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Abstract—Nowadays, collecting complex information regard-
ing a machine status is the enabler for advanced maintenance
activities, and one of the main players in this process is the
sensor. This paper describes modern maintenance strategies that
lead to Proactive Maintenance (PM), which is the most advanced
one. The paper discusses the sensors that can be used to support
maintenance, as pertaining to different categories, spanning from
common off-the-shelf sensors, to specialized sensors monitoring
very specific characteristics, and to virtual sensors. The paper
proceeds then to detail three different real world examples of
project pilots that make use of the described sensors, and draws
a comparison between them. In particular, each scenario has got
unique characteristics and prefers different families of sensors,
but on the other hand provides similar characteristics on other
aspects. In fact, the paper concludes with a discussion regarding
how each scenario can benefit from PM and from advanced
sensing.
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I. INTRODUCTION

The advances in industrial electronics are the leading forces

for the fourth industrial revolution. In fact, while most fac-

tories have traditionally made heavy use of electronics and

information technology to automate production (third indus-

trial revolution), the novel paradigm aims at maximizing the

benefits of information by the integration between multiple

data sources, and by the ubiquitous access to the information

itself [1].

A field that has gained momentum is the monitoring of

industrial systems, since it is on the verge of profound changes.

In the close future, maintenance of industrial systems will

feature the revolution from traditional monitoring, based on

the reaction to malfunctions, to advanced techniques that allow

to greatly reduce response time – even to zero – by predicting

faults. The most advanced maintenance paradigm is Proactive

Maintenance (PM), which leverages information collected on

the machines, and historical data, to infer the proper time to

apply each maintenance action.

Building a PM service platform is the goal of the MANTIS

Project [2], which is a European initiative that aims at enabling

novel maintenance strategies of industrial machines pertaining

to different industries. The project is focused on real world ap-

plication of the developed techniques, and its pilots are centred

on machines whose design was adapted for the inclusion of

novel maintenance techniques. In this sense, the pilots are the

testing grounds for the innovative functionalities of the PM

service platform architecture, and for its future exploitation in

the industrial world.

This paper focuses on the sensors that are of interest to

MANTIS project pilots, and their application to PM opera-

tions. An analysis is in fact drawn between different pilots, to

expose how they are technically different but can still benefit

from PM and advanced sensing techniques in general.

In Section II, this paper defines what PM is by building over

other maintenance strategies, and describes how it is enabled

by sensing activities. Section III delves into an analysis of

sensors as pertaining to off-the-shelf, advanced, and virtual

sensor categories; Section IV showcases the application of

sensing techniques to maintenance in real pilots, and Section

V discusses the differences and commonalities between the

pilots and draws some conclusions on the topic at hand.

II. SUPPORTING CONCEPT: MAINTENANCE

As stated in [3], maintenance is a strategic activity aimed

to assure the operation reliability and/or a certain degree of

continuity of equipment and/or processes while ensuring the

safety of people that are part of it. Therefore, maintenance

activities and procedures are always on high pressure from the

top management levels of companies to guarantee cost reduc-

tions in terms of money and time of the intervention [4]. For

that goal, several maintenance strategies have been defined,

developed and adopted, namely: i) Corrective Maintenance

(CM); Preventive Maintenance (PrM); Predictive Maintenance

(PdM); and Proactive Maintenance (PM). These strategies

are enabled by current technological progress and reflect the

growing need for companies to be competitive [5].

CM also called Run-to-failure reactive maintenance can be

described as a fire-fight approach, meaning that equipment is

only replaced or repaired after it breaks. It has the advantage of

minimizing manpower to keep things running. Disadvantages

reside in unpredictable production capacity and high overall

maintenance costs. PrM relies on periodic maintenance execu-

tion that can range from equipment lubrication to replacement.

Maintenance tasks are performed based on specific periods of

time, amount of machine usage (number of working hours)

and/or mean time to failure (MTTF) statistics. This approach

requires production stop for maintenance, but it improves

equipment lifetime and it reduces malfunction probability [6].



Due to the periodic aspect of PrM, replacement of equipment

may occur prematurely as well as failures can occur [7].

PdM, or condition-based maintenance, relies on physical

measurements of the equipment condition (e.g.: temperature,

vibration, noise, lubrication, corrosion [8]). In this sense, main-

tenance only happens in a need-based when a certain threshold

is overcome. As a matter of fact: ”Predictive maintenance is

a philosophy or attitude that, simply stated, uses the actual

operating condition of plant equipment and systems to opti-

mize total plant operation” [9]. Therefore, it did not emerge

to replace corrective and preventive maintenance, but as an

additional tool to improve them. Finally, PM includes different

actions, from system design phase, workmanship, scheduling

and maintenance procedures, to the usage of communication

technologies, feedback information and optimization tech-

niques [10]. PM benefits from the two previous maintenance

strategies, since preventive and predictive methods are also

applied. PM goes further by focusing on the root causes of

the problems, and dealing with them before problems occur.

