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Abstract 

The study of control systems in the engineering courses is quite complex, given the difficulty of some teachers in 

exemplifying and allowing the student to understand how such systems affect the environment. In this context, the 
STEM methodologies aim to fill this gap between the traditional classes and the student comprehension of the 

topic through the active learning process. Realistic open-source simulators can be interpreted as one solution for 
this STEM implementation, allowing students to test, modify and create different configurations and sensors with 

a low-cost environment. 

This work presents a flexible open-source 3D simulation framework, based on ROS, of a line follower vehicle, using 

an embedded PID controller, a camera for processing and detecting lines, and sonars for detecting and avoiding 
obstacles. This simulator integrates several controller systems, allowing the student to build consistent skills in 

control and related areas, analyze the impacts of models configurations, and extends its knowledge to new 
techniques. 
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1 Introduction

Control system techniques are one of the most significant challenges in several engi-

neering courses. Since it requires extensive mathematical background, a theoretical

load is quite extensive, requiring effort to learn by students and teachers. Moreover,

there is still an inherent difficulty in transporting the studied theory to practice, mak-

ing it challenging to retain learning [1]. Thus, alternative teaching techniques [2]

can facilitate knowledge production and construction of the skills expected by the

agents involved. In addition, [3] concludes in their work that the student’s perception

of applicability and the ability to construct different solutions is a motivator for the

search for more knowledge.

This line of education development puts the student as a producer of dynamic

and practical knowledge. It should be encouraged to take an active and autonomous

attitude and not necessarily follow pre-established models [4]. So, the student can

go further and propose new solutions to existing problems and even create different

issues. Active student engagement in the learning process also helps to keep the moti-

vation to research and learn [5], using Active Learning techniques. Thus, integrating

different areas of knowledge, experimentation, and implementation allows the stu-

dent to retain more excellent expertise and develop new skills. This integration of

knowledge is called STEM—Science, Technology, Engineering, and Mathematics

[6].

A standard solution in many universities is using pre-defined laboratory sessions,

using commercial kits such as [7–9]. Although such solutions are attractive, efficient,

and robust, they are often expensive and not flexible for experimenting and devel-

oping different solutions. Nevertheless, using Arduino development kits has shown

promising results as a learning tool [10]. This study suggests the development of

kits that can be used throughout the semesters, gradually increasing the project’s

difficulty [11] and even in specific dynamics and control systems projects [12].

In the same line of knowledge integration, other low-cost projects have been devel-

oped and implemented, giving students greater flexibility in experimentingwith tech-

niques and knowledge. For example, in [13], the authors proposed an educational

line-following robot based on Arduino, allowing the implementation of low-level

control techniques. A similar application is presented in [14], proposing an even

lower cost robot with less flexibility. The increased complexity of possible control

algorithms is achieved on other platforms, such as those seen in [15, 16]. How-

ever, such applications imply a significant increase in project costs. Thus, although

Arduino-based solutions integrate the theoretical model and practice regarding con-

trol aspects, they present a limitation regarding the complexity of the algorithms,

given the restriction of processing capacity and design flexibility, due to the need to

purchase different sensors.

A solution that combines a low-cost implementation with flexibility and allows

knowledge retention through experimentation and active learning is based on realistic

open-source simulators. In STEM, a simulator represents a crucial stage of devel-

opment and education, reducing the time to produce prototypes. Thus, emulating
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a real scenario with physical interactions allows the development of safety tests in

different environments and situations. As a result, it is possible to experiment with

techniques, analyze results and propose solutions flexibly, with great speed and less

cost.

The work done in [17] presents some of these tools, comparing simulators such

as Webots [18], Gazebo, and ROS [19], using criteria such as supported operating

systems, programming languages, documentation, tutorials, among others. In addi-

tion to these tools, others have been developed over time, such as the one presented

in [20], where a virtual laboratory is designed so that students can experiment with

models of line-following robots for competitions. However, such a simulator does

not allow the 3D visualization of the models, allowing only the testing of the pro-

posed algorithms. Another interesting simulator is proposed in [21], which presents

CARLA, an open-source simulator aimed at autonomous-driving research in this

work. It is a very realistic simulator with many items, with several physical inter-

actions between the components. However, despite being an extensible platform for

new developments, its vehicle control methods are limited to artificial intelligence

learning models without control models.

The authors of [22] present a simulator that uses a competition model to teach

robotics based on ROS. An autonomous robot capable of traveling a path is used in

this simulator, following directions on the track. Such a simulator showed promising

results when crossing the designated paths but presented the limitation of not using

a realistic vehicle model or even different control models. It has also been used

in competition simulation, which increases students’ comprehension and stimulates

self-learning [23, 24].

