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Abstract 

Current real-time embedded systems development frameworks lack support for the verification of properties using 
explicit time where counting time (i.e., durations) may play an important role in the development process. Focusing 
on the real-time constraints inherent to these systems, we present a framework that addresses the specification 
of duration properties for runtime verification by employing a fragment of metric temporal logic with durations. We 
also provide an overview of the framework, the synthesis tools, and the library to support monitoring properties for 
real-time systems developed in C++11. The results obtained provide clear evidence of the feasibility and 
advantages of employing a duration-sensitive formalism to increase the dependability of avionic controller 
systems such as the PX4 and the Ardupilot flight stacks. 
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Abstract Current real-time embedded systems develop-

ment frameworks lack support for the verification of proper-

ties using explicit time where counting time (i.e., durations)

may play an important role in the development process.

Focusing on the real-time constraints inherent to these sys-

tems, we present a framework that addresses the specification

of duration properties for runtime verification by employing

a fragment of metric temporal logic with durations. We also

provide an overview of the framework, the synthesis tools,

and the library to support monitoring properties for real-time

systems developed in C++11. The results obtained provide

clear evidence of the feasibility and advantages of employing

a duration-sensitive formalism to increase the dependability

of avionic controller systems such as the PX4 and the Ardupi-

lot flight stacks.
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1 Introduction

As the technology evolves, real-time embedded systems

become more and more pervasive in our daily routines. Cur-

rently, the major effort in the research community working

on controller design for real-time embedded systems is the

design of physical models rather than model synthesis tech-

niques and associated formal verification approaches [1].

Even when formal synthesis and verification methods are

used, the techniques for enforcing time isolation are generally

discarded and delegated to the capabilities of non-formally

verified real-time operating system (RTOSs) [2]. Ideally,

Runtime Verification (RV) [3] can increase the dependabil-

ity of these systems by drawing verdicts at runtime that

may be used to trigger recovery actions. By adopting RV

techniques, developers may be able to reduce the usually

expensive and time-consuming testing efforts; if used in

collaboration with static verification methods, these tech-

niques can increase the overall coverage of the system,

by ensuring execution time correctness in those parts of

the development where heavyweight static approaches (like

model checking [4] and deductive verification [5,6]) fail.

Such failures are common, due to well-known problems,

e.g., the state-space explosion problem inherent to model

checking and the limitations of proof automation in deductive

verification.

Yet another problem faced by developers of real-time

embedded systems is task overloading in RTOSs. This prob-

lem is commonly addressed via fault-tolerant mechanisms

such as resource-sharing algorithms [7] or imprecise com-

putation algorithms [8,9], which may be used for recovering

degraded systems in a way such that liveness is ensured.

Most of these mechanisms are not formally verified, due to

their inherent complexity and concurrency constraints. As an

alternative, coupling automatically synthesized, correct-by-
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construction monitors with the target application allows for

transient overloads to be checked for safety.

In previous work, we have introduced the 3-valued restric-

tion of metric temporal logic with durations (MTL-
∫

) [10],

one of the most expressive and decidable temporal logics [11]

that allows to reason about durations. Our three-valued

restricted metric temporal logic with durations (RMTL-
∫

3)

is able to specify properties that are present in the majority of

real-time systems, e.g., the behavior of task schedulers [12]

and resource models [13]. However, it is not capable of

dealing with discrete analog controllers at the level of abstrac-

tion of differential equations and hybrid discrete/continuous

states, which are the targets of differential logic [14] and

hybrid linear temporal logic [15], respectively.

In this paper, we present a framework for performing RV

of real-time embedded systems (targeting embedded X86

and ARM processors) that is based on the RMTL-
∫

3 formal-

ism [16]. Cylindrical algebraic decomposition (CAD) [17]

was combined with RV for the first time in [16], where we

propose an algorithm for the simplification of quantified for-

mulas in RMTL-
∫

3. The underlying idea is to simplify the

formulas before the synthesis step and, at the same time, to

increase the expressiveness of RV. However, at this time there

exists no available algorithm that can be used directly in the

RV framework introduced in this paper. Here, we describe the

refinement steps of the previously proposed algorithm to cope

with bare-metal real-time systems (RTS) as well as the rules

to synthesize the RV architecture for such small devices. Our

embedded framework consists in the rmtld3synthcpp tool

for automatic monitor synthesization targeting C++11, the

rmtld3synthocaml tool for Ocaml, and the RTMLib runtime

library to support coupling monitors in bare-metal boards

such as Pixhawk [2].

To the best of our knowledge, this is the first RV frame-

work for real-time embedded systems that is able to cope with

explicit time and durations, two of the essential concepts for

the detection of anomalies [18] of hard real-time systems,

as well as for monitoring resource sharing between working

tasks. Instead of coupling monitors in a simple interrupt-

driven way as described in [12], we provide a hierarchy for

safe monitoring. We validate the feasibility of the practical

use of our framework with two use cases that target the verifi-

cation of the PX4 autopilot [2]. We instrument the controller

source code in order to ensure that at runtime the possible

overload of real-time tasks and the failure of the transient

overload mechanisms are avoided, by enforcing time isola-

tion.

The paper is organized as follows: Section 2 introduces

the related work. Section 3 describes the logic formalism

underlying our monitoring/synthesis framework, and the dis-

tribution functions employed for imprecise computation in

the use cases. Section 4 introduces the framework, and Sect. 5

describes the synthesization tools and the RTMLib library.

Section 6 then describes the formalization of two use cases,

and our experiments for the PX4 platform are described in

Sect. 7. Finally, Sect. 8 discusses the results achieved and

future work.

2 Related work

In RV, handling sequences of events to reason about the dura-

tion of the computation tasks of an RTS (and the detection

of timing anomalies) has always been a major concern for

designers and developers. General mechanisms such as Eagle

and RuleR [19] allow for the formulation of safety properties,

but have limitations to express timing anomalies and reason

about durations. Their major drawback is their intrusiveness.

Most of these RV frameworks add calls to verification pro-

cedures into the application code. This modification of the

target application may be problematic in safety critical sys-

tems if it is not planned from the very beginning of the system

design, as they inject interferences that can break the origi-

nal time specifications and lead to tasks missing deadlines,

and possibly to unsafe behaviors. Furthermore, the frame-

works do not ensure isolation between the monitors and

the monitored application. Hence, a failure of the monitored

application may very well impact the capability of the mon-

itor to detect that failure.

Closely related to our work scope, we have RT-MaC [20]

and Copilot [21]. The former supports the specification of

real-time and probabilistic properties such as “the probability

of a task missing its deadline is 0.1.” However, probabilities

are only related to the temporal order of the historical event

occurrence and has nothing to do with the probability of a

task overloading. For instance, expressing that “the proba-

bility of a task executing no more than 2 time units is 0.2” is

not possible. Copilot on the other hand is composed of: (i) a

strongly typed, synchronous stream-based DSL embedded in

the Haskell functional programming language; (ii) an inter-

preter; and also (iii) a compiler that compiles specifications

into small, constant-time and constant-space C monitors.

However, this approach does not consider monitor overload-

ing, since monitors are executed by an RTOS or called using

a hardware timer interrupt.

Recently, Bauer and colleagues [22], as well as Decker

and colleagues [23], have proposed approaches that mix tem-

poral logic with variants of first-order logic, with different

restrictions. However, in both of these approaches the mon-

itor decisions are based on the use of a SAT solver, which

has a huge overhead, rendering it impractical for embedded

systems. In [16], we have proposed a similar method, but

focusing explicitly on a mix between first-order logic of real

numbers (FOLR) and metric temporal logic (MTL). Instead

of using a SAT solver, our approach relies on a simplification

algorithm to be performed before execution, which removes
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the quantifiers from the specification formulae, and brings

them into a syntactic representation that eases the subse-

quent steps required for the complete monitoring generation

process. However, the approach cannot be directly used in

embedded hard RTSs without first refining its functional fea-

tures, such as pattern matching and higher-order functions,

to the languages supported by the bare-metal boards.