The successful implementation of PM strategies strictly

depends on the availability of an efficient and effective mon-

itoring infrastructure that can gather and analyze relevant

machine operational data to identify possible breakdowns and

their root causes. A PM service platform needs to include

key technologies such as: Smart sensors, actuators and cyber-

physical systems (CPS); Robust communication systems for

harsh environments; Distributed machine learning for data

validation and decision-making; Cloud-based processing, an-

alytics and data availability; HMI to visualize information.

In particular the foundation of such platform is the sensing

capability, which is bestowed unto sensors and has the re-

sponsibility of nourishing the system with vital information

from equipment and processes.

In this landscape, the State-of-the-Art features several

research and innovation actions and projects founded by

the European Community that are/were focused on the

analysis of the data provided by sensors for the assess-

ment of the equipment status such as: FP6-INNOTRACK,

FP6-DYNAMITE [11], FP7-INTERAIL [12], FP7-PRIME

[13], FP7- SELF-LEARNING [14], FP7-VORTEXSCAN [15],

H2020-PROPHESY [16], H2020-PERFORM [17]. However,

the works that have been realized within these actions mainly

targeted: 1) the faults/anomalies detection from the data avail-

able from sensors; and 2) the diagnosis of the causes of these

faults/anomalies. On the contrary, in the context of this paper,

the main idea is to provide insights regarding the sensing

layer and study how it enables PM in different domains of

application.

III. SENSORS FOR MACHINE MAINTENANCE

Sensors used in advanced maintenance operations can be

classified in a number of ways. Being focused on real world

pilots, this paper categorizes the sensors as common mass-

produced sensors (Subsection III-A), custom sensors that

are created for specific maintenance applications (Subsection

III-B), and virtual (software) sensors (Subsection III-C).

Fig. 1. Distribution of Sensor Types

A. Off-the-shelf Sensors

The work in [18] examined more than 300 devices in 12

different applications, and obtained a distribution of the sensor

types by application usability and sensor nodes availability

(see Figure 1). In particular, seven sensor types were identified

as being the most common sensors: temperature, acceleration,

light, force, audio, humidity and proximity. The analysis takes

into account that most sensor nodes offer multiple physical

data sources (e.g.: pressure, light and temperature).

Temperature effects can take place on materials (solids

or fluids) and components. These effects can have a very

significant impact on machines operation by causing increased

wear, hydraulic systems degradation, materials expansion, etc.

Temperature sensing allows for continuous analysis of temper-

ature variation or its stability. For example, scanning bearing

housing on motors can prevent major failures. Monitoring

fluids’ temperature is also useful, since some properties of

fluids degrade when temperature increases.

Since mechanical systems are composed by moving parts

that deteriorate over time and generate vibration, collecting

acceleration data allows early detection of roller elements

bearing faults, gear wear, etc.

Measuring pumps pressure can reveal physical changes in

the pumps. Operating conditions, such as fluid type, tempera-

ture and speed, affect the pressure, and if pressure takes a value

outside a given range, there is the possibility of damaging

parts. Moreover, pressure variation can lead to cavitation

(creation of vapour cavities in a fluid), which can lead to

material damage [19]. Cavitation can be sensed by means of

pressure, vibration or acoustic emission measurement.

Usage of light sensors may include the detection of material

cracks and object detection. By placing an object between a

light source and a light sensor, cracks can be detected by the

amount of light that goes through the object. Moreover, it

is possible to detect an unwanted object in a certain area,

for example, a person near a cutting material machine and

shutdown the machine safely.

Acoustic (audio) monitoring is strongly related to vibration

sensors. While audio sensors ”listen” a component, vibra-

tion sensors register the motion of the component they are

rigidly attached to. Acoustic sensors are commonly used



to monitor bearing and gearboxes, in order to detect any

working/movement variation.

Monitoring the percentage of humidity in a certain environ-

ment can be useful, since for example, high levels of humidity

in an injection molding process line can add moisture to

resins, potentially impeding that parts are molded properly.

In gearboxes, the accumulation moisture can lead to gearbox

corrosion, reduced efficiency and breakdown.

Proximity sensors can be used to measure parts displace-

ment, improper presence of objects, or even vibration in

rotational components. Another feature is the non-contact

measurements, which makes use of sonar or infrared light

emission to detect the presence of objects in a area.

