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Supporting Real-Time Communications with Standard
Factory-Floor Networks

Abstract

Fieldbus networks are widely used as the communication support for distributed
computer-controlled systems (DCCS), in applications ranging from process control to
discrete manufacturing. Usually, DCCS impose real-time requirements to the
communication network; that is, traffic must be sent and received within a bounded
interval, otherwise a timing fault is said to occur. This motivates the use of
communication networks where the Medium Access Control (MAC) protocol is able to
schedule messages according to their real-time requirements.

In the past, the scope of fieldbuses was dominated by vendor-specific solutions,
which were mostly restricted to specific application areas. More recently, vendor-
independent standardised fieldbuses, supporting the open system concept, have started to
be commonly used. Particular relevance must be given to the European Standard
EN 50170, which encompasses three widely used fieldbuses: P-NET, PROFIBUS and
WorldFIP.

The main research objective of this thesisis to develop analysis and methodologies to
guarantee, prior to run-time, that real-time distributed computer-controlled systems
(DCCS) can be successfully implemented with standard fieldbus communication
networks, such as those defined by the European Standard EN 50170.

In this thesis, we characterise the MAC tempora behaviour for each one of these
three EN 50170 profiles. More importantly, we provide analytical formulae for the
evaluation of the worst-case response time of messages in these networks. These
formulae constitute a set of powerful tools to guarantee the timing requirements of
distributed time-critical applications, where distribution is supported by one of the
EN 50170 profiles.

Finally, we also show how priority-based scheduling mechanisms can be
implemented at the application process level of P-NET and PROFIBUS masters, in order
to overcome the limitations of their FCFS outgoing queues. Moreover, we demonstrate
how the methodologies used to guarantee the timing requirements of tasks scheduling,
can be successfully adapted to encompass the characteristics of P-NET and PROFIBUS
networks.

Keywords: Real-time systems; Real-time communications; Fieldbus networks.






Suporte a Comunicacéo de Tempo-Real utilizando
Redes Industriais Normalizadas

Resumo

As redes industriais sdo largamente utilizadas para o suporte de sistemas controlados
por computador distribuidos (DCCS, em inglés), em aplicacdes que vao desde o controlo
de processos até a automacdo industrial. Habitualmente, os DCCS impdem requisitos de
tempo-real a rede de comunicagdo, segundo 0s quais mensagens devem ser enviadas e
recebidas num tempo inferior a um determinado limite, caso contrério diz-se que ocorreu
uma falha temporal. Este facto motiva a utilizacdo de redes de comunicacdo, para as
quais o protocolo de controlo de acesso ao meio (MAC, em inglés) é capaz de escal onar
as mensagens de acordo com 0s seus requisitos de tempo-real.

No passado, a &rea das redes industriais encontrava-se dominada por solucles
proprietérias, as quais estavam frequentemente focalizadas para &reas de aplicacéo
especificas. Mais recentemente, redes industriais normalizadas comecaram a ser
utilizadas com maior frequéncia. Uma particular relevancia deve ser dada a norma
Europeia EN 50170 que congrega trés redes industriais largamente utilizadas: P-NET,
PROFIBUS e WorldFIP.

O objectivo fundamental de investigacdo desta tese € 0 de desenvolver andlises e
metodologias que permitam garantir, a priori, que aplicacbes DCCS de tempo-real
podem ser implementadas com sucesso utilizando redes de comunicagdo industriais, em
particular as definidas pelanorma EN 50170.

Neste trabalho de tese, caracterizamos o comportamento temporal do protocolo de
MAC para cada um dos trés perfis da norma EN 50170. Mais precisamente, fornecemos
métodos analiticos para o clculo do tempo de resposta, no pior caso, de mensagens
nestas redes. Estes métodos analiticos constituem a base de uma série de ferramentas
poderosas para a garantia dos requisitos temporais de aplicagdes DCCS, nas quais a
distribuicédo é suportada por um dos perfis da norma EN 50170.

Finalmente, também mostramos como mecanismos de escalonamento baseados em
prioridades podem ser implementados ao nivel do processo de aplicacdo em estacoes
mestre de P-NET e de PROFIBUS, por forma a ultrapassar as limitagdes inerentes as
suas filas de saida FCFS. Também demonstramos como as metodol ogias utilizadas para
garantir os requisitos temporais no escalonamento de tarefas, podem ser adaptadas com
sucesso paraincorporar as caracteristicas de redes P-NET e PROFIBUS.

Palavras chave: Sistemas de Tempo-Real; Comunicacfes de Tempo-Real; Redes
Industriais.






Support dela Communication Temps-Rédl en utilisant des
Réseaux Industriels Normalisés

Résumé

L' utilisation des réseaux industriels pour le support de la communication dans les
systémes distribués controlés par ordinateur (DCCS, en anglais) est trés répandue dans
les applications industrielles. Habituellement, les applications de DCCS imposent des
besoins temps-réel strict au réseau de communication, ¢’ est-a-dire, soit le trafic est
envoyeé et recu dans un délai borné, soit on dit qu'il a eu une faute temporelle. Célle-ci
est la motivation pour I'usage des réseaux de communication qui possedent des
protocoles de contrble d’acces au médium (MAC, en anglais) capables d ordonnancer
messages selon ses besoins temps-réel.

Dans le passé, le domain des réseaux industriels a é&é dominé par des solutions
propriétaires, qui étaient souvent ciblées pour des applications spécifiques. Récemment,
des réseaux industriels normalisés et donc non propriétaires, qui supportent le concept de
systéme ouvert, ont commencé a étre habituellement utilisés. Parmi ces solutions
normalisdes, une importance remarquable doit ére donnée a la Norme Européenne
EN50170, qui regroupe trois réseaux industriels trés utilisés: P-NET, PROFIBUS et
WorldFIP.

L’ objectif principal de recherche de cette thése est celui de developer des analyses et
des métodologies por garantir, hors-ligne, que les applications DCCS temps-réel peuvent
étre implantées en utilisant des réseaux industriels normalisés, tels que ceux définis par
lanorme EN 50170.

Dans cette thése, nous caractérisons le comportement temporel du protocole MAC
pour chacun des trois profils de la norme EN 50170. En particulier, nous fournissons des
formules analytiques pour I'évaluation, dans le pire cas, du temps de réponse de
messages dans chacun de ces trois profils. Ces formules constituent un ensemble d outils
crucialles pour la garantie des besoins temporels dans les applications distribuées temps
critique, ou ladistribution est supportée par un des profils de lanorme EN 50170.

Finalement, nous montrons aussi comment implanter des mécanismes
d’ ordonnancement par priorité au niveau du processus d’ application des maitres P-NET
et PROFIBUS, de fagon a surpasser les limitations de ses files de sortie FCFS. En plus,
nous montrons comment les méthodologies utilisées pour garantir les besoins temporels
dans I'ordonnancement des taches, peuvent étre adaptées pour incorporer les
caractéristiques des réseaux P-NET et PROFIBUS.

Mots-clés: Systemes Temps-Réel; Communications Temps-Réel; Réseaux Industriels.






aos meus Pais,
ao Goncalo, a Bé e ao Filipe






Acknowledgements

First, I would like to express my deepest gratitude to Francisco Vasgues. As my thesis
supervisor, he helped me select the right topic at the very beginning which importance to
this thesis can never be overemphasised. Throughout the course of this work, he has
given me constant encouragement, generous support, insightful comments, and
invaluable suggestions, which benefit the completion of this thesis. It would be hard to
find a more dedicated and concerned supervisor.

| have benefited greatly from many other people in the University of Porto, which
gave me remarkable opportunities that benefited my career in a long time to come. A
special thanksto Artur Cardoso for al his support and insightful comments.

I would like to acknowledge the financial support from FLAD (Fundagdo Luso-
Americana para o Desenvolvimento) and from DEMEGI-FEUP.

Special thanks to the Polytechnic Institute of Porto and its School of Engineering (1PP
and | SEP, respectively), for al the efforts and financia support, which made possible the
prosecution of this work. | address them to Prof. Luis Soares (President of the IPP), to
Vitor Santos (Chairman of the Executive Board of ISEP), to Carlos Ramos (Director of
the CIM Centre of ISEP), to Jorge Mendes (Head of the Computer Engineering
Department of ISEP) and to Jo&o Rocha (Co-ordinator of the Industrial Informatics
Group). | also acknowledge the support received from my colleagues of the Computer
Engineering Department and from the CIM Centre of 1SEP.

Thanks also to the Department of Computer Science of the University of York. | have
benefited a lot from the visits to the Real-Time Systems Group. Thanks for al the
fruitful discussions and for the inspiring atmosphere.

IPP-HURRAY! - an IPP Research Group HUgging Real-time and Reliable
Architectures for computing sY stems. Mé&rio, Miguel and Luis: many thanks for al the
support and friendship.

Finally, I am most grateful to my family and friends, for their dedicated support and
understanding.

Porto, 23 July 1999

Eduardo Manuel de Médicis Tovar






Table of Contents

ChapLer 1 - OVEIVIBW ....oueieeiieeiee ettt st e e st b b sae e e e 1
L1 INErOQUCTION ...eeitieceeetereee ettt 1
1.1.1. Distributed Computer-Controlled Systems (DCCS) ........cccceverererneenenee 1
1.1.2. Timing Requirements of Computer-Controlled Systems..........ccccocevueuene. 4
1.1.3. Rea-Time Aspectsin DCCS SYyStEMS........coviveererienereserese e 7

1.2. ReSearch ODJECHIVES........ceiiiereree e 8
1.3, ReSearch APPIrOACH ......ooveiiiiiiecreee e e 9
1.4, Organisation Of the ThESIS........ccciiiire e 9
1.5. Main Contributions of thiS TheSIS........cccccviriniini s 10
1.6, REFEIENCES. ..ottt s 10

Chapter 2 - Schedulability Analysis of Tasksin Single Processor Systems:

Review of REIEVANT WOTK .......ccovieiiieciiesee e 13
2.1, INEFOTUCTION ...ttt e 13
2.2. Classical Concepts of Real-Time SYyStemS........coccvereeierenene e 14

2.2.1. Characterisation Of TasKS.......cccevirerrienenene e 14
2.2.2. Scheduling Tasksin Real-Time SyStems........ccovvvvenrenennenenese e 15
2.2.3. Priority ASSIgnment SChEMES........c.cooiiiinrie e 17
2.2.4. Pre-emptive and Non Pre-emptive SysStems......cocoeevevennenencnenieenne 17
2.2.5. Characteristics of the Priority Assignment Schemes..........cccoceevinienne 18
2.3. Approaches for the Pre-Run-Time Schedulability Analysis........cccccecveveeneene 18
2.4. Feasibility Tests: Case of the Fixed Priority Assignment ............cccoeevevvenens 20
2.4.1. Basic Utilisation-Based TeSt........cccceveerenninenene e 20
2.4.2. Extended Utilisation-Based TESES.........coeveeereneneneenenieese e 21
2.4.3. Response Time Tests for the Pre-emptive Context ...........ccoceveereeieeenne 21
2.4.4. Response Time Tests for the non Pre-emptive Context ...........ccceeeeuee. 22
2.5. Feasibility Tests: Case of the Dynamic Priority Assignment...........cccocevveuee. 23
2.5.1. Basic Utilisation-Based TeSt.......ccoevrereneninerne e 23
2.5.2. Extended Utilisation-Based Tests for the Pre-emptive Context ............. 25
2.5.3. Extended Utilisation-Based Tests for the non Pre-emptive Context ...... 27
2.5.4. Response Time Tests for the Pre-emptive Context .........ccccocvvevneniennn 27
2.5.5. Response Time Tests for the non Pre-emptive Context ..........ccccoeveee. 29
2.6, SUMIMBIY ©.eeiititiieeeiesestee et s e siee st e e be e e st e s be e e sba e e nbe e e baeenbaeesbaeenbaeenbaeensnenne 30
2.7, REFEIENCES.....c.oitiecei et 30

Chapter 3 - Real-Time Communications with Fieldbus Networks:

Analysis of Previous REIeVant WOrK...........cocveiieiiniece e 33
3L INEFOTUCTION ...ttt e e 33

311 What FIeldDUSES? ..ottt 34
3.1.2. FieldbusesSfor DCCS......c.coiiirieiirieneeesie st 35
3.2. Controller Area Network (CAN) ..ot e 36
3.2.1. Main Characteristics of the CAN Protocol..........cccooeeerineenenninenienens 36



3.2.2. Rea-Time Communications with CAN: Review of Relevant Work...... 38

3.3, Process NetWork (P-NET).......ccooiiiriinene e 40
3.3.1. Main Characteristics of the P-NET Protocol ...........cccceceevvevveeeiecveesseven 40
3.3.2. Real-Time Communications with P-NET:

Review of REIEVANt WOTK ........coooiiuiiiiieieie et 42

3.4. PROcess Fleld BUS (PROFIBUS).........ccceveeiieiece et 42
3.4.1. Main Characteristics of the PROFIBUS Protocol ............cccceeeeevveeeennen. 42
3.4.2. Rea-Time Communications with PROFIBUS:

Review of REIEVANt WOTK ........cooiiiiiiiieiie et 45

3.5. Factory Instrumentation Protocol (WOorldFIP) ........c.cccceveviececcice e, 47
3.5.1. Main Characteristics of the WorldFIP Protocol ...........ccceeeveeeiecvveeesnnen. 47
3.5.2. Real-Time Communications with WorldFIP;

Review of REEVANE WOTK ........eeeiieiiee et seaee e e s 52

3.6, SUMMBIY ...ttt e se e r e bbb e e e e 53

T A (< = 1= 0 (61T 54

Chapter 4 - Real-Time Communications with P-NET Networks:

Contributions to the State-0f -the-Art ..o 57
4.0, INEFOUCTION ...ttt er e nnene s 57
4.2. Network and Message MOGES........cooieiiiee e 57
4.3. Basic Analysisfor the Worst-Case Response Time.......ccoceveveveneneneeneenn, 58
4.4. Schedulability Analysis Considering the Actual Token Utilisation............... 61

4.4.1. Concept of P-NET Logical Ring Request Jitter .........coeevererrcrinene, 62
4.4.2. Concept of P-NET Logical Ring Visit JItter .......ccoceevirieninencniee 64
4.4.3. Number of Unused Tokens during the Longest Busy Period................. 66
4.4.4. Anaysisof the Worst-Case Response TIMe .......ooevereenenierenenieennes 67
4.4.5. Pre-Run-Time Schedulability Condition...........cccoeeererernienerncnieene 67
4.4.6. Pre-Run-Time Schedulability TOOI ........cccccoveeviiii i, 68
4.4.7. NUMEXical EXAMPIE......ccoiiiiriiiiieieeeee et 68
4.4.8. Considering the Actua Transmission Time for Message Cycles........... 69
4.5, Extending the Analysisto Multi-Hop P-NET Networks..........cccccoeeverieeneennn. 70
4.5.1. MOUVELION ...t 70
4.5.2. Sequence of Transactionsin Multi-Hop Message Streams...................... 71
4.5.3. Pre-run-time Schedulability Condition for Multi-hop Message
R = 10 USRS 72
4.5.4, NUMENCAl RESUILS .....cueeeeeecieeece et 73
4.5.5. Considering the Actual Token Utilisation...........ccoeevereeninccncnieene, 75
4.6, SUMIMEIY ...veeeeieenreseesr ettt ettt e e e b b s e s e b e nresnenreene e e e e enes 77
R S = = 1o S 78

Chapter 5 - Real-Time Communications with PROFIBUS Networks:

Contributions to the State-0f -the-Art..........ccviireree s 79
5.1. Preliminary ProtoCol ANAlYSIS......c.ccciiieiieiieieesie ettt 79
5.2. Network and Message MOEIS........ccvceiieieeviese e 79
5.3. Analysisfor the Worst-Case ReSpoNnse TiMe.......cooevvererenenienenenienesesieee 80
5.4. PROFIBUS Token Cycle Time ANalYSiS.....ccoooviirernenenenenieese e 82

