response time (WCRT) analysis for multiframe mixed-criticalitysystems is considerably less pessimistic than
applying the static and adaptivemixed-criticality scheduling tests oblivious to the WCET variation
patterns.Experimental evaluation with synthetic task sets demonstrates up to 20%and 26:9% higher scheduling
success ratio (in absolute terms) for constrained-deadline analyses and arbitrary-deadline analyses, respectively,
when com-pared to the best of their corresponding frame-oblivious tests.

Noname manuscript No.
(will be inserted by the editor)

Response Time Analysis of Multiframe

Mixed-Criticality Systems with arbitrary deadlines

Ishfaq Hussain · Muhammad Ali Awan ·

Pedro F. Souto · Konstantinos Bletsas ·

Benny Akesson · Eduardo Tovar

Received: date / Accepted: date

1 Abstract

The well-known model of Vestal aims to avoid excessive pessimism in the quan-
tification of the processing requirements of mixed-criticality systems, while still
guaranteeing the timeliness of higher-criticality functions. This can bring im-
portant savings in system costs, and indirectly help meet size, weight and
power constraints. This efficiency is promoted via the use of multiple worst-
case execution time (WCET) estimates for the same task, with each such esti-
mate characterized by a confidence associated with a different criticality level.
However, even this approach can be very pessimistic when the WCET of suc-
cessive instances of the same task can vary greatly according to a known pat-
tern, as in MP3 and MPEG codecs or the processing of ADVB video streams.

Ishfaq Hussain
CISTER Research Center and ISEP/IPP, Porto, Portugal.
E-mail: hussa@isep.ipp.pt

Muhammad Ali Awan
CISTER Research Center and ISEP/IPP, Porto, Portugal.
E-mail: awa@isep.ipp.pt

Pedro F. Souto
University of Porto, FEUP-Faculty of Engineering and CISTER Research Centre, Porto,
Portugal.
E-mail: pfs@fe.up.pt

Konstantinos Bletsas
CISTER Research Centre and ISEP/IPP, Porto, Portugal.
E-mail: ksbs@isep.ipp.pt

Benny Akesson
ESI (TNO), Eindhoven & University of Amsterdam, Amsterdam, the Netherlands.
E-mail: benny.akesson@tno.nl

Eduardo Tovar
CISTER Research Centre and ISEP/IPP, Porto, Portugal.
E-mail: emt@isep.ipp.pt

In this paper, we present a schedulability analysis for the new multiframe
mixed-criticality model, which allows tasks to have multiple, periodically re-
peating, WCETs in the same mode of operation. Our work extends both the
analysis techniques for Static Mixed-Criticality scheduling (SMC) and Adap-
tive Mixed-Criticality scheduling (AMC), on one hand, and the schedulabil-
ity analysis for multiframe task systems on the other. A constrained-deadline
model is initially targeted, and then extended to the more general, but also
more complex, arbitrary-deadline scenario. The corresponding optimal prior-
ity assignment for our schedulability analysis is also identified. Our proposed
worst-case response time (WCRT) analysis for multiframe mixed-criticality
systems is considerably less pessimistic than applying the static and adaptive
mixed-criticality scheduling tests oblivious to the WCET variation patterns.
Experimental evaluation with synthetic task sets demonstrates up to 20%
and 31.4% higher scheduling success ratio (in absolute terms) for constrained-
deadline analyses and arbitrary-deadline analyses, respectively, when com-
pared to the best of their corresponding frame-oblivious tests.

2 Introduction

Recent trends in many real-time embedded domains (e.g., automotive and
avionics) favor mixed-criticality systems, where computing tasks of different
criticalities co-exist on the same processor. A task’s criticality is a measure of
the severity of the consequences of that task failing, in conjunction with the
probability of such a failure. Accordingly, tasks of higher criticalities are de-
veloped according to stricter (and costlier) methodologies, and the same holds
for the techniques for estimating their worst-case execution times (WCETs).
Additionally, scheduling arrangements have to ensure that, even when sharing
system resources, a misbehavior of a lower-criticality application cannot affect
the timing behavior of a higher-criticality application. One arrangement that
ensures that, while also promoting efficient platform utilization, is the mixed-
criticality task model of Vestal. The two most established variants of that
model are the static variant with execution monitoring [1] and the adaptive
mode-based variant [2].

In the simpler static variant of Vestal’s model, each task has a criticality
level and a WCET estimate for each criticality level lower or equal to its
own. At run-time, the execution times of all tasks are monitored and any job
that exceeds the WCET estimate corresponding to the degree of confidence
appropriate to its criticality level is killed. However, future jobs of the same
task will still arrive as normal. For schedulability analysis, the classic worst-
case response time (WCRT) recurrence is employed [3], assuming, for all tasks,
WCET estimates with the degree of confidence appropriate for the lowest
criticality level of the interfering task and of the task under analysis.

In the simplest case, the adaptive model involves two criticality levels and
two modes (L and H) of operation. In L-mode, all tasks are present andWCETs
are assumed for them which are probably, but not provably, safe. In case any

task executes for its assumed WCET estimate without completing, a mode
switch is triggered. Then, low-criticality tasks are discarded, and provably
safe, but potentially very pessimistic, WCETs are assumed for the remaining
tasks. In each mode, all tasks present must provably meet their deadlines,
assuming the respective WCET estimates for that mode. This arrangement
considerably mitigates the inefficiency in platform utilization (and commen-
surate over-engineering) that results from the overwhelming pessimism in the
derivation of provably safe WCET estimates for high-criticality tasks.

Both of the above scheduling arrangements promote efficient processor uti-
lization. However, there is another source of inefficient resource use, which the
present article intends to remedy. Namely, when the WCETs of successive jobs
of the same task vary greatly by design, according to a known pattern. For
such systems, assuming the maximum of the WCETs for all instances of the
task (even the ones for which we know it is an overestimation) would grossly
inflate the processor requirements. For example, in MPEG codecs [4], differ-
ent kinds of frames (P, I or B) appear in a repeating pattern, with very dif-
ferent worst-case processing requirements. Moreover, Avionics Digital Video
Bus (ADVB) [5] frames are transmitted uncompressed, to minimize encod-
ing/encoding delays, but the fact that distinct types of ADVB frames exist
(e.g., data, audio or video) implies different end-node processing requirements
for each type. In other real-time industrial applications [6,7], small amounts of
data are collected periodically and then summarized and stored in batch after
N periods, in an operation that involves costlier processing than that in the
preceding periods. The multiframe task model, invented by Mok and Chen [8],
and its analysis provide a way for efficiently dealing with patterned WCET
variations in the single-criticality scheduling. However, until now this model
and its existing analysis did not consider the scheduling of mixed-criticality
tasks.

Under the multiframe model, a task with N frames is described by N
different frame WCETs that repeat, in a cyclic manner, in the sequence of
its jobs. The well-known Liu and Layland task model [9] then becomes a
special case, where the number of frames is one for all tasks. The schedulability
analysis for the multiframe model leverages the information about the pattern
of frame WCET variation and achieves greater accuracy, compared to the
frame-agnostic application of analysis for the Liu and Layland task model.

The present work combines the mixed-criticality model of Vestal

with the multiframe model, in order to achieve similar improvements in the
schedulability testing of mixed-criticality systems whose tasks’ WCETs vary
according to known patterns. Our four main contributions are the following:

1. The multiframe task-model is combined with the mixed-criticality Vestal
model. It is termed the multiframe Vestal model for mixed-criticality sys-
tems, in its static and mode-based variants.

2. Based on the principles of mixed-criticality scheduling and established
schedulability tests (SMC, AMC-rtb and AMC-max), we developed adap-
tive multiframe mixed-criticality schedulability analyses, SMMC, AMMC-

rtb and AMMC-max, for fixed-priority-scheduled mixed-criticality tasks
deployed on a uniprocessor hardware platform. We initially target a constrained-
deadline model, and subsequently extend the analysis for the more general
but more complex scenario of arbitrary deadlines.

3. We identify the optimal priority assignment scheme, for use in conjunction
with our schedulability analysis.

4. In experiments with synthetic workloads, the proposed analyses are com-
pared in terms of scheduling success ratio, against the frame-agnostic anal-
yses for the corresponding variants of the Vestal model.

The article is organized in eleven sections. Related work is discussed in Sec-
tion 3. The system model is presented in Section 4. Section 5 discusses some
important background results on mixed-criticality scheduling of constrained-
deadline tasks. The schedulability analysis techniques for the static and mode-
based variants of the multiframe Vestal model for mixed-criticality systems are
presented in Section 6 assuming a constrained deadline model. The existing
schedulability analyses on mixed-criticality scheduling of arbitrary-deadline
tasks are presented in Section 7. The multiframe mixed-criticality analyses
designed for constrained-deadline tasks are then generalized for arbitrary task
deadlines, in Section 8. In Section 9, we provide an example of the analyses
applied to a task-set. In Section 10, we identify an optimal priority assign-
ment scheme for multiframe mixed-criticality systems, using our analysis as
the schedulability test. Section 11 provides an experimental evaluation, using
synthetic task sets, of the schedulability performance of the proposed analyses
against those devised for the original (non-multiframe) Vestal model. Finally,
Section 12 concludes this work.

3 Related Work

The two main variants (static [1] and adaptive mode-based [2]) of Vestal’s origi-
nal mixed-criticality model [10] characterize each task with multiple worst-case
task execution time (WCET) estimates, with a corresponding degree of confi-
dence associated with a different criticality level (up to the task’s own critical-
ity). This reflects the fact that, in the industry, the enormous costs of proving
the safety of a WCET estimate (and the associated pessimism/overestimation)
beyond doubt are justified only for high-criticality tasks [10]. For other tasks,
less rigorously derived, WCET estimates are used – probably, but not provably,
safe. Based on this model, several mixed-criticality scheduling arrangements
have been devised for a variety of hardware platforms in the last decade. The
majority of the work is summarized in a survey paper by Burns and Davis [11].
Here, we restrict ourselves to fixed-priority mixed-criticality scheduling algo-
rithms on a uniprocessor platform.

Baruah and Burns [1] first proposed the use of execution-time monitoring,
already supported in most embedded platforms. Any job by a lower-criticality
task requiring more execution time than its most conservative WCET assumes,
is terminated. Baruah, Burns and Davis [2] showed how standard worst-case

response time analysis can be applied to this model (termed “Static Mixed-
Criticality” or SMC), by assuming, for all tasks, WCET estimates associ-
ated with a criticality level never higher than that of the task under analy-
sis. Baruah, Burns and Davis also [2] proposed an adaptive mixed-criticality
(AMC) scheduling technique that adds modes of operation. When operating
on a mode different from the highest, if any task exceeds its assumed WCET
for that mode, the tasks whose criticality level is equal to the current mode
of operation are discarded and the system switches to a next higher mode.
Two schedulability tests for AMC were devised: AMC-rtb and the tighter, but
more complex, AMC-max. The AMC-rtb schedulability test derives a simple-
to-compute upper bound, while AMC-max checks all the possible mode-switch
instants to derive the worst-case. The AMC-max test is more accurate but not
exact. This work is recently extended for arbitrary-deadline tasks [12]. Auds-
ley’s priority assignment algorithm is also identified as being optimal for both
SMC and AMC, in these works [2,12].

Asyaban and Kargahi [13] developed exact analysis for AMC at the cost
of losing optimality in the priority ordering. The author also derived the fea-
sibility interval for mixed-criticality periodic tasks with offset [13]. Fleming
and Burns [14] extended the dual-criticality AMC schedulability analysis to
an arbitrary number of criticality levels and showed that AMC-rtb approxi-
mates AMC-max reasonably well. The later AMC-IA schedulability test [15,
16] may slightly outperform AMC-max in some cases. Zhao et al. [17] improve
on AMC-max via a slightly different preemption model.

All aforementioned efforts have been developed in the context of a single-
frame task model, where a single WCET per criticality level of a task is used
for all its jobs. These analyses are pessimistic for applications whose execu-
tion requirement may vary from one instance (job/frame) to another, but the
variation follows a repetitive pattern. Such applications are better modeled
with a multiframe task model, which is a generalization of the single-frame
task model. In the multiframe task model, the schedulability analysis takes
advantage of the varying execution requirement to improve the scheduling
performance, potentially reducing system cost (size, weight and power).

The multiframe task model was initially introduced by Mok and Chen [8]
as a generalization of Liu and Layland’s task model. This model assumes that
the WCETs of the successive jobs of the same task can vary with a repetitive
pattern. The length of the pattern, in which each job may have a distinct
WCET estimate is called the task’s “frame size”. The schedulability analysis
of Mok and Chen [8] showed considerable improvements over the conservative
schedulability analyses that use the highest task’s WCET estimate as the
WCET of each job. Baruah et al. [18] improved the schedulability analysis of
multiframe task model by considering the actual frame pattern rather than
an accumulatively monotonic reordered pattern used by Mok an Chen [8].
The multiframe task model was further generalized by Baruah et al. [19] by
considering additional task attributes, other than WCET, differing among
frames of a task. Zuhily and Burns [20] proposed an exact worst-case response
time analysis for non-accumulatively monotonic multiframe tasks scheduled

with a fixed-priority scheduling scheme. An idea similar to the multiframe
task model has also been proposed for modeling signal processing applications
using data-flow graphs. Each actor in a cycle-static data-flow (CSDF) graph
has a number of phases, periodically repeating, each with its own execution
time. This allows the throughput of the application to be more accurately
predicted [21]. Note that these systems are typically statically scheduled and
don’t consider criticalities.

The schedulability analysis for the multiframe task model has not been
formulated for mixed-criticality systems. This prevents the benefits of that
model from being exploited in the context of mixed-criticality scheduling. The
present work therefore introduces schedulability analyses based on the princi-
ples of SMC, AMC-rtb and AMC-max, which eliminate the latent pessimism
and improve the scheduling performance by leveraging the properties of the
multiframe task model. We further extend these proposed multiframe mixed-
criticality analyses for the more generic arbitrary-deadline task model.