3 Preliminaries

Temporal specification. Timed temporal logics [24,25]

extend classic temporal logics [26] with quantitative con-

structs, which makes them appropriate for reasoning about

execution time requirements of RTSs. It is, however, far from

being straightforward to select an appropriate logic for rea-

soning about timing requirements of realistic systems, as

exemplified by current autopilot applications. First of all,

because too much expressive power may easily result in unde-

cidability [11], this is famously illustrated by MTL [25], a

real-time extension of LTL [26]. A second difficulty is that,

without guaranteeing the decidability of the logic, it might

not be possible to devise an effective method for quantifica-

tion removal. Moreover, the decidability result ensures that

monitors synthesized from formulas will draw their verdicts

and ideally terminate in a bounded amount of time, which is

of outmost importance in RTSs when we are targeting exe-

cution time overloading of monitors.

Properties such as “the periodic task that performs the

control loop has a duration per job no greater than 10 time

units” or “the execution time that the monitor spends is less

than 2 time units” cannot be specified, even in MTL, without

knowing a priory the event triggering order of the system. In

addition, formulas that can relate elapsed time for tasks such

as “two tasks do not overload if the available load time checks

a = b−10 or a < b+10” cannot be expressed in MTL. Note

that a and b are variables that correspond to the execution

time of each task, which is different from monotonic clocks

(e.g., those present in TPTL [24] formulas), but closer to the

notion of stopwatches.

Our recent results [16] show that the inclusion of less-

than relation < over duration terms, to measure the duration

of a certain formula with MTL, is an interesting abstrac-

tion for RTS and is also adequate for describing timing

requirements. Quantifiers are simplified before the monitor

synthesis process takes place, and because the relation <

is decidable and there exists a method to decompose quanti-

fied formulas into equivalent formulas without quantification

(the CAD method, which decomposes polynomial inequali-

ties by means of a quantifier removal algorithm), we are able

to remove all the quantifiers statically, therefore avoiding

that this process takes place at runtime, which could impose

excessive overhead on the monitor.

However, the overall mechanism is not ready to be used in

a bare-metal board such as Pixhawk: It requires some refine-

ment steps, as well as guarantees about the constant-time

execution of the generated monitors. Note that the monitor

shall incrementally evaluate a system and draw a 3-valued

verdict (yes, no, or unknown) in a deterministic bounded

amount of time.

Let us now review the syntax and semantics of the adopted

specification language RMTL-
∫

3.

Definition 1 Let P be a set of propositions and V a set of

logic variables. The syntax of RMTL-
∫

3 terms η and formulas

ϕ is defined inductively as follows:

η ::= α | x | η1 ◦ η2 |
∫ η

ϕ

ϕ ::= true | p | η1 < η2 | ϕ1 ∨ ϕ2 | ¬ϕ | ϕ1 U∼γ ϕ2 | ∃x ϕ

where α ∈ R, x ∈ V is a logic variable, ◦ stands for the

arithmetic operators + and ×,
∫ η

ϕ is the duration of the

formula ϕ in an interval, p ∈ P is an atomic proposition, U

is a temporal operator with ∼∈ {<,=}, γ ∈ R≥0, and the

meaning of η1 < η2, ϕ1 ∨ ϕ2, ¬ϕ, and ∃x ϕ is defined as

usual.

A timed state sequence κ is an infinite sequence of the form

(p0, [i0, i ′0[), (p1, [i1, i ′1[) . . . ,

where p j ∈ P , i ′j = i j+1 and i j , i ′j ∈ R≥0 such that i j < i ′j
and j ≥ 0. Let κ(t) be defined as {p j } if there exists a tuple

(p j , [i j , i ′ j [) such that t ∈ [i j , i ′ j [, and as ∅ otherwise. Note

that there exists at most one such tuple.

A logical environment is any function υ : V → R≥0. For

any x ∈ V , r ∈ R, and logical environment υ, we will denote

by υ[x �→ r ] the logical environment that maps x to r and

every other variable y to υ(y).

We will denote by �3 the set of RMTL-
∫

3 formulas, and

by Ŵ the set of RMTL-
∫

3 terms.

Definition 2 (RMTL-
∫

3 Semantics) The truth value of a for-

mula ϕ will again be defined relative to a model (κ, υ, t)

consisting of a timed state sequence k, a logical environment

υ, and a time instant t ∈ R≥0, and will now be one of the

3-values {tt, ff,⊥}. We will write �ϕ�3(κ,υ,t) = tt when ϕ

is interpreted as true in the model (κ, υ, t), �ϕ�3(κ,υ,t) = ff

when ϕ is interpreted as false in the model (κ, υ, t), and

�ϕ�3(κ,υ,t) = ⊥ otherwise. The auxiliary indicator function

1ϕ(κ,υ) : R≥0 → {−1, 0, 1} is defined as follows:

1ϕ(κ,υ)(t) =

⎧
⎪⎨
⎪⎩

1 if �ϕ�3(κ,υ,t) = tt,

0 if �ϕ�3(κ,υ,t) = ff,

−1 if �ϕ�3(κ,υ,t) = ⊥
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The interpretation of the term η will be given by

T �η�3(κ,υ) t ∈ R∪ {⊥R}, as defined by the following rules.

Whenever T �η�3(κ,υ) t = ⊥R, this means that the term η is

infeasible.

Rigid terms:

T �η1�3(κ,υ) t is defined as α if η1 = α, and as υ(x)

if η1 = x

Duration term:

If η1 =
∫ η2 φ, then T �η1�3(κ,υ) t is defined as:

⎧
⎪⎨
⎪⎩

∫ t+T �η2�3(κ,υ) t

t
1φ(κ,υ)(t

′) dt ′ if
T �η2�3(κ,υ) t ≥ 0 and for all

t ′′ ∈ [t, t+T �η2�3(κ,υ) t], 1φ(κ,υ)(t
′′) ∈ {0, 1}

⊥R otherwise

Binary terms:

If η1 = η2 + η3, then T �η1�3(κ,υ) t is defined as:

⎧
⎨
⎩

T �η2�3(κ,υ) t + T �η3�3(κ,υ) t if T �η2�3(κ,υ) t, T �η3�3(κ,υ) t ∈ R

⊥R otherwise

If η1 = η2 × η3, then T �η1�3(κ,υ) t is defined as:

⎧
⎨
⎩

T �η2�3(κ,υ) t × T �η3�3(κ,υ) t if T �η2�3(κ,υ) t, T �η3�3(κ,υ) t ∈ R

⊥R otherwise

Turning to the interpretation of formulas, we define �ϕ�3(κ,υ,t)

to be one of the three values in {tt, ff,⊥}, according to the

following rules.

Basic formulae:

If φ is p, then �φ�3(κ,υ,t) is tt if p ∈ κ(t), ff if p /∈
κ(t) and κ(t) �= ∅, and ⊥ if κ(t) = ∅.

Relation operator:

If φ is η1 < η2, then �φ�3(κ,υ,t) is defined as:

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

tt if T �η1�3(κ,υ) t,T �η2�3(κ,υ) t ∈ R, and T �η1�3(κ,υ) t < T �η2�3(κ,υ) t

ff if T �η1�3(κ,υ) t,T �η2�3(κ,υ) t ∈ R, and T �η1�3(κ,υ) t ≥ T �η2�3(κ,υ) t

⊥ if T �η1�3(κ,υ) t = ⊥R or T �η2�3(κ,υ) t = ⊥R

Boolean operators:

If φ is ¬ϕ, then �φ�3(κ,υ,t) is tt if �ϕ�3(κ,υ,t) = ff,

ff if �ϕ�3(κ,υ,t) = tt, and ⊥ otherwise.

If φ is ϕ1 ∨ ϕ2, then �φ�3(κ,υ,t) is tt if �ϕ1�3(κ,υ,t) =
tt or �ϕ2�3(κ,υ,t) = tt, ff if �ϕ1�3(κ,υ,t) = ff and

�ϕ2�3(κ,υ,t) = ff, and ⊥ otherwise.