5.4.1. Analysisof the PROFIBUS TOKeN Lateness.........cooeevereeereneeenenennens 82



5.4.2. Evauation of the Token Cycle TiMe........cccvirreneneinenceneneeesieeiene 86

5.4.3. Setting the Target Token Rotation TiMe.......ccocoevevreneneeneneeeneneeiene 88
5.4.4. NUmerical EXampPIe.......ccocoiiiriininecinenee e 89
5.5. Constraining Low-Priority Trafficin PROFIBUS Networks...........cccceeeneene 90
5.5.1. Pre-Run-Time Schedulability Condition..........c.ccceeeevieeveiieiceeseeieeienns 90
5.5.2. Settingthe TTR Parameter .........cccovveiieiiee et 91
5.5.3. Implementation [SSUES..........cccoiireriieiieiese e 92
5.5.4. NUMENical EXaMPIE.....ccoiiiiiiiiiieieie et 94
LN TS U 11117 YU 95
5.7, REFEIENCES. ..o 96

Chapter 6 - Real-Time Communications with Worl dFI P Networks:

Contributions to the State-0f -the-Art........cocviree s 97
300 1 o [FTox o) o S 97
6.2. Network and Buffer MOGES..........coviriniiisee e 98
6.3. Using the HCF/LCM Methodology for Setting the BAT ......cccccviveicrenienenn 99
6.4. Setting the WorldFIP BAT: a Rate Monotonic Approach .........c.cceceeeeeneenee. 100

6.4.1. Algorithmic Approach for Building the BAT ......cccccoiiiiiininieeieeenn, 100
6.4.2. A Feasibility Test Based on the Response Time Techniques............... 101
6.4.3. Numerical EXample........ccoiiiiiriiiee e 102
6.5. Setting the WorldFIP BAT: aEarliest Deadline Approach...........cccccceeeenee. 103
6.5.1. Algorithmic Approach for Building the BAT ......cccccovveinineicnenieen, 103
6.5.2. A Feasibility Test Based on the Response Time Techniques............... 104
6.5.3. NUMerical EXaMPle.......cccviiiiriinerin e 105
6.6. Worst-Case Response Time for the Aperiodic Traffic.......coceevvrevncneene, 105
6.6.1. Upper Bound for the Dead INterval ..........cocooeeevinieieneneneneeseeee 107
6.6.2. Aperiodic Busy INtErVal ..........ccoeiviiiiiineeee e 108
6.6.3. Worst-Case Response Time for Aperiodic Buffer Transfers................ 108
6.6.4. Numerical EXample.........coiiiiiriiieise s 109
B.7. SUMIMBIY ..eeiiiveiiieeeiesesieeeteesstee s be e s sbe e st s s teessbe s sbeesabeesbeesnbeesbeesnbeesbeesnreen 110
6.8. REFEIENCES.....c.eiiieciireec s 111

Chapter 7 - Adding Loca Scheduling Mechanismsto P-NET and

PROFIBUS MESLEI'S .....cveiviieiesieieit ettt sttt sttt st sttt 113
7% 1 1o [FTox £ o) o 1 113
7.2. From Task to Message Scheduling: Analogies and Adaptations.................. 114

7.2.1. Homogenisation of NOtatioNS..........ccoevvireniricneneeseeese e 114
7.2.2. Analogiesto the Blocking and Task's Computation Times.................. 115
7.2.3. Basic Message Response Time Evaluation ...........ccccoevecneneicneneenn 117
7.3. (Token) Utilisation-Based TESES......cccvvivee e 118
7.3.1. Case of Rate Monotonic Priority ASSignment.........cccceevevveecesneseennen, 118
7.3.2. Caseof Earliest Deadline First Priority Assignment..........ccccecevveeneen. 120
7.4. RESPONSE TIME TESES. ...ueeueeeirtesiesieriieee ettt see bt se et bbb se e e 120
7.4.1. Response Time Tests: Fixed Priority Assignment..........ccocoeeeveeeeeneenen. 120
7.4.2. Response Time Tests: Dynamic Priority ASSignment.........c.cccceevvenene. 122
7.5. Considering the effect of Unused Tokens (P-NET Networks)...........coe...... 127



7.5.1. Extending the Response Time Tests for the Fixed Priority

ASSIGNIMENL ...ttt e 128
7.5.2. Extending the Response Time Tests for the Dynamic
Priority ASSIGNMENE........ccoiiiieiieree e 129
7.6, SUMIMBIY ..eeiiveiiiieeiesssiessteesstessbe e s steesbessbeessbessbeesabeesbeeesbeesbeesabeesbaesnrenn 130
7.7, REFEIENCES. ...ttt bbbt e s 130
Chapter 8 - Conclusions and FULtUre WOFK...........cccoeiiienenieeienee e 131
8.1. Review of the Research ObjectiVes..........cccccvviiiiiievcce e, 131
8.2. Main Research Contributions of thiSTheSIS .........cccooiiiiininneeeee 133
8.3, FULUIE WOIK ...ttt 134
Appendix - Pseudo Code AlgOrthms..........coeeriiinninieseeeee e 137
A. Pseudo Code Algorithms Referenced in Chapter 4. 137
A.l. Message Worst-Case Response Time Considering Actual
TOKEN ULHISAON....c.eeeeceecieeeee e 137
B. Pseudo Code Algorithms Referenced in Chapter 5.........cooceveveieniniiiens 139
B.1. Evauation of the TOKeN Laeness........ccccoverererniciienene e 139
C. Pseudo Code Algorithms Referenced in Chapter 6..........ccocoveverenceeeneennn. 141
C.1. Evaluation of the MiCrOCYCle .......ccoueveeiieiice e 141
C.2. Evaluation of the MacroCyCle.........ccovevieieiii e 141
C.3. Building the BAT (RM APProach)......cccccererererienieienienieesiesieesiesieens 142
C.4. Building the BAT (EDF APProach) ........ccoceeeeerenieienenieieseneeseseens 143
C.5. Evaluation of the Communication Jitter ..........ccooevevrenrineneicnereenns 144
C.6. Number of Microcyclesin an Aperiodic Busy Interval...........ccoceeeee. 146
C.7. Length of an Aperiodic Busy Interval ..........ccccoevrinineinineineseenn 146
D. Pseudo Code Algorithms Referenced in Chapter 7........ccveveevincneneens 148
D.1. Evauation of the Synchronous (Token) Busy Interval - L
(EDF CBSE).....eiviteireeieirieie sttt sttt 148
D.2. Finding the Set of Valuesfor a(EDF CaSE)........ccccevveveeieenceeseesieeiens 148
D.3. Evauation of the Queuing Delay (EDF Case) .......cccoeevvvveeieeseesieenenns 149



Chapter 1

Overview

The main focus of thisthesisis "how to guarantee real-time communications using
standard fieldbus networks'. In this chapter we give an overview of the overall
research domain, in order to establish the context and research objectives of this
thesis. Finally, at the end of this chapter, we summarise the main contributions of
this work

1.1. Introduction

In the past decade, manufacturing schemes have changed dramatically. In particular, the
computer integrated manufacturing (Rembold et al., 1993) concept has been stressed as a
means to achieve greater production competitiveness. The driving forces behind the
changes also resulted from the increased development and utilisation of new
technol ogies, which make massive use of microprocessor-based equipment.

Integration implies that the different subsystems of the manufacturing environment
interact and co-operate with each other. This means transfer, storage and processing of
information in a widespread environment. In other words, integration requires efficient
support for data communications.

Nowadays, communication networks are available to virtually every aspect of the
manufacturing environment, ranging from the production planning to the field level
(Pimentel, 1990). However, the use of communication networks at the field level is a
much more recent trend (Decotignie and Pleinevaux, 1993). Indeed, only more recently
network interfaces become cost-effective for the interconnection of devices such as
sensors, actuators, and small controllers which, in the majority of the cases, are expected
to be cheaper than the equipment typically interconnected at upper control levels of the
manufacturing environment (e.g., workstations or numerically-controlled machines).

1.1.1. Distributed Computer-Controlled Systems (DCCS)

This thesis is focused on the field level, where typically the process-relevant field
devices are used by a computer system to automatically conduct the process.

A computer-controlled system can be decomposed into a set of three subsystems
(Fig. 1.1): the controlled object; the computer system; and the human operator
(Kopetz, 1997). Collectively, the controlled object and the human operator can be
referred to as the environment of the computer system.
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11 Ll

Instrumentation Interface (Sensors and Actuators) |

Human-Machine Interface

Fig. 1.1 This figure illustrates the interactions between the three subsystems that typically
compose a computer-controlled system

The interface between the human operator and the computer system is caled the
man-machine interface, and the interface between the controlled object and the computer
system is caled the instrumentation interface. The man-machine interface consists of
input devices (e.g., keyboard) and output devices (e.g., display) that interface to the
human operator. The role of the man-machine interface is to provide the computer
system with, for example, process control set points or device parameters for sensors and
actuators. It is also used to provide the operator with process control supervision. The
instrumentation interface consists of sensors and actuators that transform the physical
signals in the controlled object into a digital form suitable to the computer system and
vice-versa.

The role of the computer system is to react to stimuli from the controlled object (this
is the essence of a computer-controlled system) or the operator (Kopetz, 1997).
Basically, the computer system should be able to receive, via the instrumentation
interface, information about the status of the controlled object, compute new commands
according to the references provided by the man-machine interface, and transmit those
new commands to the actuators, also via the instrumentation interface. To perform these
operations, the computer system should be provided with a control application program.

A computer-controlled system can have a centralised architecture. By centralised
architecture we mean that there is only one single computer system unit, which has 1/0
capabilities to support both the instrumentation and the man-machine interfaces. The
field devices (sensors and actuators) are connected to the computer system via point-to-
point links. Fig. 1.2aillustrates such an architecture.

There are several advantages if a field level communication network is used as a
replacement for the point-to-point links (between the sensors/actuators and the computer
system). The main advantage is an economical one. Indeed, this is perhaps its single best
advantage (Pimentel, 1990). As it can be depicted from Fig. 1.2, a cost reduction can be
obtained if a single wire, as a network communication medium, replaces a significant
part of the point-to-point wires. Naturally, the use of a single wire brings other important
advantages, such as easier installation and maintenance, easier detection and localisation
of cable faults, and easier expansion due to the modular nature of the network.
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Fig. 1.2 This figure highlights the main advantage of a decentralised computer-controlled
architecture (b) when compared to a centralised computer-controlled architecture (a)

Typically, a field level network will be a broadcast network (like in most types of
local area networks), where several network nodes share a common communication
channel. Messages are transmitted from a source node to a destination node via the
shared communication medium. A major problem occurs when at least two nodes
attempt to send messages via the shared medium at about the same time. This problem is
solved by a medium access control (MAC) protocol. Although network protocols for the
field level are expected to be simpler than those used in upper level networks, the
connection of sensors and actuators' to a shared medium implies the use of a
microprocessor-based network interface. This network interface implements all the
required field network protocols, and most notably the MAC protocol. The network
interface brings some processing capabilities closer to the sensors and actuators, and this
congtitutes an additional advantage of a decentralised computer-controlled architecture,
as those processing capabilities may be used to perform some signal conditioning or
pre-processing operations before sending the data over the network.

With the increased availability of low cost technology, the decentralised
computer-controlled architecture can easily evolve to a distributed computer-controlled
architecture. Basically, the difference lies on the distribution of the algorithms related to
the control application. In a centralised computer-controlled architecture al the control

1 In Fig. 1.2b each field device is individually connected to the field level network. In actua applications,
each network node will typically encompass a group of 1/0 points.



4 Overview

algorithms are implemented in a single computer system. In a decentralised
computer-controlled architecture, al the control algorithms run also in a single computer
system (now aso a network node), even if some of the processing tasks (signal
conditioning or pre-processing operations) can be executed in the network nodes that
interface the network to the sensors and actuators. Contrarily, in a distributed
computer-controlled architecture the tasks of the control algorithms may be distributed
throughout several computing nodes. Fig. 1.3 depicts the organisation of a distributed
computer-controlled architecture.

Object

]
v
Field Level Network
e

___________

- Computer Sytem implementing part of the control algorithms

Fig. 1.3 Thisfigure shows an example of a distributed computer-controlled architecture

The ability to support distributed control algorithms is another advantage achievable
by the use of field level networks. This eases the design of computer-controlled systems
where distribution of control, decentralisation of measurement tasks, and number of
intelligent microprocessor-controlled devices is ceaselessly increasing. Control systems
based on distributed computer-controlled architectures are labelled as distributed
computer-controlled systems (DCCS) (Prince and Soloman, 1981).

1.1.2. Timing Requirements of Computer-Controlled Systems

Most of the computer-controlled systems are also real-time systems. For instance,
assume that one of the inputs of the computer system concerns an alarm condition. The
computer system must be able to handle such an alarm condition (process that input and
produce outputs accordingly), within a bounded time interval. Thus, a computer system
must not only react to stimuli from the controlled object, which in essence means the
provision of new commands based on the current state of the controlled object, but
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emphatically it must react to stimuli of the controlled object within time intervals
dictated by its environment.

Suppose a simple centralised computer-controlled architecture. The control program
that runs on the computer system reads inputs from field devices, processes these inputs,
and then produces outputs to be sent to other field devices. Assume that the input data
from the field devices arrives to the computer system through asynchronous interrupts,
which are then processed in afirst-come-first-served (FCFS) basis. Assume also that the
control program has a number of individual tasks (processes), each one assigned to the
processing of one of the inputs.

If there are as many input buffers as input devices, it may be a timing regquirement to
be fulfilled by the computer system that no input values are overwritten before their
complete processing. Thus, we can say that the relative deadline for each task (assume
that they become ready to execute at the time of the input arrival) corresponds to the
periodicity of the related input arrivals. If the time interval between the arrival of an
input and the completion of the processing for that input is denoted as the response time
of atask then, the maximum admissible response time of the task must be smaller than
the periodicity of the related input arrival.

It is obvious that the longest response time for a task occurs when al the inputs arrive
simultaneously to the computer system. As for this scenario the interrupt requests can be
gueued in any arbitrary order, the longest response time for atask is given by the sum of
the worst-case execution times of each individual input-related task. Fig 1.4 illustrates
this reasoning, for a system with 4 inputs, where the worst-case response time for task 4
islonger than the its deadline, and therefore deadlines can be missed.

i t )
I

|
— S RN 2 B

longest response
Input missed time for any task

time

T input arrival I:I worst-case execution time for task 1 I:I worst-case execution time for task 2

©O completion of task execution I:I worst-case execution time for task 3 . worst-case execution time for task 4

Fig. 1.4 Thisfigure illustrates an example of a system with 4 inputs, each one associated with a
single control task. Asinputs are handled in a FCFS basis, deadlines can not be guaranteed

This simple example brings to evidence that when timing requirements must be
fulfilled, a FCFS approach may not be appropriate to deal with asynchronous interrupts.
A solution is often to assign different priority levels to the inputs. For example, the
smaller the arrival period, the higher is the priority level assigned to the related interrupt.
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In this case, and assuming that tasks cannot be pre-empted, the longest response time
for task 4 occurs if input 4 arrives to the computer system just after input 1, as the task
related to input 1 has the longest execution time. Fig. 1.5 illustrates this situation.

Task 1 ‘ﬁ +—l
Task 2 T T I:l

T“kstlu+lﬁ+i
ey B+ B o IRl v

longest response
time for task 4

Fig. 1.5 Thisfigure illustrates the same example of Fig. 1.4, where inputs are handled according
to their priority level

In the previous example, we assumed that once a task starts its execution, it will
proceed until completion, even if a higher-priority input arrives. However, most of the
computer systems alow pre-emption. In a pre-emptable system, the processing of an
input may be pre-empted at the arrival of a higher-priority input, and will only be
resumed when there is no processing remaining at higher priorities. In these systems, the
worst-case response time of the highest priority task corresponds to its worst-case
execution time.

An alternative to the asynchronous interruption is the software polling of the inputs.
In the case of inputs arriving through asynchronous interrupts, tasks are said to be
event-triggered tasks. If the inputs arrive through software polling at specified intervals,
the tasks responsible for reading the inputs are said to be time-triggered tasks. Most of
the real-time computer-controlled systems need to encompass both types of tasks. For
example, in a simple control loop for controlling temperature, the temperature sensor
information may be cyclically polled by atimed-triggered task, whereas an alarm sensor
may be connected to the computer system through an interrupt line which is handled by
an event-triggered task.