4 System Model

In this section, we formalize the mixed-criticality multiframe task model, in
both of its variants, static and adaptive mode-based.

Consider a set τ of n mixed-criticality sporadic tasks (τ1, . . . , τn) on a
uniprocessor system. Each task τi has a relative deadline Di, a minimum inter-
arrival time Ti, a criticality level κi, which is either high (H) or low (L). We
assume that there is a total order on the criticality levels, i.e. that L has lower
criticality than H. For the sake of conciseness, we denote a low-criticality
and a high-criticality task as L-task and H-task, respectively. Unlike jobs of
conventional (i.e., single frame) tasks, successive jobs of the same multiframe
task can differ in their WCETs, in a pattern that repeats after Fi successive
jobs. Accordingly, any Fi successive jobs of τi are called a superframe and we
often refer to a job as a frame, especially when we want to distinguish between
jobs in a superframe. In any schedule, the kth, (k+Fi)

th, (k+2Fi)
th, . . . jobs

of τi all have the same worst-case execution time behavior. However, even the
same frame of the same task has multiple estimates for its WCET, in our
model, with different degree of confidence. Each job has a WCET estimate
per criticality level less than or equal to its task’s criticality level. Thus, job
j of L-task τi has a single WCET estimate, CL

i,j , i.e., a low-criticality WCET,
or L-WCET for short. On the other hand, job k of H-task τi, has two WCET
estimates, one L-WCET, CL

i,k, and one high-criticality WCET, or H-WCET

for short, CH
i,k. L-WCETs can be optimistic. Thus, CL

i,j ≤ CH
i,j . We do not

assume that CL
i,j > CL

i,k implies CH
i,j < CH

i,k, for any j or k.

The semantics vary slightly, according to the particular variant of the
model. The choice of scheduling algorithm is orthogonal to the above task
model. In this paper, we assume fixed-priority scheduling, i.e., each task has
a fixed priority.

Table 1 summarizes most symbols used in the worst-case response time
analysis. Some other symbols are defined later in Sections 6 and 8.

4.1 Static variant

In this variant, Whenever a job of some L-task τi, corresponding to its jth

frame, executes for its entire L-WCET, CL
i,j , without completing, then that

particular job is terminated. This does not suppress the arrival of future jobs
of τi, subject to interarrival time constraints, and respecting the actual frame
sequence of the task. Under this model variant, the system is schedulable if
(i) no L-task misses its deadline as long as all jobs of all tasks, irrespective
of their criticality, execute for up to their CL

i,j , and also (ii) no H-task misses
its deadline, as long as every job of every task τi executes for up to its Cκi

i,j ,

where κi is the criticality of τi, i.e., as long as L-tasks execute up to CL
i,j and

H-tasks execute up to CH
i,j .

4.2 Adaptive mode-based variant

As in the mode-based variant of Vestal’s model introduced by Baruah and
Burns [2], the system operates in different modes – two in this paper, which
is also the simplest case. The system boots in the default L-mode, where
all tasks (i.e., both of low and high criticality) are present. For the L-mode,
WCET estimates are assumed, for all task frames, that are most likely but not
necessarily safe. If at any point in time, any job attempts to exceed its assumed
WCET estimate for the L-mode, a mode switch is triggered. This means that
all low-criticality tasks (L-tasks) are discarded and only high-criticality tasks
(H-tasks) are allowed to execute. The system is mixed-criticality-schedulable
if (i) all tasks meet their deadlines in the L-mode, assuming that their jobs
execute in accordance to the WCETs assumed for that mode; and (ii) all H-
tasks (including any jobs thereof caught up in the mode switch) meet their
deadlines in the H-mode, assuming that their jobs can execute for as long as
their respective H-mode WCET estimates. The latter are provably safe and
typically very pessimistic.

5 Background on schedulability analyses of constrained-deadline

tasks

Our analysis builds on the worst-case response time analysis for the multi-
frame task model by Baruah et al. [18] and on the different mixed-criticality
schedulability analysis techniques by Barauah, Burns and Davis [2]. In this
section, we summarize those existing results.

Table 1: Symbols used in the analysis

Symbols Description

Fi Number of frames of a task τi
Cx

i,j WCET of jth frame of τi in mode x ∈ {L,H}

gx(τi, j) Cumulative worst-case execution requirement of j successive
jobs of τi in mode x ∈ {L,H}, where 1 ≤ j ≤ Fi

Gx(τi, t) Cumulative worst-case processor request of τi in mode x in
any time interval of t time units

RL
i WCRT of τi in L-mode

RH
i WCRT of τi in H-mode

Rs
i WCRT of τi, if caught in a mode switch at time s

rLi (q), rHi (q) Completion time of the qth job of τi in a level-i busy period
in L-mode and H-mode, respectively.

Di, Ti Deadline and period of a task τi

5.1 Multiframe Task Model

To determine the schedulability of a multiframe task, it suffices to check if
the WCRT of the frame with the largest WCET is smaller than the task
deadline (which, for now can be assumed to be constrained, i.e., Di ≤ Ti)

1.
Unlike what holds for the “single-frame” model, it is not enough to compute
the number of job releases of each interfering task in the WCRT of the task
under analysis. This is because each multiframe task τi is characterized by
a vector of WCET

(

Ci,0, Ci,1, . . . , Ci,(Fi−1)

)

, and the phasing of the released
jobs affects the amount of interference. This is illustrated in Fig. 1, which
shows the 3 possible phasings of jobs of a task τi with period Ti = 10 and
WCET vector (2, 4, 1), with respect to a frame under analysis whose WCRT
is between 14 and 20 time units. During this interval there are at most 2 jobs
of the interfering task, but the amount of interference depends on the first job
in that sequence. As illustrated, this interference is worst, 6, if the first job in
the sequence is job 0, Fi, . . . On the other hand, if the first job in the sequence
is job 2, 2 + Fi, . . . , the interference is the least, 3.

To efficiently compute the interference exerted by a multiframe task, Baruah
et al. [18] define the g function:

g(τi, k) =



































0 if k = 0

max







j+k−1
∑

ℓ=j

Ci,(ℓ mod Fi) : 0 ≤ j < Fi







if 1≤k≤Fi

q · g(τi, Fi) + g(τi, r) otherwise

where q = k div Fi and r = k mod Fi

(1)

1 The more general case of arbitrary deadlines is considered later in Section 8.

0 1

1 2

2 0

0

0

0

10

10

10

t

t

t

WCRT

Fig. 1: Interference of a multiframe task depends on the phasing of its jobs
w.r.t the job under analysis. (The numbers inside the rectangles are the frame
numbers of the interfering task.) In this example, we assume that the WCRT
of the frame under analysis is between 14 and 20, and that the interfering task
has a period of 10 and its WCET vector is (2, 4, 1).

which bounds the cumulative WCET of any sequence of k jobs of task τi. This
function is then used to define the G function:

G(τi, t) = g

(

τi,

⌈

t

Ti

⌉)

(2)

which bounds the cumulative WCET of task τi over any time interval of du-
ration t. Finally, the worst-case response time recurrence is:

Ri = g(τi, 1) +
∑

τj∈hp(i)

G (τj , Ri) (3)

where hp(i) is the set of tasks with priority higher than τi.

5.2 Static Mixed Criticality (SMC)

In the SMC task model [1], each task has a criticality level and it may have
a different WCET estimate for each level less than or equal to its criticality
level. The conservativeness of those estimates increases with the criticality
level. When the job of a task exceeds the WCET estimate corresponding to
its own level, it is terminated. With just two levels, this ensures that the
interference of any job of a low-criticality task does not exceed CL

i .
Thus, assuming only two criticality levels, the WCRT recurrence for a

single-frame low-criticality task under SMC is

Ri = CL
i +

∑

τj∈hp(i)

⌈

Ri

Tj

⌉

CL
j (4)

and for a high-criticality task it is

Ri = CH
i +

∑

τj∈hpL(i)

⌈

Ri

Tj

⌉

CL
j +

∑

τk∈hpH(i)

⌈

Ri

Tk

⌉

CH
k (5)

where hpL(i) and hpH(i) are the sets of higher-priority low- and high-criticality
tasks, respectively, for τi.

5.3 Adaptive Mixed Criticality (AMC)

Baruah, Burns and Davis [2] proposed a fixed-priority uniprocessor adaptive
mixed-criticality scheduling algorithm (AMC). In the proposed model, the
system operates in two different modes. During the default L-mode, tasks ex-
ecute with their L-WCET estimates. If a task tries to execute for more than
its L-WCET estimate, a mode switch occurs. Thereafter, only high-criticality
tasks are allowed to execute, for up to their corresponding H-WCET estimates,
while all the low-criticality tasks are discarded. In [2], two sufficient schedu-
lability analyses (AMC-rtb and AMC-max) are devised. Both analyses verify
the schedulability of all tasks in L-mode, and the schedulability of H-tasks in
H-mode and when they are affected by a mode switch, under the AMC model.
In this section, we briefly review the latter, because the analyses in L-mode
and steady-state H-mode are essentially standard fixed-priority response time
analysis.

5.3.1 AMC-rtb

In this analysis, the WCRT recurrence of a job of task τi that is affected by a
mode switch is:

R∗
i = CH

i +
∑

τj∈hpH(i)

⌈

R∗
i

Tj

⌉

CH
j +

∑

τk∈hpL(i)

⌈

RL
i

Tk

⌉

CL
k (6)

This analysis makes two conservative assumptions. First, that the num-
ber of L-jobs for each interfering L-task is maximum: RL

i is the latest time
the mode switch may occur. Second, that all jobs of each interfering H-task
take their H-WCET, CH

j . However, these two assumptions cannot simultane-
ously hold. The big advantage of this analysis is that the calculation of R∗

i is
independent of the instant when the mode switch occurs.

5.3.2 AMC-max

This analysis reduces the pessimism by taking into account the instant s,
relative to the release of the job under analysis, at which the mode switch
occurs. This allows for a more accurate accounting of the number of jobs of
an interfering L-task τj , and therefore of its interference:

ILj(s) =

(⌊

s

Tj

⌋

+ 1

)

CL
j (7)

As expained in [2], Equation (7) assumes ⌊ s
Tj
⌋ + 1 interfering jobs of τj

(instead of ⌈ s
Tj
⌉) in order to accommodate the possibility of any L-jobs re-

leased up to the mode switch instant (inclusive) being allowed to execute to
completion2.

By taking into account s, it is also possible to be less conservative in the
estimate of the number of jobs of a H-task τk that complete after the mode
switch.

M(k, s, t) = min

{⌈

t− s− (Tk −Dk)

Tk

⌉

+ 1,

⌈

t

Tk

⌉}

(8)

The number of jobs of a H-task that complete before a mode switch is obtained
by subtracting this value from an upper bound on the total number of jobs
of task τk that may be released in time interval t, i.e. ⌈t/Tk⌉. This allows
the interference of H-task τk to be safely upper-bounded because CL

k ≤ CH
k .

Therefore, the interference of H-task τk in a time interval of duration t, when
the mode switch occurs s time units after the beginning of that interval, is
given by:

IHk(s, t) = M(k, s, t) · CH
k +

(⌈

t

Tk

⌉

−M(k, s, t)

)

CL
k (9)

Thus, the WCRT recurrence used to compute the response time of a job of a
H-task τi that is affected by a mode switch is:

R
(n)
i (s) = CH

i +
∑

τj∈hpL(i)

ILj(s) +
∑

τk∈hpH(i)

IHk(s,R
(n−1)
i (s)) (10)

The solution of this recurrence, Ri(s) depends on the mode switch instant, s.
Thus, the response time of τi when affected by a mode switch is given by:

R∗
i = max{Ri(s) : 0 < s ≤ RL

i }

However, Baruah, Burns and Davis [2] argue that it is enough to compute Ri(s)
only for values of s that correspond to the release of jobs of higher-priority
L-tasks, when the first job of all these tasks is released at the same time as the
job of the task under analysis and these tasks’ jobs arrive as soon as possible.
This is because IHk, as given by (9), is non-increasing as s increases and ILj ,
as given by (7), is a step function whose value increases when jobs of task τj
are released.

2 We note that, if such jobs are instead immediately discarded at the mode switch, then
assuming ⌈ s

Tj
⌉ interfering jobs is safe. In [22], when discussing the original AMC-max, we

inadvertently used the expression with ⌈ s
Tj

⌉ for ILj(s), instead of Equation (7). That typo

did not propagate to the experiments in that paper.

6 Multiframe mixed-criticality scheduling with

constrained-deadline tasks

6.1 Analysis for static multiframe mixed-criticality systems (SMMC)

In this section, we extend the SMC analysis to the multiframe model. Like in
the multiframe model, there is a single mode of operation in SMC. However
tasks may have different levels of criticality and different WCET-estimates, one
per criticality-level less than or equal to its own, see Section 4.1. Therefore,
depending on the level of criticality of the task under analysis, different WCET-
estimates are used in the WCRT-recurrence, see (4) and (5). For example, the
WCRT of a H-task, (5), uses the L-WCET estimate to compute the interference
by L-tasks and the H-WCET estimate to compute the interference by H-tasks.
Therefore, we need to define additional g/G functions that take into account
the criticality level of the WCET estimate.