Temporal Operators:

If φ is ϕ1 U∼γ ϕ2, then �φ�3(κ,υ,t) is defined as:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

tt if there exists t ′ such that t < t ′ ∼ t + γ, �ϕ2�3(κ,υ,t ′) = tt and

for all t ′′, t < t ′′ < t ′, �ϕ1�3(κ,υ,t ′′) = tt

ff if for all t ′, t < t ′ ∼ t + γ,

�ϕ2�3(κ,υ,t ′) �= ff implies that

there exists t ′′ such that t < t ′′ < t ′, �ϕ1�3(κ,υ,t ′′) = ff and

�ϕ2�3(κ,υ,t ′) = ff implies that there exists no t ′′

such that t < t ′′ < t ′ or

there exists t ′′ such that t < t ′′ < t ′, �ϕ1�3(κ,υ,t ′′) = ff

⊥ otherwise

Existential operator:

If φ is ∃x ϕ, then �φ�3(κ,υ,t) is defined as:

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

tt if there exists a value r ∈ R such that �ϕ�3(κ,υ[x �→r ],t) = tt

ff if for all r ∈ R, �ϕ�3(κ,υ[x �→r ],t) = ff

⊥ there exits r ∈ R such that �ϕ�3(κ,υ[x �→r ],t) = ⊥ and

there exists no r ∈ R such that �ϕ�3(κ,υ[x �→r ],t) = tt

Note that the semantics of the until operator is strict and

non-matching [24]. We will write (κ, υ, t) |�3 ϕ when

�ϕ�3(κ,υ,t) = tt, and (κ, υ, t) �|�3 ϕ when �ϕ�3(κ,υ,t) = ff.

In what follows we will often write η1 = η2 for ¬(η1 <

η2) ∧ ¬(η2 < η1). We will use the following abbreviations:
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Fig. 1 Evaluation of formulas

based on a sequence (a) and

respective evaluation of duration

terms (b)

(a)

(b)

ϕ∧ψ for ¬(¬ϕ∨¬ψ), ϕ → ψ for ¬ϕ∨ψ , tt for ϕ∨¬ϕ, ff for

ϕ∧¬ϕ, �∼γ ϕ for tt U∼γ ϕ, and �∼γ ϕ for ¬(tt U∼γ ¬ϕ).

Figure 1a intuitively illustrates the meaning of the RMTL-∫
3 formulas with temporal operators. The diagram contains

a sequence ρ; three event releases ǫβ , ǫα , and ǫidle; and

the respective truth value of the logic formulas ǫβ U ǫα ,

φ1 =
∫ |ρ|

(ǫβ ∧ ǫα) ≤ 10, and φ2 =
∫ |ρ|

(ǫβ) ≤ 10, where

|ρ| is the size of the sequence. In Fig. 1b, we can conclude

that the formula ∀x
∫ x

(ǫβ) ≤
∫ x

(ǫβ ∧ǫα) in the finite inter-

val [0, 64) is interpreted as true. This figure illustrates the

intuition behind the duration terms. The graph depicts the

formula
∫ x

(ǫβ) and
∫ x

(ǫβ ∧ǫα), which allows us to visually

check the formula ∀x
∫ x

(ǫβ) ≤
∫ x

(ǫβ ∧ ǫα) in the finite

interval [0, 64).

Figure 1b illustrates the intuition behind duration terms.

The graph depicts the formulas
∫ x

(ǫβ) and
∫ x

(ǫβ ∧ ǫα),

which allows us to visually check the formula ∀x
∫ x

(ǫβ) ≤∫ x
(ǫβ ∧ ǫα) in the finite interval [0, 64). We conclude that

the formula is interpreted as true in that interval.

Encoding Uncertainty. Fragments of temporal logic are com-

monly extended to incorporate probabilistic information. It

is common to write a property such as “the probability of

the event A stopping before the event B starts is 0.1.” How-

ever, this requires defining a completely new semantics and

operators for a temporal logic that allows for such properties

to be encoded. Encoding uncertainty in MTL is not possible

by default. We will now motivate the presence of the dura-

tion operator in the RMTL-
∫

3 logic by showing that one of

the advantages of having duration terms, with respect to what

happens in traditional temporal logics, is precisely the ability

to encode uncertainty.

Duration terms allow us to have random variables that,

instead of getting a verdict based on a strict decision (say,

“duration of a task is greater than 0 and less than 10”), allow

us to express something about the temporal deviation of the

system. This is significantly important in order to shape the

temporal behavior of a task and provides the required system

time’s adaptability based on that temporal deviation.

As a motivation case, we adopt the schedulability analysis

of RTSs. This analysis is based on the assumption that there

exists an upper bound for the execution time of each task;

however, this upper bound (and the same applies to the lower

bound) can be too pessimistic, far from the average execution

of the system. It is here that uncertainty can play a role,

providing us with more information about the duration of

the tasks.

Regarding the upper bound, it usually corresponds to

the worst-case execution time of the various tasks, and
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calculating this implies considering more pessimistic schedu-

lability tests [7] (i.e., producing negative verdicts under

schedulable tasksets). Markov processes, such as general-

ized semi-Markov processes (GSMPs), are suitable models

for specifying uncertainty of RTSs when schedulers are time-

triggered, and the exact response times are not possible to

obtain. Such a process is able to deal with any continuous

probabilistic distribution under the restriction of the structure

imposed on clocks. Furthermore, it allows us to construct a

more realistic model of the target system, containing not only

knowledge about the lower and upper bounds, but also a com-

plete distribution of the response time of the system. Random

variables (with any distribution) can be used for predicting

the next state of the system. In this way, the next expected

state can be estimated based on the probability density func-

tion (pd f ) of the duration of each task and on the current

state, up to the point at which the monitor executes. Based

on these facts, we adopt the above notions in order to verify

at runtime that the system satisfies the bounded uncertainty

of the time execution using formulas in RMTL-
∫

3. Note that

only certain distributions can be encoded in this logic. For

that, we rely on mixtures Beta distributions to encode uncer-

tainty of real-time tasks using polynomial inequalities. The

pd f of the Beta distribution is defined by

P(x) =
(1 − x)β−1 xα−1

B(α, β)
,

where B(p, q) = (p−1)! (q−1)!
(p+q−1)! is the Beta function, and

α, β > 0.

Verifying these properties at runtime is quite interesting,

since it allows us to get runtime data and test whether there

is a feasible deviation from the expected behavior. Examples

of application of the Beta distribution are given in Sect. 6.

4 RV with RMTL-
∫

3

In this section, we present a RV framework for embedded

RTSs based on the novel RV monitoring model that will be

described in Sect. 5. The latter contains the constraints/rules

from the application side that allow us to synthesize a proper

architecture for monitors. These rules are used to config-

ure the target application to be executed in a multiprocessor

embedded system or over a classic single processor from the

AVR or ARM-M families of embedded processors. The sup-

port is given by the RTMLib [27] library that allows us to

execute monitors in a lock-free and wait-free manner, which

is very useful to guarantee deadlock-free RV operation.

Our toolchain is depicted in Fig. 2. As input, we have a

set of formulas that will be converted to monitors using a

one-to-one correspondence. From these formulas, we gen-

erate Ocaml and C++11 source code as well as tests for

C++11 implementation that are automatically generated

from the Ocaml synthesis, which corresponds to the depen-

dence between both synthesis tools and identified by the

dashed arrow. Tests and synthesized monitors are merged

and compiled using the gcc toolchain including the support

library RMTLib. This binary will run under NuttX OS. Oth-

erwise, the compiled code from the synthesis Ocaml tool is

executed in a common x86 operating system.

Operationally, each monitor can share resources (e.g.,

memory and processors) with other monitors or may execute

in isolation (using its own processor and memory partition),

which is part of the specification of the RV monitoring model.

The monitors have different execution rules that may change

at execution time and rules for their operation.

– Execution rules are step-based (for iterative/tail recursive

monitors; for an arbitrary number n ∈ N of execution

steps), symbol-based (for explicit symbol consumption

in automata formalisms), time-based (a timed bound in

discrete execution time for execution of general-purpose

monitors). Based on this, we can change the execution

of the monitor at runtime in a dynamic way (a feature

provided by RTMLib).

– Operation rules are time-triggered or event-triggered; the

idea is to generate runtime verifiers depending of the tar-

get RTS. The modes of operation/execution are assigned

according to the RV model.

For hard RTS, we use the step-based rule combined with a

time-triggered rule. Note that there is no explicit architec-

ture for monitoring, and different RV rules produce different

monitor architectures, depending on the target systems and

the provided RV monitoring model.

Synthesis Algorithm Refinement. The evaluation algorithm

proposed for RMTL-
∫

3 in [16] uses functional programming

language features such as pattern matching and higher-order

functions, in particular fold operations.