Seeking to use the advantages of a simulator capable of emulating realistic vehi-

cles, RosDrive is presented. A flexible platform based on ROS and the 3D simulator,

Gazebo, for studying different models of vehicle control. RosDrive uses an electric

vehicle model [25], with several sensors capable of covering different routes and

avoiding obstacles. Thus, the student will be able to implement additional control

strategies, analyze the system’s responses, and visualize the impacts of theoretical

models and their variables on the simulated scenarios. In addition, the tool allows

the use of different strategies in different vehicles, allowing the comparison between

the adopted models. For instance, a line follower controller mode with obstacle

avoidance will be implemented to exhibit the simulator results. The tool’s flexibility

allowed its extension for the study of communication models [26], the development

of hardware in the loop (HIL) simulation [27], and the implementation of the same

control model on a testbed platform [28]. As it is an open-source tool, the full code

access is provided in Sect.5, for general use, with all the necessary steps for its

installation. The general simulator environment is illustrated in Fig. 1. The concrete

contributions of this paper are presented below:

– Present RosDrive, a realistic open-source 3D vehicle simulator that allows the stu-

dents to apply different control models techniques, improve their practical knowl-

edge in the control area, and create new strategies to perform vehicle movements;
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Fig. 1 General simulator architecture

– Introduce a flexible simulator architecture, that allows modules exchange, param-

eters configurations, and system response analysis and visualization;

– Demonstrate the simulator flexibility due to the use of a camera and sonar sensors

to perform a Line Follower algorithm, and an Obstacle Detection and Avoidance

strategy integrated with a PID Cruise Controller model;

This paper is organized as follows: Sect.2 shows the Simulator Architecture, the

leading technologies, and the minimal system requirements. The control and percep-

tion modules including the speed control algorithm, the image processing module

with the heading controller, and the collision avoidance module are introduced in

Sect. 3. The results of designed scenarios are presented in Sect.4, while the main

conclusions are drawn in Sect.5. Finally, the software installation and execution

instructions are shown in Sect. 5.

2 Simulator Architecture

This section will introduce the simulator tools and their general architecture, provid-

ing details about the vehicle model and data analysis.
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Fig. 2 Publish/subscribe

model

2.1 Robot Operating System (ROS)

ROS is an open software developed by Open Source Robotics Foundation. It is a

robotic middleware withmany software frameworks for robot software development.

It provides hardware abstraction, enabling users to avoid low-level problems, with

profound device control, communication between nodes and processes, and packet

management. ROS-based functions are realized in nodes that may post, receive and

reproduce control features, sensor data, state of the node, or general messages. ROS

is not a real-time framework or a Real-time Operating System (RTOS). This project

will be used in ROS Melodic distribution.

The basic concepts of ROS are nodes, Master, messages, and topics. The Master

node works as a central node of the system, storing data and information regarding

the ROS Nodes. Nodes inform their registration information to the Master and then

can receive data from other nodes. The Master is also responsible for reporting the

nodes, using Callbacks, if new information or connections are made. The nodes

exchanges messages using the publish/subscribe method, as described in Fig.2.

Due to its flexibility, ROS has been used in several vehicular applications, such as

ground [29], aerial [30], and water [31] and many other robotic platforms. As a con-

solidated open-source community, several new libraries are available and supported,

at the same time that it is highly portable between platforms, including embedded

platforms [32]. The extensive material allows a quick learning curve for the student,

enabling a simple familiarization with the commands and interfaces and quickly

creating new modules.

2.2 Gazebo

One of the critical aspects of a learning-oriented system is its ability to present the

results of user interactions intuitively. Thus, the high capacity ofROS to integratewith

other platforms shows itself to be a competitive advantage since its functionalities

can be extended, expanding the experimentation horizon. For example, integration

with a robotic simulation tool helps to visualize the iterations between objects simply,
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aiding in learning [33]. One of the most used tools for robotic simulation in ROS is

Gazebo. TheGazebo is an open-source 3D robotics simulator, for indoor and outdoor

environments, with multi-robot support that allows a complete implementation of

dynamic and kinematic physics and a pluggable physics engine. Furthermore, it pro-

vides a realistic rendering of backgrounds, including high-quality lighting, shadows,

and textures. In addition, it can model sensors that “see” the simulated environment,

such as laser range finders, cameras (including wide-angle), Kinect style sensors,

among others.

The Gazebo present the same message interface as the rest of the ROS ecosystem.

So, the development of ROS nodes is compatible with simulation, logged data, and

hardware. Many projects integrate ROS with Gazebo, such as the QuadRotor pre-

sented in [34], the Humanoid implementation in [35], and theGroundVehicle in [29].

As a powerful and very visual tool, Gazebo has also been used as the simulation envi-

ronment for several technology challenges and competitions, such as NASA Space

Robotics Challenge (SRC) [36], Agile Robotics for Industrial Automation Compe-

tition (ARIAC) [37], and Toyota Prius Challenge [38].

Gazebo is responsible for realistically mimicking the system’s fundamental

dynamics, representing physical issues such as mass, inertia moment, friction, and

even collisions. To ensure better representation, Gazebo supports four engines: Sim-

body [39], Bullet Physics [40], ODE [41], and DART [42]. Such engines guarantee

a wide range of representations, bringing simulations closer to reality, offering the

student a greater possibility of representing theoretical concepts practically.

Although some Gazebo components show some lag with new technologies, its

overview still has more advantages than the alternatives presented. For example,

Unity [43] has similarities in the implemented physics, but its integration with ROS

is still complex. Furthermore, the Webbots recently developed a ROS integration

but still do not have the same flexibility in implementing different physical models.

Finally, the Coppelia [44] does not have the same rendering quality [45] as Gazebo,

although it has similar flexibility and quality in physical representation.

2.3 Scenario and 3D Vehicle Model

The Gazebo allows the construction of several different scenarios, including as many

objects as desired. Those objects can be static or dynamic and controlled in the

simulation. For illustration, this work introduces the track presented in Fig. 3 with

and without obstacles. Those obstacles can be removed or added by the user.