Let gL(τi, k) be the cumulative L-WCET of any sequence of k jobs of task
τi. This function is defined as [18]’s g function, see (1), except that for job j
it uses its L-WCET, CL

i,j rather than its criticality-oblivious WCET, Ci:

gL(τi, k) =



































0 if k = 0

max







j+k−1
∑

ℓ=j

CL
i,(ℓ mod Fi)

: 0 ≤ j < Fi







if 1≤k≤Fi

q · gL(τi, Fi) + gL(τi, r) otherwise

where q = k div Fi and r = k mod Fi

(11)

Analogously, we define gH(τi, k), the cumulative H-WCET of any sequence of
k jobs of task τi. Furthermore, we define the corresponding G functions, see
(2):

GL(τi, t) = gL
(

τi,

⌈

t

Ti

⌉)

(12)

GH(τi, t) = gH
(

τi,

⌈

t

Ti

⌉)

(13)

With these definitions, it is straightforward to generalize the SMC’s WCRT
recurrences to the multiframe model. For L-tasks, the recurrence becomes
similar to that for the single-criticality task model (3):

Ri = gL(τi, 1) +
∑

τj∈hp(i)

GL(τj , Ri) (14)

Indeed, like in the original multiframe analysis [18], it suffices to compute the
response time for the frame with largest L-WCET, gL(τi, 1). Furthermore,
each of the terms in the summation, GL(τj , Ri), is an upper-bound of the
interference by jobs of higher-priority task τj in the response time Ri of the
taks under analysis, τi. This is because it represents the cumulative L-WCET,

i.e., computed with same level of confidence as that of gL(τi, 1), of any sequence
of τj ’s jobs in time interval, Ri.

However, for H-tasks, the WCRT-recurrence must use the g/G functions
corresponding to the criticality level of each task:

Ri = gH(τi, 1) +
∑

τj∈hpL(i)

GL(τj , Ri) +
∑

τk∈hpH(i)

GH(τk, Ri) (15)

Again, it is enough to compute the response time of the job with the largest
H-WCET, gH(τi, 1). The interference by higher-priority H-task τk is bound
by GH(τk, Ri), the cumulative H-WCET of a sequence of jobs of τk in the
response time interval, Ri, of the task under analysis, τi. The interference by
higher-priority L-task τj is bound by GL(τj , Ri), because in SMC the sys-
tem terminates a job of an L-task as soon as its execution time exceeds the
respective L-WCET estimate.

6.2 Analysis for adaptive multiframe mixed criticality systems (AMMC)

In this section, we develop a response time analysis for the adaptive mode-
based variant of the multiframe mixed-criticality task model (as presented in
Section 4.2). The idea is straightforward; we use AMC to count the number
of jobs of each interfering task, and use Multiframe g/G functions, or similar
functions, to compute the cumulative WCET of these jobs and therefore the
WCRT of the different tasks.

As usual, we need to check the schedulability in:

L-mode: This can be done for all tasks using Baruah’s WCRT recurrence, see
(3) , and replacing g and G functions with gL and GL, respectively.

H-mode: Again, we can reuse Baruah’s WCRT recurrence and replace g and
G functions with gH and GH , respectively, for all H-tasks.

Mode switch: In this case, we must consider, for each H-task, the response
time of each job in one of its superframes when it is caught by a mode
switch, i.e. when it is released before the mode switch but completes only
after.

We now focus on the response time of jobs caught by a mode switch.
Whereas in the single frame model, all jobs have the same parameters, in the
multiframe model, different jobs have different parameters. Therefore, for each
task under analysis, τi, we need to:

1. analyse the WCRT of each job in a superframe of τi;
2. consider the phasing of the interfering tasks, i.e., for each higher-priority

task, what is the first job in the sequence of interfering jobs of that task.

Figure 1 illustrates the need for the latter. With respect to (1), consider
two different jobs j and k (j 6= k) of a superframe of τi, it may be the case
that CL

i,j > CL
i,k and CH

i,j < CH
i,k. Thus, the schedulability of job j cannot be

inferred from the response time of job k, nor vice-versa. Of course, it may not

be necessary to compute the response time of all jobs. E.g., if CL
i,j > CL

i,k and

CH
i,j ≥ CH

i,k, clearly it is enough to analyze the response time of job j of τi.
Task τi is schedulable, if the WCRT of all jobs in one of its superframes does
not exceed Di.

In each of the following subsections, we describe how to generalize each of
the AMC analyses for constrained-deadline tasks to the multiframe model.

6.2.1 AMMC-rtb: AMC-rtb to multiframe tasks

As summarized in Section 5.3.1, AMC-rtb considers that each higher-priority
L-task may interfere up to RL

i . In the multiframe model, for each higher-
priority L-task τk, we need to consider the cumulative WCET of a sequence
of τk’s jobs. Thus, the interference of a higher-priority L-task, τk, on job j of
H-task τi is given by:

GL(τk, R
L
i,j)

where RL
i,j is the WCRT in L-mode of job j of task τi. For each higher-priority

H-task, τk, AMC-rtb assumes that every job of τk executes for its H-mode
WCET (H-WCET for short) over the entire WCRT of task τi’s job j when it
is caught by a mode switch, R∗

i,j . Thus the interference of τk, on that job is
given by:

GH(τk, R
∗
i,j)

Accordingly, the WCRT of job j of a H-task τi released before the mode
switch, but completing after it, is upper-bounded by:

R∗
i,j = CH

i,j +
∑

k∈hpL(i)

GL(τk, R
L
i,j) +

∑

k∈hpH(i)

GH(τk, R
∗
i,j) (16)

The WCRT of H-task τi is therefore the maximum of the WCRT of all frames
in a superframe of τi:

R∗
i = max{R∗

i,j : 0 ≤ j < Fi} (17)

We can trade-off the computation cost of R∗
i for its pessimism, by bounding

the mode switch instant to RL
i rather than to RL

i,j , where

RL
i = max{RL

i,j : 0 ≤ j < Fi} (18)

In this case, it suffices to compute R∗
i,j for the job j with the maximum

CH
i,j , therefore the WCRT of H-task τi released before the mode switch but,

completing after it, can be upper bounded by:

R∗
i = gH(τi, 1) +

∑

j∈hpL(i)

GL(τj , R
L
i) +

∑

k∈hpH(i)

GH(τk, R
∗
i) (19)

6.2.2 AMMC-max: AMC-max to multiframe tasks

AMC-max reduces the pessimism in AMC-rtb by explicitly considering the
mode switch instant, s, as summarized in Section 5.3.2. In particular, rather
than assuming that all jobs of a H-task complete after the mode switch, AMC-
max provides a tighter upper-bound on the number of jobs of a H-task that
complete after the mode switch. As a consequence, AMC-max may underesti-
mate the number of jobs of that task that complete before the mode switch.
(This is also done in AMC-rtb, where the number of jobs of a H-task that
complete before the mode switch is assumed to be 0.) Thus, critical for the
safety of AMC-max is that the cumulative WCET of a task in a time interval
comprising the mode switch instant does not decrease, if the number of jobs
of that task that complete after the mode switch is overestimated.

To safely apply AMC-max’s accounting of H-jobs that complete after the
mode switch to the multiframe model, the following must hold:

Lemma 1 Consider a sequence of successive jobs by a multiframe task τi with
a fixed length n such that the last nH < n of these jobs terminate after the
mode switch. Let n′H (n ≥ n′H ≥ nH) be an overestimation of nH . Then
assuming the termination of the last n′H jobs after the mode switch does not
decrease the cumulative WCET.

Proof The proof is by induction on the number of jobs that terminate after
the mode switch.

Base step: n′H = nH and therefore the two job sequences are the same and
so are their cumulative WCET.

Induction step Consider a sequence of these n jobs such that the last h (n >
h ≥ nH) terminate after the mode switch. Let j be the last job in that sequence
that terminates before the mode switch (such a job exists because h < n). If we
assume that job j terminates after the mode switch, the difference between the
cumulative WCET of the new and the previous sequences is CH

i,j−CL
i,j . Because

by assumption CH
i,j ≥ CL

i,j this difference is non-negative, and therefore, by the
induction step assumption, the cumulative WCET is not smaller than that of
the sequence with nH jobs terminating after the mode switch.

Thus, for multiframe tasks (just as for single-frame tasks), it is safe for
the analysis to overestimate, in a given sequence of jobs by an interfering
task, the number of jobs that execute for their H-WCET. In particular, this
means that we can use AMC-max’s upper-bound on the number of jobs that
complete after the mode switch, (8), and use it to derive the number of jobs
that complete before the mode switch to be used in the WCRT recurrence.

The challenge is that the phasing of the interfering task affects the amount
of interference. The difference with respect to Baruah’s multiframe analysis
is that now there may be two subsequences, one before the mode switch and
another after the mode switch. Figure 2 illustrates this. It shows an interfering

Tk0 s = 5Tk

superframe superframe

10Tk

0L 1L 2H 0H

1L 2L 0H 1H

2L 0L 1H 2H

L-mode H-mode

Fig. 2: Interference of a H-task depends on the phasing of its jobs.

task τk with 3 frames. The time interval under consideration is 10 times Tk and
we assume that the mode switch occurs exactly at the middle of that interval.
Thus, in this interval, there are 10 releases of jobs of τk, 5 before the mode
switch and another 5 after the mode switch. Hence, there is a superframe plus
2 frames, both before and after the mode switch. The cumulative WCET of
a super-frame is independent of the initial job in the superframe. Therefore,
we need only to find the worst-case cumulative WCET of a sequence of 4
frames, such that the two first frames take their L-WCET, whereas the other
2 frames take their H-WCET. One of the following frame sequences leads to
the worst-case cumulative execution time: (0L, 1L, 2H , 0H), (1L, 2L, 0H , 1H),
(2L, 0L, 1H , 2H), where we denote by iL (iH) a frame whose L-WCET (H-
WCET) is equal to the L-WCET (H-WCET) of frame i.

Formally, we define function g∗(τi, ℓ
L, ℓH) that computes the cumulative

WCET of a sequence of jobs of H-task τi, which is composed by a subsequence
of ℓL jobs that take their L-WCET followed by a subsequence of ℓH that take
their H-WCET:

g∗(τi, ℓ
L, ℓH) =















































































gH(τi, ℓ
H) if ℓL = 0

gL(τi, ℓ
L) if ℓL 6= 0 ∧ ℓH = 0

max







j+ℓL−1
∑

k=j

CL
i,(k mod Fi)

+

j+ℓL+ℓH−1
∑

k=j+ℓL

CH
i,(k mod Fi)

: 0 ≤ j < Fi







if 1≤ℓL<Fi∧1≤ℓH<Fi

qL · gL(τi, Fi) + g∗(τi, r
L, rH) + qH · gH(τi, Fi)

otherwise

(20)

where qL = (ℓL div Fi), rL = (ℓL mod Fi), qH = (ℓH div Fi) and rH =
(ℓH mod Fi).

Furthermore, we define:

GL+(τi, t) = gL
(

τi,

⌊

t

Ti

⌋

+ 1

)

(21)

to account for the fact that AMC-max upper-bounds the number of jobs of

higher-priority L-task τi by
⌊

s
Ti

⌋

+ 1 rather than
⌈

s
Ti

⌉

, where s is the mode

switch instant relative to the release of the job under analysis3.
Thus the WCRT of job j of H-task τi is upper bounded by:

R∗
i,j(s) = CH

i,j +
∑

k∈hpL(i)

GL+(τk, s) (22)

+
∑

k∈hpH(i)

g∗(τk, ℓ
L(k,R∗

i,j(s), s), ℓ
H(k,R∗

i,j(s), s))

where:

ℓL(k, t, s) =

⌈

t

Tk

⌉

− ℓH(k, t, s) (23)

ℓH(k, t, s) = M(k, s, t) (24)

Therefore:
R∗

i,j = max{R∗
i,j(s) : 0 < s ≤ RL

i,j}

Like in AMC-max, we need to compute the WCRT of job j of task τi only
for the values of s that correspond to the release of jobs of higher-priority
L-tasks, when the first job of each of these tasks is released at the same time
as the job under analysis and the other jobs arrive as soon as possible.

Like in AMMC-rtb, to compute the WCRT of task τi, we need to compute
the response time of all jobs in a superframe and take the maximum of these
values:

R∗
i = max{R∗

i,j : 0 ≤ j < Fi}

Again, we can trade-off computation cost for pessimism, by always consid-
ering all the s values smaller than RL

i , see (18), i.e.:

R∗
i = max{R∗

i (s) : 0 < s ≤ RL
i } (25)

In this case, rather than computing the WCRT for all the jobs in a superframe
it suffices to compute the WCRT for the longest H-mode job in a superframe.
Thus (22) becomes:

R∗
i (s) = gH(τi, 1) +

∑

j∈hpL(i)

GL+(τj , s) (26)

+
∑

k∈hpH(i)

g∗(τk, ℓ
L(k,R∗

i (s), s), ℓ
H(k,R∗

i (s), s))

where ℓL and ℓH are given by (23) and (24), respectively.

3 In Equation (18) of [22] (which corresponds to Equation (22)), the regular GL function
was inadvertently used, instead of GL+, to upper-bound the number of such jobs. This is
still safe, as long as all jobs by low-criticality tasks are terminated immediately at mode
switch, but unsafe, if they are allowed to continue executing to completion for up to their
L-WCET. In any case, the typo did not propagate to the experiments in [22], which were
in fact consistent with Equation (22).

6.2.3 Implementation of the g∗ function

For an efficient implementation of the analyses described in the previous sec-
tion, it is important to be able to efficiently implement the g∗ function.