B. Custom sensors

Many other kinds of sensors can be found in specific

applications. Usually, these sensors are not mass produced,

their structure presents a high degree of customization, and

they retrieve very specific environmental data. Among the

plethora of the custom sensors, there are sensors capable of

performing crack detection, torque measurement, analyse wear

of material and retrieve oil status [20].

The early detection of cracks, allows the prevention of

fracture failures. These cracks can be produced by an applied

stress concentration, excessive stress over time, overload, de-

fective assembly, or environmental conditions. Crack detection

(through non-destructive methods) can be performed using

different techniques like radiography, ultrasonic, penetrating

liquid, magnetic particle inspection, etc.

Several sensing techniques can be applied to estimate or

compute torque measures. Through components speed, it is

possible to calculate torque and torque brake; an alternative

method is using pressure sensors to correlate torque brake.

Other custom sensors can target deviation of torque, brake

torque and friction values from the normal values, since they

can detect shaft misalignment or the presence of wear parti-

cles, which in turn are predictors for equipment malfunction.

Another type of custom sensor is the oil sensor. Oil sen-

sors can be divided into different groups based on the data

under measurement, such as oil condition, oil temperature

and oil pressure. Oil condition sensors have the capability

to detect ferrous particles, water, viscosity changes, etc. Oil

condition monitoring allows detection of lubricant related

engine wear and lubricant quality degradation, among other

problems. Early problem detection leads to on-time, preventive

adjustments that reduce machinery downtime.

C. Virtual Sensors

The virtual sensor is a technology used to retrieve more

effective and accurate information from collected data [21].

Virtual sensors make use of readings collected either by

multiple networks, or from a single sensor. Data are combined

from multiple sources (e.g. temperature, humidity, CO2) and

process models are applied to compute new outputs, based on

not only on current sensor values but also on its time series.

Fig. 2. View on the Virtual Sensor Architecture

The Virtual Sensor Architecture, whose view is represented

in Figure 2, can retrieve sensor data either in an event-based

acquisition, meaning that physical sensors will make the data

available (generate events) when certain conditions are met;

or in a time-based fashion, where the virtual sensor will

periodically inquire the physical sensors for new data. This

step is accomplished in the Acquisition Method module.

The Aggregation Functions module has the task of applying

common mathematical functions (e.g. temperature average of

different sensors in a same room) or complex models (e.g.

wear prediction model). The entity/user managing the virtual

sensor has the capability (through the Dynamic Configurator

module) to change threshold parameters used to generate

outputs or to change signal evaluation parameters. Configu-

ration parameters are kept in the Virtual Sensor Parameters

module, and are used by the Signal(s) Evaluation module to

perform an analysis of the results achieved in the Aggregation

Functions module. Finally, similar to the Acquisition Method,

the Response Method module is able to generate the virtual

sensor output, by the same two common paradigms, i.e.

through events or in a time-based manner.

IV. USE CASES

This section presents three pilots in which the usage of PM

can provide added value to the monitoring process. All use

cases feature real world factories and installation, and therefore

provide a connection between the role that PM is supposed to

hold, and what is actually happening in real installations as

technology evolves and our economy and society change with

it. The first pilot (Subsection IV-A) exploits the composition

of data from off-the-shelf sensors, the second one (Subsection

IV-B) focuses on the use of custom sensors, and the third one

(Subsection IV-C) features virtual sensors.

A. Monitoring of a Sheet Metal Bender

The Sheet Metal Bending Process pilot, whose architecture

is represented in Figure 3, involves detection, prediction and

diagnosis of malfunctions in a sheet metal bender machine

that pertains to the Greenbender family, manufactured and

commercialized by ADIRA (see Figure 4). The machine is



Fig. 3. Monitoring architecture for Sheet Metal Bender

able to exert a force up to 2200 kN using 2 electric motors of

7.5 kW each, and it is able to bend metal with high precision.

This pilot aims at predicting machine failures before they

occur, by means of machine learning techniques applied to

collected data.

Data are collected from sensors that existed previous to

the MANTIS project and that are already gathered by the

Computerized Numerical Controller (CNC) of the machine,

and from two new sets of sensors, an oil sensor and two

accelerometers.

A sensor responding to the Custom Sensors category (see

Subsection III-B) monitors the oil that lubricates the machine’s

hydraulic circuits, both in terms of its temperature and its qual-

ity, being the latter related with presence of contaminations

like water, particles, glycol and other impurities in the oil.

The system that analyses the oil consists of two parts, the

sensor unit (Hydac Sensor AS1008), and the data acquisition

and computation board. The sensor reads temperature from -

25 to 100 Celsius degrees, and saturation from 0% to 100%.