ROSapplications have a launchfile that allows the easy start of several applications

with previously saved scenarios and desired configurations. In this project, the file

car_demo.launch is responsible for starting the track, and the cars.launch defines the

vehicle’s initial coordinates and model. The simulator flexibility allows different car

models, including or removing sensors,modifying their positions and configurations.

The sensors data can be real-time observed though the RViz software.
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Fig. 3 Track model

Simulated 3D Prius front view Prius Sensors Position

Fig. 4 Prius Gazebo model [25]

The 3D car model used in this work was presented in [25]. Figure4 illustrates

the Hybrid Prius 3D model’s main details. Its fundamental dynamics are contained

in the node PriusHybridPlugin.cpp, and the model’s characteristics can be edited in

prius.urdf.

The primary vehicle controllers, such as throttle, brake, steering, and gear, can

be actuated by publishing to a ROS topic. Thus, the vehicle Powertrain will control
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Fig. 5 Prius information structure

the gear control in this simulation. The simulated vehicle also has multiple sensors:

16-beam LIDAR on the roof, eight ultrasonic sensors, four cameras, and two planar

LIDARs. However, adding or removing sensors is a simple task that allows adjust-

ments, as necessary. Furthermore, implementing the vehicle with all the kinematics

and basic controls enables the study of other project aspects, such as motion control,

platooning, stability, and detection and avoidance models.

The vehicle information flowchart is illustrated in Fig. 5. All the vehicles have

the same model, and the simulation is composed of n ∈ N vehicles. The full set of

cars can be defined as carn = {i ∈ N|0 ≤ i ≤ n}. The information provided by each

module/node is:

– cari/ ini tial Pose: defines the vehicle’s initial position

– cari/prius: new vehicle settings—throttle, break, steering

– cari/jointstates: conditions of each vehicle component—wheels and steering

– cari/car I N FO : vehicle’s current state—throttle, brake, speed, latitude, longi-

tude, steering, heading, etc.

– cari/camera: vehicle’s onboard cameras info

– cari/sonar : vehicle’s onboard sonars info

– cari/ lidar : vehicle’s onboard LIDARs info

– PriusHybridPlugin: dynamics and vehicle model

– Environment Interaction: Gazebo calculation about interactions

– Camera (1 . . . n), Sonar (1 . . .m) and Lidar (1 . . . p): sensor nodes

All the sensors can be added, removed, or modified in the file prius.urdf. The

vehicle control is managed through the data sent to cari/prius topic, which works

as the vehicle’s input center, receiving throttle, brake, and steering. The throttle and

brake have a limit from 0 to 1, and the steering has a range from −30◦ to +30◦. Its
format is defined in the “Control.msg”. To better understand the text, the rest of this

text will refer to a generic simulated vehicle identified by the “i” index, unless in

cases where some differentiation is necessary.
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2.4 System’s Outputs

As a simulator for learning purposes, the system’s outputs are essential. Moreover,

as a STEM application, with many details, several analysis must be performed using

a mathematical approach. The output data will allow the study and comparison of

each simulation, allowing the student to evaluate the impact of slight differences

in the system’s response in each experiment. The system’s outputs are provided in

.csv files generated during the simulation. The module listener.py is responsible for

collecting the desired vehicle’s data in the related topics and exporting that to a .csv

file.

During the simulation, the topic cari/car I N FO can be used to perform a Real-

Time system evaluation, showing the vehicle’s most important information, like

coordinates, heading, speed, throttle, and brake conditions. The listener.py collects

this data and adds some information to the simulation’s output file, triggered by the

car’s movement or spent time. The output file contains the timestamp, coordinates,

speed, speed error, throttle and brake percentage, heading, heading error, and sonar

information, in this version.

3 Control Algorithms

This section will introduce the controller models used in this simulator. Then, it

will discuss the Cruise Controller (CC), the Line Follower characteristics, and the

Obstacle Avoidance Strategy. The Prius model simulates sensors that publish to the

cari/car I N FO topic. This topic contains the main data about the vehicle, like

latitude, longitude, altitude, heading, speed, direction, steering angle, acceleration

pedal percentage, and brake pedal percentage. All the data is updated every 0.01s.

3.1 Vehicle Model

The vehicle model used in this work is based on the two-degree-of-freedom bicycle

system, as shown in Fig. 6. This model considers the car’s rotation around the z-

axis (θ) and its lateral velocity. Assuming x and y as the vehicle’s frame coordinates,

respectively, and θ its rotation in the z-axis, X, Y, and � are their absolute equivalents

in the global frame. Thus, the vehicle frame can be expressed using the rotation angle

θ in the global frame (� = θ). Finally, The steering angle, expressed in the vehicle’s

frame, is defined as δ and admits that both wheels turn the same value. By applying

Euler–Newton equations [46], it is possible to simplify the vehicle’s dynamics in the

plane as:

mẍ = mẏθ̇ + FxF
+ FxR

, (1a)
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Fig. 6 Vehicle 2D model and coordinates

mÿ = −mẋ θ̇ + FyF + FyR , (1b)

I θ̈ = aFyF − bFyR + c(−FxF,l
+ FxF,r

− FxR,l
+ FxR,r

), (1c)

where I is the inertia moment, m is the vehicle mass, and Fx and Fy are the forces

in x and y directions, and the subscriptions r and l indicates the force direction

compound. Finally, the kinematic model, translated to X and Y coordinates, can be

described as:

Ẋ = ẋ cosΘ − ẏ sin Θ, (2a)

Ẏ = ẋ sin Θ − ẏ cosΘ, (2b)

Θ̇ = θ̇. (2c)

3.2 Cruise Controller (CC)

Like an actual vehicle, the Prius model does not allow direct speed control but only

throttle and brake adjustments. So, this simulator adopts a Proportional Integral
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Fig. 7 PID CC

Derivative (PID) strategy to the vehicle speed controller. Although this controller is

quite simple, it will help the student to develop basic control skills and move towards

other implementations, including several autopilot strategies and tuningmodels [47].