An efficient implementation of the g function is given in [18] that relies
on an array Mk of length Fk + 1 per task τk, such that Mk[i] = g(τk, i), for
0 ≤ i ≤ Fk. This array is computed before initiating the response time anal-
ysis, and the complexity of its computation is O(F 2

k). Analogously, in order
to implement the g∗ function, we define a 2-dimensional (Fk + 1) × (Fk + 1)
matrix, Mk per H-task τk, where Mk[i][j] = g∗(τk, i, j) for 0 ≤ i ≤ Fk and
0 ≤ j ≤ Fk. Note that element Mk[0][j] = gH(τk, j), and therefore Mk[0][Fk]
is the H-WCET of a superframe of τk. Likewise, element Mk[i][0] = gL(τk, i),
and therefore Mk[Fk][0] is the L-WCET of a superframe of τk. Furthermore, all
other elements of the last column and of the last line are not needed and there-
fore need not be computed. Indeed, the value of g∗(τk, ℓ, h) can be efficiently
computed from the elements of the Mk matrix, as follows:

(ℓ div Fk) ·Mk[Fk][0] +Mk[ℓ mod Fk][h mod Fk] + (h div Fk) ·Mk[0][Fk]

The computation of the matrix Mk is very similar to the computation of
array Mk in [18]. The first step is to compute two Fk×Fk matrices Lk and Hk.
These matrices are just like Fk×Fk matrix Dk in [18], except that Lk and Hk

use the L-WCET and H-WCET of τk’s frames, respectively. More specifically,
element Lk[i][j] =

∑i+j

ℓ=i C
L
k,(ℓmodFk)

, i.e. element Lk[i][j] is the the cumulative

WCET of a sequence of (i+1) L-frames that starts with frame j. Algorithm 1
shows the code segment presented in [18], adapted to initialize the elements
of matrix Lk. Except for the notation, the only difference is the use of the L-
WCET in Lines 2 and 5. The initialization of Hk is identical. The complexity
of this code segment is O(F 2

k).

Algorithm 1 Computation of auxiliary matrix Lk.

// Lk is a Fk × Fk matrix, such that Lk[i][j] =
∑i+j

ℓ=i
CL

k,(ℓmodFk)

1: for (j:=0; j < Fk; j:= j+1) // First line
2: Lk[0][j] := CL

k,j
;

3: for (i:=1; i < Fk; i:=i+ 1)
4: for (j:=0; j < Fk; j:= j+1)
5: Lk[i][j] := Lk[i− 1][j] + CL

i,(i+j)modFk
;

Algorithm 2 shows the code segment used for computing matrix Mk from
matrices Lk andHk. For the sake of readability, we use themax(m,n) function,
which returns the maximum of its two integer arguments. The algorithm uses
the elements of Lk and Hk in a very similar way to the computation of the
corresponding array in [18] from the elements of theDk matrix. As a result, the
complexity for computing each element of the Mk matrix, O(Fk), is the same
as the complexity for computing each element of the array in [18]. However

because the Mk matrix has (Fk +1)2 elements rather than (Fk +1) elements,
the complexity of the computation of matrix Mk is O(F 3

k) rather than O(F 2
k).

Just like in Algorithm 1, note that all elements of the last row except for the
first one are not computed, as they are not needed. The same for all elements
of the last column except the first one.

Algorithm 2 Computation of (Fk + 1)× (Fk + 1) matrix Mk. Mk[i][j] is the
cumulative WCET of any sequence of i L-jobs followed by j H-jobs of task τk

1: Mk[0][0] := 0
// First row is gH : this is the algorithm in [18]

2: for (h:=1;h ≤ Fk;h:=h+1) { // h is the length of the sequence
3: Mk[0][h] := 0;
4: for (i:=0; i < Fk; i:=i+1) // i is the first frame
5: Mk[0][h] := max(Mk[0][h], Hk[h− 1][i]);
6: }

// First column is gL: this is the algorithm in [18]
7: for (ℓ:=1; ℓ ≤ Fk; ℓ:=ℓ+1) { // ℓ is the length of the sequence
8: Mk[ℓ][0] := 0;
9: for (i:=0; i < Fk; i:=i+1) // i is the first frame
10: Mk[ℓ][0] := max(Mk[ℓ][0], Lk[ℓ− 1][i]);
11: }

// Remaining elements: based on the algorithm in [18]
12: for (ℓ:=1; ℓ < Fk; ℓ:=ℓ+1) // ℓ is the length of the L-sequence
13: for (h:=1;h < Fk;h:=h+1) { // h: H-sequence’s length
14: Mk[ℓ][h] := 0;
15: for (i:=0; i < Fk; i:=i+1) // i: first frame in L-sequence
16: Mk[ℓ][h] := max(Mk[ℓ][h],

Lk[ℓ− 1][i] +Hk[h− 1][(i+ ℓ)modFk]);
17: }

7 Background on the schedulability analysis of arbitrary-deadline

tasks

So far (From sections 6.1 to 6.2, as also published in [22]), we have formulated
analysis for multiframe mixed-criticality systems under the assumption that
task deadlines are constrained. We now extend those derivations for a more
general arbitrary-deadline model, whereby it does not necessarily hold that
Di ≤ Ti for a task τi. The previously formulated analysis no longer holds
in that case, because a job by a task with Di > Ti may additionally suffer
interference from earlier-released jobs of the same task. To address this, we
draw from the work by Tindell et al. [23] on the fixed-priority preemptive
scheduling of arbitrary-deadline single-frame tasks.

Under that approach [23], the schedulability of a task τi with arbitrary
deadline (Di > Ti) can be computed using the concept of level-i busy pe-
riod [24], i.e., a time interval while the processor is busy executing jobs of
tasks with priority equal or higher than that of τi. Indeed, Lehoczky proved
that the longest response time for a job of a such a task τi occurs during a

level-i busy period initiated by a critical instant, i.e., a time instant when all
tasks with priority equal or higher than τi are released. However, unlike for
constrained deadline tasks, the worst-case response time may not occur for
the first job of τi after the critical instant. Therefore, to determine whether τi
is schedulable, one needs to check that the response time of all jobs of τi in a
level-i busy period (that starts at a critical instant) does not exceed Di.

7.1 Analysis for FPPS for single criticality tasks with arbitrary deadlines

To compute the response time of job q in a level-i busy period, i.e., of a job
that starts q ·Ti time units after the beginning of the busy period, Tindell [23]
extended standard worst-case response time analysis for constrained deadline
tasks [3] to compute the completion time of job q + 1 with respect to the
beginning of the level-i busy period:

ri(q) = (q + 1)Ci +
∑

j∈hp(i)

⌈

ri(q)

Tj

⌉

Cj (27)

Indeed, the left hand side of (27) is the cumulative processor requirement by
all jobs of tasks with higher priority than τi and of the first q + 1 jobs after
the critical instant. Because the last of these jobs is released q · Ti time units
after the beginning of the level-i busy period, its response time is given by:

Ri(q) = ri(q)− qTi (28)

As mentioned above, a task τi is schedulable if Ri(q) ≤ Di, for all jobs q
in a level-i busy period. Note that we need not know a priori how many jobs
there are in a level-i busy period. The computation of ri(q) can start for q = 0
and stop when either Ri(q) > Di, in which case τi is not schedulable, or when
ri(q) ≤ (q + 1) · Ti, i.e., at the last job of a level-i busy period, in which case
τi is schedulable.

7.2 Mixed-criticality scheduling with arbitrary deadline tasks

Burns and Davis [12] extended SMC, AMC-rtb and AMC-max for task sets
with constrained deadlines to task sets with arbitrary deadlines. Actually,
SMC’s extension is straightforward. To compute ri(q), (27), instead of using Ci

and Cj , one should use CLi

i and C
min(Li,Lj)
j , where Li and Lj are the criticality

levels of tasks τi and τj , respectively. I.e. if the task under analysis is an L-
task, then the worst-case completion time of its job q, ri(q), is computed using
the L-WCET estimates of higher-priority tasks. If the task under analysis is a
H-task, then ri(q) is computed using the L-WCET for higher-priority L-tasks
and H-WCET for higher-priority H-tasks.

7.2.1 AMC-rtb-Arb analysis

In AMC, the analysis must ensure schedulability in both L- and H-mode as
well as upon a mode switch.

The completion time of a job in L-mode of a task τi in a level-i busy period
released qTi time units after the beginning of that busy period can be adapted
from (27) by using the appropriate WCET for the different jobs:

rLi (q) = (q + 1)CL
i +

∑

j∈hp(i)

⌈

rLi (q)

Tj

⌉

CL
j (29)

and:
RL

i (q) = rLi (q)− qTi (30)

Task τi is schedulable in L-mode, if RL
i (q) < Di for all jobs q in a level-i busy

period in L-mode.
Likewise, we can obtain an expression for the steady H-mode. However,

the steady H-mode is dominated by H-mode upon a mode switch.
For AMC-rtb-Arb, the completion time of a job of a H-task τi affected by

a mode switch is given by [12]:

rHi (q) = (q+1)CH
i +

∑

j∈hpH(i)

⌈

rHi (q)

Tj

⌉

CH
j +

∑

k∈hpL(i)

⌈

rLi (min(q, p))

Tk

⌉

CL
k (31)

where p is the last job number in a level-i busy period in L-mode.
The main issue in the analysis upon a mode switch is to bound the duration

of the L-mode interval before the mode switch. Although, rLi (q) appears to be
a straightforward choice, the level-i busy period upon a mode switch may be
longer than in L-mode. If τi is schedulable in L-mode, then the level-i busy
period must be bounded, and there is a last job from τi in that period, job p.
Clearly, the mode switch must occur before the completion time of that job,
otherwise that job would not have been affected by the mode switch, nor any
job that follows it. Therefore, (31) uses rLi (min(p, q)) rather than rLi (q).

As before:
RH

i (q) = rHi (q)− qTi (32)

and H-task τi is schedulable in H-mode (including mode switch), if RH
i (q) < Di

for all jobs q in a level-i busy period that comprises a mode switch.

7.2.2 AMC-max-Arb analysis

AMC-max-Arb differs from AMC-rtb-Arb only on the completion time expres-
sion for jobs of a H-task τi that are affected by a mode switch. Assuming the
mode switch occurs at time s (measured with respect to the beginning of the
level-i busy period), the completion time of job q of such a task is given by
[12]:

ri(q, s) = X(q, s, ri(q, s))C
H
i +Y (q, s, ri(q, s))C

L
i +IL(s)+IH(s, ri(q, s)) (33)

where X(q, s, t) and Y (q, s, t) are the number of the first q + 1 jobs, i.e. until
job q, of τi that complete until instant t after and before the mode switch,
respectively. Thus X(q, s, t)+Y (q, s, t) = q+1. AMC-max-Arb conservatively
(over-)estimates X(q, s, t) as follows:

X(q, s, t) = min

(⌈

t− s+ (Di − Ti)

Ti

⌉

+ 1, q + 1

)

(34)

and derives Y (q, s, t) from X(q, s, t) + Y (q, s, t) = q + 1.
IL(s) and IH(s, t) in (33) are given by the same summations as in AMC-

max (for constrained deadline task sets), respectively (7) and (9).
Similarly to AMC-max, ri(q, s) must be computed for every value of s ∈

[0, rLi (q)) equal to the release time of L-tasks with higher priority than τi.
Let, r∗i (q) be the maximum of all these values. Then, the worst-case response
time for job q in a level-i busy period that comprises a mode switch can be
computed as:

R∗
i (q) = r∗i (q)− qTi (35)

and task τi is schedulable in H-mode (including mode switch), if R∗
i (q) < Di

for all jobs q in a level-i busy period that comprises the mode switch.

8 Generalisation of multiframe mixed-criticality scheduling

analyses for arbitrary-deadline tasks

We now formulate the generalized schedulability analyses techniques (SMMC-
Arb, AMMC-rtb-Arb and AMMC-max-Arb) for arbitrary-deadline multiframe
mixed-criticality tasks.

8.1 Static multiframe mixed criticality with arbitrary deadline (SMMC-Arb)

In this section, we extend the static multiframe mixed-criticality analysis for
the arbitrary-deadline task model.

L-task analysis: The response time of an L-task in SMMC (and in SMC)
considers the L-WCETs of all tasks, independently of their criticality. There-
fore, the worst-case completion time of job q of L-task τi in a level-i busy
period can be computed as follows:

ri(q) = gL(τi, (q + 1)) +
∑

j∈hp(i)

GL(τj , ri(q)) (36)

Indeed, gL(τi, (q + 1)) bounds the cumulative processing demand of any se-
quence of q+ 1 jobs, i.e. up to job q, of the task under analysis, using its own
criticality level WCET-estimate. Furthermore, each of the terms in the sum-
mation, GL(τj , ri(q)), is an upper bound of the interference of any sequence of
jobs of higher-priority task τj in time interval ri(q), using their L-mode WCET

estimate, i.e., computed with a confidence corresponding to the criticality level
of the task under analysis.

Just as for SMC-Arb, the corresponding worst-case response time is:

Ri(q) = ri(q)− qTi (37)

Also like in SMC-Arb, a multiframe L-task τi is schedulable under SMMC-
Arb, if the response time of all its jobs in a level-i busy period does not exceed
its deadline, Di.

H-task analysis: In SMMC (and in SMC), the response time analysis for a
H-task assumes that each task executes for the WCET estimate corresponding
to its criticality level. Therefore, the worst-case completion time of job q of
H-task τi in a level-i busy period can be computed as follows: Since all the
tasks are allowed to execute at all times, the completion time of the task under
analysis τi can be computed as follows:

ri(q) = gH(τi, q + 1) +
∑

j∈hpL(i)

GL(τj , ri(q)) +
∑

k∈hpH(i)

GH(τk, ri(q)) (38)

Indeed, the first term on the right-hand side of this equation, gH(τi, q + 1)
bounds the cumulative WCET of any sequence of q + 1 jobs, i.e. up to job q,
of the task under analysis, using their H-WCET estimates. Furthermore, each
term in the first summation on the right-hand side, GL(τj , ri(q)), bounds the
interference of the largest sequence of jobs of higher-priority L-task τj in a
time interval of duration ri(q), using their L-WCET estimates. Finally, each
term in the second summation on the right-hand side, GH(τk, ri(q)), bounds
the interference of the largest sequence of jobs of higher-priority H-task τk in
a time interval of duration ri(q), using their H-WCET estimates. Note that
the two summations are similar to those used in the estimate of the worst-case
response time for SMMC (with constrained deadlines) (15) , Ri, except that
time interval considered is ri(q), i.e. the completion time of job q of τi, rather
than Ri.