Let K be a set of sequences κ , ϒ a set of logic environ-

ments υ, and R≥0 the domain of a time instant t (analogous

to the model (κ, υ, t)). Let us first consider the lambda func-

tions, as already defined in [16], such as Compute(∨)::(K ×
ϒ × R≥0) → �3 → �3 → B3, Compute(¬)::(K × ϒ ×
R≥0) → �3 → B3, Compute(U<)::(K × ϒ × R≥0) →
R≥0 → �3 → �3 → B3, and Compute(

∫
)::(K × ϒ) →

R≥0 → R → �3 → D, that evaluate formula schemes of

the form ψ1 ∨ ψ2, ¬ψ , ψ1 U<γ ψ2, and
∫ η

ψ , respectively.

Note that (K×ϒ×R≥0) is a model (consisting of a sequence

in K, a logic environment in ϒ , and a time instant in R≥0),

D the set R≥0 ∪ {⊥R}, �3 is a set of three-valued formulas,

B3 is the set of three values {tt, ff,⊥} , and B4 is a four-

valued set defined by B3 ∪ {r}, where r is the fourth symbol

of the four-valued set. Pattern matching features are currently
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Fig. 2 Toolchain overview

not included in imperative programming languages such as

C++11. Henceforth, and for the sake of compatibility with

C++11, we adapt that algorithm as follows:

– the pattern matching constructions are statically erased

and fully encoded into the generated monitors;

– the fold functions are encoded as iterators over the struc-

ture of traces;

– the remaining functions are encoded as C++11 lambda

functions.

Pattern matching is simplified over the inductive structure

of the formulas. For instance, the formula a →
∫ 10

b is

implemented without pattern matching by composition over

the structure of the formula. For that, we need to define some

newC++11 lambda functions such as computep::P → (K×
ϒ ×R≥0) → B3, compute¬::((K × ϒ ×R≥0) → B3) →
(K×ϒ×R≥0) → B3, compute∫ ::R → ((K×ϒ×R≥0) →
B3) → (K × ϒ) → R≥0 → D, and

compute∨::((K × ϒ × R≥0)

→ ((K × ϒ × R≥0) → B3) → B3)

→ (((K × ϒ × R≥0) → B3)

→ (K × ϒ) → R≥0 → D)

→ (K × ϒ × R≥0) → B3.

Note that they encode the pattern matching (all required com-

binations for a given formula) instead of accepting RMTL-
∫

3

formulas as input arguments. The generated function that cor-

responds to a →
∫ 10

b is then the lambda function

λm. compute∨
(
compute¬

(
computep a

))
(

compute∫ 10
(
computep a

))
m

where m is the model defined inC++11 asTraceIterator
<int> iter, struct Environment env, and

timespan t. Note that λx . f un is defined in C++11 as

the expression [](x){fun}.

Let us now focus on the U operator. Porting to C++11,

the function Compute(U<), responsible for the synthe-

sis of the until operator, requires defining a number of

auxiliary C++11 functions. As an example, the function

eval_fold:: (K × ϒ × R≥0) → �3 → �3 → K → B4, as

provided in the original RMTL-
∫

3 evaluation algorithm [16],

is defined in C++11 as shown in Listing 1. We remark that

the synthesized function (eval_fold (κ, υ, t) φ1 φ2 ̹) is

originally defined by

fold
(
λv (p, (i, t ′)) → eval_b (κ, υ, t ′ − ǫ) φ1 φ2 v

)
r ̹,

where φ1 and φ2 are formulas that were statically coded as

the C++11 lambda functions eval_b (of which there exist

as many as there are occurrences of until operators, since

each one contains different formulas), ̹ is the original trace

sequence that is mapped into the iterator i ter of Listing 1, i

is the lower bound of the interval (i, t ′), ǫ is the minimum

precision of a float, and r is a proper mark for release if

the until evaluation gives us an unknown value, identified

in C++11 by FV_SYMBOL, respectively. The operators U<,

<, and duration terms
∫ η

ϕ may now be fully implemented

using the C++11 lambda functions. The existential operator

does not need to be treated since we assume the existence

of a simplification algorithm that decomposes a quantified

formula into a non-quantified formula as in [16]. The output

of this tool is a monitor written in the C++11 programming

language and composed by several source files, and the input

is a configuration file containing an RMTL-
∫

3 formula to be

synthesized. The rmtld3synth synthesis tool for these

operators, written in the Ocaml programming language [28],

is fully described in [29]. The reader is referred to the example

in Appendix 1 for further details and a worked out example.

The synthesized monitors have polynomial time com-

plexity [16]. In order to analyze the space complexity of

the synthesized monitors, we first note that the synthe-

sis algorithm produces monitors written using pure lambda

functions. Following [16], each formula ψ in RMTL-
∫

3

to be synthesized, of length mψ , will originate a set of
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auto eval_fold = []( struct Environment env, timespan t,
TraceIterator<int> iter) −> four_valued_type

{
return std{:}{:}accumulate
(

iter.begin(), iter.end(), pair<four_valued_type,
timespan>( FV_SYMBOL, t ),

[&env, eval_b]( const pair<four_valued_type, timespan>
a, Event<int> e )

{
return make_pair( eval_b( env, a.second, a.first ),

a.second + e.getTime() );
}

).first;
};

Listing 1 eval_fold synthesis in C++11

λ-expressions whose global size is in O(mψ ), and whose

mutual recursion pattern (or call graph) is free of cycles,

since the invocations follow the structure of the formula ψ .

Execution of theseλ-expressions relies on a functional, stack-

based mechanism, and it follows that the number of push/pop

operations performed will be in O(mψ ). The required stack

size will thus be linear in mψ and constant in the input trace

size. Therefore, the generated monitoring algorithms have

constant-space complexity regarding the trace size, as our

experimental results will confirm.

5 RV monitoring model

In this section, we describe how monitors are linked to buffers

and tasks via the specialized RunTime Embedded Monitoring

Library (RTMLib) and then discuss how timing guarantees

are enforced in practice by the adopted hierarchy of monitors.

Linking monitors with RTMLib. Monitors are executed in a

simple embedded monitoring framework, which we named

the RTMLib [27]. These monitors use circular buffers as the

data structure to hold a trace, and they have a certain peri-

odicity. The framework ensures that monitors retrieve events

from circular buffers respecting their partial order, in a lock-

and wait-free manner. Note that several buffers are used in

a composition as described in [30] for the reference archi-

tecture; more details on the implementation of RTMLib can

be found in the documentation in [27]. Monitors execute as

higher-priority tasks and are constantly interfering with the

application. However, such interference is predictable and

constant, since each monitor can execute in constant time

that depends on the structure of the formula.1

Knowledge of the length of the circular buffers is required

at compile time, and for that we define a bound over tempo-

ral formulas, allowing us to determine a map from time to

event size. The calculation of temporal bounds for formulas

1 By constant time, we mean that a monitor executes the same number

of CPU cycles at each invocation.

of RMTL-
∫

3 is then achieved by a recursive algorithm that

traverses the inductive structure of the formulas. We now

give two examples of the calculation of an upper bound for

a given formula and the construction of a flow graph for a

given time window.

Example 1 Let us consider a trace and the formula

a U<10 (b U<10 c), containing propositions a, b, c eval-

uated at time t = 0. Based on the semantics of temporal

operators, we achieve the timing bounds t ∈ ]0, 10[ and

t ∈ ]0, 20[, respectively. These time bounds are intervals

where the truth values resulting from the evaluation of for-

mulas may change. By the semantic nature of temporal

operators, we know that for any t /∈ ]0, 10[ ∪ ]0, 20[ the

truth value is maintained constant, which gives us the desired

bound for changes of the evaluation value.

Example 2 In order to estimate the amount of time required

from the system under observation to couple monitors in a

safe manner, we can use a pessimistic approach based on the

assumption of a maximum inter-arrival time of events in the

system, or we can pre-compute the flow graph of the appli-

cation. Based on these, we are able to infer how many events

will be triggered in a certain time interval. To exemplify the

specific case of the latter, we define a time window given by a

certain formula using the previous approach. Then, we create

a flow graph of the entire system and fix the starting point of

the system as depicted in the partial flow pattern of the events

(ranging from symbol A to M) under monitoring in Fig. 3.

From label α to β, where α corresponds to the beginning

of the execution and β corresponds to the end of the execu-

tion, we have the flow of the main task composed by three

paths (the task that manages the autopilot controller), and

from label 1 to 4, we have the optional task (a time-triggered

task for device drivers execution that need to execute at least

1 time in a second). The optional task has two times the

period of the main task. In summary, we have at most four

events between α and β and the optional task executes twice

between them. The figure also depicts the dependencies of

events and allows us to estimate the required relative time for

some events.