In this way, the Cruise Controller (CC) will be responsible for keeping the vehi-

cle constant speed during the vehicle’s movement and adjusting it when necessary,

changing the brake and the throttle pedals, through the cari/prius topic. The PID

equation is defined as follows:

α(t) = KP ∗ εσ(t) + K I ∗ εσ(t)dt + KD ∗
∆εσ(t)

dt
, (3)

where KP , K I , and KD denote the Proportional, Integral, and Derivative gain con-

stants respectively, εσ(t) is the speed error, measured by the difference between the

current speed value and the desired one and α is the desired system acceleration.

The α is then normalized to a value between −1 . . . 1, representing the Throttle and

Brake pedals usage. A positive value indicates that the Throttle pedal has been used

while the Brake is free. Conversely, the Brake is pressed for a α negative value, and

the Throttle pedal is free. The complete controller is illustrated in Fig. 7, where it is

assumed that the time constant of the actuator is much bigger than the motor one,

and the CC algorithm is summarized in Algorithm 1.

Algorithm 1 Cruise Controller Algorithm

Input: Speed Set Point, Current Speed

Output: Throttle and Brake percentage

1: εσ ← speed_set_point − current_speed

2: α ← P I D(εσ)

3: αcontrol ← Normali zed[−1 . . . 1](α)

4: if αcontrol ≥ 0 then

5: throttle ← αcontrol

6: brake ← 0

7: else

8: throttle ← 0

9: brake ← αcontrol

10: end if
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3.3 Line Follower

In this work, the vehicle will simulate a standard trajectory path following method,

using a road line [48]. The simulated car has several cameras, and one of them is used

to identify the road line and follow it with real-time detection. The Line Follower

(LF) algorithm processes the captured image and delivers information regarding

the line position to the controller. The vehicle’s controller will keep its center over

the line with a second PID controller. The implemented algorithm is similar to the

one proposed in [49]. Nevertheless, as Gazebo provides a realistic camera view, it is

possible to implement algorithmswithout a real one, changing the image coordinates,

frame rate, data size, among other image capture characteristics, and evaluate the

changes’ impact over the controller.

An OpenCV node was implemented to read the data from the onboard front

camera. This node subscribes to the topic cari/ f ront_camera and virtually receives

all the images from the camera in an 800 × 800 pixels frame. Then, the LF algorithm

filters the image to find a vertical line in the track, and the detection is performed using

the Progressive Probabilistic Hough Transform (HT) [50]. This method is commonly

used in image processing and can help detect any shape if it can be represented in

mathematical form.

The Line Detection (LD) algorithm is illustrated in three frames of Fig.8. The first

one, in Fig. 8a shows the vehicle camera simulated view. The LD algorithm applies

a mask over this image to filter it, highlighting a particular color. This color can be

adjusted following the Red Green Blue (RGB) model. The filtered image is then

converted to a greyscale picture, as presented in Fig.8b, allowing the edges detec-

tion using the Canny Edge detection [51], using vectors with Cartesian coordinates.

Finally, these edges are integrated with the HT, defining a most probably line to be

followed, as demonstrated in Fig.8c.

The line coordinates are published in cari/ line_data topic and can be used by

the LF controller module. This module is called controller and is responsible for the

vehicle’smotion controller. The vehicle heading error (εθ) related to the line reference

Vehicle front camera view

Vector and position extraction

Line Detection - Final View

Fig. 8 Line detection process
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Fig. 9 Vehicle heading error

(εθ)

is defined as a relativemeasurement, using the center of the image frame as illustrated

in Fig. 9. In this figure, the Detected Line is the output of the LD algorithm, with

(x1, y1) and (x2, y2) respectively the initial and the final coordinates. The Xmax and

Ymax represent the frame limits and XC is the frame center point in X axis. The εθ is

defined as the angular difference between the XC and the (x2, y2) coordinates, given

by Eq. 4. Finally, the controller calculates the car’s Steering Wheel Angle, using the

PID control action presented in Eq.5.

εθ(t) = arcsin
XC − x2

y2 − YC

(4)

Fig. 10 Line detection and

driving controller
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θwheels(t) = K θ
P ∗ εθ(t) + K θ

I ∗ εθdt + K θ
D ∗

∆εθ(t)

dt
, (5)

where K θ
P , K

θ
I and K θ

D denote the Proportional, Integrator, and Derivative gain con-

stants, and θwheels is the Steering Wheel Angle to be applied to the vehicle. Figure10

shows the general LF flowchart, including the controller action, while the complete

LF algorithm can be observed in Algorithm 2.