The worst-case response time for such a job is determined as usual for a
task with an arbitrary deadline, i.e. using (37). Furthermore, like in SMC-
Arb or for a multiframe L-task under SMMC-Arb, a multiframe H-task τi is
schedulable under SMMC-Arb, if the response time of all its jobs in a level-i
busy period does not exceed its deadline, Di.

8.2 Analysis for adaptive multiframe mixed criticality systems (AMMC)

In this section, we extend the AMMC analysis for tasks with constrained dead-
lines in Section 6.2 to tasks with arbitrary deadlines, by combining those analy-
ses with the analyses for mixed-criticality systems with arbitrary deadlines(AMC-
rtb-Arb and AMC-max-Arb) in [12]. We refer to these two new analyses as
AMMC-rtb-Arb and AMMC-max-Arb.

8.2.1 Adaptive multiframe mixed criticality-rtb with arbitrary deadline
(AMMC-rtb-Arb)

In AMMC the system operates in two modes. Therefore, we need to analyse
both L- and H-modes.

L-mode analysis: In L-mode, independently of a task’s level, AMC, and
therefore AMMC, uses only L-mode WCET estimates. Therefore, the comple-
tion time of job q of a multiframe task τi, whether it is an L-task or a H-task,
is given by:

rLi (q) = gL(τi, (q + 1)) +
∑

j∈hp(i)

GL(τj , r
L
i (q)) (39)

The first term bounds the processing requirement of any sequence of q+1
jobs of the task under analysis, τi, using their L-WCET estimates. Also, each
of the terms of the summation, GL(τj , r

L
i (q)), upper bounds the processing

requirement in L-mode of any sequence of jobs of higher-priority task τj over
a time interval equal to the completion time in L-mode of any sequence of
q + 1 jobs of τi, the task under analysis.

H-mode analysis: AMC-rtb-Arb (and AMC-rtb) computes the worst-case
response time of a job of a H-task τi by bounding the number of jobs of each
higher-priority task, both L- and H-tasks, and assuming that all jobs of H-tasks
execute for their H-mode WCET. In AMMC-rtb-Arb we do the same, but we
need to consider not only the number of jobs of each interfering task, see (31),
but also their order. Therefore, the completion time of job q of a multiframe
H-task τi in a level-i busy period comprising the mode switch instant is given
by:

rHi (q) = gH(τi, (q+1))+
∑

j∈hpL(i)

GL(τj , r
L
i (min(p, q)))+

∑

k∈hpH(i)

GH(τk, r
H
i (q))

(40)
where p is the last job of τi in a level-i busy period in L-mode operation.
Indeed, the first term on (40)’s right-hand side upper-bounds the processing
requirement of any sequence of q+1 jobs of task τi, assuming their H-WCET.
Each term of the second summation, upper-bounds the interference from the
largest sequence of jobs of higher-priority H-task τk over rHi (q), i.e., the worst-
case completion time for job q of τi in a level-i busy period, assuming that each
of these jobs takes their H-WCET. Finally, each term of the first summation,
upper-bounds the interference from the largest sequence of jobs of higher-
priority L-task τj over the longest completion time of either job q or job p of
τi, whichever is smaller, assuming that each of these jobs takes their L-WCET.
Indeed, as observed in [12], if p < q, the mode switch must occur before rLi (p).
Otherwise, τi would have not been caught by a mode switch.

Note that in this analysis we are trading-off computation time for pes-
simism. Indeed, rLi (min(p, q)) is the maximum response time in L-mode for

any job sequence with the specified number of jobs, but this may occur for a
sequence that starts with a job that is different from the job that leads to the
maximum cumulative H-WCET of a sequence of q + 1 jobs. This is similar to
the trade-off described in Subsection 6.2.1. A tighter analysis would require to
upper-bound the completion time of the Fi sequences of q + 1 jobs, one per
job in a superframe. For each sequence, the worst-case completion time would
be computed using the cumulative H-WCET of the jobs in that sequence and
also the respective L-mode completion time to upper-bound the interference
by L-mode tasks. Finally, the response time would be computed by taking the
maximum of these completion times and subtracting qTi.

8.2.2 Adaptive multiframe mixed criticality-max with arbitrary deadlines
(AMMC-max-Arb)

We now extend AMMC-max for arbitrary deadlines (AMMC-max-Arb). AMC-
max and AMC-max-Arb differ from AMC-rtb and AMC-rtb-Arb, respectively,
only in the analysis of H-mode operation. So do AMMC-max-Arb and AMMC-
rtb-Arb. That is, AMMC-rtb-Arb analysis for L-mode operation (see Subsec-
tion 8.2.1) is also applicable to AMMC-max-Arb in L-mode operation. There-
fore, in this section, we will only discuss the analysis of H-tasks in H-mode,
including mode switch.

H-mode analysis: The completion time of job q of a H-task τi in a level-i
busy period that comprises a mode switch, depends on:

1. The interference from jobs of higher-priority L-tasks, τj , released before the
mode switch. This can be computed as for AMMC-max with constrained
deadlines, in Subsection 6.2.2, using the GL+(τj , s) function, (21).

2. The interference from jobs of higher-priority H-tasks, τk, released during
the level-i busy period before completion of that job. Again, this can be
computed as for AMMC-max with constrained deadlines, using the
g∗(τk, ℓ

L(k, t, s), ℓH(k, t, s)) function, (20), and appropriate values for t and
s.

3. The interference from the previous jobs of the task under analysis, released
during the level-i busy period before job q.

To compute the last interference component, we observe that some of the jobs
of τi before job q complete before the mode switch instant s, whereas the
remaining ones complete after the mode switch. We observe that Lemma 1
is still valid for arbitrary-deadline tasks, because neither it nor its proof de-
pend on Di ≤ Ti. Thus, to upper bound the interference, we upper bound
the number of jobs that complete after the mode switch just like for AMC-
max-Arb. Therefore we can use X(q, s, t), given by (34). The number of jobs
completed before the mode switch can also be estimated as for AMC-max-Arb:
Y (q, s, t) = q + 1 −X(q, s, t). Thus, the completion time of job q of a H-task
τi in a level-i busy period comprising a mode switch can be computed using

the g∗ function as follows:

r∗i (q, s) = g∗(τi, Y (q, s, r∗i (q, s)), X(q, s, r∗i (q, s)))+ (41)

+
∑

j∈hpL(i)

GL+(τj , s) +
∑

k∈hpH(i)

g∗(τk, l
L(k, r∗i (q, s), s), l

H(k, r∗i (q, s), s))

As for AMC-max, AMC-max-Arb and AMMC-max, it suffices to compute
r∗i (q, s) only for values of s that are equal to the release time of L-tasks with
higher priority than τi. The justification is that g∗(τi, l, h) is non-increasing as
s increases and GL+(τj , s) is a step function whose value increases for values of
s corresponding to releases of jobs of task τj . However, in a slight optimisation
over [12], and similarly as in AMC-rtb-Arb and AMMC-rtb-Arb, we only need
to consider such values of s from the interval [0, rLi (min(p, q))), instead of the
potentially larger interval [0, rLi (q)), where p is the job number of the last job
in a level-i busy period in L-mode. The justification is that rLi (p) is the longest
i-level busy period in L-mode, thus if τi is affected by a mode switch, this must
occur before rLi (p).

Let r∗i (q) be the maximum of all the r∗i (q, s) computed values. Then, the
worst-case response time for job q in a level-i busy period that comprises a
mode switch can be computed as for AMC-max-Arb, i.e.:

R∗
i (q) = r∗i (q)− qTi (42)

Again, in this analysis (41), we are trading-off computation time for pes-
simism. Indeed, rLi (min(p, q)) is the maximum completion time in L-mode over
all possible sequences with min(p, q)+ 1 jobs of τi. So, as described above, we
must compute the completion time of q + 1 jobs for every value of s smaller
than rLi (min(p, q)) that is equal to the release time of an L-job with higher
priority than τi. This value of s will affect every term on the RHS of (41), and
in particular the first term, which is the maximum cumulative execution of
q + 1 jobs, such that some of them complete before the mode switch, s, and
others complete after the mode switch. Assume that r∗i (q, s) takes the maxi-
mum value for some sequence of q+1 jobs of τi such that y of them complete
before the mode switch and x of them complete after the mode switch. It may
be the case that the completion time of that same sequence of y jobs in L-mode
is shorter than the value of s. Thus, the maximum completion time computed
for that value of s has some pessimism. A tighter analysis would require to
upper-bound the completion time of the Fi sequences of q + 1 jobs of τi, one
per frame in a superframe. For each sequence, the worst-case completion time
would be computed using its cumulative WCET and also the respective L-
mode completion time to upper-bound the values of s that would have to be
used. Finally, the response time would be computed by taking the maximum
of these completion times and subtracting qTi.

Table 2: Example multiframe task set τ with three tasks.

task κ CL CH T D Priority
τ1 L {1,2,6,4 } { } 10 10 H
τ2 H {3,5,2 } {6,10,4 } 20 20 M
τ3 H {1,2 } { 2,4} 30 40 L

9 Example

In this section, we illustrate the application of the different analyses described
in the previous section to the task set shown in Table 2. This task set comprises
one L-task and two H-tasks. The tasks are listed in decreasing priority order,
as found by Audsley’s priority assignment, which is discussed in Section 10.
We focus on the response time at mode switch. Furthermore, we consider only
the response time analysis of task τ3, which is the most interesting, as it is
interfered with by the other two tasks. The response time analysis of the L-
and H-modes, and also for the remaining tasks, is similar.

9.1 SMMC-Arb

For this analysis, the completion time of job q of task τi is given by recurrence
(38), which we repeat here for convenience:

ri(q) = gH(τi, q + 1) +
∑

j∈hpL(i)

GL(τj , ri(q)) +
∑

k∈hpH(i)

GH(τk, ri(q))

Thus, the recurrence for completion time of the first job (q = 0) of τ3 of
the example task set becomes:

r3(0) = 4 +GL(τ1, r3(0)) +GH(τ2, r3(0))

which converges to the value 33. Thus, the response time of the first job of τ3,
see (28), is:

R3(0) = 33− 0 ∗ T3 = 33

which is shorter than its deadline, D3 = 40. However, it is larger than its
period, T3 = 30, thus we need to compute the response time for the 2nd job.
The completion time of the second job, relative to the release of the first job,
is obtained by solving the recurrence:

r3(1) = 4 + 2 +GL(τ1, r3(1)) +GH(τ2, r3(1))

which converges to the value 35. Thus its response time is:

R3(1) = 35− 1 ∗ T3 = 5

Again, this is smaller than τ3’s deadline. Furthermore, it is smaller than τ3’s
period, therefore there is no need to consider further jobs, and we can conclude
that τ3 is schedulable when it is assigned the lowest priority.

9.2 AMMC-rtb-Arb

For this analysis, we need first to analyze the response time in L-mode for the
different jobs in a i-busy period, because the corresponding L-mode completion
times are used in the H-mode completion times recurrences.

The recurrence for computing the completion time of job q of task τi in
L-mode is given by recurrence (39), which we repeat here for convenience:

rLi (q) = gL(τi, (q + 1)) +
∑

k∈hp(i)

GL(τk, r
L
i (q))

Thus, the completion time of τ3’s first job in L-mode can be obtained by
solving the recurrence:

rL3 (0) = 2 +GL(τ1, r
L
3 (0)) +GL(τ2, r

L
3 (0))

which converges to 17. Therefore, RL
3 (0) = 17. Since this is shorter than both

the deadline and the period of τ3, we are done with L-mode analysis.
The recurrence (40) is used for computing the completion time of job q of

task τi in H-mode, which we repeat here for convenience:

rHi (q) = gH(τi, (q+1))+
∑

j∈hpL(i)

GL(τj , r
L
i (min(p, q)))+

∑

k∈hpH(i)

GH(τk, r
H
i (q))

Thus, the completion time of τ3’s first job upon a mode switch is given by:

rH3 (0) = 4 +GL(τ1, 17) +GH(τ2, r
H
3 (0)) (43)

which converges to 30. Thus the response time of the first job is RH
3 (0) = 30,

which is not greater than the deadline. Furthermore, it is also not greater than
τ3’s period. So, this means that we have completed the response time analysis
and that τ3 is schedulable when it is assigned the lowest priority.

9.3 AMMC-max-Arb

As already mentioned, the AMMC-max-Arb analysis differs from AMMC-rtb-
Arb only in the WCRT recurrence for the case of a mode switch. To reduce
the pessimism of AMMC-rtb-Arb, the AMMC-max-Arb completion time re-
currence for job q in a level-i busy period, (41), which we repeat below for
convenience, takes into account the mode switch instant, s.

r∗i (q, s) = g∗(τi, Y (q, s, r∗i (q, s)), X(q, s, r∗i (q, s)))+

+
∑

j∈hpL(i)

GL+(τj , s) +
∑

k∈hpH(i)

g∗(τk, l
L(k, r∗i (q, s), s), l

H(k, r∗i (q, s), s))

As mentioned, it suffices to compute r∗i (q, s) only for values of s that are equal
to the release time of L-tasks with higher priority than τi in [0, rLi (min(p, q))),
where p is the job number of the last job in a level-i busy period in L-mode.

Table 3: Response time of all the tasks.

task κ D
WCRT

SMMC AMMC-rtb-Arb AMMC-max-Arb
τ1 L 10 6 (6, -, -) (6, -, -)
τ2 H 20 20 (15, 20, 10) (15, 20, 10)

τ3 H 40
R3(0) = 33

(17, 30, 14) (17, 24, 14)
R3(1) = 5

The WCRT triples in the AMMC-rtb-Arb and AMMC-max-Arb columns
are for L-mode, mode switch and H-mode, respectively.