Altogether, these examples combine temporal settings of

the monitors and the system itself: the first one give us the

amount of time that we need to wait for a verdict (minimum

time granularity); the second one helps us to find the period

for a monitor based on the time behavior of the system under

monitoring as well as to estimate the worst-case execution

time (WCET) of the monitor (i.e., the time complexity times

a constant).

Timing guarantees of hard real-time systems are com-

monly pessimistic [7]. Given that, it is not good to have

monitors always executing in constant time since they may
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Fig. 3 Flow graph of the

system-enabled events defined

in a time window
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consume more time than required in average. In order to

produce coherent timing verdicts of monitors without assum-

ing any specific scheduler, a hierarchy of monitors should

be employed. The main monitor is required to execute in

constant time to supervise the other monitors, that can be

executing without any restriction of time. Given that, as time

elapses the main monitor will ensure the timing guarantees

of the other monitors, and these monitors will supervise the

main application. Now, we are able to use our framework to

settle on any real-time scheduler.

A hierarchy supervisor monitor is based on the idea of

guaranteeing a monitor that is correct-by-construction and

executes in constant time and constant space. This allows us

for adaptability of new monitors, as well as new system func-

tions. To give a constant-time implementation of a monitor,

we need to fix the sample size for the trace that the super-

visor monitor uses for incremental evaluation and use the

symbol-based execution for arbitrary n steps. However, we

do not have guarantees that the maximum delay detection

will be ensured. For that we need to consider the rate of the

events that scheduler and monitors trigger. This is relatively

simple since monitors are time- or event-triggered or both.

Since counting events is performed in constant time, we have

a monitor that will count the events and verify whether they

respect the amount of events allowed by the system. Note that

this is safe by itself since the assumption is also monitored.

Note that none of the related works described in Sect. 2

have a focus on a hierarchy of trusted monitors. At most,

they assume that the monitors execute as fast as possible,

and in the absence of an RTOS, the scheduling is achieved

by assigning the hardware interrupt routines hard-coded for

each task or subroutine.

6 Specification for synthesis with RMTL-
∫

3

The adopted formalism supports an explicit notion of time

that is required for the timing analysis of RTSs. Sup-

port of inequalities, durations and quantification over these,

increases the expressiveness of classic temporal logics to

specify explicit timing settings, filling a gap in the common

specification languages for RTSs. Increasing the expressive-

ness of temporal logics may introduce decidability issues;

the interest of decidable fragments, like RMTL-
∫

3, is that

the existence of an effective procedure that always evaluates

any formula in any model as a truth value is guaranteed. In

practice, the existence of this procedure implies that a mon-

itor always terminates drawing a verdict, which is indeed

important in runtime monitoring applications, and even more

important in the context of hard real-time systems.

Let a be a coefficient represented by a logic variable.

Duration terms of the form a ×
∫ η1 ψ1 can be synthesized

if the coefficient a is constrained by polynomial inequali-

ties, or if the coefficient a with distribution Beta or Dirichlet

is employed. Under these restrictions, the rmtld3synth

tool is able to generate monitors that evaluate conditional

probabilities of random actions of RTSs. For instance, these

monitors can be used to monitor the inflation and the defla-

tion of imprecise tasks, which is required when imprecise

computation models are employed. Moreover, the degrada-

tion of the system can also be specified by defining liveness

properties such as “a task cannot execute for less that 5 time

units in one interval of 100 time units.”

Two use cases for monitoring of the Ardupilot autopi-

lot framework are described in this paper. The first is a

simple case that exemplifies the quantification of linearly

constrained duration formulas, to illustrate how to generate

monitoring conditions in C++. Use Case (2) explores how

to encode uncertainty by using polynomial inequalities to

constrain quantified duration formulas.

Use Case (1):

Resource models (RM) are mechanisms provided to estab-

lish amounts of shared resources to be consumed by working

tasks in RTSs. Normally, these mechanisms focus on time

consumption and ensure time isolation between different

tasks or sets of tasks. Periodic RMs are defined by their

replenishment period and budget supply. Budgets are dynam-

ically available as the time elapses and are replenished at

certain defined periods. Elastic RMs are an extension of peri-

odic RMs containing elastic coefficients, similar to spring

coefficients in physics. They describe how the execution time

of a task can be temporally deflated or inflated by applying

n-D geometric region constraints (polynomial inequalities)

over resource budgets. These restricted coefficients allow for
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the system’s underload and overload to be controlled. Spring

coefficients, which are seen as logic variables, define the rate

(or constraint) of inflation and deflation of a resource (in

our case, processing time) and can be changed during exe-

cution. In this use case, these coefficients are governed by

linear inequality constraints, which dictate the under- and

overloading conditions of a certain set of tasks.

Example 3 Consider the formula

0 ≤ a ×
∫ π1

ψ1 + b ×
∫ π2

ψ2 ≤
1

4
θ

that specifies the resource constraints of two RMs where

coefficients are managed according to the linear equation

a = 1−b for a, b ≥ 1
4

, that ψ1,ψ2 are two formulas describ-

ing the event releases of two distinct tasks, and that θ is the

allowed execution time for the RMs. Informally, the formula

specifies that both resource models have different budgets

when both execute at the same time, which in practice is

the case when both RMs interfere in the system. To find the

conditions for monitoring, we need to quantify the formula,

yielding a new formula

∃{a,b}

(
a = 1 − b ∧ a >

1

4
∧ b >

1

4
∧ 0 ≤ a ×

∫ π1

ψ1

+ b ×
∫ π2

ψ2 ≤
θ

4

)
.

Later, after applying the simplification algorithm described

in [16], we generate the monitoring conditions from Exam-

ple 3, as follows:

(
∫ π1 ψ1=0∧0≤

∫ π2 ψ2<θ) ∨
(

0<
∫ π1 ψ1<

θ
4 ∧0≤

∫ π2 ψ2<θ−3
∫ π1 ψ1

)
∨

(∫ π1 ψ1= θ
4 ∧0≤

∫ π2 ψ2≤ θ
4

)
∨

(
θ
4 <

∫ π1 ψ1<
θ
3 ∧0≤

∫ π2 ψ2<
θ−

∫ π1 ψ1
3

)
∨

(∫ π1 ψ1= θ
3 ∧θ−3

∫ π1 ψ1≤
∫ π2 ψ2<

θ−
∫ π1 ψ1

3

)
∨

(
θ
3 <

∫ π1 ψ1<θ∧0≤
∫ π2 ψ2<

θ−
∫ π1 ψ1

3

)
,

where ψ1 and ψ2 are both simplified formulas.

In Fig. 4a, we can see regions where the RMs are able to

consume resources or not. For instance, the resource B cannot

consume any time units if resource A consumes 10 units, and

the resource A can only consume more than 4 units if the

resource B consumes less than 2 time units, due to resource

constraints. For the case of both resources consuming 2.5

units each, the difference between the sum and the execution

time indicates that the interference of both resource models

executing concurrently is at most 5 time units (it is identified

by the dashed region). Intuitively, this constraint means that

one resource needs to be deflated when the other resource

is inflated and conversely. Note that different regions can be

found by modifying the constraints of the scale factor 1
4

, or

any of the θ , a or b parameters.

Since in Example 2 only a quantification over durations

was observed, let us now give an example combining multiple

polynomial inequalities and temporal operators.

Example 4 Consider the constraint Cons1(x, y) defined by

((
8x + 5(y − 1)3 < 0 ∧ y ≤ 1

)

∨
(

5x3 + 15x + 8y < 15x2 + 5 ∧ x ≤ 1
))

∧
(

5x ≥ 1 ∨ x2 + y2 >
1

25

)
,

as depicted in Fig. 4b for different x and y variables. To

provide different time restrictions for operation modes of an

autopilot, we assign different variants of constraint formulas

Consi with index i ∈ {1, 2, 3}. This means that each mode

of operation has different resources available. The functional

and explicit time behavior is defined as follows:

�<∞
∧

i∈{1,2,3}

(
modei → Consi

(∫ π1

ψ1,

∫ π2

ψ2

))
,

where ψ1, ψ2 are formulas to be measured according to the

periods π1 and π2, respectively, and modei is the proposition

that evaluates to true when mode i begins. Figure 5 shows

the constraints for the three modes of operation. Considering

that context switches influence the mode of operation, we can

have a scenario such as “if the RM A measured by the variable

y has more than 10 context switches per each period, then

the mode1 is unsafe and mode2 or mode3 should be used.”