Algorithm 2 Line Follower Algorithm

Input: Image Frame

Output: Steering Angle

1: Mask image to find Vertical Lines

2: Filter image to obtain Data Vectors

3: Line_Vectors ← Hough_Line_Trans f orm

4: Line_Coordinates ← MERGE(Line_V ectors)

5: εθ ← Eq.4

6: θwheels ← P I D(εθ)

3.4 Obstacle Detection and Avoidance

Obstacle detection and avoidance is one of the most common autonomous vehicular

application, given the demanded safety conditions. So, in this simulator demonstra-

tion, sonars are used to detect and avoid unpredicted obstacles and help the vehicles

to keep the LF algorithm. The cari will use six sonars: four in the car’s front and

one on each side of it, as seen in Fig. 11. The simulator allows the user to change

the sonar’s positions and ranges and add or remove them in prius.urdf file. This

simulator assumes that the obstacles are positioned near the reference line and have

the same lateral size as the vehicles.

Fig. 11 Sonar visualization
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Algorithm 3 Line Follower with Detection and Avoidance Algorithm

Input: Sonars Info, Image Frame

Output: Steering Angle

1: while Object_Detected do

2: if Right_Object_Detected then

3: θwheels ← Le f t_Deviation

4: else if Lef t_Object_Detected then

5: θwheels ← Right_Deviation

6: end if

7: end while

8: Line_Follower_Algori thm (Algorithm 2)

Fig. 12 General vehicle architecture, with line detection and detection and avoidance modules

The sonars are used togetherwith the LF algorithm.However, as theDetection and

Avoidance (DA) algorithm has priority over the LF, it assumes the vehicle controller

until the obstacle is out of view and the LF is reactivated. So, the algorithm 3 is an

extension of the LF algorithm. When the sonars detect an obstacle, the DA controller

turns the vehicle in the opposite direction, within a fixed θwheels value. This heading

adjustment is continued until the four front sonars stop detecting the obstacle. Then,

the lateral sonars avoid the vehicle trying to return to the line before it overtakes the

obstacle. Finally, the LF algorithm uses the last information about the detected line

to return to the desired trajectory. The DA block diagram is presented in Fig. 12.

4 Experimental Validation

A control simulation environment should present several controller tools to the stu-

dent. This section will introduce three main tools developed in RosDrive that allow

the student to analyze the vehicle’s controller performance and elaborate on different

strategies to guarantee its safety. The vehicle’s controller performance can be defined

in several ways, including fuel consumption, final speed, acceleration, among others.

In this chapter, the performance is measured by the vehicle’s capacity to track the

setpoint, both in speed and heading adjustments.
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Table 1 Cruise Controller PID Settings

CC KP K I KD

P I D1 10.8 0.0 0.0

P I D2 10.8 2.16 0.270

P I D3 10.8 4.32 0.135

P I D4 10.8 2.16 0.135

4.1 Cruise Controller Implementation

The CC was developed as an independent module. So, it works as a black box

implementation, where the inputs are the setpoint and current vehicle’s speed, and

the outputs are the throttle and brake percentage, while the controller parameters

are adjusted inside the module. This architecture choice increases the simulator’s

flexibility, allowing the user to replace the controller and adjust its parameters.

Taking into account Fig. 3, the straight line between the points 7 and 1, without

obstacles, was used to evaluate the CC and check how does the vehicle behaves with

several accelerations and decelerations. In this scenario, the vehicle speed setpoint

was changed from 20.0, to 14.0, 16.0, 12.0m/s and finally 0.0m/s. All the speed

settings are defined in the controller.py file in the parameters section. They are related

to the vehicle’s current position on the track.

The controller parameters KP , K I , and KD were defined with the Ziegler Nichols

(ZN) empirical method [52]. The vehicle was accelerated from a rest position until

it reached the first setpoint speed in the proposed scenario. Increasing KP until the

system oscillation limit, it was possible to determine the ultimate gain (Ku), at 18,

with a period of 0.1ms. These values show how the vehicle’s actuator has a rapid

response since the oscillation period is fast. In this test, the Ziegler Nichols Tuning

parameters are K P = 10.8, K I = 2.16, and KD = 0.135. The system’s response is

presented in Fig. 13.

As described above, the RosDrive was designed so that the student can change the

system’s characteristics and observe the impact on the vehicle’s response. In addition

to changing the controller model, the change of control parameters already implies

different responses to be analyzed, providing the user with a practical study of the

characteristics of each one of them. Three variations of the parameters obtained with

ZN are proposed to exemplify their impacts on the vehicle’s control action. These

parameters are shown on the Table1, where P I D1 is a proportional-only controller,

P I D2 increases the derivative component, P I D3 enforces the integrator component,

and finally P I D4 shows the parameters obtained by the method ZN.

Figure13a and b show in detail the impact of controller changes on the system

response, and in Fig.13b it is possible to observe that the control proportional-only

(P I D1) presents a more significant oscillation and that the increase of the derivative

component (P I D2) makes the response slower, but with a smaller overlap. On the

other hand, the increase in the integrator component (P I D3)makes the system faster
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Fig. 13 Vehicle speed response to different PID parameters

but with a greater overshoot on the setpoint. In this scenario, the parameters obtained

by ZN show a better response as they are at an intermediate point of response time and

overshoot. In all models presented, the controller error wasminimal with a maximum

steady-state value lower than 0.006m/s.

The PID CC example shows the student the basic vehicle controller models. It

translates the conceptual controller view to a practical application, reducing the gap

between the theoretical aspects and the implementation one, allowing the develop-

ment of active skills and opening the doors to the student’s creativity. A shortly

CC RosDrive demonstrator is presented in https://youtu.be/QFVwgFyhaF4. All the

video demonstrators links are presented in Sect. 5.