Independently of the tasks operating mode, the issue of guaranteeing real-time
requirements is one of checking, prior to run-time, the feasibility of the system'’s task set;
that is, checking if the worst-case execution time of the tasks is smaller than its
admissible response time.

Obvioudly the reliability of such a feasibility test depends on some external factors
such as the components of the operating system (operating system kernel, interrupt
handling mechanisms, programming languages, synchronisation between tasks,
resources shared by the tasks, etc.). This means, for instance, that the time for task
switching must be considered. It also means that a careful evaluation of the worst-case
execution times of the tasks must be made, as its knowledge is crucid for the
development and analysis of real-time systems. It is also important to mention that an
implicit requirement for a real-time system is that it must be dependable, since in the
case of a system error, the timing requirements may not be guaranteed.
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In this thesis we will not assess the dependability of the analysed systems, but we are
aware that the proposed real-time approaches to guarantee real-time communications at
the factory-floor level are only guaranteed if certain levels of dependability are provided
to the computer system.

1.1.3. Real-Time Aspectsin DCCS Systems

A distributed computer-controlled system is implemented by a set of computational
devices. Each computational device runs a number of tasks. These tasks communicate
their results by passing messages between computational devices across a field level
communication network. In order to guarantee that the timing requirements of DCCS are
met, the communication delay between a sending task queuing a message, and the
related receiving task being able to access that message, must be upper bounded. This
total delay is termed end-to-end communication delay (Tindell et al., 1995), and is
composed of the following four major components:

1. generation delay: time taken by the sender’'s task to generate and queue the

related message;

2. queuing delay: time taken by the message to gain access to the field level

communication network;

3. transmission delay: time taken by the message to be transmitted on the field level

communication network;

4. delivery delay: time taken to process the message at the destination processor

before finally delivering it to the destination task.

The queuing delay is a consequence not only of contention between message requests
from the same network node, but also with message requests from other network nodes.
The impact of the first factor in the overall queuing delay depends on the policy used to
gueue the messages, while the second factor depends on the behaviour and timing
characteristics of the MAC protocol.

The worst-case response time of the distributed tasks must be evaluated considering
the end-to-end communication delay, since its execution may involve more than one
communication transaction.

Assume, for example, that in a controller, a task which reads a remote sensor, is
cyclically executed. Two of the crucial operations of that task are sending a request to
the remote node and receiving the related response. For this simple case, the response
time for the task results from the concatenation of 9 components (Fig. 1.6).

The evaluation of end-to-end communication delay starts when the sending task is
released, and starts competing against the other running tasks for the processor. The task
suspends as soon as the message request is passed to the communications device (©).
Then, the message request waits in a queue until it gains access to the communication
medium. This queuing delay depends on how the queue isimplemented (first-come-first-
served queue, priority queue, etc.) and how the medium access control (MAC) behaves
(®@). The message request is then transmitted. This time interval depends on the data rate
and length of the bus and also depends on the propagation delay (®).

The message indication is then queued in the remote communication device (®). The
receiving task processes the message indication, and performs the actual reading of the
required data. The response frame is produced and queued (®). The message response
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will suffer similar types of delays. A queuing delay in the remote transmitting queue
(®), atransmission delay (@), a queuing delay in the local receiving queue (®), and
finally the time for the local task to process the response (@).

Host Processor A Host Processor B

ask 2 Task 2 Sensor
B4
ask 1 ask 1 —

\@ [ree]
©)]
®
¥ o \
L E@ E L] E@ @E

—

-
@ ©) Communications
Adapter B

Communications
Adapter A

Shared Broadcast Bus

Fig. 1.6 Thisfigureidentifies the 9 components that contribute to the worst-case response time of
a task in network node A (task 1). The role of this task is to obtain data from a process sensor
located in a network node B

In terms of the response time analysis of tasks, distribution brings the need to include
the end-to-end communication delays, as one of the components of the overall task’s
response time. In this thesis, we will essentially focus on the provision of methodologies
for the evaluation of the worst-case messages' response times in fieldbus networks, as
these are the foundation for the feasibility analysis of real-time distributed computer-
controlled systems (DCCS).

1.2. Research Objectives

Broadcast local area networks aimed at the interconnection of sensors, actuators and
controllers are commonly known as fieldbus networks. In the past, the scope of
fieldbuses was dominated by vendor-specific solutions, which were mostly restricted to
specific application areas. Moreover, the concepts behind each proposed fieldbus
network were highly dependent on the manufacturer of the automation system. Each one
had different technical implementations and claimed to fulfil different application
requirements, or to fulfil the same requirements but with different technical solutions.
More recently, vendor-independent standardised fieldbuses, supporting the open system
concept, have started to be commonly used. Particular relevance must be given to the
European Standard EN 50170 (Cenelec, 1996), which encompasses three widely used
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fieldbuses: P-NET (Pnet, 1994), PROFIBUS (Profibus, 1992) and WorldFIP (Afnor,
1990).

The main research objective of thisthesisis to develop analysis and methodologies to
guarantee, prior to run-time, that real-time distributed computer-controlled systems
(DCCS) can be successfully implemented with standard fieldbus communication
networks, such as those defined by the European Standard EN 50170.

1.3. Research Approach

A potentia leap towards the use of fieldbus networks as the communication support of
distributed computer-controlled systemslies on:

1. the evauation of their MAC timing behaviour, since this is a crucial step to
obtain analytical models enabling the evaluation of the messages queuing and
transmission delays,

2. the evaluation of worst-case response times of tasks in non pre-emptive contexts,
since this analysis can be potentially adapted for the evaluation of message
response times in communication networks.

1.4. Organisation of the Thesis

The remainder of this thesis is organised as follows. In Chapter 2 we survey some
relevant results on the evaluation of the worst-case response time of tasks scheduled in
single processor environments. We survey some relevant results for the priority-based
schedulability analysis of real-time tasks, both for the fixed and dynamic priority
assignment schemes. We give a special emphasis to the worst-case response time
analysis in the non pre-emptive context, which is fundamental for the communication
schedulability analysis.

In Chapter 3 we describe the main fieldbus network standards, and survey the most
relevant previous work addressing their real-time characteristics. Particular relevance is
given to the CAN (1SO 11898), P-NET, PROFIBUS and WorldFI P protocoals.

Concerning the real-time characteristics of these network standards, there are some
important results for the CAN protocol, which clearly characterises its rea-time
capabilities. Contrarily, the three protocols comprising the EN 50170 standard have not
been devoted much analysis. This is particularly true for the P-NET and PROFIBUS
cases. Conseguently, the real-time characteristics of P-NET, PROFIBUS and WorldFIP
will be especially focused within the following chapters of this thesis.

Hence, in Chapters 4, 5 and 6 we develop methodologies for the analysis and
evaluation of the worst-case messages response time in P-NET, PROFIBUS and
WorldFIP networks, respectively.

Finaly, in Chapter 7 we propose an approach for implementing priority-based
scheduling mechanisms at the application process level of P-NET and PROFIBUS
masters. A worst-case response time analysis is then provided, considering both the fixed
and dynamic priority assignments, which demonstrate the relevance of the proposed
approach.
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The thesis concludes with Chapter 8, which summarises our contributions and
suggests future work.

1.5. Main Contributions of this Thesis

The main contributions of thisthesis are:

1. The worst-case response time analysis of P-NET networks, for both the cases of
single-segment (Tovar and Vasques, 1998a; Tovar et al., 1999a) and multiple-
segment networks (Tovar et al., 1998b);

2. The improvement of the worst-case response time analysis of PROFIBUS
networks, for both the cases of unconstrained low-priority traffic (Tovar and
Vasques, 1998c; Tovar and Vasques, 1998d) and constrained low priority-traffic
(Tovar and Vasgues, 1998¢);

3. The accurate characterisation of the PROFIBUS token cycle time (Tovar and
Vasgues, 1999b);

4. A methodology for setting the WorldFIP bus arbitrator tables (Tovar and
Vasgues, 1999c), which is based in response time analysis considering both the
rate monotonic (Tovar and Vasques, 1999d) and the earliest deadline first
approaches (Tovar and Vasques, 1999¢).

5.  Theimprovement of the worst-case response time analysis of WorldFIP aperiodic
buffer exchanges (Tovar and Vasques, 1999c; Tovar and Vasques, 1999f);

6. To show how the analysis for the worst-case response time of tasks in non
pre-emptive contexts can be applied to P-NET (Tovar et al., 1998f) and
PROFIBUS (Tovar and Vasques, 1999q), if local scheduling mechanisms are
used to improve their real-time capabilities.
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Chapter 2

Schedulability Analysis of Tasksin Single Processor
Systems. Review of Relevant Work

In this chapter we survey some relevant results for the priority-based schedulability
analysis of rea-time tasks, both for the fixed and for the dynamic priority
assignment schemes. We give emphasis to the worst-case response time anaysisin
non pre-emptive contexts, since that analysis is of paramount importance to the
message schedulability analysis in communication networks.

2.1. Introduction

Real-time computing systems are defined as those systems in which the correctness of
the system depends not only on the logical result of computation, but also on the time at
which the results are produced (Stankovic, 1988). There are various examples of
real-time computing systems, such as command and control systems, flight control
systems or robotics.

A typical real-time computing system has a real-time program running on the system,
which reads inputs from input devices, processes these inputs, and often produces
outputs to be sent to output devices. The time between the arrival of an input from a
device and the completion of the processing for that input is called the response time for
the device (Joseph and Pandya, 1986). The relative deadline for the device can be
defined as the maximum interval between the instant of the input arrival and the
completion of the processing for that input. Hence, the response time for a device must
be smaller or equal to its relative deadline.

Assume that each input device is assigned a task (process) of the application program
and that the tasks share a same processor. The problem of determining whether the
system will meet its peak processing load, or in other words, whether no input from any
device will be lost, becomes one of schedulability analysis of tasks (Burns, 1991).

A round-robin scheduling policy ensures that each task gets a share of the processor.
However, such an approach may not be suitable for real-time systems. Assume the
following example (Krishna and Shin, 1997):

“Consider a computer controlling an aircraft. Among its tasks are maintaining
stability and keeping the cabin temperature within acceptable limits. Suppose the aircraft
encounters turbulence that makes it momentarily unstable. The computer is then
supposed to adjust the control surfaces to regain stability. If we use round-robin
scheduling for this application, the computer may switch context partway through
making the control adjustmentsin order to spend time making sure the cabin temperature
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is just right. The result may well be a crash, and the fact that the cabin is being
maintained at optimum temperature will be scant consolation to the passengers as the
airliner falls out the sky. What we want is to give the stability-maintenance task a very
high priority, which ensures that when stability is threatened, all other interfering tasks
are elbowed out of the way to allow this all-important task enough computer cycles.”

It follows that the consideration of priority levelsis crucial to a rea-time computing
system. If different inputs have different response time requirements, we need to
consider different priority levels to schedule the related processing tasks. Consider a
real-time system, within which several devices are connected at different priority levels
to a single processor computer system. An input being processed, will be pre-empted
when another input of higher priority arrives, and will only be resumed when there is no
processing remaining at higher priorities.

Assume that the input from a device is saved in a buffer, until it is overwritten by the
next input of the same device. The problem is to determine whether for a given
assignment of priority levels, the system will meet its peak processing load (i.e. ho input
from any device will be lost). A more basic problem is how to assign devices to
prioritiesin order to meet the system-processing |oad.

The remainder of this chapter is organised as follows. In Section 2.2 we outline some
of the classic concepts of real-time systems. These aspects include the characterisation of
the tasks and the description of the most commonly used priority assignment schemes.
As throughout this thesis we will deal with offline schedulability analysis, in Section 2.3
we provide a brief comparison between the main two approaches for performing such
schedulability analysis: based on the utilisation of the processor; based on the actual
response time of the tasks. In Sections 2.4 and 2.5 we survey the most important results
for the schedulability analysis of tasks in single processor systems, for the case of fixed
and dynamic priority assignment, respectively. In both cases of priority assignment
schemes, we present feasibility tests based on the utilisation of the processor and on the
task's response time, and both for pre-emptive and non pre-emptive contexts.

2.2. Classical Concepts of Real-Time Systems

2.2.1. Characterisation of Tasks

In the previous section we mentioned that, in the simplest case, input devices produce
inputs at regular intervals. However, in distributed computer-controlled systems (DCCS)
not all devices operate in such manner. For example, some may have minimum and
maximum time intervals between consecutive inputs, and others may even produce
inputs at random intervals. As a consequence, tasks can be characterised according to
their predictability. As it will be seen, this characteristic of the tasks affects their
schedulability analysis.

Concerning the predictability, three basic types of tasks can be defined: periodic,
aperiodic and sporadic.

Periodic tasks, as their name implies, are released on a regular basis. They are
characterised by their period, their deadline and their required execution time per period.
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The deadline is often assumed to be equal to the period (the processing of an input must
be completed, at most, before the next input from the same device).

Aperiodic tasks are released only occasionally, and are usually triggered by an
external event. To allow worst-case calculations to be made, a minimum period between
any two aperiodic inputs (from the same device) is often defined. If this is the case, the
task involved is said to be sporadic, and its period corresponds to its minimum inter-
arrival time.

Tasks can aso be characterised according to their criticality, depending on the
conseguences of not being executed before their deadlines. Concerning their criticality
real-time tasks can be soft, hard or safety-critical real-time tasks.

Hard real-time tasks are those whose timely execution is critical. If deadlines are
missed, severe faults may occur in the system. If the fault is catastrophic, the task is said
to be a safety-critica real-time task. Time-utility functions are used in (Burns, 1991) to
characterise the types of tasks (Fig. 2.1). For a hard real-time task, if the computation is
completed before the deadline, the result will be fully useful; otherwise, it will not have
any utility. For a safety-critical real-time task, if the computation is completed before the
deadline, the result will be fully useful; otherwise it will have a negative utility.

In most large real-time systems, including DCCS, not all tasks will be hard or safety-
critical. Some will even have no deadlines associated, and others will have merely soft
deadlines. Soft real-time tasks are, as the name implies, not critical to the application.
However, they do deal with time-varying data and hence the utility of result may
diminish as the end of computation overpasses the deadline; but remain always positive.

3
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start deadline start deadline start deadline
time time time
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Fig. 2.1 a), b) and c) illustrate the time-utility function for a hard real-time task, a safety-critical
real-time task and a soft-real time task, respectively

2.2.2. Scheduling Tasksin Real-Time Systems

Scheduling involves the alocation of time (and resources) to tasks, in such a way that
timing requirements (or other performance requirements) are met. Scheduling has been
perhaps the most widely research topic within real-time systems. As a consequence,
there are multiple taxonomies for the scheduling schemes and for the methodol ogies for
the schedulability analysis.

In asingle processor computing system, a set of tasks shares a common resource: the
processor. Schedulability analysis has to be performed to predict whether the tasks will
meet their timing constraints.
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The schedulability analysis can be performed online or offline (Fig. 2.2). In the first
case the schedulability of the task set is analysed at run-time, whereas in the latter it is
performed prior to run-time (pre-run-time schedulability analysis). In (Ramamritham and
Stankovic, 1994) the authors use a different notation: dynamic and static scheduling, to
denote systems that perform and do not perform the schedulability analysis at run-time,
respectively. The offline scheduling has several advantages over the online scheduling: it
requires little run time overhead and the schedulability of the task set is guaranteed
before execution. However, it requires a prior knowledge of the tasks characteristics,
which fortunately is possible in most of real-time systems. If the tasks characteristics
are not known prior to run time, schedulability analysis must be performed online. There
are basically two types of online schedulers (Ramamritham and Stankovic, 1994):
planning-based and best-effort schedulers. In the former, when a new task arrives, the
scheduler tries to re-define a new schedule, which is able to comply with both the
requirements of the new task and the requirements of the previously scheduled tasks.
The new task is only accepted for execution if the schedule is found feasible. In the
latter, when a new task arrives, the scheduler does not try to perform a new schedule.
The new task is accepted for execution, and the systems tries to do its best to meet
deadlines. However, no guarantees are provided for the new coming task, as it may be
aborted during execution.
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Fig. 2.2 Thisfigure classifies some of the most important types of schedulability analysis

\ /

W

/)

/

Priority-Based
Scheduler

Two types of offline scheduling paradigms are also described in the literature,
depending on whether the schedulability analysis produces itself a schedule (or plan)
according to which tasks are dispatched at run-time. The table-driven approach (or cyclic
executive) is the best known example of an offline scheduling that produces a schedule.
The major drawback of the table-driven approach is that it imposes severe restrictions on
the period of the tasks (Locke, 1992).