The mode2 should be avoided if context RM A has more than

100 context switches per second. Using this specification,

we can include the overhead of the RMs in the specification

without the need to measure it at runtime, as it requires several

symbols and indirectly increases the monitor space and time

consumption.

Use Case (2): A conditional probability for a given

duration measure for tasks can be specified using this

formalism. We will next evaluate the likelihood of the

remaining tasks in a system to be unscheduled, based

on the overload of a certain task. This example applies

in the context of RMs monitoring and also of imprecise

computation monitoring. Let a be defined as a coefficient

with uncertainty. Any probability distribution that can be

described using polynomial inequalities can be encoded
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(a) (b)

Fig. 4 a Regions of decomposed inequalities with duration x, y and θ = 10. b Polynomial inequality constraint with normalized measures for

two variables
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0 < x < 3 ∧ y > 5 ∧ x + (y − 5) < 5 ∧ ¬( 3

5
x − 5)2 + (y − 10)2 < 52

0 < x < 2 ∧ y > 10 ∧ x + (y − 10) < 5 ∧ ¬(3x − 5)2 + (y − 15)2 < 52

Fig. 5 Three regions defined by Consi for i ∈ {1, 2, 3}

using this approach. Here we will focus on the Beta dis-

tribution only, but other interesting distributions, such as

multinomial and Dirichlet distributions, could be equally

used.

Let X and Y behave as two random variables with dis-

tribution Beta(ai , bi ) for i ∈ 0, 1. To encode these random

variables in RMTL-
∫

3, we define the Beta pd f as a con-

straint of the form f (̂1−x,β−1) f (̂x,α−1)
Cβ

, where Cβ is simplified

and equal to B(α, β), and f̂ is the power function. Power

functions can be encoded in RMTL-
∫

3 with the following

axiom y = a
√

xb ⇔ xb = ya ∨y = x
b
a , for any x, y ∈ R≥0,

a, b ∈ Q>0. Any function f̂may now be encoded in RMTL-∫
3. The Beta distribution p = fβ,α(x) is now fully defined by

ya1 = (1 − x)b1 ∧ za2 = xb2 ∧ y×z
Cβ

= p, where ai , bi ∈ N,

i ∈ {1, 2} are solutions of the formulas a1
b1

= β − 1 and
a2
b2

= α − 1, and p stands for the probability of the logical

variable x in the interval [0, 1].
Intuitively, the idea is to specify non-deterministic actions

based on the information provided at execution time. For

instance, a system can change its modus operandis if for some

reason the probability of a given overload is greater than a cer-

tain fixed probability threshold. Note that these probabilistic

inequality constraints will be used as monitoring conditions.

The generation of monitoring conditions based on simpli-

fication approaches, as in Use Case (1), is only required if

quantifiers are applied.

Let us consider without loss of generality the case of two

tasks, where the first one may have a chance to overload,

and the second one should avoid this by self-deflating. The

specification of probabilistic coefficients that allows elastic-

ity when overload situations occur is encoded by

a =
∫ λ

ψ1 ∧ �<∞

((
fβ,α (a) <

3

4

)
→

(
�<λ+λ2

ψd

))
,

where ψd is defined as (
∫ λ2 ψ2) < b × d, a and b are

restricted by one polynomial inequality constraint (e.g., a =
b + 1), d is the maximum allowed execution time for a task,

and ψ1, ψ2 are the formulas defined for each of the two tasks

(e.g., conjunction of propositions for specifying a certain task

or RM).
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Fig. 6 Comparison of implementations/architectures

7 Experimental results

Before discussing the experimental results for the presented

use cases, we compare our results with the ones presented

in [16], where we show that one element takes in average

400 ns to be processed using an Intel x86 machine. For that,

we re-use the Ocaml source code to compare with our present

setting.

For comparing both implementations, we have used the

following set of RMTL-
∫

3 formulas: (a) true U≤t φ (eventu-

ally); (b) φ → �≤t ψ (bounded invariance); (c) �≤t

∫ t
φ ≤

β (limited duration); and finally (d) φ →
∫ t

ψ ≤ β

(bounded duration). For each formula, we have used dif-

ferent trace sizes ranging from 10 to 103. The traces that

we consider are selected as the traces that maximize the

execution time of each formula evaluation. We have run

the experiments in two distinct architectures, namely the

ARM(armv7) and the x86(i686) architectures, whereas the

OCaml experiments were only performed in the x86 archi-

tecture.

The PixHawk [2] board is the target platform to exe-

cute periodic monitors that were synthesized from RMTL-
∫

3

formulas into C++11. We have also tested the same imple-

mentation using an Intel Core i3-3110M at 2.40 GHz CPU

with 8 GB of RAM memory, and running Windows 10

Embedded x86 in a virtual machine running on a Fedora

23 X86’64 host.

In the case of the PixHawk board, we have only 256 kb

of memory RAM for the overall system, and we assign at

most 90% of the processor usage for these monitoring exper-

iments. From the experimental results presented in Fig. 6,

we can conclude that such monitors execute in polynomial

time as the trace increases, which is in accordance with the

theoretical results presented in [16]. 2 The stack consump-

tion is also acceptable for the PixHawk board. The constant

upper dashed line is the maximum stack consumption of 1.76

kb for the formula (c), and the other two lines represent the

lower bounds of the reaming three formulas that have a very

similar stack usage.

Different lines are depicted in Fig. 6. They correspond to

different execution times and stack experiments: The lines

tagged with “ocaml” refer to the execution of the origi-

nal evaluation algorithm using Ocaml; the ones tagged with

“x86” are the execution time of the C++11 implementa-

tion in the same platform of the Ocaml test; and finally,

the ones tagged with “arm” refer to the execution time of

the C++11 implementation in the PixHawk board. In these

experiments, we do not consider more than two nested until

operators, which is indeed a common pattern of formulas for

the specification of embedded systems—we do not have any

evidence of how deep nested U operators can be used in a

real application scenario.

Case study experiments. Ideally, lightweight controller

systems should use elastic execution time for tasks, in order

to enable the required adaptability for reducing overload sit-

uations.

Ardupilot [31] supports several platforms such as AVR,

ARM (based on NuttX[32]), and X86 (based on the Linux

kernel). Recently, Ardupilot has adopted nonlinear Kalman

filters for the attitude and heading reference system (AHRS).

2 The instructions to generate the C++11 code files that are the output

of the use case experiments are fully detailed in [29] .
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It is a demanding process that can only be executed in the

PixHawk board. For this ARM architecture, two versions

are available to perform the same tasks as in imprecise

computation definitions. The faster one adopts direction

cosine matrix (DCM), which is sufficient for the major-

ity of the cases (but is less accurate). The slower version

reveals that AHRS can be much better for heavy copters.

Ardupilot for the AVR architecture contains several sub-

tasks that are scheduled using cyclic scheduling rules. It

uses the Hardware Abstraction Library (HAL) to com-

municate with the devices directly, using interrupt-driven

routines. However, Ardupilot for PixHawk uses the HAL

to communicate with device drivers that are implemented

as separate tasks running on NuttX. The RTOS runs a sin-

gle main task as defined by the AVR architecture and,

instead of using interrupt-driven routines, uses four optional

tasks that should be executed at least once each second.

These optional tasks have different purposes, such as con-

trolling the IO, the UART, and managing timing events

and storage (system drivers). The main task contains sub-

tasks that execute cyclically in different frequencies ranging

from 20 to 400 hz, dictated by the defined cyclic scheduler.

The execution rule for sub-tasks is: based on the predicted

WCET, an optional task will execute if there exists available

time.

For designing a safe autopilot, we are required to ensure

time-space isolation. This is crucial for autopilot tasks

that have not been formally verified, or are still under-

going testing. To the best of our knowledge, none of

the currently available autopilot systems for radio control

copters have been formally verified. They may well generate

absurd values due to hardware failures and are susceptible

to introduced code attacks, via radio-frequency telemetry

links [33].