4.2 Line Follower (LF) Controller

The LF controller is responsible for the vehicle’s heading adjustment, performed by

the Heading Controller (HC). This control ensures that the vehicle safely makes the

circuit curves, preventing accidents. As can be seen in Fig.3, in this scenario, tighter

curves were chosen, allowing the student to analyze more complex situations, such

as car skidding. Under these conditions, the vehicle’s controller is adjusted in one

curve and then evaluated its performance on the whole circuit.

Initially, the circuit’s curves radius were analyzed to define the maximum speed

that would prevent the vehicle from going off at the curve’s tangent. The maximum

speed (vout ) is given by |vout | =
√

µ · |g| · R, where µ is the friction’s coefficient,

|g| is the gravity acceleration and R is the curvature ray. In the proposed scenario, it

is defined that µ = 0.9, g = −9.8m/s, and R = 18.38m, which means that vout =
13.34m/s.
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Table 2 HC PID parameters

HC Speed

(m/s)

K θ
P K θ

I K θ
D HC Speed

(m/s)

K θ
P K θ

I K θ
D

REF 13 10.0 0.0 0.5 P I D8 15 10.0 1.0 1.0

P I D5 15 10.0 0.0 0.5 P I D9 15 10.0 0.5 0.0

P I D6 15 10.0 0.0 1.0 P I D10 15 10.0 0.5 0.5

P I D7 15 10.0 0.0 1.0 P I D11 15 10.0 1.0 0.0

The heading controller has a different evaluation in comparison with the CC.

In the CC, the setpoints are defined through a step function, while in the HC, the

setpoints function follows the curve design, with a long transition phase. It means

that the system’s response should be evaluated after the desired heading is constant.

Due to this condition, a more complex scenario is proposed to evaluate the system’s

response in adversarial conditions. Initially, the vehicle’s trajectory was fixed with

vout as the heading reference. Then, the objective was to find the most suitable HC

PID parameters for the system with v = 15m/s. It means that the HC will suffer

from skidding. In this scenario, the student’s experience determining the best HC

PID parameters will be necessary since the ideal conditions presented in theory are

not present. Furthermore, it will increase the student’s perception of the problem and

stimulate creative new solutions since the vehicle’s speed increase will increase the

skidding, compromising the system’s stability. It is also important to highlight that

the user can set up any speed and check its response.

The HC PID parameters were obtained initially in curve 7 given the long straight

lines before and after. The obtained parameters are presented in Table 2. Figure14a

presents the vehicle’s trajectory on curve 7, while Fig. 14b perform an in-depth view

of the same curve. Both figures illustrate how the reference HC has a smoother

trajectory, with no skidding. As expected, there is some skidding in all the HC PID

configurations, with a speed setpoint of 15m/s. However, these figures analysis allow

the identification of the best controller performance, even on these conditions. So,

in the proposed scenario, the P I D7 presents a better response due to the derivative

action, avoiding extreme adjusts keeping the vehicle’s trajectory near to the REF

trajectory. On the other hand, the integral action presented in P I D8 and P I D11

configurations produces more oscillation and increases the distance between the

REF and the performed trajectory due to the skidding.

Figure15 presents the vehicle’s heading error (εθ), due to the different HC PID

parameters. As expected, while the LF reference adjusts the heading setpoint, the

vehicle’s heading suffers from much oscillation, trying to respond to the new con-

ditions. However, the system’s response can be better studied after the transition,

when the LF algorithm sets the new line. This situation can be observed in Fig.14b.

This figure highlights the smooth response of P I D7, with little oscillation above the

REF response. Nevertheless, the systems’ response with P I D8 and P I D11 have

a considerable overshoot and take much more time until the stabilization.



RosDrive: An Open-Source ROS-Based Vehicular Simulator … 165

50 100 150 200 250 300

Longitude (m)

20

40

60

80

100

120

140

160

180

L
a
ti
tu

d
e

 (
m

)

Trajectory Comparison - Curve 7

REF

PID5 - 10-00-00

PID6 - 10-00-0.5

PID7 - 10-00-01

PID8 - 10-01-01

PID9 - 10-0.5-00

PID10 - 10-0.5-0.5

PID11 - 10-01-00

Vehicle’s Trajectory - Curve 7

60 70 80 90 100 110

Longitude (m)

30

35

40

45

50

55

60

65

L
a

ti
tu

d
e
 (

m
)

Trajectory Comparison - Curve 7

REF

PID5 - 10-00-00

PID6 - 10-00-0.5

PID7 - 10-00-01

PID8 - 10-01-01

PID9 - 10-0.5-00

PID10 - 10-0.5-0.5

PID11 - 10-01-00

Vehicle’s Detail Trajectory - Curve 7

Fig. 14 Vehicle trajectory analysis (curve 7) under different HC PID settings
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Fig. 15 Vehicle heading error(εθ) at curve 7 under different HC PID settings

TheHCPID response analysis can be extended to the entire circuit. Looking at the

heading error (εθ) presented in Fig. 15, the best controllers response were performed

by the PD configurations, namely the P I D6 and P I D7. Furthermore, a full lap was

performed to evaluate the vehicle’s heading controller, comparing its trajectory and

the general εθ. Figure 16a present the vehicle’s trajectory comparison in the full lap.