The priority-based approach is one example of offline scheduling where no explicit
schedule is constructed. At run-time, tasks are executed in a highest-priority-first basis.
Priority-based approaches are much more flexible and accommodating than table-driven
approaches.

In the remainder of this chapter we will focus our attention on the offline scheduling
paradigms, for tasks dispatched according to priority-based schemes. We assume the
following notation (Burns and Wellings, 1996):
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Table 2.1: Notation Used for the Schedulability Analysis of Tasks

Notation [Description

Worst-case computation time of the task
Minimum time between task releases (period)
Relative deadline of the task

Priority level assigned to the task

Worst-case response time of atask
Utilisation of the task (C/T)

Number of tasksin the system

ZCXxTUTO4HO

2.2.3. Priority Assignment Schemes

One of the most used priority assignment schemes is to give the tasks a priority level
based on its period: the smaller the period, the higher the priority; that is, T; < T; b
Pi > P;. Thisassignment is intuitively explained by the fact that more critical devices will
provide inputs more frequently (via asynchronous interrupts), or will be polled more
frequently. Thus, if they have smaller periods, their worst-case response time must also
be smaller. This type of priority assignment is known as the rate monotonic (RM)
assignment, and the related pre-run-time schedulability analysis was firstly introduced in
(Liu and Layland, 1973).

If some of the tasks are sporadic, it may not be reasonable to consider the relative
deadline equal to the period. A different priority assignment can then be to give the tasks
apriority level based on its relative deadline: the smaller the relative deadline, the higher
the priority; thet is, D; < D; P P; > P;. This type of priority assignment is known as the
deadline monotonic (DM) assignment (Leung and Whitehead, 1982).

In both RM and DM priority assignments, priorities are fixed, in the sense that they
do not vary along time. At run-time, tasks are dispatched highest-priority-first. A similar
dispatching policy can be used if the task, which is chosen to run, is the one with the
earliest deadline. This also corresponds to a priority-driven scheduling, where the
priorities of the tasks vary along time. Thus, the earliest deadline first (EDF) is a
dynamic priority assignment scheme. Pre-run-time schedulability analysis for tasks
dispatched according to the EDF assignment scheme was also introduced in
(Liu and Layland, 1973).

In all three cases, the dispatching phase will take place either when a new task is
released or the execution of the running task ends.

2.2.4. Pre-emptive and Non Pre-emptive Systems

In a priority-based scheduler, a higher-priority task may be released during the execution
of a lower-priority one. If the tasks are being executed in a pre-emptive context, the
higher-priority task will pre-empt the lower-priority one. Contrarily, in a non
pre-emptive context, the lower-priority task will be allowed to complete its execution
before the higher-priority task starts execution. This situation can be described as a
priority inversion due to non pre-emption (a higher-priority task is delayed by a lower-
priority one).
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2.2.5. Characteristics of the Priority Assignment Schemes

The EDF priority assignment scheme has several advantages over the fixed priority
assignment schemes (Spuri, 1996). A first advantage is that it always achieves higher
processor utilisation, as was demonstrated in (Liu and Layland, 1973). Additionally, and
contrarily to the RM or DM, EDF as been shown to be optimal when arbitrary deadlines
are assumed, that is when the relative deadlines are allowed to be greater than the period
of the tasks (Lehoczky, 1990).

On the other hand, fixed priority assignment schemes have some important
advantages over EDF. Indeed, the EDF dispatching policy is computationally more
demanding at run time. Although this aspect has more impact for the task scheduling in
single processor environments, it should not be discarded for message scheduling in
communication networks (Zuberi and Shin, 1995; Meshi et al., 1996). Most hard
real-time systems also have soft real-time components, which can execute at lower
priority levels. In EDF, these tasks may occasionally delay execution of more stringent
tasks (Shaet al., 1991). Another important drawback of the EDF dispatching policy isits
inability to deal with transient overloads (for instance due to exceptions or error recovery
actions), since in such a situation some tasks may not meet their deadlines. Contrarily,
with a fixed priority assignment approach, a subset of the more critical tasks would still
be able to meet their deadlines. With an EDF approach, this is much more difficult to
achieve (Buttazzo and Stankovic, 1993). At last, but not least, the analytical methods for
computing worst-case response times are much more complex in the case of EDF, even
though they are to be used offline.

Consider the following example (Table 2.2), which illustrates the differences between
RM and EDF scheduling. We assume relative deadlines equal to the tasks' periods.

Table 2.2: Task Set Example A
Task Computation Time (C) Period (T)
80

A 35
B 10 55
C 5 20

Fig. 2.3 illustrates a time-line (Gantt chart) of the schedule for this task set, assuming
that all of them share a common initial release time (at time instant 0), and the tasks are
pre-emptable. In Fig 2.3, @) and b) represent the time-lines for a RM-based and an
EDF-based schedule, respectively.

2.3. Approachesfor the Pre-Run-Time Schedulability Analysis

Real-time computing systems with tasks dispatched according to a priority-based policy
(we consider only RM/DM or EDF), must be tested a-priori in order to check if, during
run time, no deadline will be lost. This feasibility test is caled the pre-run-time
schedulability analysis of the task set.
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Fig. 2.3 Thisfigure illustrates the schedule for the tasks characterised by Table 2.2, according to
a) the RM priority assignment scheme, and b) the EDF priority assignment scheme. Note that in
the EDF schedule task B is occasionally delayed by task A

It can be shown that for periodic tasks, a set of tasksis schedulable if and only if there
is a feasible schedule for the LCM (least common multiple) of the periods (Lawler and
Martel, 1981). Moreover, it can also be shown that if the tasks share a common request
time (known as the critica instant), it is a pre-run-time schedulability sufficient
condition that the tasks are schedulable for the longest of the periods (Liu and Layland,
1973). This suggests that a time-line could be used to perform the schedulability
analysis. For instance, and concerning the example shown in Table 2.2, where the
longest period is 80, Fig. 2.3 shows that the schedule generated by both RM and EDF
schemes are feasible for the task set (if all the tasks share a common initial release time).
However, time-line approaches may not be effective for systems with a large number of
tasks. Hence, analytical methods are preferable.

There are mainly two types of analytical methods to perform pre-run-time
schedulability analysis. One is based on the analysis of the processor utilisation. The
other is based on the response time anaysis for each individual task. In (Liu and
Layland, 1973), the authors demonstrated that by considering only the processor
utilisation of the task set, a test for the pre-run-time schedulability analysis could be
obtained.
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Contrarily, a response time test must be performed in two stages. First, an analytical
approach is used to predict the worst-case response time of each task. The values
obtained are then compared, trivially, with the relative deadlines of the tasks.

The utilisation-based tests have a major advantage: it is a simple computation
procedure, which is applied to the overall task set. By this reason, they are very useful
for implementing schedulers that check the feasibility online. However, utilisation-based
tests have also important drawbacks, when compared with their response-time
counterparts. They do not give any indication of the actual response times of the tasks.
More importantly, and apart from particular task sets, they constitute sufficient but not
necessary conditions. This means that if the task set passes the test, the schedule will
meet all deadlines, but if it fails the test, the schedule may or may not fail at run-time
(hence, there is a certain level of pessimism). It is aso worth mentioning that the
utilisation-based tests cannot be used for more complicated task models (Tindell, 1992).

In the next two sections, we survey the most relevant feasibility tests for task sets
scheduled both with fixed and dynamic priority schemes, and for both pre-emptive and
non pre-emptive contexts. Depending whether the tests are applied to the overall task set
or individually to each task, they are classified as utilisation-based tests or response time
tests, respectively.

2.4. Feasibility Tests: Case of the Fixed Priority Assignment

2.4.1. Basic Utilisation-Based Test

For the RM priority assignment, Liu and Layland introduced an utilisation-based pre-
run-time schedulability test, which, when satisfied, guarantees that tasks will always be
completely executed before their deadlines:

N

25 en (271 (2.2)

i T,

This utilisation-based test is valid for periodic independent tasks, with relative
deadlines equal to the period, and for pre-emptive systems. As mentioned in the previous
section, typically the utilisation-based tests are sufficient but not necessary conditions.
For instance, for the task set shown in Table 2.2, the test fails (0.87 < 0.78 is false), but
the task set is schedulable, as can be seen by the time-line of Fig. 2.3a.

In (Lehoczky et al., 1990), the authors provide an exact analysis, as given below®:

2.2)

whereR = {(k)} with1£k£iand|l =1, .., ETi/T, (4

1 The ceiling function éis used to denote the smaller integer greater than or equal to x. Similarly, the floor
function édis used to denote the larger integer smaller than or equal to x.



Schedulability Analysis of Tasks in Single Processor Systems: Review of Relevant Work 21

It is clear that ineguality (2.2) is not an easy to use utilisation-based test, hence
loosing one of the advantages inherent to the more basic formulations: its simplicity.

2.4.2. Extended Utilisation-Based Tests

Formulations for the utilisation-based tests with deadlines smaller than periods are not
available, to our best knowledge. It is however possible to formulate simple utilisation-
based test for the case of non pre-emptive tasks.

In (Shaet al., 1990), the authors update the basic utilisation based test (2.1) to include
blocking periods, during which higher-priority tasks are blocked by lower-priority ones,
to solve the problem of non-independence of tasks (for instance tasks that share
resources which are protected by mutual exclusion):

& Co B ..y "
a ?i‘*’? £i (2]/ - 1)’ i, 1EEN (2:3)
i= g i

where B; is the maximum blocking atask i can suffer (Sha et al., 1990). Inequality (2.3)
assumesthat Py £ P;, " i<y; that is, tasks are ordered by decreasing priority.

In a non pre-emptive context, a higher-priority task can also be "blocked" by a
lower-priority task. Assuming that the tasks are completely independent, the maximum
blocking time atask can suffer is given by:

1B =0, if P = min{P }
| i=1..N
! B, =max{C.}, if P1 min{Pj}

1 iTip(i)* ! " =N
where Ip(i) denotes the set of lower-priority tasks (than task i).

Therefore, inequality (2.3) can be used as an utilisation-based test for a set of non
pre-emptable but independent tasks, with the blocking for each task as given by (2.4).
Moreover, accepting an increased level of pessimism, inequality (2.4) can be updated to
an even simpler formulation:

(2.9

Co iBU_ .,
B S max| Bl (2 -2) (2.5)
475 T
Note that if all tasks have the same computation time, (2.5) considers that each task
may be blocked at the rate of the highest-priority task.

2.4.3. Response Time Testsfor the Pre-emptive Context

In (Joseph and Pandya, 1986) the authors proved that the worst-case response time R of
atask i is found when all tasks are synchronously released (critical instant) at their
maximum rate. R, is defined as:

R =1, +C, (2.6)
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where |; is the maximum interference that task i can experience from higher-priority
tasks in any interval [t, t + R). The maximum interference (I;) occurs, when al
higher-priority tasks are released synchronously with task i (the critical instant). Without
loss of generality, it can be assumed that all processes are released at time instant 0.

Consider a task j with higher-priority than task i. Within the interval [0, R), it will be
released éR/T;utimes. Therefore, each release of task j will impose an interference of C;.
Hence, the overall interferenceis given by:

3 0

eTfu C, : (2.7
il hp
where hp(i) denotes the set of higher-priority tasks (than task i). Substituting this value
back in equation (2.2), the worst-case response time R, of atask t; is given by:

2R U ¢

R= & tey C7+C (28)
)& a5

Equation (2.8) embodies a mutual dependence, since R appears in both sides of the

equation. In fact all the analysis underlay this mutual dependence, since in order to

evaluate R, I; must be found, and vice-versa. The easiest way to solve such equation isto
form arecurrence relationship (Audsley et al., 1993):

<

Wt = a éﬁN u C, +C (2.9)
i heli) 8@ i g [}

The recursion ends when W™! = W™ = R, and can be solved by successive iterations
starting from W° = C. Indeed, it is easy to show that W™ is non-decreasing.
Consequently, the series either converges or exceeds T; (in the case of RM) or D; (in the
case of DM). If the series exceeds T; (or D;), thetask t; is not schedulable.

2.4.4. Response Time Testsfor the non Pre-emptive Context

In (Auddley et al., 1993) the authors updated the analysis of Joseph and Pandya to
include blocking factors introduced by periods of non pre-emption, due to the
non-independence of the tasks. The worst-case response time is then updated to:

o Z#RU O
R=B+ a %-u C +C (2.10)
ii)g8'i 0 g

which may also be solved using a similar recurrence relationship. B; is aso as given by
equation (2.4).

Some care must be taken using equation (2.10) for the evaluation of the worst-case
response time of non pre-emptable independent tasks. In the case of pre-emptable tasks,
with equation (2.8) we are finding the processor's level-i busy period preceding the
completion of task i; that is, the time during which task i and all other tasks with a
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priority level higher than the priority level of task i still have processing remaining. For
the case of non pre-emptive tasks, there is a dight difference, since for the evaluation of
the processor's level-i busy period we cannot include task i itself; that is, we must seek
the time instant preceding the execution start time of task i.

Therefore, equation (2.6) can be used to evaluate the task's response time of atask set
in a non pre-emptable context and independent tasks, where the interference must be
now re-defined:

o 210U 0
I,=B+ g %0 Gz (2.12)

i hp(i) 8@ ¥} a

Consider the following worst-case response time evaluation, assuming the task set
shown in Table 2.2, for both pre-emptive and non pre-emptive contexts.
The worst-case response time of task B for the pre-emptive context (2.9) is:

WP =10 W= gaélzg‘," 52410=15 W2 =% 59,10=15

5 ~80f

Iterations stop at this point since Ws? = W' = 15, and thus Rs = 15, which coincides
with the value given by the time-line (Fig. 2.2).

The worst-case response time of task B for the non pre-emptive context (2.11),
considering that the blocking is equal to C,, is:

=35 W;=35+§§‘°’5E 52=45 W2 = 35+§§45E =50,
=35+ §§50“ =50

Therefore, Rg = 10 + 50 = 60. This result shows that the task set example of Table 2.2
is not schedulable in a non pre-emptive context, as task B has a response time larger than
its period.

Note aso that a re-definition for the critical instant must be made. The maximum
interference occurs when task i and all other higher-priority tasks are synchronously
released just after the release of the longest lower-priority task (than task i).

2.5. Feasibility Tests: Case of the Dynamic Priority Assignment

2.5.1. Basic Utilisation-Based Test

For the EDF priority assignment, Liu and Layland also introduced an utilisation-based
pre-run-time schedulability test (inequality (2.12)).
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yC
& £l (212)
i=1

Similarly to the pre-run-time schedulability test for the RM case (2.1), this result is
only valid for sets of non pre-emptive, independent, and periodic tasks, for which the
relative-deadline is equal to the period.

Inequality (2.12) can easily be updated to include blocking periods due to the
non-independence of the tasks. In (Baker, 1991), the author updated inequality (2.12) to:

a CoO B

&9 5 w o (2.13)
ia:i T, B T, £:L i, IEiEN

where B; is the maximum blocking a task i can suffer, considering the stack resource
protocol (SRP). Inequality (2.13) assumesthat Ti,; 3 T, " i«y; that istasks are ordered by
decreasing period.

The key idea behind the SRP is that when a job needs a resource which is not
available, it is blocked at the time it attempts to pre-empt, rather than later, when it
actually may need the shared resource. This makes inequality (2.13) valid for sets of non
pre-emptable tasks, dispatched according to the EDF scheme.