Once the completion time of job q has been determined, its worst-case response
time can be easily computed: R∗

i (q) = r∗i (q)−q·Ti, where r
∗
i (q) is the maximum

of all r∗i (q, s) values computed.
Thus to compute the completion time of the first job, q = 0, of τ3, r

∗
3(0), we

must consider the values of s in the interval [0, rL3 (0)) = [0, 17), corresponding
to the release of task τ1, the only L-task with a priority higher than τ3. Because
T1 = 10, there are two possible values for s: 0 and 10.

Considering s = 0 first, we get the recurrence:

r∗3(0, 0) =g ∗ (τ3, Y (0, 0, r∗3(0, 0)), X(0, 0, r∗3(0, 0)))

+GL+(τ1, 0) + g∗(τ2, l
L(2, r∗3(0, 0), 0), l

H(2, r∗3(0, 0), 0))

which converges to 20. Since the corresponding response time is not greater
than the D3, we now compute the completion time of the first job for s = 10,
using the recurrence:

r∗3(0, 10) =g∗(τ3, Y (0, 0, r∗3(0, 10)), X(0, 0, r∗3(0, 10)))

+GL+(τ1, 10) + g∗(τ2, l
L(2, r∗3(0, 10), 10), l

H(2, r∗3(0, 10), 10))

which converges to 24. Thus: r∗3(0) = max{20, 24} = 24, and its worst-case
response time is: R∗

3(0) = r∗3(0)−0·T3 = 24. Since this value is smaller thanD3,
the first job of τ3 meets the deadline. Furthermore, becauseR∗

3(0) = 24 ≤ T3 = 30,
there is at most one active job of τ3 in any 3-level busy period. Thus, we can
conclude that τ3 is schedulable under AMMC-max-Arb when assigned the
lowest priority.

Table 3 summarizes the worst-case response times of all tasks of the exam-
ple task set. Since for all tasks the WCRTs are not greater than the respective
deadline, the task set is schedulable by all analyses.

10 Priority Assignment

Deadline monotonic priority assignment is not optimal for AMC [2], and there-
fore it is not optimal for AMMC either; this applies to both AMMC-rtb and
AMMC-max. (The same is true also for SMC and therefore SMMC.) However,
Audsley’s priority assignment algorithm [25] is optimal for AMC (and SMC)

and, as we will proceed to show, it is also optimal for their multi-frame exten-
sions, AMMC, both AMMC-rtb and AMMC-max, and SMMC. Furthermore,
this is true also for their arbitrary-deadline variants.

Indeed, it has been shown [26] that Audsley’s priority assignment is optimal
for a given schedulability test S, if the following 3 conditions hold:

Condition 1 The schedulability of a task τ may, according to test S, depends
on any independent properties of tasks with higher priority than τ , but
not on any properties of those tasks that depend on their relative priority
ordering.

Condition 2 The schedulability of a task τ may, according to test S, depends
on any independent properties of tasks with lower priority than τ , but
not on any properties of those tasks that depend on their relative priority
ordering.

Condition 3 When the priorities of any two tasks of adjacent priority are
swapped, the task being assigned the higher priority cannot become un-
schedulable according to test S, if it was previously schedulable at the lower
priority.

where by independent property we mean a property that is independent of
the priority assigned to a task. (Actually, the wording we are using for these
conditions is by Davis and Burns [27].)

By analysing the different worst-case response time analysis algorithms for
multiframe tasks, it is straightforward to check that these conditions hold.
We provide the arguments for the AMMC-max analysis, but they apply to
the other multiframe mixed-criticality analyses, independently of whether the
deadlines are constrained or arbitrary.

Our schedulability test is based on response-time analysis. In AMMC-max,
for each task τi, we check whether its worst-case response time in L-mode is
not greater than its (relative) deadline. Furthermore, if τi is an H-task, we
check if its worst-case response time in H-mode, including the case of mode
switch, is not greater than its deadline. These checks can be applied to each
task independently of the relative priorities assigned to the tasks. In addition,
they depend only on τi’s deadline and on the response time. The deadline
is a fixed attribute of a task and independent of the priority assigned to a
task. Also, the worst-case response times of a task in both L- and H-mode do
not depend on the relative ordering of higher-priority tasks or on the relative
ordering of lower-priority tasks.

Indeed, in AMMC-max, the L-mode response time of task τi is computed
with (14) (which is also valid for SMMC and AMMC-rtb), that we repeat here
for convenience:

RL
i = gL(τi, 1) +

∑

τj∈hp(i)

GL(τj , R
L
i)

We observe that gL(τi, 1), which is given by (11), depends only on the L-
WCETs of the jobs in τi’s superframe, and therefore does not depend on the
relative priority ordering of the tasks. Likewise, GL(τj , R

L
i), which is given by

(12), depends on the L-WCETs of the jobs in τj ’s superframe, τj ’s period and

RL
i . Again, τj ’s attributes used in GL function do not depend on the relative

priority ordering of the tasks. RL
i is also not dependent on the relative ordering

among tasks with priority higher than τi or among tasks with priority lower
than τi. Indeed, R

L
i is obtained by summing gL(τi, 1) and GL(τj , R

L
i) for each

task τj with a priority higher than τi, and therefore does not depend on the
relative ordering of higher-priority tasks, or even on lower-priority tasks.

With respect to Condition 3, it is straightforward to check that, by swap-
ping the priorities of any two tasks of adjacent priorities, the second term of
the right-hand side of the schedulability test, (14), for the task being assigned
the higher priority cannot be larger than what it was in the previous priority
assignment. Therefore, if that task was previously schedulable at the lower
priority, it will remain schedulable at the higher priority.

In AMMC-max, the response time of H-task τi in H-mode, including mode
switch, is computed with (25), which we repeat here for convenience:

R∗
i = max{R∗

i (s) : 0 < s ≤ RL
i }

where s is the mode switch instant relative to the release instant of τi. As
mentioned, the analysis needs to be performed only for values of s correspond-
ing to the release of higher-priority L-tasks. These instants are independent of
the relative priority order among higher-priority tasks or of the relative prior-
ity order among lower-priority tasks. R∗

i (s) is computed with (26), which we
repeat here for convenience:

R∗
i (s) = gH(τi, 1) +

∑

j∈hpL(i)

GL+(τj , s)

+
∑

k∈hpH(i)

g∗(τk, ℓ
L(k,R∗

i (s), s), ℓ
H(k,R∗

i (s), s))

We observe that gH(τi, 1) is similar to gL(τi, 1), the only difference is that
it uses the H-mode WCET of the jobs in a superframe instead of their L-
mode WCET. Therefore it is also independent of the relative priority ordering
among the other tasks. Following a line of argumentation similar to the one we
presented above for GL(τj , R

L
i), and taking into account that the values of s do

not depend on the relative ordering of lower-priority tasks or even on higher-
priority tasks, we conclude that GL+(τj , s) is also independent of the relative
priority ordering among higher-priority tasks or among lower-priority tasks.
Finally, g∗(τk, ℓ

L, ℓH), which is given by (20), depends on ℓL(k,R∗
i (s), s) and

ℓH(k,R∗
i (s), s) and also on attributes of H-task τk, i.e. its period and also the

L- and H-WCET of the jobs in its superframe. These attributes of H-task τk
are independent of the priorities of the other tasks. The values ℓL(k,R∗

i (s), s)
and ℓH(k,R∗

i (s), s) are given by (23) and (24), respectively, and depend only
on the period and the deadline of task τk, in addition to s and R∗

i (s), which
are also independent of the relative ordering among tasks with priority higher
than τi, or among tasks with priority lower than τi. Indeed, R

∗
i (s) is obtained

by summing gH(τi, 1), G
L+(τj , s) for each L-task τj with higher priority than

τi, and g∗(k, ℓL(k,R∗
i (s), s), ℓ

H(k,R∗
i (s), s)) for each H-task τk with higher

priority than τi, and therefore does not depend on the relative ordering of
higher-priority tasks or on the relative ordering of lower-priority tasks.

With respect to Condition 3, we need to consider two cases, depending on
the criticality of the task whose priority is lower after the priority swap. If
the latter is an L-task, then the argument is exactly the same as presented
above, for L-mode. If the task whose priority is lower after the priority swap is
a H-task, then the third term of the right-hand side of the schedulabity test,
(26), for the task being assigned the higher priority cannot be larger than
what it was in the previous priority assignment. Therefore, if that task was
previously schedulable at the lower priority, it will remain schedulable at the
higher priority. This concludes our argument that our schedulability test for
constrained-deadline task-sets based on AMMC-max satisfies the 3 conditions
stated above.

Finally, we note that the following theorem, which holds for mixed-criticality
analyses, SMC and both AMC variants, with constrained deadlines [2] is also
valid for the multiframe mixed-criticality analyses, SMMC and both AMMC
variants, with constrained deadlines:

Theorem 1 An optimal priority ordering exists that has all tasks with the
same criticality assigned priorities in deadline monotonic priority order.

The proof follows the standard argument of the optimality of deadline
monotonic priority assignment for tasks with constrained deadlines. The idea
is that if there is some schedulable assignment such that the priority assigned
to two tasks is not according to their deadlines, then the assignment obtained
by swapping the priorities of these two tasks is also schedulable.

Consider two tasks τi and τj with the same criticality level such that
Di < Dj . Assume that there is a priority assignment such that the prior-
ity of τj is higher than that of τi, which is deemed schedulable. If we swap
the priority of τi and τj , obviously τi’s response time under this new priority
assignment will be shorter than under the original priority assignment, and
therefore τi remains schedulable. Consider now τj , whose priority is lower in
the new priority assignment. The cumulative processing demand by the com-
pletion of τj ’s job under the new priority assignment is equal to the cumulative
processing demand by the completion of τi under the initial priority assign-
ment. Indeed, because τi and τj are both constrained deadline tasks, there is
only one job of each of these tasks in both schedules. Therefore, if τi, which has
an earlier deadline than τj , was deemed schedulable under the initial priority
assignment, so will τj be in the new priority assignment.

This theorem allows us to use a variant of Audsley optimal assignment
[2] that in each step considers at most 2 tasks: the H- and L- tasks not yet
assigned with largest deadline, thus reducing the worst-case number of tests
required to 2n− 1, rather than n(n+ 1)/2 in the general case.

11 Evaluation

11.1 Experimental setup

The proposed analyses are implemented in a Java tool [28] to evaluate their
scheduling performance. This Java tool has two modules. The first module
generates the synthetic workload for the specified input parameters. The sec-
ond module implements the different schedulability analyses. The generation
of the synthetic task sets is controlled through the following parameters.

– Task periods are generated in the range of 10 msec to 1 sec using a log-
uniform distribution.

– The deadlines of the tasks are generated within a range of [0.25, 4]Ti using
a log-uniform distribution [12]. The analyses presented in Sections 5 and
6 hold for only constrained-deadlines, so their deadlines are selected with
log-uniform distribution within a range of [0.25, 1]Ti.

– The UUnifast algorithm [29,30] is used to generate the L-mode utilization
(UL

i,1) for the first frame of a task τi in an unbiased way. The L-WCET

of the first frame4 of each task is then CL
i,1 = Ti × UL

i,1. The number
of frames for each task is selected randomly with a uniform distribution
within a range of [1, α], where α > 1 is a user-defined integer parameter.
The L-WCETs of other frames of a task are randomly selected within an
interval of [β × CL

i,1, C
L
i,1] with uniform distribution, where β ∈ (0, 1] is a

task generation parameter limiting the L-WCET variation among a task’s
frames

– The user-defined fraction of H-tasks ξ ∈ (0, 1) in the task set.
– The H-WCET of the jth frame of H-task τi (CH

i,j) is derived by linearly

scaling up that frame’s L-WCET (CL
i,j) with a user-defined factor of κ, i.e.,

CH
i,j = κ× CL

i,j .

We used Audsley’s optimal priority assignment [26] for all schedulability
tests. The target utilization is varied within a range of (0, 1] with a step size
of 0.1. Different random class objects are defined for utilization, minimum
inter-arrival time, number of frames, deadline and L-WCET of each frame.
These random class objects are seeded with different odd numbers and reused
in successive replications [31]. For each set of input parameters, 1000 random
task sets are generated. The parameters used in this evaluation are summarized
in Table 4.

To avoid generating a huge number of plots, in each of our experiments,
we only vary one parameter at a time, with the other parameters conforming
to their default values, displayed in Table 4. The triples in the Values column
are respectively the minimum value, the step size and the maximum value

4 For convenience, without loss of generality (since shift-rotating the order of the frames
results in an equivalent multiframe task), the first frame has the biggest L-WCET. Please
note that our analyses make no assumptions regarding the WCET of the first frame being
the greatest.

Table 4: Overview of Parameters

Parameters Values Default

H-WCET scale-up factor (κ) {2 : 0.5 : 6} 3
Task set size (n) {8 : 4 : 32} 16

Fraction of H-tasks in τ (ξ) {0.2 : 0.05 : 0.7} 0.4
Upper bound on # of frames (α) {3 : 1 : 10} 5

Lower bound on L-WCET (β) variation {0.1 : 0.1 : 0.8} 0.2
Inter-arrival time (Ti) 10ms to 1s N/A

Deadline (Di) LogUnif{[0.25 4]Ti} N/A

2 2.5 3 3.5 4 4.5 5 5.5 6

H-WCET scale-up factor ()

0.1

0.2

0.3

0.4

W
e

ig
h

te
d

 s
c
h

e
d

u
la

b
ili

ty

AMMC-max

AMMC-rtb

SMMC

AMC-max

AMC-rtb

SMC

Fig. 3: Effect of H-WCET variation on constrained-deadline analyses

for the respective parameter. The number of plots is further reduced by plot-
ting weighted schedulability rather than schedulability success ratio for each
possible combination of input parameters. The weighted schedulability repre-
sentation condenses three dimensional-plots to two-dimensional plots [32,33]
by eliminating the axis of task set utilization. This performance metric gives
more weight to task sets with higher utilization. Using notation from [33], let
Sy(τ, p) represent the result (0 or 1) of the schedulability test y for a given task
set τ with an input parameter p. Then Wy(p), the weighted schedulability for
that test y as a function p, is presented in (44), where UL(τ) is the nominal
system utilization of the task set τ in the L-mode.