It shows the vehicle’s skidding in all the curves and the most distinguished one in

curve 4. Thus, Fig.16b highlight the vehicle’s trajectory in this curve, showing that

although all the HC PID configurations suffer from high skidding on this curve, the

P I D7 configuration provides a smaller skidding and is the faster one to stabilize

the system after the curve. Finally, the Fig. 16c shows a comparison between the

general εθ during the full lap. It demonstrates that the REF configuration has the

smallest error variation during the circuit and that the P I D7 error response is the

most approximate to it.
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Fig. 16 Vehicle trajectory analysis (Full Lap) under different HC PID settings

This scenariowas built to illustrate the simulator’s flexibility,merging the LFalgo-

rithm with the HC method under an adversarial context. In this way, the student will

be able to extend its capabilities, changing the controller’s parameters and checking

the system’s response, proposing new situations, and evaluating them. Furthermore,

it will help students build and reinforce their capabilities and skills without damaging

any equipment by extrapolating the commonly encountered theoretical conditions.

4.3 Obstacle Detection and Avoidance

In addition to the analysis of the CC and HC controllers on the vehicle’s perfor-

mance in isolated scenarios, RosDrive allows the analysis of its interaction with

other vehicles, whether static or dynamic.
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Fig. 17 Vehicle trajectory analysis (static obstacle avoidance) under different HC PID settings

4.3.1 Static Obstacle Detection and Avoidance

The vehicle’s ability to perform a trajectory avoiding several close obstacles was

initially analyzed, comparing the heading error (εθ) given theHCparameters changes.

The 19 static obstacles are illustrated in Fig.3 and are modeled as Pickup vehicles.

These obstacles are positioned on the straight circuit lines avoiding curves overtaking.

Again, the REF vehicle running with a 13.0m/s speed was presented against the

P I D5, P I D6, and P I D7 HC configuration, running at 15.0m/s. The vehicle’s

trajectory is presented in Fig. 17a, illustrating that the skidding is still present, mostly

in curve 4.

Furthermore, the vehicles do not necessarily follow the same trajectory to avoid

obstacles. This situation is illustrated in the straight line between curves 4 and 5,

where the vehicle with the HC P I D6 avoids the last obstacle with a left turn and

the others perform a right curve. This obstacle avoidance action responds to the first
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sonar activated in the vehicle. As the vehicle’s trajectories are slightly different due

to the HC response, the car’s angular position at that point is not the same for all the

configurations, providing different sonar activation. The same situation is observed

in the last obstacle between curve 7 with all the HC PID configurations compared

with the REF .

To compare the HC PID’s performance in a static detection and avoidance con-

dition, Fig. 17b emphasize the vehicle’s movement over the second track obstacle. It

is possible to observe that the HC PID performance follows the model presented in

the LF algorithm, with P I D7 providing the best system’s response in comparison

with REF . However, the εθ’s variation between REF , P I D6, and P I D7 is similar,

given the rapid heading transitions triggered by the ODA and the LF algorithms, as

presented in Fig.17c. On the other hand, the boxplots of P I D7 εθ in both Figs. 16c

and 17c show that although the maximum variation is similar, these errors appear

more frequently, no longer presenting themselves as outliners but as values that are

repeatedly perceived. These errors happen due to several obstacles and the constant

need to adjust the vehicle’s position caused by the HC action.

4.3.2 Dynamic Obstacle Detection and Avoidance

RosDrive’s flexibility allows different control models, algorithms, and movement

strategies. Thus, it is possible to evaluate strategies for overtaking vehicles inmotion,

observing how the fastest vehicle behaves and if it can perform the maneuver safely.

To conduct this demonstration, the car1 and car2, with v1(t) > v2(t) were defined,

with x2(0) = x1(0) + 30m. This way, car1 has time to reach its maximum speed

before the sonar detects the presence of car2 and only then starts the overdrive

process.
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The vehicles.launch allows the setup and launches of the necessary vehicles, with

no additional development. In this file, the vehicle models, their initial positions, and

the algorithms to be used are instantiated. Initially car1 (REF ) and car2 are defined

with the same CC and HC parameters as P I D4 and P I D7. In the same file, the car2
sonars are deactivated, avoiding its reaction to car1 presence. So, car1 accelerates,

detects the presence of car2 and performs the overtake action. As the same ODA

strategy presented in Sect. 3.4 is applied, after the obstacle detection, car1will return

to the line only after overtaking the obstacle, when the lateral sonars indicate that

there are no more obstacles there.

In this scenario, v2 was defined as 13.0, 14.0, 15.0, 16.0, and 20.0m/s and v1 =
12m/s, while the front sonar’s ranges are set to 20m and the lateral ones are 2m.

When theoretically studying physical systems, it is common to analyze that vehi-

cles are points in space and that overtaking, for example, is just a matter of validating

the relationship between space traveled in time, having as reference the speed of the

two points. However, in a realistic simulator, vehicles cannot be treated as points in

space but as bodies that can collide and must avoid this to remain safe. Thus, the

overtaking process begins with detecting the body ahead, followed by a diversion

action and consequent movement.

This controller action of car1 is illustrated in Fig. 18. Figure18a illustrates a

more simplified view of the system, indicating the longitudinal trajectory of car1
and car2 under all different velocity conditions of car1. It is important to note that

the movement of car2 is the same in all scenarios, as its speed is constant, and its

movement is not affected by car1. In this figure, it is possible to observe the crossing

point when the curve referring to car1 crosses the curve of car2. Thus, it is seen that

the speed of 13.0m/s, car1 is not able to exceed car2 on the desired route, indicating

an unsafe maneuver.