Both signals are reported using a 4-20 mA interface. The data

acquisition/computation module receives the signals, convert

them, and exports the data through an analogic voltage signal

with a range from 0V to 10V to the machine’s CNC. The

CNC digitalizes and sends the data through a communication

middleware to the cloud for storage and processing, the latter

being the comparison with custom thresholds.

Two accelerometers (highlighted in Figure 4) pertaining to

the off-the-shelf category (Subsection III-A) monitor the blade

that performs the bending of the metal sheet, both in terms

of its movement, and the vibration patterns caused by the

hydraulics. In fact, the vibratory pattern can be related to the

condition of the machine’s bending motors, and the collected

data can thus be used to perform PM of the machine. Data

are sent to the cloud for storage and processing, and machine

learning is used to learn vibration patterns and detect outliers,

from which PM can predict failures.

The sensors are based on the Arduino 101 platform that

provides a 3-axis accelerometer with a maximum amplitude

range of 8g, and are powered by two 9V batteries in order

to ease components’ installation. For this specific pilot, the

sensors were configured for a lower measurement range (0g

to 2g) to attain a better accuracy. The CurieBLE library is

used to send data from the Inertial Measurement Unit (IMU)

Fig. 4. Frontal view of the machine with two IMU

of the sensor to the MANTIS-PC wirelessly via Bluetooth Low

Energy (BLE).

The MANTIS-PC is a Raspberry Pi 3 Model B that acts

as a BLE server, a data-converter, a middleware client, and

provides a simple User Interface to inspect the data as they

are collected. The MANTIS-PC uses a server-side JavaScript

program built over Node.js and the noble library to collect

values from both sensors with a period of 30 milliseconds,

and sends them to cloud through the Middleware component,

which is based on the AMQP [22] protocol. The cloud

hosts the components to store the data (Database, or DB), to

analyze them (Analysis), and to interact with the user (Humam

Machine Interface, or HMI).

B. Press Machine Maintenance

A stamping press is a metal working machine used to shape

or cut metal by deforming it with a die. This pilot focuses

on press machine maintenance, monitored continuously by a

broad and diverse range of intelligent sensors that keep track

of its operational conditions.

A mechanical press, during its active lifetime, might be

capable of giving more than 40 million strokes, each one with

a force of 2000Tn, insofar as it is used – and maintained

– appropriately. The machine under study belongs to Fagor

Arrasate, whose customers demand products with high quality

and availability. These latter characteristics are in contrast with

the production downtime caused by unnecessary maintenance

and repair operations. Therefore, based on financial studies,

it was decided to incorporate cyber-physical systems in the

most critical components, to facilitate PM activities in order

to provide high availability but without extensive unnecessary

maintenance operations.

PM activies in this pilot enabled by a cloud service platform,

which makes use of data captured continuously, monitored,

transmitted, stored and analyzed by intelligent sensors re-

sponding to the Custom Sensor category (see section III-B).

In particular, two applications collect data from multiple data

sources related to press structural health, cranks forces and

wearing of gears and bushings.



Fig. 5. Wireless torque sensor node block diagram

A first application is focused on Structural Health moni-

toring by means of an early detection of cracks/fissures in

the press’ head and caps, which enables to prevent damaging

fracture failures caused by press’ damping and stress concen-

tration in certain parts of the structure. Both crack gauges

and conductive inks are being used, the last allowing higher

surface measurements. In the latter case, ink is spread on the

surface of the monitored component, and the current passing

through the ink is measured and compared with a threshold.

The rationale is that cracks on the target make the ink break

and thus increase the resistivity of the circuit.

The second application is represented in Figure 5, and it

implies the sensorization of a gear shaft. A shaft-adapted

wireless sensor node [23] comprises a transducer (torque

oriented gauges), a signal conditioning circuit and a signal

processing software, the latter allowing a local preprocessing

and treatment of the collected data. Two software approaches

are implemented. In the first one, a finite iteration based auto-

zeroeing algorithm is applied, which configures the proper gain

and offset values for the system, taking into account gauge’s

signal and measured signal feedback, thus enhancing system’s

dynamic range and avoiding signal saturation. In the second

one, digital data are retrieved and preprocessed, reducing the

payload by means of averaging. These data are transmitted

to a gateway based on the Beagle Bone platform via a

custom industrial protocol, since standard ones either lack of

deterministic features (e.g. IEE802.15.4) or scalability (e.g.