Wy(p) =

∑

∀τ (U
L(τ) · Sy(τ, p))

∑

∀τ U
L(τ)

(44)

11.2 Results

We compared the weighted schedulability of the six proposed schedulabil-
ity analyses (SMMC, AMMC-rtb, AMMC-max, SMMC-Arb, AMMC-rtb-Arb,
AMMC-max-Arb) against the existing ones (SMC, AMC-rtb, AMC-max, SMC-
Arb, AMC-rtb-Arb and AMC-max-Arb). For the SMC, AMC-rtb, AMC-max,

2 2.5 3 3.5 4 4.5 5 5.5 6

H-WCET scale-up factor ()

0.2

0.3

0.4

0.5

0.6

0.7

W
e

ig
h

te
d

 s
c
h

e
d

u
la

b
ili

ty

AMMC-max-Arb

AMMC-rtb-Arb

SMMC-Arb

AMC-max-Arb

AMC-rtb-Arb

SMC-Arb

Fig. 4: Effect of H-WCET variation on arbitrary-deadline analyses

0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65

Fraction of H-tasks in ()

0.2

0.3

0.4

W
e
ig

h
te

d
 s

c
h
e
d
u
la

b
ili

ty

AMMC-max

AMMC-rtb

SMMC

AMC-max

AMC-rtb

SMC

Fig. 5: Weighted Schedulability vs. H-task share (constrained-deadline anal-
yses)

SMC-Arb, AMC-rtb-Arb and AMC-max-Arb tests, the multiframe task is
transformed into an instance of the classic (i.e., single-frame) mixed-criticality
task-model by pessimistically discarding frame information. In this trans-
formation, for any task τi, its L-WCET and H-WCET are set to CL

i =
maxFi−1

j=0 CL
i,j and CH

i = maxFi−1
j=0 CH

i,j , respectively.

Please note that the implicit-deadline model (Di = Ti) was used in the
evaluation of the constrained-deadline schedulability analyses presented in our
previous work [22]. The use of the constrained deadlines in this paper for the
algorithms presented in Sections 5 and 6 (constrained-deadline schedulability
analyses) has led to a slight decrease in their weighted scheduling success ratio
when compared to the results presented in [22].

0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7

Fraction of H-tasks in ()

0.2

0.3

0.4

0.5

0.6

0.7

W
e

ig
h

te
d

 s
c
h

e
d

u
la

b
ili

ty

AMMC-max-Arb

AMMC-rtb-Arb

SMMC-Arb

AMC-max-Arb

AMC-rtb-Arb

SMC-Arb

Fig. 6: Weighted Schedulability vs. H-task share (arbitrary-deadline analyses)

3 4 5 6 7 8 9 10

Upper bound on number of frames per task ()

0.24

0.26

0.28

0.3

W
e
ig

h
te

d
 s

c
h
e
d
u
la

b
ili

ty

AMMC-max

AMMC-rtb

SMMC

AMC-max

AMC-rtb

SMC

Fig. 7: Weighted schedulability vs. max number of frames in a task
(constrained-deadline analyses)

Figures 3 and 4 present the effect of varying the H-WCET scale-up fac-
tor (κ) on all analyses. A higher value for κ increases the H-mode processor
requirement of high-criticality tasks, hence the weighted schedulability of all
analyses decreases accordingly. The multiframe-based analyses perform bet-
ter than their corresponding frame-agnostic conventional analyses by lever-
aging frame information. As expected, AMC-max outperforms AMC-rtb and
AMMC-max outperforms AMMC-rtb, albeit by very small margins in both
cases. The difference between adaptive and static variants comes from the fact
that static analyses do not drop L-tasks, this makes the WCRT of H-tasks
computed with SMC more likely to exceed their deadlines. SMMC performs
better at low values of κ compared to SMC, AMC-rtb and AMC-max, but the

3 4 5 6 7 8 9 10

Upper bound on number of frames per task ()

0.36

0.38

0.4

0.42

0.44

0.46

0.48

W
e

ig
h

te
d

 s
c
h

e
d

u
la

b
ili

ty

AMMC-max-Arb

AMMC-rtb-Arb

SMMC-Arb

AMC-max-Arb

AMC-rtb-Arb

SMC-Arb

Fig. 8: Weighted schedulability vs. max. number of frames in a task (arbitrary-
deadline analyses)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Lower bound on L-WCET variation ()

0.24

0.26

0.28

0.3

W
e
ig

h
te

d
 s

c
h
e
d
u
la

b
ili

ty

AMMC-max

AMMC-rtb

SMMC

AMC-max

AMC-rtb

SMC

Fig. 9: Comparison of constrained-deadline analyses for L-WCET variation

difference among them decreases with an increase in κ, because task sets be-
come harder to schedule. The observations mentioned for constrained-deadline
analyses are also true for the arbitrary-deadline analyses (see Figure 4). The
constrained-deadline analyses have more processing requirement when com-
pared to arbitrary-deadline analyses as Di ≤ Ti. Hence, the arbitrary-deadline
analyses when compared to their corresponding constrained-deadline analy-
ses show better weighted schedulability ratio. Please note that the difference
between the proposed arbitrary-deadline frame-based analyses and their cor-
responding single-frame based analyses is lower when compared to a similar
comparison in constrained-deadline analyses. A higher κ reduces the overall

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Lower bound on L-WCET variation ()

0.36

0.38

0.4

0.42

0.44

0.46

0.48

W
e

ig
h

te
d

 s
c
h

e
d

u
la

b
ili

ty

AMMC-max-Arb

AMMC-rtb-Arb

SMMC-Arb

AMC-max-Arb

AMC-rtb-Arb

SMC-Arb

Fig. 10: Comparison of arbitrary-deadline analyses for L-WCET variation

Table 5: Maximum absolute difference in schedulability success ratio of each
multiframe analysis from its corresponding single-frame analysis.

Varied parameters
Analyses κ |τ | ξ α β

AMMC-max 14.9% 14.3% 14.6% 9.2% 8.6%
AMMC-rtb 16.6% 15.7% 15.1% 10.8% 10.5%
SMMC 19.3% 20.0% 15.6% 13.5% 14.2%

AMMC-max-Arb 29.1% 12.2% 31.4% 8.2% 8.2%
AMMC-rtb-Arb 28.1% 11.4% 30.9% 8.1% 8.1%
SMMC-Arb 28.4% 29.6% 26.3% 18.8% 18.0%

schedulability ratio for each analysis, therefore, the differences in performance
between the multiframe- and single-frame-based analyses also decrease.

A higher fraction of H-tasks (ξ) increases the processor requirement of the
system in H-mode. Hence, the weighted schedulability of all analyses decreases
(Figures 5 and 6). Their absolute difference in terms of weighted schedulability
also decreases, as the number of feasible task sets decreases with a higher
fraction of H-tasks.

The potential for improvements in weighted schedulability for SMMC,
AMMC-rtb, AMMC-max, SMMC-Arb, AMMC-rtb-Arb and AMMC-max-Arb
over single-frame-based analyses increases when the number of frames per task
is higher. A larger value of upper bound for the number of frames per tasks
results in more frames per task on average as well. With more frames in a task,
the probability of having low-WCET frames increases, which in turn magni-
fies the improvement from leveraging the frame information (or, equivalently,
magnifies the pessimism when disregarding it). Hence, the weighted schedu-
lability of the multiframe-based analyses improves when the upper bound on
the number of frames per task is higher, as shown in Figures 7 and 8. The
classic SMC, AMC-rtb, AMC-max, SMC-rtb, AMC-rtb-Arb and AMC-max-

8 12 16 20 24 28 32

Task set size

0.2

0.25

0.3

0.35

W
e

ig
h

te
d

 s
c
h

e
d

u
la

b
ili

ty

AMMC-max

AMMC-rtb

SMMC

AMC-max

AMC-rtb

SMC

Fig. 11: Effect of task set size variation over weighted schedulabaility of
constrained-deadline analyses

8 12 16 20 24 28 32

Task set size

0.3

0.35

0.4

0.45

0.5

0.55

W
e
ig

h
te

d
 s

c
h
e
d
u
la

b
ili

ty

AMMC-max-Arb

AMMC-rtb-Arb

SMMC-Arb

AMC-max-Arb

AMC-rtb-Arb

SMC-Arb

Fig. 12: Effect of task set size variation over weighted schedulabaility of
arbitrary-deadline analyses

Arb are insensitive to this parameter, as these analyses assume the maximum
estimates for L-WCET and H-WCET over all frames. For low α, leveraging
frame information does not compensate for the pessimism of static multiframe
analyses (SMMC and SMMC-Arb), causing it to under perform compared to
conventional single-frame adaptive analyses (AMC-rtb, AMC-max, AMC-rtb-
Arb and AMC-max-Arb).

The WCET variation limiting parameter β defines a lower bound for the
ratio between the smallest frame L-WCET and the greatest frame WCET
of a given task. A higher value of β decreases this range, and consequently,
increases the average execution requirement of task’s frames, all other things

8 12 16 20 24 28 32

Task set size

1

2

3

4

5

6

7

T
im

e
 (

S
e

c
)

10
-4

AMMC-max

AMMC-rtb

SMMC

AMC-max

AMC-rtb

SMC

Fig. 13: Impact of task set size variation on the average running time of
constrained-deadline analyses

8 12 16 20 24 28 32

Task set size

0

0.005

0.01

0.015

0.02

0.025

T
im

e
 (

S
e
c
)

AMMC-max-Arb

AMMC-rtb-Arb

SMMC-Arb

AMC-max-Arb

AMC-rtb-Arb

SMC-Arb

Fig. 14: Impact of task set size variation on the average running time of
arbitrary-deadline analyses

remaining equal. Hence, the weighted schedulability of the multiframe-based
analyses decreases with an increase in β (see Figures 9 and 10). One important
observation is that the absolute difference among the weighted schedulability
of AMMC-max, AMMC-rtb and SMMC increases with an increase in β. The
pessimism in AMMC-rtb against AMMC-max becomes a major differentiator
when the potential of gaining from the multiframe properties becomes limited.
The same behavior is shown by SMMC against SMC. These effects also holds
true for arbitrary-deadline analyses (see Figure 10). Similarly to the bound on
the maximum number of frames per task, β has no effect on SMC, AMC-rtb,

Table 6: Average running time (in seconds) of all constrained-deadline analyses
with default parameters.

AMMC-max AMMC-rtb SMMC AMC-max AMC-rtb SMC

2.6233× 10−4 2.4362× 10−4 2.4725× 10−4 2.1804× 10−4 1.9268× 10−4 1.6601× 10−4

AMC-max, SMC-Arb, AMC-rtb-Arb and AMC-max-Arb, as the maximum of
the WCET estimates over all frames are assumed in each mode.

The effect of variation in the number of tasks on the weighted schedulability
is presented in Figures 11 and 12. The important observation is that, similarly
to single-criticality systems, the weighted schedulability improves with larger
task set sizes, as more low-utilization tasks are easier to schedule compared to
fewer high-utilization tasks. The fact that during task generation, the number
of H-tasks is rounded up to the nearest integer as needed (i.e., when the target
fraction of H-tasks would result in a non-integer number) explains the saw-
tooth shape of the weighted schedulability plots of each analysis.

To quantify the benefits in terms of non-weighted schedulability success
ratio, Table 5 shows the maximum absolute difference in non-weighted schedu-
lability success ratio of each multiframe analysis over its corresponding single-
frame analysis. In the best case, the AMMC-max, AMMC-rtb, SMMC, AMMC-
max-Arb, AMMC-rtb-Arb and SMMC-Arb analyses achieve up to 14.9%,
16.6%, 20%, 31.4%, 30.9% and 29.6% higher schedulability successes ratio,
respectively, compared to their corresponding single-frame analyses. The bold
values in Table 5 shows the highest difference achieved by each analysis among
all experiments.

Finally, we experimentally explore the running time of each analysis. The
platform (PowerEdge-T320) used for these experiments has 32 GB RAM and
eight Intel(R) Xeon(R) E5-2420 v2 CPUs, each with a maximum frequency of
2.20 GHz and running Linux Mint 18.3 Sylvia. Except for the task set size, the
running time is virtually insensitive to other parameters. Figure 13 presents
the average running times of all constrained-deadline analyses for different
task set sizes in seconds. AMMC-max takes longer than other analyses as
it requires more computation while computing the processor requirement in
each iteration. As expected, the running times of all tests increase with an
increase in task set size as the feasibility testing has to be performed for each
task. Figure 14 presents the average running time of the arbitrary-deadline
task analyses. The frame-oblivious analyses are pessimistic and the length
of the busy interval in the feasibility testing of such analyses becomes much
longer when compared to multiframe analyses. Hence, in Figure 14 (contrary
to Figure 13), the frame-oblivious analyses take more time than multiframe
analyses. For the default parameters, the average running times of all analyses
are also presented in Tables 6 and 7. The observations presented above for
Figures 13 and 14 are consistent with the data shown in Tables 6 and 7.

Table 7: Average running time (in seconds) of all arbitrary-deadline analysis
with default parameters.

AMMC-max-Arb AMMC-rtb-Arb SMMC-Arb AMC-max-Arb AMC-rtb-Arb SMC-Arb

5.49× 10−4 4.70× 10−4 5.30× 10−4 1.8144× 10−2 1.6632× 10−2 1.6589× 10−2

2 2.5 3 3.5 4 4.5 5 5.5 6

H-WCET scale-up factor ()

0.2

0.3

0.4

0.5

0.6

0.7

W
e

ig
h

te
d

 s
c
h

e
d

u
la

b
ili

ty

AMMC-max-Arb

AMMC-rtb-Arb

SMMC-Arb

AMMC-max-Arb-S

AMMC-rtb-Arb-S

SMMC-Arb-S

Fig. 15: Weighted Schedulability vs. H-WCET variation – case study

0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7

Fraction of H-tasks in ()

0.2

0.3

0.4

0.5

0.6

0.7

W
e
ig

h
te

d
 s

c
h
e
d
u
la

b
ili

ty

AMMC-max-Arb

AMMC-rtb-Arb

SMMC-Arb

AMMC-max-Arb-S

AMMC-rtb-Arb-S

SMMC-Arb-S

Fig. 16: Weighted Schedulability vs. H-task share – case study.