Similarly to the updating of (2.3) to (2.5), inequality (2.13) can be updated to a
simpler (but more pessimistic) test:

2 5% maxi et (2.14)
i1 '|'I ﬂ i,1£i£N'|~ '|'I E
where B; is now defined as:
B, =maxC, } (215)
jri

Another relevant result from (Baker, 1991) is that (2.13) can also be extended to task
sets within which tasks can have relative deadlines smaller than periods:

& Co B
a—-:t—-£
iz Dig D

(2.16)

1" i, 1EiEN

Asacorollary, inequality (2.12) can be extended for task sets within which D; £ T;:
N C
é e (2.17)

i=1 i

These simple utilisation-based tests ((2.14) and (2.16)) are however quite pessimistic.
Less pessimistic utilisation-based tests will now be addressed in Sections 2.5.2 and 2.5.3,
for pre-emptive and non pre-emptive tasks, respectively. Later, in Sections 2.5.4 and
2.5.5, very recent results on response time analysis will be addressed, for pre-emptive
and non pre-emptive tasks, respectively.
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2.5.2. Extended Utilisation-Based Testsfor the Pre-emptive Context

In (Zheng, 1993) the author extends the results of Liu and Layland in order to consider
sporadic tasks, where inequality (2.12) is updated to:

-D U, }
a GEL" (2.18)
T

>m_\
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a

i=1

B

with é&u" = 0if x < 0. The proof for this inequality is intuitive. Assume that at timet =0,
there are no pending tasks. Then, a necessary condition to guarantee the tasks deadlines
is that the amount of time, T, needed to transmit all tasks generated during [0, t] with
absolute deadlines £ t, is not greater than t. Since the minimum inter-arrival time for a
task i is Tj, there are at most gt — D;)/Tit" requests for that task during [0, t] with
deadlines £ t. Those requests will need, at most, §t — D;)/T,ti © C; time to be completed.
Thus, the maximum value for T is given by &, (&t — D;)/Tit7 © C)). Notethat if D; = T;,
inequality (2.18) is satisfied if (2.12) is satisfied, since in this case t — T))/T,0" £ t/T,.

This different formulation has advantages over (2.17), in the sense that it turns out to
be a sufficient and a necessary condition (theoretically without any level of pessimism).
However, inequality (2.18) can not be classified as a simple test (when compared to
(2.17)). It has an additional problem, since it must be checked over an infinite
continuous length interval [0, ¥).

However, considering that expression a .. (&t — D;)/T,.i" © C;) does only change at
K" T;+D; time instants, inegquality (2.18) does only need to be checked for these time
instants. Consider the task set example given by Table 2.3.

Table 2.3: Task Set Example B
Task Computation Time (C) Period (T) Deadline (D)  Utilisation (U)

A 30 80 60 0.375
B 10 40 40 0.250
c 5 25 15 0.200

For this task set example, the left-hand side of inequality (2.18) is plotted against its
right-hand side (Fig. 2.4), and thus the task set is schedulable by the EDF priority
assignment in a pre-emptive context.

Although the consideration of steps for the evaluation of inequality (2.19) eases its
use, the problem still remains for the upper limit for t. Different authors have addressed
this issue. It is possible to prove that if the total utilisation of the processor is £ 1
(condition (2.12)), it exists a point tys, such that a., (&t — D)/T;U"~ C) £ t adways
hold for" : ... Consequentely, inequality (2.18) can be re-written as follows:

+
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In (Baruah et al., 1990a) and (Baruah et al., 1990b) the authors demonstrated that t.
could be given by (U/(1-U))" max., . (Ti-Di)}, where U represents the overall
processor's utilisation (&, (Ci/T;)). This result was further improved in (Ripoll et al.,
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Although this last formulation gives a smaller value for t, it still suffers from the same
disadvantage: as the overall utilisation approaches 1, t.« becomes very large.
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Fig. 2.4 Thisfigureillustrates a time-line (b) for the synchronous asap release pattern of task set
shown in Table 2.3. In a), the left-hand side of inequality (2.18), denoted as L(t), is represented

For this reason, another approach is considered in (Rippoll et al., 1996) and
(Spuri, 1995), where the authors demonstrate that t,.x = L (Synchronous processor's busy
period). The synchronous processor's busy period is defined as the time interval from the
critical instant up to the first instant when there are no more pending tasks in the system.
For instance, for the time-line shown in Fig. 2.4b), L = 65. Analyticaly, L can be found
asfollows:

c (2.20)

oo o

(D > (D
|

J
L=ae

Equation (2.20) is solved by recurrence, starting with L° = &.,.,C. When
L™! = L™ = L, the solution has been found (note that this recurrence relationship

converges if, and only if condition (2.12) is verified). For the task set of Table2.3, it
follows that:

—g5 12 =E0U 50, 80U 10, OB ooy, 00+10=60

8o = &off  Exsf

2 = 800 55, €000, €000

8o = &off  Exsf

12 =000 5 €OSUL 45 6O oo o0415=65

8o ~ &off  Eosf

and iterations stop, as L® = L? = L = 65.

5=30+20+15=65



Schedulability Analysis of Tasks in Single Processor Systems: Review of Relevant Work 27

2.5.3. Extended Utilisation-Based Testsfor the non Pre-emptive Context

For the non pre-emptive context, a similar test was presented in (Zheng, 1993) and
(Zheng and Shin, 1994):

+

N & D .. D = m
derru Crmafc)et o, with Oy = minfo ) 21

Comparing to the test for the pre-emptive context (2.18), the inclusion of the blocking
factor is intuitive (see Section 2.5.1.). However, in (George et al., 1996) the authors
discuss the pessimism inherent to the inequality (2.21). The main argument isthat in this
inequality it is considered that the cost of possible priority inversions is always initiated
by the longest task and, moreover, it is effective during the entire interval under analysis.
To reduce this level of pessimism, they suggest the following modification:

¥ é- DU, . .
de—g C +J_r3axN{cj}£t, " wuthj:laxN{Cj}zo if$:D >t (222
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That is, the blocking factor is only included if its deadline occurs after t.

Considering that the execution time of atask is expressed as a multiple of the system's
tick, the blocking task must start its execution one tick before the critical instant. As a
consequence, in the diverse formulations which have been including blocking factors
due to the system's non pre-emptability, such blocking could be expressed as (C; - 1).

2.5.4. Response Time Testsfor the Pre-emptive Context

The worst-case response time analysis for pre-emptive EDF scheduling was first
introduced in (Spuri, 1996). The starting point for such analysis was that the worst-case
response time for a general task set is not necessarily obtained considering the critical
instant, as defined for the fixed priority case. In his work, Spuri demonstrated that the
worst-case response time of a task i is found in the processor's deadline-i busy period
(analogous to the processor's level-i busy period in the case of fixed priorities).
However, the longest processor's deadline-i busy period may occur when all tasks but
task i (contrarily to the case of fixed priority assignment) are synchronously released and
at their maximum rate.

This means that, in order to find the worst-case response time of task i, we need to
examine multiple scenarios within which, while task i has an instance released at time a,
all other tasks are synchronously released at timet = 0. As an example, consider the task
set shown in Table 2.5.

Table 2.5: Task Set Example C
Task Computation Time (C) Period (T) Deadline (D)  Utilisation (U)
4 4

A 1 0.250
B 2 6 6 0.333
c 2 9 9 0.222
D 2 15 15 0.133
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Considering that all tasks are synchronously released at time instant O, then a
time-lineis as shown in Fig. 2.5.
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Fig. 2.5 Thistime-lineillustrates the fact that, when evaluating the synchronous busy period, the
worst-case response time does not occur for the first instance of task C

From Fig. 2.5 we can conclude that the instance of task C which is released at time
instant t = 9 (a = 9) has a higher response time than the instance which is released at
t=0 (a = 0). Thus, given avalue of a, the response of an instance of task i, which is
released at time a, is:

R(a)=max{C,L(a)- a} (2.23)
where L;(a) is the length of the deadline-i busy period, which starts at time instant t = 0.
Li(a) can be evaluated by the following iterative computation:

® jél(a)u . éa+D-D U, O & eaud
La)= & Sminfenl@g 1, @0 DL 6 2 dreng @2
Dg_;LDS felia e T b g eli Ug

Equation (2.17) can be solved by recurrence, starting with L%a) = 0. When
L™*@) = L,"(@) = L;(a), the solution has been found. Obviously, in equation (2.24), the
computational load only considers tasks that have deadlines earlier than D;. Consider the
task set example of Table 2.6.

Table 2.6: Task Set Example D
Task Computation Time (C) Period (T) Deadline (D)
1 4 4

A
B 2 10 10

Consider that a = 0. At time instant t = 9, and for task B, the number of instances
released for task A is 3 (€9/40= 3). However, from those 3 releases, only the first 2 have
absolute deadlines earlier than the deadline of task B (since 1 + &10 - 4)/40= 2). Assume
again the scenario of Table 2.5. Using eguation (2.24), with a = 0, the evaluation of the
responsetime for task Cis:
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—

°(0)=0, LL(0)=0+(1+0)" 2=2,
L2(0)=(minf1,2})" 1+ (minfL)” 2+(+0)" 2=5
L2(0)=(min{2,2})” 1+ (minf1})” 2+(1+0)" 2=86;
L2 (0)=(min{2,2})” 1+ (minf1L])” 2+(1+0) 2=6
Substituting this result back into equation (2.23), gives Rc(0) = 6. The same
computation, but now a = 9 (also illustrated in the time-line given by Fig. 2.5) gives:

L2(0)=0, LL(0)=0+(1+1) 2=4;

12(0)=(min1,4})" 1+(mirf13) 2+(min11) 2+(+1) 2=9;
L2(0)=(min34})" 1+(mif23)" 2+(mir1d) 2+(@1+1) 2=13
LE(0)=(min{4,4})” 1+(mif33) 2+(mirf11)” 2+(1+1) 2=16
L5 (0)=(min{4,4})” 1+(mif33)" 2+(mif21) 2+(1+1) 2=16

Substituting this result back into equation (2.23), gives Re(9)=max {2, (16 - 9)} =7,
and thus it is now clear that the worst-case response time of atask i is not necessarily
found when all tasks are synchronously released.

Finally, in the general case, the worst-case response time for agiven task i is:

R =max{R (a}} (2.25)

The remaining problem is how to determine the values of a. Looking to the right-hand
side of equation (2.24), we can easily understand that its value only changesat k™ T; +
DJ' —D; steps.

N
al Ul T,+D, - Dkl Aj}cloL] (2.26)
j=1
with L as given by equation (2.20).

2.5.5. Response Time Testsfor the non Pre-emptive Context

The worst-case response time analysis for the non pre-emptive EDF scheduling was
introduced in (George et al., 1996). The main difference from the analysis for the
pre-emptive case is that a task instance with a later absolute deadline can possibly cause
a priority inversion. Thus, and similarly to what was said for the fixed priority case
(Section 2.4.4), instead of analysing the deadline-i busy period preceding the completion
time of task i, we must analyse the busy period preceding the execution start time of the
task’s instance. Conseguently, the response time of the t; ‘s instance released at time a
is:

R (a) = maX{Ci L (a) +C, - a} (2.27)

where L;(a) is now the length of the busy period (preceding execution).
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Thus, R(a) can be evaluated by means of the following iterative computation:

é,(a)i , €a+D - D, u|J 9 éad,
L@)= max{c}+ § 9mm.l+é G 1+6 (o C 2.28
D; >a+D; i T é TJ g é Tj qa S-IT ( )

Dj£a+D

This equation may be solved also by recurrence. Note again that the blocking factor
could be written as (C; — 1). Note aso that in order to analyse the busy period, the start
of execution time, 1 + &.(a) / Tj( isused instead of é.;(a) / T;i

2.6. Summary

In this chapter we provide a comprehensive survey of the most relevant results for the
pre-run-time schedul ability analysis of task setsin single processor systems.

The feasibility tests have been classified as utilisation-based tests and response time
tests, according to the information which is provided by its evaluation; that is, in the
former and indication is provided on the overall processor utilisation, while on the | atter,
the actual response time of each individual task is provided as a resullt.

Feasibility tests for fixed and dynamic priorities (both for the pre-emptive and non
pre-emptive contexts) are provided (when available).

The emphasis is given to feasibility tests for non pre-emptable, independent task sets,
within which tasks may have deadlines smaller than periods, as they will be the
foundation of Chapter 7, where they will be adapted to encompass the characteristics of
P-NET and PROFIBUS networks.

Finaly, it isimportant to mention that this chapter is not an extended survey of all the
important scheduling aspects, which could be pertinent to DCCS. The presented results
are those strictly necessary as the background for the remaining chapters of this thesis.
Just to mention some of the aspects which were not addressed in detail in this chapter,
we can refer the problem of shared resources (Sha et al., 1990; Rajkumar et al., 1988),
the problem of co-operative scheduling (Tindell, 1992; Tindell, 1994; Tindell and Clark,
1994; Palencia and Harbour, 1998), the problem of arbitrary deadlines (L ehoczky, 1990;
Tindell and Clark, 1994; Palencia and Harbour, 1998) or the problem of finding the
worst-case execution time of tasks (Puschner and Koza, 1989).
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Chapter 3

Real-Time Communicationswith Fieldbus
Networks: Analysis of Previous Relevant Work

In this chapter, we describe the main characteristics of relevant fieldbus networks,
which directly target the support of distributed computer-controlled systems
(DCCS). Particular relevance is given to CAN, P-NET, PROFIBUS and WorldFIP
protocols. We will also survey some of the most relevant results concerning the
ability of these fieldbus protocols to support real-time communications.

3.1. Introduction

Local area networks (LANS) are becoming increasingly popular in industrial computer-
controlled systems. LANs allow field devices like sensors, actuators and controllersto be
interconnected at low cost, using less wiring and requiring less maintenance than
point-to-point connections (Lenhart, 1993). Besides the economic aspects, the use of
LANSs in industrial computer-controlled systems is also reinforced by the increasing
decentralisation of control and measurement tasks, as well as by the increasing use of
intelligent microprocessor-controlled devices. Broadcast LANs aimed a the
interconnection of sensors, actuators and controllers are commonly known as fieldbus
networks.

Similarly to other types of LANS, fieldbus networks are based on a layered structure
derived from the seven-layer OSl model (Day and Zimmermann, 1983). However, due
to the specialised regquirements that must be met, the use of a full seven-layered
architecture is precluded. Since transmission of states associated with sensors and
actuators across the networks can be avoided, the network layer is not needed. The
transport layer is aso not needed, since as the network layer is not present, its most
important functions (e.g., error control, and reliable data transfer with error recovery)
can be performed by the data link and application layers, respectively. Similarly, the
session layer is not needed, since its basic functions (e.g., process-to-process
communications) can be performed by the application layer, and its more sophisticated
functions (e.g., dialog synchronisation) are not needed in the context of fieldbus
applications.

Consequently, a typical fieldbus network is based on a three-layered structure -
physical layer, data link layer and application layer - even if some of these layers
embody functionalities similar to those found in the other four layers of the OSI
reference model.
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There are multiple services and protocols that can be chosen for each of those three
layers. The choice depends, essentially, on the origina objectives of the fieldbus
designers; that is:

1. either the fieldbus is to be merely a means to simplify the wiring between

devices,

2. orthefieldbusisto be the backbone of a distributed real-time computing system.

These two different points of view about fieldbuses are one of the essential reasons
for the proliferation of fieldbus systems (Thomesse, 1997). Other reasons relate to the
lack of a unique and generic international standard. More than 30 product names or
standards appeared, as the need for fieldbus has been felt in each industrial area, and
since the beginning of the 80s, the international standardisation efforts have been trying
to emerge in a sea populated by tens of already available products and services.

3.1.1. What Fieldbuses?

Relevant nationa fieldbus initiatives started in the beginning of the 80s:. Factory
Instrumentation Protocol (FIP), in France; Process Network (P-NET), in Denmark;
Controller Area Network (CAN), in Germany; Process Field Bus (PROFIBUS) aso in
Germany.

In parallel, the standardisation efforts started at the international level, within the
International Electrotechnical Commission (IEC). Several architectures were proposed
for consideration. Some, like the MIL 1553B (Haverty, 1986), HART (Rosemount,
1991) or BITBUS (Intel, 1984) were already based on existing products, or at least
prototypes. Others, like FIP or PROFIBUS, were, at the time, only paper proposals. All
these proposals were based on different views on what should be a fieldbus. Therefore,
till the end of the 80s no progress has been achieved at this level. In fact, only in 1993
the first (and, up to this moment, the only one) international standard has been agreed:
the physical layer (IEC 1158-2, 1993).