However, extending this view to a 2D dimension, as presented in Fig.18b, it

is possible to analyze how does the overtake movement is performed. Under the

proposed conditions, only the vehicle with a 20m/s speed has overtaken car2 with

no oscillatorymovement.With other speeds, car1 lateral sonar detects car2 presence,

and adjust car1 heading position, avoiding a collision. This figure illustrates how car1
with a 13.0m/s speed cannot overtake car2 in the desired time and finally, how the

same movement with 14.0m/s is dangerous since the overtaken process ends just at

the limit of the desired trajectory.

In this way, the student has more information to check how the movement was

performed and propose different safety strategies. In addition, this scenario allows

the student to create new sonars detection algorithms, different controller strategies,

and some intelligent systems to increase the system’s safety.
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5 Conclusions and Future Works

This chapter presents RosDrive, an open-source simulator for developing the study of

vehicle control techniques in a realistic way. It presents the conditions that make this

simulator able to bring together the students’ theoretical lessons with their practical

implementation, reducing gaps in their training. By using ROS as a development

platform, RosDrive is compatible with the most diverse Linux systems and has con-

tinuous support. In addition, its wide adoption by the community allows for the rapid

introduction of new sensors and components and integration with other platforms.

Scenarios were developed to evaluate vehicle speed and heading control models

using systems similar to actual vehicles. These systems use acceleration and braking

variation and cameras to analyze the environment and take action. Furthermore, algo-

rithms were introduced to avoid collisions between controlled vehicles and static or

dynamic obstacles, providing different analyzes and conditions for different control

and security systems.

For this, RosDrive features a modular architecture based on a flexible set of easily

adjustable and interchangeable control tools to assist in the extrapolations imagined

by students and teachers who will use the tool.With this, we firmly believe that active

learning can be reinforced in classrooms, introducing low-cost dynamic models that

mimic reality, increasing the applicability of knowledge, and consolidating the skills

necessary for the formation of the control engineer.

Shortly, we hope to develop communication between vehicles, enabling the

exchange of information between them, simulating scenarios referring to the ITS

models. We also hope to extend the configuration modules for more intuitive plat-

forms using windows that facilitate the user’s vision. Finally, we plan to introduce

the use of RosDrive in a classroom context, visualizing the difficulties of students

and teachers and analyzing the impacts of its adoption in teaching control systems.

Supplementary Material: Simulator Installation and

Execution Instructions

This section presents the main requirements for installing and configuring RosDrive

Simulator. Furthermore, it summarizes the prerequisites and indicates the current

repository for downloading the necessary files.

5.1 Main Code Repository

– The complete code can be found at: https://github.com/enioprates/rosdrive
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5.2 Main Requirements

– Operating System: Ubuntu 18.04

– ROS Distribution: Melodic

– Gazebo: 9 or above

– Python: 2.7 or above

– GCC: 7.3 or above

5.3 Setup Project

1. Install ROS Melodic following the instructions of:

http://wiki.ros.org/melodic/Installation/Ubuntu.

2. Download files from Github RosDrive Simulator:

https://github.com/enioprates/rosdrive

3. RosDrive Setup

– RosDrive Simulator

(a) Open a new terminal inside .../CISTER_car_simulator

(b) Type: catkin_make

– RosDrive Simulator Controllers

(a) Open a new terminal inside .../CISTER_image_processing

(b) Type: catkin_make

5.4 How to Run RosDrive Simulator

1. Run the simulator:

(a) Open a new terminal inside .../CISTER_car_simulator

(b) Type: source devel/setup.launch

(c) Type: roslaunch car_demo demo_t.launch

The GAZEBO should open on your screen with the vehicle in the position defined

in cars_t_curve_2.launch. The vehicle will remain stopped until the Vehicle Con-

troller is turned on.

2. PAUSE the simulation and reset the time!

3. Starting the Vehicle Controllers:
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(a) Open a new terminal inside .../CISTER_image_processing

(b) Type: source devel/setup.launch

(c) Type: roslaunch image_processing vehicle.launch

This launcher filewill start the vehicle’s Line FollowerDetection and theVehicle’s

movement controller, respectively with the nodes lane_lines_detection.py and

simulation_connector.py.

4. Start the Gazebo simulation

5.5 Optional Configuration

1. Speed PID Configuration

(a) Open ....../CISTER_image_processing/src/scripts/simulation_connector.py

(b) Find #Speed PID

(c) Adjust KP → kp_vel, K I → ki_vel, and KD → ki_vel

2. Heading PID Configuration

(a) Open ....../CISTER_image_processing/src/scripts/simulation_connector.py

(b) Find #Steering PID

(c) Adjust K θ
P → kp_steer_l, K θ

I → ki_steer_l, and K θ
D → kd_steer_l

5.6 RosDrive Video Demonstrations

1. Cruise Controller demonstrator:

https://youtu.be/QFVwgFyhaF4.

2. Line Follower demonstrator:

https://youtu.be/sRlXk2K1IJc

3. Static Obstacle Detection and Avoidance demonstrator:

https://youtu.be/YEoO2CQUiKc.

4. Dynamic Obstacle Detection and Avoidance demonstrator:

https://youtu.be/5135G3aafLw
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