11.3 Case Study

In safety-related applications, the computation of H-WCET and its certifica-
tion for each frame is expensive and time consuming. This case study explores
a scenario (also referred to as a special case) with multiple L-WCET esti-
mates (multiple frames in L-mode) and a single H-WCET estimate (single
frame in H-mode), and analyzes its scheduling performance degradation over

3 4 5 6 7 8 9 10

Upper bound on number of frames per task ()

0.38

0.4

0.42

0.44

0.46

0.48

W
e

ig
h

te
d

 s
c
h

e
d

u
la

b
ili

ty

AMMC-max-Arb

AMMC-rtb-Arb

SMMC-Arb

AMMC-max-Arb-S

AMMC-rtb-Arb-S

SMMC-Arb-S

Fig. 17: Weighted schedulability vs. max. number of frames in a task – case
study.

the generic multiframe setting. In our results, we append “-S”, from single (H-
frame), as suffix to the acronym of each multiframe analysis to differentiate
this special case from generic multiframe analyses. Only multiframe arbitrary-
deadline task schedulability analyses are compared in this case study. In our
experimental setup, the single H-WCET estimate of any H-task in the special
case is computed to be CH

i = κ×maxFi

j=0 C
L
i,j .

Figures 15 to 19 compare the weighted schedulability of the generic multi-
frame analyses with those of the special case by varying different parameters.
As expected, the special case analyses lead to a lower weighted schedulability
than the respective generic analyses. Indeed, because we set CH

i to the prod-
uct of the scale-up factor, κ, by the largest WCET of all L-frames of task τi,
the execution demand of every task in the special case analysis is never lower
than in the generic analysis, and is almost always larger.

Independently of the factor of the experiment, the reduction in weighted
schedulability is larger for SMMC-Arb-S than for the two AMMC variants.
Furthermore, the reduction in weighed schedulability for AMMC-rtb-Arb-S is
approximately equal to that for AMMC-max-Arb-S. These observations can be
justified, a posteriori, by the differences in these analyses. Indeed, in SMMC-
Arb-S, there is only one single mode of operation, which is affected by the in-
crease in the WCET of the frames of H-tasks, whereas in the AMMC variants,
the execution demand in L-mode is not affected, only the execution demand
in H-mode and upon mode switch.

Another interesting observation, is that the effect of each factor on the
weighted schedulability of a special case analysis is similar to that observed
on the weighted schedulability of the respective generic analysis. Again this
was somewhat expected since we can view each special case analysis as just
the generic analysis of a task set with slightly different parameters, namely in
terms of the WCET of H-tasks: in the case of the AMMC variants only the

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Lower bound on L-WCET variation ()

0.38

0.4

0.42

0.44

0.46

0.48

W
e

ig
h

te
d

 s
c
h

e
d

u
la

b
ili

ty

AMMC-max-Arb

AMMC-rtb-Arb

SMMC-Arb

AMMC-max-Arb-S

AMMC-rtb-Arb-S

SMMC-Arb-S

Fig. 18: Weighted schedulability vs. L-WCET variation – case study.

8 12 16 20 24 28 32

Task set size

0.35

0.4

0.45

0.5

0.55

W
e
ig

h
te

d
 s

c
h
e
d
u
la

b
ili

ty

AMMC-max-Arb

AMMC-rtb-Arb

SMMC-Arb

AMMC-max-Arb-S

AMMC-rtb-Arb-S

SMMC-Arb-S

Fig. 19: Comparison of case study for L-WCET variation

H-WCET of the H-tasks is different. Thus the observed effects of each factor
on the weighted schedulability of each special case analysis can be justified
in the same way as we have done in Section 11.2 for the respective generic
analysis.

Finally, because weighted schedulability is biased towards task sets with
higher utilization, Table 8 summarizes the results of this case study in terms
of (non-weighted) schedulability ratio. The maximum absolute reduction was
found to be 21.1%, 7.8% and 6.9% for SMMC-arb-S, AMMC-rtb-S and AMMC-
max-S, respectively, when compared to the respective generic analyses.

Table 8: Maximum absolute reduction in non-weighted schedulability ratio of
each special case analysis compared with the respective generic analysis.

Varied parameters
Analyses κ |τ | ξ α β

AMMC-max-Arb-S 5.3% 6.4% 6.9% 4.8% 4.3%
AMMC-rtb-Arb-S 5.2% 7.7% 7.8% 4.8% 4.3%
SMMC-Arb-S 15.2% 21.1% 14.6% 13.2% 12.3%

12 Conclusions

In this work, and in the context of uniprocessor fixed-priority-scheduled plat-
forms, we extended the mode-based mixed-criticality model of Vestal, which
assumed a single worst-case execution time per task per mode. This extension
accommodates multiframe tasks that have different WCETs for their jobs, in a
repeating pattern. For this extended model, we formulated schedulability anal-
yses (SMMC, AMMC-rtb and AMMC-max) that leverage the frame informa-
tion, resulting in greater accuracy over the state-of-the-art mixed-criticality
schedulability tests (SMC, AMC-rtb and AMC-max) that, pessimistically,
have to discard frame information and use a single WCET per task per mode,
in order to be applied. These tests, formulated for constrained-deadline sys-
tems, were later generalized for arbitrary-deadline tasks (as SMMC, AMMC-
rtb and AMMC-max), drawing from the existing results on arbitrary-deadline
mixed-criticality (but single-frame) scheduling. Finally, we reason about task
priority assignment for the scheduling problem considered, when the new anal-
yses are used for schedulability testing, and prove the optimality of Audsley’s
algorithm for the general case, and of a faster variant thereof, in the case
of constrained deadline systems. Experimental evaluation with synthetic task
sets confirms the benefits (up to 31.4% in schedulability success ratio) of the
new model and its analysis, compared to schedulability tests that disregard
frame information. In the future, we intend to consider a partitioned multi-
core arrangement and incorporate the effects of memory stalls under memory
access regulation into the schedulability analysis to make it more realistic and
more applicable to real-world systems.

Acknowledgements

This work was partially supported by National Funds through FCT/MCTES
(Portuguese Foundation for Science and Technology), within the CISTER Re-
search Unit (UIDB/04234/2020); also by the Operational Competitiveness
Programme and Internationalization (COMPETE 2020) under the PT2020
Partnership Agreement, through the European Regional Development Fund
(ERDF), and by national funds through the FCT, within project POCI-
01-0145-FEDER-029119 (PREFECT). This work was also supported by the
Netherlands Organization for Applied Scientific Research TNO.

References

1. S. Baruah and A. Burns, “Implementing mixed criticality systems in Ada,” in 16th
Ada-Europe Conference, 2011, pp. 174–188.

2. S. K. Baruah, A. Burns, and R. I. Davis, “Response-time analysis for mixed criticality
systems,” in Proceedings of the 32nd IEEE Real-Time Systems Symposium, 2011, pp.
34–43.

3. M. Joseph and P. Pandya, “Finding Response Times in a Real-Time System,” The
Computer Journal, vol. 29, no. 5, pp. 390–395, 1986.

4. D. Le Gall, “Mpeg: A video compression standard for multimedia applications,”
Communications of the ACM, vol. 34, no. 4, pp. 46–58, Apr. 1991.

5. ARINC specification 818-2 Avionics Digital Video Bus (ADVB) High Data Rate,
818th ed., AERONAUTICAL RADIO, INC., 2013.

6. C. Bailey, A. Burns, A. Wellings, and C. Forsyth, “Keynote paper: A performance
analysis of a hard real-time system,” Control Engineering Practice, vol. 3, no. 4, pp.
447–464, 1995.

7. J. P. Lehoczky, L. Sha, and Y. Ding, “The rate monotonic scheduling algorithm: Exact
characterization and average case behavior,” in Proceedings of the 10th IEEE Real-Time
Systems Symposium, 1989, pp. 166–171.

8. A. K. Mok and D. Chen, “A multiframe model for real-time tasks,” IEEE Transactions
on Software Engineering, vol. 23, no. 10, pp. 635–645, Oct 1997.

9. C. Liu and J. Layland, “Scheduling algorithms for multiprogramming in a hard real-time
environment,” Journal of the ACM, vol. 20, pp. 46–61, 1973.

10. S. Vestal, “Preemptive scheduling of multi-criticality systems with varying degrees
of execution time assurance,” in Proceedings of the 28th IEEE Real-Time Systems
Symposium, 2007.

11. A. Burns and R. I. Davis, “A survey of research into mixed criticality systems,” ACM
Computing Surveys, vol. 50, no. 6, pp. 82:1–82:37, Nov. 2017.

12. ——, “Response time analysis for mixed criticality systems with arbitrary deadlines,”
in 5th International Workshop on Mixed Criticality Systems (WMC 2017). York, 2017.

13. S. Asyaban and M. Kargahi, “Feasibility interval for fixed-priority scheduling of mixed-
criticality periodic tasks with offsets,” IEEE Embedded Systems Letters, vol. 11, no. 1,
pp. 17–20, March 2019.

14. T. Fleming and A. Burns, “Extending mixed criticality scheduling,” in Proc. WMC,
RTSS, 2013, pp. 7–12.

15. H.-M. Huang, C. Gill, and C. Lu, “Implementation and evaluation of mixed-criticality
scheduling approaches for sporadic tasks,” ACM Transactions on Embedded Computing
Systems, vol. 13, no. 4s, pp. 126:1–126:25, Apr. 2014.

16. T. Fleming, H.-M. Huang, A. Burns, C. Gill, S. Baruah, and C. Lu, “Corrections to and
discussion of “implementation and evaluation of mixed-criticality scheduling approaches
for sporadic tasks”,” ACM Transactions on Embedded Computing Systems, vol. 16,
no. 3, pp. 77:1–77:4, 2017.

17. Q. Zhao, Z. Gu, and H. Zeng, “Pt-amc: Integrating preemption thresholds into mixed-
criticality scheduling,” in Proceedings of the 50th ACM/IEEE Conference on Design
Automation Conference, March 2013, pp. 141–146.

18. S. K. Baruah and A. Mok, “Static-priority scheduling of multiframe tasks,” in
Proceedings of the 11th Euromicro Conference on Real-Time Systems, June 1999, pp.
38–45.

19. S. Baruah, D. Chen, S. Gorinsky, and A. Mok, “Generalized multiframe tasks,” Journal
of Real–Time Systems, vol. 17, no. 1, pp. 5–22, Jul 1999.

20. A. Zuhily and A. Burns, “Exact scheduling analysis of non-accumulatively monotonic
multiframe tasks,” Real-Time Systems, vol. 43, no. 2, pp. 119–146, 2009.

21. G. Bilsen, M. Engels, R. Lauwereins, and J. Peperstraete, “Cycle-static dataflow,” IEEE
Transactions on signal processing, vol. 44, no. 2, pp. 397–408, 1996.

22. I. Hussain, M. A. Awan, P. F. Souto, K. Bletsas, B. Akesson, and E. Tovar, “Re-
sponse time analysis of multiframe mixed-criticality systems,” in Proceedings of the
27th International Conference on Real-Time Networks and Systems, 2019, pp. 8–18.

23. K. W. Tindell, A. Burns, and A. J. Wellings, “An extendible approach for analyzing
fixed priority hard real-time tasks,” Real-Time Systems, vol. 6, no. 2, pp. 133–151, 1994.

24. J. P. Lehoczky, “Fixed priority scheduling of periodic task sets with arbitrary deadlines,”
in [1990] Proceedings 11th Real-Time Systems Symposium. IEEE, 1990, pp. 201–209.

25. N. Audsley, “Optimal priority assignment and feasibility of static priority tasks with
arbitrary start times: Technical report ycs164,” Department of Computer Science,
University of York, 1991.

26. N. C. Audsley, “On priority assignment in fixed priority scheduling,” Information
Processing Letters, vol. 79, no. 1, pp. 39–44, 2001.

27. R. I. Davis and A. Burns, “Improved priority assignment for global fixed priority pre-
emptive scheduling in multiprocessor real-time systems,” Real-Time Systems, vol. 47,
no. 1, pp. 1–40, 2011.

28. B. Nikolic, M. A. Awan, and S. M. Petters, “SPARTS: Simulator for power aware
and real-time systems,” in Proceedings of the 8th IEEE International Conference on
Embedded Software and Systems. Changsha, China: IEEE, Nov. 2011, pp. 999–1004.

29. E. Bini and G. Buttazzo, “Measuring the performance of schedulability tests,” Journal
of Real–Time Systems, vol. 30, no. 1-2, pp. 129–154, 2009.

30. R. I. Davis and A. Burns, “Priority assignment for global fixed priority pre-emptive
scheduling in multiprocessor real-time systems,” in Proceedings of the 30th IEEE
Real-Time Systems Symposium, 2009, pp. 398–409.

31. R. Jain, The art of computer systems performance analysis - techniques for experimental
design, measurement, simulation, and modeling., ser. Wiley professional computing.
Wiley, 1991.

32. A. Bastoni, B. Brandenburg, and J. Anderson, “Cache-related preemption and migra-
tion delays: Empirical approximation and impact on schedulability,” Proceedings of
OSPERT, pp. 33–44, 2010.

33. A. Burns and R. Davis, “Adaptive mixed criticality scheduling with deferred preemp-
tion,” in Proceedings of the 35rd IEEE Real-Time Systems Symposium, Dec 2014, pp.
21–30.