IEEE 802.15.1). Moreover, widespread industrial solutions

(e.g. ISA 100.11a) do not provide tools for guaranteeing

sampling synchronization, which is critical for certain applica-

tions, therefore a TDMA MAC has been placed on top of the

physical layer and specific synchronization elements have been

added for obtaining synchronized ADC conversions in nodes

[24]. Finally, the necessary calculations to obtain torque values

(Nm) are done in a computer connected to the gateway.

The fact that the sensor has to be applied in a rotatory and

shaky shaft (working at approximately 88 rpm) implies, on one

hand, the need to develop a robust housing to protect it from

vibrations and lubrication oiliness [25]. On the other hand,

a power friendly approach must be considered, such that the

wireless sensor can work without external grid power. Current

design allows a finite duration of the measurement process,

as the system is powered with a small Li-Ion battery. Thus,

supplementary solutions such as wireless power or energy

harvesting are under analysis.

C. Maintenance of Medical Devices

Modern medical devices have a large number of embedded

sensors, and in this pilot PM is applied to advanced medical

devices from Philips that can perform non-invasive patient

diagnosis. Installed sensors cover the complete range of off-

the-shelf sensor type (section III-A), and data are distilled

into more advanced information by means of virtual sensors

(section III-C). The hardware sensor solution under develop-

ment is a stand-alone sensor box, the e-Alert controller, that

can autonomously monitor environmental conditions of the

medical device, and that can generate electronic notifications

to different users of the medical device. The e-Alert controller

is based on a Raspberry Pi platform, and it can sample

connected sensors, for example, temperature sensors, humidity

sensors, magnetic field sensors. These sensors are connected

to an interface box (max 8 sensors per interface box), and the

interface box is connected to one of the inputs of the e-Alert

controller box. Multiple interface boxes can be daisy-chained.

This provides a scalable sensor platform that can be tailored

for the specific device under monitoring.

The e-Alert controller box acquires sensor values once per

minute and checks these values against configured thresholds.

To avoid false positives, a sensor value must be out-of-spec for

a number of consecutive samples before an alert is raised. If

a sensor value remains out of the configured threshold, the e-

Alert controller box sends an Email or SMS alert to configured

alert receivers.

The e-Alert controller software is represented in Figure 6.

It provides a web-based user interface to configure sensors,

thresholds, Email/SMS server, and Email/SMS receivers. The

e-Alert controller is connected to the hospital network and,

through its IT infrastructure, healthcare facility staff can access

the user interface of the e-Alert controller. This user interface

provides capabilities to view the history of sensor values when

root cause analysis is required after an alert. Moreover, the

user interface allows to reconfigure the e-Alert controller, for

example for its alert thresholds, and to update its embedded

software.

The e-Alert controller also provides a capability to interface

with the medical device manufacturer. For this purpose, con-

nectivity to Philips Remote Service (PRS) can be configured.

With this interface, sensor values can be aggregated and

statistically analyzed by the manufacturer. This enables the

manufacturer to determine an operational profile, specific to

that medical device. This information can be used to fine-

tune the configured alert thresholds for that specific device

to keep the medical device in optimal operational conditions.

The benefits from the PM strategy can easily be seen, since

the device is life-critical. It is not acceptable that devices

would fail when in use as it is not financially possible to have

redundancy, and moving of patients to another hospital might



Fig. 6. Sensor box context diagram

not be possible, and thus it is of the outmost importance to

remove device’s downtime.

V. DISCUSSION AND CONCLUSIONS

In the paper the different maintenance strategies have been

discussed, and a taxonomy of existing sensors has been

presented. Three different real world pilots that showcase

advanced maintenance operation have been presented.

The three pilots deal with maintenance of expensive devices,

which are sold in limited volumes, and whose downtime is

very expensive to the owner. In all discussed pilots, the devices

were equipped from the beginning with a number of off-the-

shelf sensors (see Subsection III-A), and the evolution towards

PM involved adding custom sensors (see Subsection III-B)

and off-the-shelf sensors driven by custom controllers. Some

devices feature virtual sensors (see Subsection III-C) that

embody local data processing capabilities, but in the context

of PM, the bulk of data processing is done on the cloud. In

fact, one of the most important challenges of PM involves

adding communication capabilities to the device, usually by

adding gateways based on cheap yet powerful platforms such

as Raspberry Pis, to allow to store sensed data on the cloud

for further processing, for example to compute behavioural

patterns and perform comparison with other similar machines.

It appears that the commonalities found on the three pilots

can be extended to most applications of PM in the real

world. As future work, the implementation of the pilots will

be finalized and the benefits obtained by means of different

maintenance strategies will be measured, to provide a deeper

understanding of the benefits of PM.
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