Let us now analyze the impact of the use cases in the

Ardupilot firmware. Use Case (1) is composed of several dis-

junctions, meaning that each branch of the formula can take

different execution times. However, the results demonstrate

that these formulas are not out of the scope of the previous

experiments. The stack usage is 3.4 kb for Use Case (1) and

4.3 kb for the formula proposed in Use Case (2). Based on

that, the execution times are on average faster than the worst

case considered. Usually, the monitor increases its execution

time as more events are triggered, which means that if the

set of events selected for a system is subdivided in different

buffers (when possible), then the monitoring will generate

lower overheads. However, the impact of the overheads in

the Ardupilot is not negligible. The overhead generated in

the system is 10us/1s for the instrumentation of two sub-

tasks and is 50ms/1s for the monitor (the sub-tasks have a

period of 10ms and 5ms, respectively). We also have an idle

time of about 40% percent. Monitor buffer length is fixed to

100 elements, which is the value obtained according to the

pre-calculated time interval required for the formulas under

synthesis, and we consider a maximum inter-arrival time of

1ms. The monitors execute with a period of 1s. The input files

for Use Case (1) and Use Case (2) can be found online [34]

(config files “usecaseone” and “usecasetwo”), together with

the step-by-step procedure for monitor generation using the

rmtld3synth tool.

8 Discussion and future work

Synthesis of RMTL-
∫

3 into classical timed automata (TA)

appears to be unfeasible for RV due to the state explo-

sion problem. Encoding time can only be possible if we

make use of more expressive classes of automata, such as

TA extended with stopwatches [35]. However, the reach-

ability problem for these classes is undecidable, which

implies that no gain should be expected from the point

of view of either static analysis or of space complexity

for runtime verification purposes. Based on this, we have

decided to construct an RV framework building on previous

work [16].

Another important point is the expressiveness of the logic

that has been adopted for this work. Contrary to MTL, which

is not sufficiently expressive to deal with explicit durations of

propositions/events, our experimental results have revealed

that adopting RMTL-
∫

3 allows for properties to be specified

at the abstraction level of counting time and to be efficiently

synthesized for a platform as small as PixHawk, which is

certainly impressive.

Yet, regarding the expressiveness and computing feasibil-

ity of timed temporal logics, the unbounded Since operator

was not considered in this work, because it requires a full

history of a trace. This is not feasible in the context of

lightweight real-time embedded systems where resources are

scarce. It is known from [36] that for each formula contain-

ing the Since operator there exists a corresponding formula

making use of its dual Until operator, which further justifies

our exclusive use of the latter operator in this work.

Our experiments have shown that the adoption of simpli-

fication techniques for synthesis should be encouraged, in

order to reduce the execution time as well as the stack usage.

This is important, as the number of monitors and formulas

increases. Predicting the size of the traces is also important,

and more clever solutions should be investigated, for instance

along the lines of the idea proposed in [37]. Instead of esti-

mating the best periods, we could formulate an optimization

problem to find the smallest trace size that is sufficient for

both the application and the monitor.

The overall conclusion of our work is that software moni-

toring techniques, which draw verdicts about timing software

faults as well as hardware timing failures, are valid and may

be extremely useful to complement the fault-tolerant mech-
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anisms [1,38] that are used for the detection of abnormal

mechanical failures.

A rmtld3synth tool User’s Guide

The rmtld3synth synthesis tool is able to automatically

generate monitors based on the formal specifications written

in RMTL-
∫

3. Polynomial inequalities are supported by this

formalism as well as the most common operators of temporal

logics. Furthermore, quantification is also considered in the

language of RMTL-
∫

3 as a means to facilitate the decom-

position of the quantified formulas into several monitoring

conditions.

We will now present an overview of the typical process for

generating monitors for Ocaml and C++11 languages using

this tool, together with a running example of a simple mon-

itoring case generation. We begin by the running example,

present the generated monitors, and show how to configure

the RV monitoring model to couple with the system.

Consider the formula

(a → ((a ∨ b) U<10 c)) ∧
∫ 10

c < 4 (1)

that intuitively describes that given an event a, b occurs until

c and, at the same time, the duration of b shall be less than

four time units over the next 10 time units. For instance, a

trace that satisfies this formula is

(a, 2), (b, 2), (a, 1), (c, 3), (a, 3), (c, 10).

From rmtld3synth2ocaml tool, we have synthesized

the formula’s example into the code of Listing 4. For that,

we have used the command in Listing 2.

./ rmtld3synth --synth -ocaml --input -
latexeq "(a \rightarrow ((a \lor b
) \until_ {<10} c)) \land \int ^{10}
c < 4"

Listing 2 Utilized shell command for Equation 1

Next, we can also generate C++11 monitors by replacing

–synth-ocaml with –synth-cpp11. The outcome is

the monitor illustrated in Listing 5. To use those monitors,

we need to define a trace for Ocaml reference as in Listing 3.

module OneTrace : Trace = struct let
trc = [("a" ,(0.,2.));("b" ,(2.,4.))
;("a" ,(4.,5.));("c" ,(5.,8.));("a
" ,(8. ,11.));("c" ,(11. ,21.))] end;;

module MonA = Mon0(OneTrace);;

Listing 3 Ocaml’s reference code for monitor instantiation

For the Ocaml language, experimental integration with RTM-

Lib is available. However, we do not describe it here, but refer

open List

open Rmtld3

module type Trace = sig val trc : trace end

module Mon0 ( T : Trace ) = struct

let compute_uless gamma f1 f2 k u t =

let m = (k,u, t ) in

let eval_i b1 b2 =

i f b2 <> False then b3_to_b4 b2 else i f b1 <> True && b2 = False then b3_to_b4 b1 else Symbol

in

let eval_b (k,u, t ) f1 f2 v =

i f v <> Symbol then v else eval_i (f1 k u t ) (f2 k u t )

in

let eval_fold (k,u, t ) f1 f2 x =

fst ( fold_left (fun (v, t ’) (prop , ( ii1 , i i2 ) ) −> (eval_b (k, u, t ’) f1 f2 v, ii2 ) ) (Symbol, t ) x)

in

i f not (gamma >= 0.) then

raise (Failure "Gamma of U operator is a nonnegative value")

else

begin

let k,_, t = m in

let subk = sub_k m gamma in

let eval_c = eval_fold m f1 f2 subk in

i f eval_c = Symbol then

i f k. duration_of_trace <= ( t +. gamma) then Unknown else ( False ) else b4_to_b3 eval_c

end

let compute_tm_duration tm fm k u t =

let dt = ( t ,tm k u t ) in

let indicator_function (k,u) t phi = i f fm k u t = True then 1. else 0. in

let riemann_sum m dt ( i , i ’) phi =

(∗ dt=(t , t ’) and t in ] i , i ’] or t ’ in ] i , i ’] ∗)

count_duration {:=} !count_duration + 1 ;

let t , t ’ = dt in

i f i <= t && t < i ’ then

(∗ lower bound ∗)

( i ’−.t ) ∗. ( indicator_function m t phi)

else (

i f i <= t ’ && t ’ < i ’ then

(∗ upper bound ∗)

( t ’−.i ) ∗. ( indicator_function m t ’ phi)

else

( i ’−.i ) ∗. ( indicator_function m i phi)

) in

let eval_eta m dt phi x = fold_left (fun s (prop , ( i , t ’) ) −> (riemann_sum

m dt ( i , t ’) phi) +. s ) 0. x in

let t , t ’ = dt in

eval_eta (k,u) dt fm (sub_k (k,u, t ) t ’)

let env = environment T. trc

let lg_env = logical_environment

let t = 0.

let mon = (fun k s t −> b3_not ((fun k s t −> b3_or ((fun k s t −> b3_not ((fun k s t −> b3_or ((

fun k s t −> b3_not ((fun k s t −> k. evaluate k. trace "a" t ) k s t ) ) k s t ) ((

compute_uless 10. (fun k s t −> b3_or ((fun k s t −> k. evaluate k. trace "a" t ) k s t ) ((

fun k s t −> k. evaluate k. trace "b" t ) k s t ) ) (fun k s t −> k. evaluate k. trace "c" t ) )

k s t ) ) k s t ) ) k s t ) ((fun k s t −> b3_not ((fun k s t −> b3_lessthan ((

compute_tm_duration (fun k s t −> 10.) (fun k s t −> b3_or ((fun k s t −> k. evaluate k.

trace "c" t ) k s t ) ((fun k s t −> k. evaluate k. trace "d" t ) k s t ) ) ) k s t ) ((fun k s t

−> 4.) k s t ) ) k s t ) ) k s t ) ) k s t ) ) env lg_env t

end

Listing 4 Generated Ocaml monitor

the reader for the examples inrmtld3synth’s repository 3.