At the national and regional levels, the standardisation has made more progress.
P-NET is a Danish national standard since 1990 (DS 21906, 1990), PROFIBUS is a
German standard since 1990 (DIN 19245, 1990), and FIP (later re-baptised as WorldFI P)
is a French standard since 1989 (NF C46, 1989). Different technical options were taken
for each of them.

As a consequence of the difficulty to achieve atruly international fieldbus standard, in
1995 the CENELEC (European Committee for Electrotechnical Standardisation)
proposed an interim European standard, comprising the three national standards existing
in Europe: P-NET, PROFIBUS and WorldFIP. This initiative led, in 1996, to the
EN 50170 (EN 50170, 1996). Although this European standard is a set of not compatible
profiles, it ssimplifies the choice in Europe, from several tens of fieldbus options down to
three.

An additional proposal is being considered as aforth profile within the EN 50170: the
Fieldbus Foundation. Fieldbus Foundation was formed in late 1994 from a merger of
WorldFIP North America and the Interoperable Systems Project. In 1996, Fieldbus
Foundation introduced its own specification (BSI DD 238, 1996), which is now being
considered for the EN 50170.
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Other committees within international standardisation bodies have been working to
define other LAN technologies for specific application domains. Within 1SO
(International Organisation for Standardisation) and IEC, some of the more relevant are
ISO TC72 (Textile Industry), ISO/IEC-JTC1 SC25 (Home Automation), IEC TC9
(Trains), 1ISO TC8 (Shipbuilding), 1ISO TC67 (Mineral-oil Industry), ISO TC82 (Mining
Industry). At the European level, some of the more relevant are CEN TC247 (Building
Automation) and CEN TC251 (Medical Domain and Hospitals).

Still, lots of different fieldbuses are being developed and sold. And some are also
being standardised at the international level. For instance, Interbus-S (DIN 19258, 1995)
and Actuator to Sensor Interface (ASI, 1996), among others, are being considered as new
standards (EN 50254, 1996) for "High Efficiency Communications Subsystems for
Small Data Packages'. Also being considered is the PROFIBUS-PA (DIN 19245-4,
1996) and the Device WorldFIP (NF C46-638, 1996), simplified variants of PROFIBUS
and WorldFIP, respectively. For instance, ASlI does only aim to inter-connect
Boolean-state devices, and its frame only supports a reduced number of data bits.

Other initiatives have experienced a different evolution. CAN is a success story. It
was originally designed for use within road vehicles to solve cabling problems arising
from the growing use of microprocessor-based components in vehicles. CAN was
standardised by 1SO (1SO 11898, 1993) has a "Road Vehicle - Interchange of Digital
Information” system and since then it is a standard for the automotive applications, a
domain area where VAN (ISO 11519, 1995) is a small contender. Due to its very
interesting characteristics, CAN is aso being considered for the automated
manufacturing and distributed process control environments (Zuberi and Shin, 1997),
and is being used as the communication interface in proprietary architectures, such as
DeviceNet (Noonen et al., 1994; Rockwell, 1997), which targets DCCS.

3.1.2. Fieldbusesfor DCCS

When compared to other LANSs, fieldouses must fulfil different requirements. In
(Pimentel, 1990) the author defines the following generic requirements to support
DCCs.

1. Ability to handle very short messages in an efficient manner. Clearly, adding 60
bytes of overhead to every 2 bytes of information is not efficient at all.

2. Ability to handle periodic and aperiodic traffic. Periodic traffic is due to sample
data, and aperiodic traffic is due to event conditions, such as a conveyor failure.

3. Bounded response times, to support both periodic traffic, and event-driven traffic,
such as alarm messages.

4. No single point failure. The design should provide a minimum level of
redundancy, to cover failure of devices, which may bring the network down (e.g.,
cables and master controllers).

5. Low network interface cost. This requirement implies serial communications to
save on cable costs, and virtually al features of protocols and their
implementations must be significantly simpler than in networks used at other
levels in the automated manufacturing hierarchy.

In our opinion, P-NET, PROFIBUS and WorldFIP are the International Fieldbus

Standards (EN 50170, 1996) which directly target DCCS. Standards from other domains
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are primarily aimed at the lower level functionality, particularly for remote 1/0O
(EN 50254, 1996) or specific application areas like automotive (1ISO 11898, 1993). In
general they do not aim to cover DCCS applications. However, due to its characteristics,
the CAN protocol, combined with an upper level protocol like DeviceNet is also suitable
for some DCCS applications. Some other technologies, which do not meet the full
requirements of a fieldbus, are being used in areas which do not need peer-to-peer
communication and away from time-critical distributed control. Two very different
examples of such fieldbuses are HART and Echelon/LONWorks (Echelon, 1993).

Therefore, in the remainder of this chapter we will focus our attention on the
following four communication networks: CAN (Section 3.2), P-NET (Section 3.3),
PROFIBUS (Section 3.4) and WorldFIP (Section 3.5). For each of these protocols, we
describe their main characteristics and analyse some of the most relevant results
concerning their ability to support real-time communications. As it will be highlighted,
extensive response time anaysis have only been aready performed for the CAN
protocol. Concerning the other three fieldbus protocols, fewer results are available, and
thus the ability to support real-time communication with these three fieldbus protocols
will be the main focus of this thesis.

3.2. Controller Area Network (CAN)

3.2.1. Main Characteristics of the CAN Protocol

The CAN protocol implements a priority-based bus with a carrier sense multiple access
with collision avoidance (CSMA/CA) MAC. In this protocol any station can access the
bus when the bus becomes idle. However, contrarily to Ethernet-like networks, the
collision resolution is non-destructive, in the sense that one of the messages being
transmitted will succeed. The collision resolution mechanism is very simple and is
supported by the frame structure, namely by its twelve (or thirty, if the extended
specification is used) leading bits, denoted as start bit and identifier fields (Fig. 3.1).

Start RTR

Tbit | | 1bit 0

1 bit

Identifier bLC Data CRC ACK EOF+IFS
11 bits 4 bits (0,...,.8) ~ 8 bits 15 bits 2 bits 10 bits

IDE
1 bit

Fig. 3.1 This figure shows the structure of a CAN message. Although the identifier is said to
have 11 bits, CAN 2.0B specification allows for 29 bits in this field. Description for the specific
fields (start, RTR, IDE, r0, DLC, CRC, ACK and EOF+IFS) can be found in (ISO 11898, 1993)

This identifier field serves for two different purposes. On one hand it identifies a
message stream in a CAN network: a temporal sequence of messages concerning, for
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instance, the remote reading of a specific process variable. On the other hand, it is a
priority field, which enables the collision resolution mechanism to schedule the
contending messages.

This collision resolution mechanism in CAN works as follows. when the bus becomes
idle, every station with pending messages will start to transmit. Due to its open-collector
nature, the CAN bus acts as AND-gate, where each station is able to read the bus status.
During the transmission of the identifier field, if a station is transmitting a"1" and reads
a"0", it means that there was a collision with at least one higher-priority message, and
consequently this station aborts the message transmission. The highest-priority message
being transmitted will proceed without perceiving any collision, and thus will be
successfully transmitted. Obviously, each message stream must be uniquely identified.

To illustrate this collision resolution mechanism consider the following message
stream set (Table 3.1) and the related collision resolution (Fig. 3.2).

Table 3.1: Message Stream Set Example

Message I dentifier field

A 01000111111
B 01000011111
C 01000001111
D 01000000111
Start bit
message A @ ol1]ofofo]1
message B * oj1]ofojo]of1 Suispehd
messageC o | o|1fo]o]ofofo]1
message D > 0 1 0 0 0 0 0 0 1 1 1 rest of the message
ottt
A e e Time (in bits)
12 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
1
Logical Bus Value o

Fig. 3.2 This figure illustrates the collision resolution mechanism in CAN networks. The
message D has the lowest binary identifier; that is, it is the highest-priority message on the bus

This collision resolution mechanism imposes that the different stations contending for
the bus synchronously start transmitting their highest-priority pending message. It
follows that this requirement brings strict limitations to the physical characteristics of the
network: its bus length and its transmission data rate. For instance, considering a bus
length of 40m, the maximum data rate is 1IMbps. Longer buses are only possible at the
cost of adata rate reduction.
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3.2.2. Real-Time Communicationswith CAN: Review of Relevant Work

The CAN network is based on a priority-bus. Therefore, the schedulability analysis of
tasks in single processor systems can be easily adapted to the schedulability analysis of
CAN messages.

In (Tindell et al., 1994; Tindell et al., 1995), the authors addressed in detail the
analysis of real-time communications in CAN, assuming fixed priorities for message
streams. In such case, the worst-case response time of a queued message, measured from
the release of the queuing task to the time the message is fully transmitted, is:

R,=J. +I_+C_ (3.1)

This equation is analogous to equation (2.6). Jy, is the queuing jitter of message
stream S, inherited from the worst-case response time Renger(my (Where sender(m)
denotes the task which queues the message m). The term I, represents the worst-case
gueuing delay - longest time between placing the message in the priority-ordered
outgoing queue, and the start of the message transmission.

The deadline monotonic (DM) priority assignment can be directly implemented in a
CAN network, by setting the identifier field of each message stream to a unique priority,
according to the DM rule. Therefore, by analogy with equation (2.11):

22|

I m = Bm + é' (;: : Z ] =

@ T 0 g

where By, is the worst-case blocking factor, which is equal to the longest time taken to
transmit alower priority message, and given by:

B, = max{0,C,} (3.3)

" Ip(m)

+J U 9
G G (32)

The set Ip(m) is the set of message streams with lower-priority than message stream S,
(see equation (2.7)). ty,; is the time taken to transmit a bit on the bus and hp(m) is the set
of message streams in the system with higher-priority than the message stream S,

Cn isthe longest time taken to transmit a message from stream S,,. CAN has a 47 bit
overhead per message, and a stuff width of 5 bits. Only 34 of the 47 bits of overhead are
subject to stuffing, so C,, can be defined as:

Cm = e-}-ﬂg+47+8' S, g’ t bit (34)
& S5 0 o

where dby, is the number of data bytes in the message.

An alternative for the fixed priority assignment are the dynamic priority schemes,
such as the non pre-emptive earliest deadline first (EDF). In (Zuberi and Shin, 1995;
Zuberi and Shin, 1997), the authors analyse how the EDF could be used to schedule
CAN messages. In these works, the authors propose the use of a mixed traffic scheduler
(MTS), which attempts to give a high utilisation (like EDF) while using the standard 11-
bit format for the identifier field.



Real-Time Communications with Fieldbus Networks: Analysis of Previous Relevant Work 39

The goal of the MTS scheduler is to make the identifier fields of different message
streams to reflect the deadlines of messages. However, considering that each message
must have a unique identifier field (which is a requirement of CAN), they suggested the
division of the identifier field into three sub-fields, as shown in Fig. 3.3.

Identifier Identifier Identifier
11 bits 11 bits 11 bits
|1|

| L |l |

deadline uniqueness DM Priority Low Priority
5 bits 5 bits 9 bits 9 bits

a) b) ©)

Fig. 3.3 Thisfigureillustrates the proposed structure for the identifier field. ) is for the messages
that are to be scheduled according to the EDF. b) is for messages to be scheduled according to the
DM, and finally c) is for low-priority messages. The first bit of the identifier field ensures that
higher priority messages are scheduled according to the EDF (note that Zuberi and Shin assume a
Wired-OR bus, thus '1' being the dominant bit)

For the higher-priority message, the deadline field is derived from the deadline of the
message. To deal with the case where two messages have the same deadline, the one
with the highest uniqueness code will win (note that Zuberi and Shin assume a Wired-
OR bus, thus '1' being the dominant bit). The uniqueness code also serves to identify the
message for reception purposes. To encode the deadline field, the authors solved the two
following problems.

1. Thefirst isthat the remaining slack time of a message changes with every clock
tick. This requires identifiers of all messages to be continually updated, and also
that each local clock must be synchronised.

2. The second is that, in a typical system, message streams may have largely
different deadlines, which rises a problem with the length of the identifier field
(only 5 bits to encode the deadline).

To solve the second problem, the authors divide time into regions and encode
deadlines according to which region they fall in. Deadlines are then expressed relatively
to a periodically increasing reference called the start of epoch (SOE). Fig. 3.4 illustrates
this concept for am = 2 case.

Deadline 1
sub-field 1 10 0 0o

SOE end of epoch

region length
< >
>

Fig. 3.4 This figure illustrates the value of the deadline field, considering that it is encoded in
only two bits

For the pre-run-time schedulability analysis of the EDF traffic, analytical expressions
described in Sections 2.5.3 and 2.5.5 can be used.

To our best knowledge, these are the most relevant works on how to guarantee real-
time communications using CAN networks.
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3.3. Process Network (P-NET)

3.3.1. Main Characteristics of the P-NET Protocol

P-NET is a multi-master standard based on a virtua token-passing (VTP) scheme. In
P-NET all communication is based on a message cycle principle, where a master sends a
request and the addressed slave immediately returns a response. Fig. 3.5 illustrates the
hybrid-operating mode of the P-NET's MAC.

LOGICAL VIRTUAL TOKEN RING
@ Master Stations §

Sensor Sensor Actuator Sensor

< >
< >

Slave Stations

Fig. 3.5 Token passing and master-slave proceduresin P-NET networks

The P-NET standard uses a data rate of 76800bps. This data rate resulted from
weighing up the conflicting requirement for data to be transported as fast as possible, but
not at such speed as to negate the use of standard microprocessor UARTS, or restrict the
usable distance or cable type (Jenkins, 1997).

The VTP scheme is implemented using two protocol counters. The first one, the
access counter (AC), holds the node address of the currently transmitting master. When a
request has been completed and the bus has been idle for t = 40 hit periods (520rs at
76,8Kbps), each one of the access counters is incremented by one. The master whose
access counter value equals its own unique node address is said to be holding the token,
and is allowed to access the bus. When, as the access counter is incremented, it exceeds
the “maximum number of masters’, the access counter in each master is reset to one.
This allows the first master in the cycling chain to gain access again.

The second counter, the idle bus bit period counter (IBBPC), increments for each
inactive bus bit period. Should any transactions occur, the counter is reset to zero. As
explained above, when the bus has been idle for 40 bit periods following a transfer, al
the access counters are incremented by one, and the next master is thus allowed to access
the bus.

If a master has nothing to transmit (or indeed is not even present), the bus will
continue to be inactive. Following a further period of s = 10 hit periods (130rs), the idle
bus bit period counter will have reached 50, (60, 70,...) so al the access counters will be
incremented again, alowing the next master access. The virtual token passing will
continue every 10 bit periods, until a master does require access.
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The P-NET standard allows each master to perform at most one message cycle per
token visit. This is an important idea for the timing analysis of P-NET MAC
mechanisms.

After receiving the token, the master must transmit a request before a certain time has
elapsed. This is denoted as the master's reaction time, and the standard imposes a
worst-case value of up tor =7 bit periods. A slave is allowed to access the bus between
11 and 30 bit periods after receiving a request, measured from the beginning of the stop
bit in the last byte of the request frame. The maximum allowed delay is then 30 bit
periods (390ps). This delay is denoted as the slave's turnaround time. To illustrate these
basic MAC procedures and the notation used, please refer to Fig. 3.6.

None of these masters
used the token 2-7 Bit Periods 11-30 Bit Periods

3.

Response, , Request Response

! |
“
1

H H H
Access
Counter 3 411123 4 1

60
40 %0 7 40
|

IBBPC |
T

Message Cycle

>

Token Holding Time (H)

<

Fig. 3.6 This figure illustrates the concepts of message cycle, token holding time (H), save's
turnaround time, master's reaction time (r ), idle token time (s) and token passing time (t)

It is aso important to understand the idea of a P-NET message cycle length. A P-NET
frame (Fig. 3.7) contains five fields: node address field (2 bytes); control/status field (1
byte); information length field (1 byte); information field (0-63 bytes); error detection
field (1-2 bytes). The node address field may have up to 24 frame bytes. P-NET uses
these complex addresses if special devices (P-NET hopping devices) are used to relay
frames between different segments.

Address Control/Status Info. Length Data Error Detection
2 bytes 1 bytes 1 bytes (0,...,63) bytes 1-2 bytes

Fig. 3.7 This figure illustrates the structure of a P-NET frame. Although the address field is
represented with only 2 bytes, it can go up to 24 frame bytes

As each frame byte in P-NET actually corresponds to 11 bits, a frame may have up to
759 bits (69" 11 hits). In P-NET all the frame bytes are sent asynchronously, with one
start bit (logical zero), 8 data bits (with LSB first), one address/data bit and one stop bit.
Within aframe, a start bit must immediately follow a stop bit.

Thus, considering the case where both the request and response frames have 759 bits
(realitically it is more likely that either the request will be longer, in cases of data being
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sent to a slave, or the response will be longer, in cases of data being received from a
dave), the overall sum for the longest message cycle is 1548 bit periods, corresponding
to 20.15ms at 76800bps. This includes the worst-case dave's turnaround time (30 bit
periods). Table 3.2 gives the worst-case duration of the token holding time in P-NET,
with the explicit weight of the different contributing components.

Table 3.2: Worst-Case Duration for the Token Holding Time

Component Worst-Case Duration of Token Holding Time
(in bit periods)
7

Master's Reaction Time

Request Transmission Time 759
Slave's Turnaround Time 30
Response Transmission Time 759
Token Passing 40
Total 1595

3.3.2. Real-Time Communicationswith P-NET: Review of Relevant Work

To our best knowledge, there is no previous relevant work on how to support real-time
communications with P-NET networks.

3.4. PROcess Fleld BUS (PROFIBUS)

3.4.1. Main Characteristics of the PROFIBUS Protocol

The PROFIBUS MAC protocoal is based on a token passing procedure used by master
stations to grant the bus access to each other, and a master-slave procedure used by
master stations to communicate with slave stations. Fig. 3.5 can aso be used to illustrate
such hybrid MAC protocol. The PROFIBUS token passing procedure uses a simplified
version of the Timed-token protocol (Grow, 1982).

These MAC procedures are implemented at the layer 2 of the OSI reference model,
which, in PROFIBUS, is called Fieldbus Data Link (FDL). In addition to controlling the
bus access and the token cycle time (a feature that will be later explained), the FDL is
also responsible for the provision of data transmission services for the FDL user (e.g.,
the application layer).

PROFIBUS supports four data transmission services. Send Data with No
acknowledge (SDN); Send Data with Acknowledge (SDA); Request Data with Reply
(RDR) and Send and Reguest Data (SRD).

The SDN is an unacknowledged service used for broadcasts from a master station to
al other stations on the bus. Conversely, all other transmission services are based on a
real dua relationship between the initiator (master station holding the token) and the
responder (slave or master station not holding the token). An important characteristic of
these services is that they are immediately answered (as in P-NET networks), with a
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response or an acknowledgement. This feature, also caled "immediate-response’, is
particularly important for the real-time bus operation.

In addition to these services, industrial applications often require the use of cyclical
transmission methods. A FDL-controlled polling method (cyclical polling) may be used
to scan field devices, such as sensors or actuators. PROFIBUS enables a poll list to be
created at the FDL layer, allowing the execution of cyclical polling services based on
RDR and SDR services.

An important PROFIBUS concept is the message cycle. A message cycle consists of a
master's action frame (request or send/request frame) and the associated responder's
acknowledgement or response frame. User data may be transmitted in the action frame
or in the response frame. The acknowledgement or response must arrive within a
predefined time, the slot time, otherwise the initiator repeats the request. At the network
set-up phase, the maximum number of retries, before a communication error report, must
be defined in all master stations. The PROFIBUS real-time analysis presented in the
following section is based on the knowledge of the message cycle duration.

One of the main functions of the PROFIBUS MAC is the control of the token cycle
time. After receiving the token, the measurement of the token rotation time begins. This
measurement expires at the next token arrival and results in the real token rotation time
(Trr). A target token rotation time (T7g) must be defined in a PROFIBUS network. The
value of this parameter is common to all masters, and must be chosen small enough to
meet the responsiveness requirements of all masters. When a station receives the token,
the token holding time (Ty) timer is given the value corresponding to the difference, if
positive, between T+g and Tgr.

In PROFIBUS there are two main categories of messages. high-priority and low-
priority. These two categories of messages use two independent outgoing queues. If at
the arrival, the token is delayed, that is, the rea token rotation time (Tgrg) Was greater
than the target token rotation time (Ttg), the master station may execute, at most, one
high-priority message cycle. Otherwise, the master station may execute high-priority
message cycles while Tty > 0. Ty is dways tested at the beginning of the message cycle
execution. This means that once a message cycle is started it is aways completed,
including any required retries, even if Ty expires during the execution. We denote this
occurrence as a Ty overrun. The low-priority message cycles are executed if there are
no high-priority messages pending, and while Ty > 0 (also evaluated at the start of the
message cycle execution, thus leading to a possible overrun of Ty).

Apart from distinguishing high and low-priority message cycles, the PROFIBUS
MAC differentiates three subtypes of low-priority message cycles: poll list, non-cyclic
low-priority (application layer and remote management services) and Gap List message
cycles. The Gap is the address range between two consecutive master addresses, and
each master must periodically check the Gap addresses to support dynamic changes in
thelogical ring.

After all high-priority messages have been carried out, poll list message cycles are
started. If the poll cycle is completed within Ty, the requested low-priority non-cyclical
messages are then carried out, and a new poll cycle starts at the next token arrival with
available Try. If a poll cycle takes severa token visits, the poll list is processed in
segments, without inserting requested low-priority non-cyclical messages. Low-priority
non-cyclical message cycles are carried out only at the end of a complete poll cycle. At
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most one Gap address is checked per token visit, if there is still available Ty, and there
are no pending messages. Fig. 3.8 synthesises the PROFIBUS MAC procedures.

Token Receipt

Reset and Release Trr (Up)
Tm - Twr-Trr
Release Tr (down)

@ n
Non high-priority
messages processing
high priority high priority n

message 2 message 2
y low priority
process high process high message 2.
priority message priority message
y
¢ process low
n @ priority message
y
D

Token Pass ’

Fig. 3.8 Thisfigureillustrates how PROFIBUS masters handle the two types of basic traffic

To illustrate the token passing mechanisms between the n master stations (n = 4)
please refer to Fig. 3.9, where the i"" real token rotation time, as seen by master 4 (T*zq),
corresponds to the time of the network token rotation (none of the stations used the token
to transmit messages). At that i token visit, master 4 uses part of its available token
holding time (T*y,) to transmit two message cycles.

two message cycles
performed in the i" token
visit to master 4

Master 1
’ ! i first message cycle: iegf;'."femﬁzzfge
request followed by fy” Wi dqb n
Master 2 an immediate |?nrze§|atey @
| ! response (e._g., response (e.g
{ | remote reading of a remote writting 'Df a
Master 3 j_i process variable) process variable)
1 T N

e 44-7

Tir

Master 4

T'ea(

available T, (i)

slave's immediate
response times

used T (i)

T token arrival .loken passing time - message cycle

a) b)
Fig. 3.9 Example of token usage. b) details the message cycles transmitted by master 4 in a)
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3.4.2. Real-Time Communications with PROFIBUS: Review of Relevant Work

Compared to the timed-token protocol (Grow, 1982), the main difference in the
PROFIBUS token passing consists in the absence of synchronous bandwidth allocation
(H)). For the timed-token protocol thisis a relevant station parameter, since it specifies
the amount of time a station has to transfer its synchronous (real-time) traffic.

In PROFIBUS, the absence of synchronous bandwidth allocation prevents the use of
the traditional real-time analysis for the timed-token protocol. In fact, real-time solutions
for networks based on the timed-token protocol, such as (Agrawal et al., 1994; Zheng
and Shin, 1995), for FDDI networks (1SO 9314-2, 1989) or (Montuschi et al., 1992) for
the |IEEE 802.4 token bus (IEEE 802.4, 1985), rely on the possibility of allocating
specific bandwidth for the real-time traffic.

These results cannot however be applied to PROFIBUS, as significant differences to
the timed-token protocol exist. We consider the following two differences as the most
relevant ones (Tovar and Vasques, 1998).

1. In PROFIBUS there is no synchronous capacity allocation (H;). If a station
receives alate token (Trr is greater than T+g), then, at most, only one high-priority
message may be transmitted. As a consequence, low-priority traffic may
drastically affect the capabilities of the PROFIBUS networks to support high-
priority (real-time) traffic. Fig. 3.10 illustrates this situation. Contrarily, in the
original timed-token protocol the station can transmit synchronous (high-priority)
messages during H; time, even if it has received a late token.

2. In PROFIBUS, both high-priority and low-priority message cycles may overrun
the Ty timer. As previoudy stressed, in PROFIBUS a message cycle can be
initiated with a residual Ty value and will be performed until the end. In the
timed-token protocol this overrun of Ty, is only possible for asynchronous
(low-priority) messages, as the transmission of synchronous messages can only
be started if the message cycle fits in the time alocated for synchronous
transmission.

Message cycle

processed causing an
overrun of the Ty timer

Master 1

Master 2 - i I

Master 3

T token arrival - high-priority message cycles with Tt > 0 I:I message cycles with Tty <0

I token passing time I:I low-priority message cycles with Tty >0 ..:é"r' high-priority message cycle with a late token

Fig. 3.10 This figure illustrates how low-priority traffic can affect the high-priority traffic
capabilitiesin PROFIBUS networks
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In (Vasgues, 1996; Vasgues and Juanole, 1994) the authors derive pre-run-time
schedulability analysis for the PROFIBUS protocol, considering two complementary
approaches.

1. If the low-priority traffic is unconstrained, then the real-time traffic requirements
may be satisfied, considering that, at least, one pending high-priority message is
transmitted per token visit.

2. If the low-priority traffic can be constrained (controlling the number of
low-priority message transfers at each master station), then, by an appropriate
setting of the T.r parameter, al pending real-time traffic is guaranteed to be
transmitted at each token visit.

For the first approach, a deadline constraint is proposed, which, if satisfied,

guarantees that the real-time traffic is schedul able:

o 1
———£1 " (3.5)
’\ﬂkg)i/-rcycleu “

where M; is a high-priority message in master k, P; is its period, and Tgqe is the
maximum time interval between two consecutive token arrivals to the master.

It is however easy to show that inequality (3.5) does not consider that PROFIBUS
message requests are queued in a FCFS (First-Come-First-Served) queue. Assume, as an
example, that a master issues three high-priority messages, with periods of 40ms, 15ms
and 10ms, respectively. The highest value of Teqe that satisfies inequaity (3.5) is 5ms;
thatis, 1/ 840/ 50+ 1/ &5/50+ 1/ &0/ 50=0.958 £ 1. If the request with a period
(deadline) of 10 msis the last one in the FCFS queue, and the token as just been passed
to the next master, that message request will only be processed after 3 token visits.
Consequently, it may suffer (considering that only one request will be processed at each
token visit) a queuing delay of up to 15ms, which is a value greater than its period
(deadline).

Inequality (3.5) has additionally two major drawbacks.

1. It doesnot give any estimation of the worst-case response time of each individual

message.

2. It does not allow the consideration of sporadic high-priority messages, which

typically will have relative deadlines much smaller than their period.

Inequality (3.5) isafunction of Tyge IN (Vasques, 1996; Vasques and Juanole, 1994)
the authors present the following evaluation for Tg,qe, Which will the basis to set the Trg
parameter:

T

cycle

=T+t +(n-2)" C (3.6)

where t represents the network latencies (including the token-passing time), n is the
number of masters in the network, and C is the maximum length of a high-priority
message. This evauation of T suffers from a number of inaccuracies, which will later
be addressed in Chapter 5.
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For the second approach (constrained low-priority traffic profile), the authors define
Teyee asfollows:
=4 C+AC, + (3.7)

Tcycl e

where &C; gives the load concerning high-priority traffic per token cycle, and 4C; the
allowable load concerning low-priority traffic, also per token cycle. Therefore, the value
for the T1r parameter must respect the following condition:

+mag 3 C v (3.8)
k 1 g

-rTR3 T

cycle

with, of course, the following restriction:
mlr{Pl} 3 Tcycle’ ! ik (39)

Condition (3.8) guarantees that even when the token rotation time is at its maximum
value, master k will still be able to process al its pending high-priority traffic. There are,
however, some limitations inherent to such analysis.

1. Theauthors do not identify the low-priority traffic supported by PROFIBUS. It is
important to note that some of the low-priority traffic cannot be controlled at the
user level.

2. Theauthors do not discuss how isit possible to implement such an approach.

In Section 5.5, we will address in detail these open issues.

Finally, it is worth mentioning a previous work based on the use of the poll list at the
FDL to support real-time communication in PROFIBUS (Li and Stoeckli, 1994). In this
approach, message deadlines are guaranteed since the token cycle time is bounded. The
major drawback of this approach is that, in order to evaluate the token cycle time, neither
high-priority traffic nor low-priority traffic (other than cyclic traffic) are allowed. This
prevents the transfer of event-driven messages with high-priority, such as aarms.
Furthermore, remote management services (which in PROFIBUS are mapped into low-
priority non-cyclic services) are also not covered by this approach.

To our best knowledge, these are the most relevant works on how to guarantee
real-time communications with PROFIBUS networks.

3.5. Factory Instrumentation Protocol (WorldFIP)

3.5.1. Main Characteristics of the WorldFIP Protocol

A WorldFIP network interconnects stations with two types of functionalities. bus
arbitration and production/consumption functions. At any given instant, only one station
can perform the function of active bus arbitration. Hence, in WorldFIP, the medium
access control (MAC) is centralised, and performed by the active bus arbitrator (BA).
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WorldFIP supports two basic types of transmission services. exchange of identified
variables and exchange of messages. In this section we address WorldFIP networks
supporting only exchange of identified variables, since they are the basis of the
WorldFIP real-time services. The exchange of messages, which is used to support
manufacturing message services (1SO 9506, 1990), is out of the scope of this work.

In  WorldFIP, the exchange of identified variables is based on a
producer/distributor/consumer (PDC) model, which relates producers and consumers
within a distributed system. In this model, for each process variable there is one, and
only one producer, and several consumers. For instance, consider the variable associated
with a process sensor. The station that provides the variable value will act as the variable
producer and its value will be provided to al the consumers of the variable (e.g., the
station that acts as process controller for that process variable or the station that is
responsible for building an historical data base).

In order to manage transactions associated with a single variable, a unique identifier is
associated with each variable. The WorldFIP datalink layer (DLL) is made up of a set of
produced and consumed buffers, which can be locally accessed (through application
layer (AL) services) or remotely accessed (through network services).

The AL provides two basic servicesto accessthe DLL buffers: L_PUT. r eq, to write
a value in a local produced buffer, and L_CGET. r eq to obtain a value from the local
consumed buffer. None of these services generate activity on the bus.

Produced and consumed buffers can also be remotely accessed through a network
transfer (service al'so known as buffer transfer). The bus arbitrator broadcasts a question
frame | D_DAT, which includes the identifier of a specific variable. The DLL of the
station that has the corresponding produced buffer responds with the value of the
variable using a response frame RP_DAT. The DLL of the station that contains the
produced buffer then notifies the local AL with a (L_SENT. i nd). The DLL of the
station(s) that has the consumed buffers accepts the value contained in the RP_DAT,
overwriting the previous value and notifying the local AL with a L_RECEI VED. i nd.
These mechanisms are illustrated in Fig. 3.11.
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Fig. 3.11 Thisfigureillustrates the case of a station with one produced buffer (for identifier k) and
one consumed buffer (for identifier x).
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A buffer transfer implies the transmission of a pair of frames: | D_DAT, followed by a
RP_DAT. We denote this sequence as an elementary transaction. The duration of this
transaction equals the time needed to transmit the | D_DAT frame, plus the time needed
to transmit the RP_DAT frame, plus twice the turnaround time (t;). The turnaround time

is the time elapsed between any two consecutive frames. Fig. 3.12 illustrates the concept
of an elementary transaction in WorldFIP.