For C++11we will now briefly describe how it is performed.

Given the verbosity of the generated code, we have removed

the conjunction including the duration inequality and used

instead the simple formula

∫ 10

c < 4.

Now, we describe the settings for constructing the RV

monitoring model.
Overview of the configuration settings. The settings for
rmtld3synth tool are defined using the syntax

(<setting_id> <bool_type | integer_type | string_type>)

3 Available at https://github.com/anmaped/rmtld3synth/tree/v0.3-

alpha, version 0.3-alpha.
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#ifndef _MON0_COMPUTE_H_

#define _MON0_COMPUTE_H_

#include "rmtld3 .h"

auto _mon0_compute = []( struct Environment &env, timespan t ) mutable −> three_valued_type { return [ ] ( struct Environment env, timespan t ) −> three_valued_type { auto tr1 = []( struct Environment env, timespan

t ) −> duration {

auto eval_eta = []( struct Environment env, timespan t , timespan t_upper , TraceIterator< int > i ter ) −> duration

{

auto indicator_function = []( struct Environment env, timespan t ) −> duration {

auto formula = []( struct Environment &env, timespan t ) mutable −> three_valued_type { auto sf1 = []( struct Environment &env, timespan t ) mutable −> three_valued_type { return env. evaluate(env, 2, t ) ; }(

env, t ) ; auto sf2 = []( struct Environment &env, timespan t ) mutable −> three_valued_type { return env. evaluate(env, 1, t ) ; }(env, t ) ; return b3_or (sf1 , sf2) ; }(env, t ) ;

return (formula == T_TRUE)? std{:}{:}make_pair (1 , false ) : ( (formula == T_FALSE)? std{:}{:}make_pair (0 , false ) : std{:}{:}make_pair (0 ,true) ) ;

};

/ / compare i f t is equal to the lower bound

auto lower = i ter .getLowerAbsoluteTime() ;

/ / compare i f t is equal to the upper bound

auto upper = i ter .getUpperAbsoluteTime() ;

timespan val1 = ( t == lower )? 0 : t − lower ;

timespan val2 = ( t_upper == upper )? 0 : t_upper − upper ;

auto cum = lower;

/ / le ts do the fold over the trace

return std {::}accumulate(

i te r . begin() ,

i te r .end() ,

std {::}make_pair (make_duration (0 , false ) , (timespan)lower) , / / in i t ia l fold data (duration starts at 0)

[&env, val1 , val2 , &cum, t , t_upper , indicator_function ]( const std {::}pair<duration , timespan> p, Event< int > e )

{

auto d = p. f i r s t ;

auto t_begin = cum;

auto t_end = t_begin + e .getTime() ;

cum = t_end ;

auto cond1 = t_begin <= t && t < t_end;

auto cond2 = t_begin <= t_upper && t_upper < t_end ;

auto valx = ((cond1)? val1 : 0 ) + ((cond2)? val2 : 0) ;

auto x = indicator_function(env, p. second) ;

return std {::}make_pair (make_duration (d. f i r s t + (x. f i r s t ∗ ( e .getTime() − valx ) ) , d. second | | x. second) , p. second + e .getTime() ) ;

}

) . f i r s t ;

};

/ / sub_k function defines a sub−trace

auto sub_k = []( struct Environment env, timespan t , timespan t_upper) −> TraceIterator< int >

{

/ / use env . state to speedup the calculation of the new bounds

TraceIterator< int > i ter = TraceIterator< int > ( env. trace , env. state . f i rs t , 0, env. state . f i rs t , env. state . second , 0, env. state . second ) ;

/ / to use the iterator for both searches we use one reference

TraceIterator< int > &i t = i ter ;

ASSERT_RMTLD3( t == i ter .getLowerAbsoluteTime() ) ;

auto lower = env. trace−>searchIndexForwardUntil( i t , t ) ;

auto upper = env. trace−>searchIndexForwardUntil( i t , t_upper − 1 ) ;

/ / set TraceIterator for interval [ t , t + di[

i t . setBound(lower , upper) ;

/ / return iterator . . . interval length may be zero

return i t ;

};

auto t_upper = t + make_duration(10. , false ) . f i r s t ;

return eval_eta(env, t , t_upper , sub_k(env, t , t_upper) ) ;

}(env, t ) ;

auto tr2 = make_duration(4. , false ) ;

return b3_lessthan ( tr1 , tr2 ) ;

}(env, t ) ;};

#endif / /_MON0_COMPUTE_H_

#ifndef MONITOR_MON0_H

#define MONITOR_MON0_H

#include "Rmtld3_reader .h"

#include "RTML_monitor.h"

#include "mon0_compute.h"

#include "mon1.h"

class Mon0 : public RTML_monitor {

private :

RMTLD3_reader< int > trace = RMTLD3_reader< int >( __buffer_mon1. getBuffer () , 0. ) ;

struct Environment env;

protected :

void run(){

three_valued_type _out = _mon0_compute(env,0) ;

DEBUG_RTEMLD3("Veredict :

}

public :

Mon0(useconds_t p) : RTML_monitor(p,SCHED_FIFO,50) , env( std {::}make_pair (0 , 0) , &trace , __observation) {}

};

#endif / /MONITOR_MON0_H

Listing 5 Generated C++11 monitor
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(gen_tests true)
(minimum_inter_arrival_time 102)
(maximum_period 2000000)
(event_subtype uint_8)
(cluster_name monitor_set1)

(m_simple 1000000 (Or (Until 200000 (Prop A) (Prop C))
(Prop B)))

(m_morecomplex 500000 (Or (Until 200000 (Prop set_off)
(Or (Until 200 (Prop A) (Prop C)) (Prop B))) (
Prop B)))

Listing 6 The default configuration file.

where | distinguishes between the supported types of argu-

ments such as Boolean, integer or string, and

setting_id is a string containing the name of the set-

ting to which values are assigned. An example of a set of

possible settings for the tool is given in the first five lines of

Listing 6.

We now briefly describe the purpose of each of the setting

entries present in Listing 6:

– gen_tests sets the automatic generations of test cases

(to be used as a demo for testing monitor’s execution).

– gen_concurrency_tests constructs tests for test-

ing lock- and wait-free monitors executing concurrently.

– gen_unit_tests constructs tests for C++11 synthe-

sis using the Ocaml source code as an oracle.

– buffer_size sets the static size of the buffer to be

used (rmtld3synth tool can change it if required by

some constraints).

– minimum_inter_arrival_time establishes the

minimum inter-arrival time that the events can have. It

is a very pessimistic setting but provides some informa-

tion for static checking.

– maximum_period sets the maximum interval between

two consecutive releases of a task’s job. It has a corre-

lation between the periodic monitor and the minimum

inter-arrival time. It provides static checks according to

the size of time stamps of events.

– event_type provides the type for dealing with events

(commonly is a class parameter).

– event_subtype provides the type for the event data.

In that case, it is an identifier that can distinct 255 events.

However, if more events are required, the type should be

modified to *uint32_t* or greater. The number of differ-

ent events versus the available size for the identifier is

also statically checked.

– cluster_name identifies the set of monitors. It acts as

a label for grouping monitor specifications.

Writing formulas in RMTLD3 The formulas “m_simple”

and “m_morecomplex” follow the same syntax defined

in this document. For setting a periodic monitor, we use

(m_usecase1 <period> (<monitor sexpr>) ). They are for-

type var_id = string with sexp
type prop = string with sexp
type time = float with sexp
type value = float with sexp

type formula =
True of unit

| Prop of prop
| Not of formula
| Or of formula ∗ formula
| Until of time ∗ formula ∗ formula
| Exists of var_id ∗ formula
| LessThan of term ∗ term

and term =
Constant of value

| Variable of var_id
| FPlus of term ∗ term
| FTimes of term ∗ term
| Duration of term ∗ formula

with sexp

type rmtld3_fm = formula with sexp
type rmtld3_tm = term with sexp
type tm = rmtld3_tm with sexp
type fm = rmtld3_fm with sexp

Listing 7 The inductive type.

matted as a symbolic expression. The type of monitors in

Ocaml is according to Listing 7.
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