Message Transaction
t. (Producer) t (BA) t, (Producer)
>
>
Bus Arbitrator (BA) ID_DAT_A ID_DAT_B
Producer (ID_A) RP DAT A
Producer (ID_B) RP DAT B

Fig. 3.12 Concept of elementary transaction in WorldFI P networks

Every transmitted frame is encapsulated with control information from the physical
layer. Specificdly, the frame is placed between a DTR field (begin of frame) and an
FTR field (end of frame). A WorldFIP frame begins with a control byte, which is used
by network stations to recognise the type of frame, and ends with two FCS (Frame
Check Sequence) bytes, used by the frame receivers to verify the integrity of the
received frame. The structure of both | D_DAT and RP_DAT frames is as illustrated in
Fig. 3.13. As it can be depicted, an | D_DAT frame has aways 64 bits, whereas a
RP_DAT frame has at least 48 hits. Note that the turnaround time (t;) is imposed (Afnor,
1990) to be within theinterval 10 bits < t, < 70 bits.

2 bytes 1 byte 2 bytes 2 bytes 1 byte

reon 70w conv; | Dara =
2 bytes 1 byte n bytes (n £ 128) 2 bytes 1 byte
E_| Useful info. (User Layer) |:| Data Link Layer

|:| Application Layer - Physical Layer
Fig. 3.13 Structure of thel D_DAT and RP_DAT frames

In WorldFIP networks, the bus arbitrator table (BAT) regulates the scheduling of all
buffer transfers. In practice, two types of buffer transfers can be considered: periodic and
aperiodic (sporadic). The BAT imposes the schedule of the periodic buffer transfers, and
also regulates the aperiodic buffer transfers.

Assume a distributed system within which 6 variables are to be periodically scanned,
with scan frequencies as shown in Table 3.3. The WorldFIP BAT must be set in order to
cope with these timing requirements.
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Table 3.3: Example Set of Periodic Buffer Transfers

I dentifier | A B C D E F
Periodicity (ms) | 1 2 3 4 4 6

Two important parameters are associated with a WorldFIP BAT: the microcycle
(elementary cycle) and the macrocycle. The microcycle imposes the maximum rate at
which the BA performs a set of scans. Usually, the microcycle is set equal to the highest
common factor (HCF) of the required scan periodicities. Using this rule, and for the
example shown in Table 3.3, the value for the microcycle is set to 1ms. A possible
schedule for al the periodic scans can be as illustrated in figure 3.15, where we consider
C=97,6ps for each elementary transaction.

| ID_DAT(25.6y15)
>

(20 : RP_DAT(324is)
Y e
.
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-—
-
-
-—

1 2 3 4 5 6 7 8 9 10 11 12 13 time (ms)

microcycle

macrocycle

Fig. 3.14 Illustration of a possible schedule for the example of Table 3.3

It is easy to depict that, for this example, the sequence of microcycles repeats each 12
microcycles. This sequence of microcycles is said to be the macrocycle, and itslength is
given by the lowest common multiple (LCM) of the scan periodicities. As a
conseguence, the scanning periods of the periodic variables must be multiples of the
microcycle.

In a WorldFIP system, not all identified variables are to be included in the BAT.
Some variables may only be occasionally exchanged, and thus do not need to be
periodically scanned. Typically such exchanges will concern application events or
alarms, which by their own nature do not occur with a periodic pattern. Therefore, it is
preferable to map these variables into aperiodic buffer transfers, in order to reduce the
network load.

The BA handles aperiodic buffer transfers only after processing the periodic traffic in
amicrocycle. The portion of the microcycle reserved for the periodic buffer exchangesis
denoted as the periodic window of the microcycle. The time interval left after the
periodic window until the end of the microcycle is denoted as the aperiodic window of
the microcycle. The aperiodic buffer transfers take place in three stages (Fig. 3.15a).

1. When processing the BAT schedule, the BA broadcasts an | D_DAT frame
concerning a periodic variable, say identifier X. The producer of variable X
responds with a RP_DAT and sets an aperiodic request bit in the control field of
its response frame (RP_DAT_RQ). The bus arbitrator stores variable X in a queue
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of requests for transfers of aperiodic variables. Two priority levels can be set
when the request for aperiodic transfer is made: Urgent or Normal. The BA has
two queues, one for each priority level (Fig. 3.15b).

2. Inthe aperiodic window, the BA uses an identification request frame (I D_RQ) to
reguest the producer of the identifier X to transmit its list of pending aperiodic
reguests. The producer of X responds with a RP_RQ frame (list of identifiers).
This list of identifiers is placed in another BA's queue, the ongoing aperiodic
queue (Fig. 3.15b).

3. Finaly, the BA processes the requests for aperiodic transfers that are stored in its
ongoing aperiodic queue. For each transfer of aperiodic variables, the BA uses
the same mechanism as the used for the periodic buffer transfers (I D_DAT
followed by RP_DAT).

A station that requests an aperiodic transfer can be: the producer of the variable; the
consumer of the variable; both producer and consumer; neither producer nor consumer
(third-party variables). It is however important to note that a station can only request
aperiodic transfers using responses to periodic variables that it produces and which are
configured in the BAT.
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Fig.3.15 &) illustrates the sequence of transactions concerning an aperiodic buffer transfer
request. b) illustrates the structure of the BA's queues

It is worth mentioning that the schedule shown in Fig. 3.14 represents a macrocycle
composed of synchronous microcycles, that is, for the specific example, each microcycle
starts exactly 1ms after the previous one. Within a microcycle, if there is spare time after
processing the aperiodic traffic, the BA transmits padding identifiers, to indicate to the
other stations that it is still functioning. A WorldFIP BA can also manage asynchronous
microcycles, not transmitting padding identifiers at the end of the microcycle. In such
case, a new microcycle starts as soon as the periodic traffic is performed and there are no
pending aperiodic buffer transfers or message transfers. Initial periodicities are not
respected, since identifiers may be more frequently scanned.
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3.5.2. Real-Time Communicationswith WorldFIP: Review of Relevant Work

For the periodic traffic, end-to-end communication deadlines can be easily guaranteed,
since the BAT implements a static schedule for the periodic variables. Therefore,
real-time guarantees for periodic traffic very much rely on methodologies for building
the WorldFIP BAT. Several authors have already addressed this issue; examples are the
works by Laine (Laine, 1991) and by Kim et al. (Kim et al., 1998). It is aso worth to
mention some works, while not directly focusing WorldFIP networks, address generic
fieldbus networks with some of the characteristics of WorldFIP networks (Raja et al.,
1993; Rgjaand Noubir, 1993; Almeidaet al., 1999).

Concerning the aperiodic traffic, some previous results for pre-run-time schedulability
analysis can be found in (Vasques, 1996; Vasques and Juanole, 1994). Those results are
however quite pessimistic. Later, in (Pedro and Burns, 1997) the level of pessimism is
identified and an improved anaysis is proposed. Next, we briefly describe such
improved analysis.

The response time analysis of an aperiodic request is given by:

R =s, +d+Tmgn Sk & ¢ (3.10)
€ Ime U i

In equation (3.10), d represents the sum of turnaround times concerning the
transactions related to aperiodic requests, T, is the maximum length of a periodic
window and C; is the length of aperiodic transactions. Finally, s is the length of the
dead interval - concept introduced in (Vasques and Juanole, 1994) - in a station k. As a
station can only request an aperiodic transfer in a response to an | D_DAT locally
produced, an aperiodic request may only be notified to the BA after atime s after the
request have been locally queued:

s, =minT} (3.11)

In equation (3.11) T; corresponds to the periods of periodic variables that station k

produces.

The analysis by Pedro and Burns still contains, however, the following drawbacks.

1. The authors consider equa lengths for periodic windows since they do not
discuss the BAT construction, and thus they cannot evaluate the actual length of
the periodic window in each microcycle. Thus, the overall results are also very
pessimistic.

2. The authors do not consider that at the end of each microcycle some transactions
would simply not fit, and thus would not be schedulable.

3. Finadly, the authors do not aso consider the communication jitter for the
evaluation of the dead interval. Note that within each microcycle the variables are
not scanned exactly in the same "slot", and they may be even scanned at irregular
intervals (not with the same number of microcycles in between), depending on
the methodology used to build the BAT.

The analysis presented in Chapter 6, improves previous results from (Pedro and

Burns, 1997) considering the three above mentioned aspects, in an integrated manner
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with the methodologies for building the WorldFIP BAT, thus performing an integrated
analysis of periodic and aperiodic traffic.

3.6. Summary

Fieldbus networks are widely used as the communication support for distributed
computer-controlled systems (DCCS), in applications ranging from process control to
discrete manufacturing. There are several advantages in the use of fieldbuses as a
replacement for the traditional point-to-point links between sensors/actuators and
computer-based control systems. Besides economical reasons (cable savings), fieldbuses
allow an increased decentralisation and distribution of the processing power over the
field.

Usualy, DCCS impose real-time requirements; that is, traffic must be sent and
received within a bounded interval, otherwise a timing fault is said to occur. This
motivates the use of communication networks within which the MAC protocol is able to
schedule messages according to their real-time requirements. Therefore, a potential leap
towards the use of fieldbuses in such time-critical applications lies on the accurate
characterisation of the temporal behaviour of its MAC protocol.

In this chapter we describe four different fieldbus solutions: CAN, P-NET,
PROFIBUS and WorldFIP. While the first was originaly intended for use as an
in-vehicle network, its very interesting characteristics make it also appealing for DCCS
applications. CAN is a priority bus, hence its real-time characteristics can be easily
evaluated and improved by the traditional analysis for the scheduling of non pre-emptive
and independent tasks in single processor environments. This is aso the reason why
CAN has been the focus of research teams from the real-time systems area. However, its
physical limitations prevent its use in most part of the typical factory-floor applications.

For typical factory-floor applications, the profiles encompassed in the EN 50170
standard (P-NET, PROFIBUS and WorldFIP) are strong contenders, since they all offer
deterministic access.

In FIP, the determinism is guaranteed by a bus arbitrator, which, for periodic traffic,
controls data transfers according a static scanning table. PROFIBUS adopts a simplified
version of the timed-token protocol (Grow, 1982). Despite some differences to the
timed-token protocol, it is still possible to guarantee real-time behaviour with
PROFIBUS networks. P-NET & so offers a deterministic access, since it is based on a
virtual token passing (VTP) mechanism. The determinism is not achieved by means of
controlling the token rotation time, as it happens in networks based on the timed-token
protocol. Instead, the bounded access delay is implicitly guaranteed by the fact that at
each token visit only one message request may be performed.

In this chapter, we describe the main characteristics of the fieldbus protocols
encompassed in the EN 50170 standard. We also survey the most relevant results
concerning their ability to support real-time communications, identifying some of the
open research issues.
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Chapter 4

Real-Time Communicationswith P-NET Networks:
Contributionsto the State-of-the-Art

In this chapter we develop a methodology for the worst-case response time
analysis of P-NET messages. This chapter is largely drawn from the following
published work: "A Communication Support for Real-Time Distributed Computer
Controlled Systems’ (Tovar and Vasques, 1998a); "Communication Response
Time in P-NET Networks: Worst-Case Analysis Considering the Actual Token
Utilisation" (Tovar et al., 1999); "Supporting Rea-Time Distributed Computer-
Controlled Systems with Multi-hop P-NET Networks' (Tovar et al., 1998b).

4.1. Introduction

The P-NET medium-access-control (MAC) protocol is based on a virtual token-passing
(VTP) procedure, used by master stations to grant bus access to each other, and a master-
slave procedure, used by master stations to communicate with slave stations. Please refer
to Section 3.3.1 for a detailed description of the main characteristics of this protocol.

The remainder of this chapter is organised as follows. In Section 4.2 we introduce the
network and message models, which will be used throughout the rest of the chapter. In
Section 4.3 we provide a basic response time analysis considering the worst-case token
rotation time. In Section 4.4 we extend the basic analysis to consider the actual token
utilisation. Finally, in Section 4.5 we assess the real-time characteristics of multi-hop
P-NET networks.

4.2. Network and M essage M odels

Consider a network with n masters, with addresses ranging from 1 to n. Each master
accesses the network according to the VTP scheme; hence, first master 1, then masters 2,

3, ... until master n, and then again masters 1, 2, ... . Slaves will have network addresses
higher than n.
We assume the following message stream model:
S8 =(Ci. T, D) (41)

S¥ defines a message stream i in master k (k = 1, ..., n). A message stream is a
temporal sequence of message cycles concerning, for instance, the remote reading of a
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specific process variable. C¥ is the longest message cycle duration of stream S*. This
duration includes both the longest request and response transmission times, and also the
worst-case slave's turnaround time. Ti¥ is the periodicity of stream S* requests. In order
to have a subsequent timing analysis independent from the model of the tasks at the
application process level, we assume that this periodicity is the minimum interval
between two consecutive arrivals of S requests to the outgoing queue. Finaly, D is the
relative deadline of a message cycle; that is, the maximum admissible time interval
between the instant when the message request is placed in the outgoing queue and the
instant at which the related response is completely received at the master's incoming
gueue. Finally, ns‘ denotes the number of message streams associated with a master k.

4.3. Basic Analysisfor the Wor st-Case Response Time

In our model, the relative deadline of a message can be equal or smaller than its period
(D £ T¥). Thus, if in the outgoing queue there are two message requests from the same
message stream, this means that a deadline for the first of the regquests was missed.
Actually, we can be more precise saying that deadlines will be missed if a new reguest
appears, in the outgoing queue, before the completion of a previous message cycle for
the same request. Therefore, the maximum number of pending requests in the outgoing
queue will be, in the worst-case, ns*.

We denote the worst-case response time of a message stream S¥ as R¥. Thistime is
measured starting at the instant when the request is placed in the outgoing queue, until
the instant when the response is completely received at the incoming queue. Basically,
this time span is made up of the two following components.

1. The time spent by the request in the outgoing queue, until gaining access to the

bus (queuing delay);

2. The time needed to process the message cycle, that is, to send the request and
receive the related response (transmission delay). As the bit rate in P-NET is
76800bps, the propagation delay can be neglected, even for P-NET networks
with alength of some kilometres.

Thus,

Rk :Qk + Cik (42)

where Qis the worst-case queuing delay of a message request from S,

A basic analysis for the worst-case response time can be performed if the worst-case
token rotation time is assumed for all token cycles. Assume also that Cy is the maximum
transmission duration of a message cycle. If a master uses the token to perform a
message cycle, we can define the token holding time as:

H=r +C, +t (4.3)

It is not usua to include the token passing time in the token holding time. However,
due to the specificity of the Virtual Token Passing scheme, we decided to associate the
token holding time with the state of the P-NET access counter.
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In equation (4.3), t (=40 bit periods) corresponds to the time to pass the token after a
message cycle has been performed. r (£ 7 bit periods) denotes the worst-case master’s
reaction time. If a station does not use the token to perform a message cycle, the bus will
be idle during s (= 10 bit periods) before all access counters are incremented (please
refer to Section 3.3.1).

As the token rotation time is the time interval between two consecutive visits of the
token to a particular station, the worst-case token rotation time, denoted as V, is:

V=nH (4.4)

with H as defined in equation (4.3). The value V represents the worst-case time interval
between two consecutive token arrivals to any master k (k =1, ..., n).

In P-NET, the outgoing queue is implemented as a FCFS queue. Therefore, a message
request can be in any position within the ns¢ pending requests. ns* is also the maximum
number of regquests which, at any time, can be pending in the master k outgoing queue.
This results from the adopted message stream model, which considers DX £ TX Hence,
th; maximum number of token visits needed to process a message request in master k, is
ns’.

The worst-case queuing delay occurs if ns‘ requests are placed in the outgoing queue
just after a message cycle was completed (at the beginning of the token passing interval:
t) and the token is fully utilised in the next ns‘ consecutive token cycles. We denote this
time instant as t.. We consider that a message cycle was just completed since the token
passing timeist (= 40 bp) instead of s (= 10 bp). Considering the value t leads to the
largest time span till the next visit of the token to that same master k. Only then master k
will be able to process the first of the ns* requests that were placed in the outgoing queue
at time instant t. (please refer to Fig. 4.1 for a specific example).

Definition 4.1 — Master's Critical Instant — We define the critical instant in master k, as
the time instant when ns‘ requests are placed in its outgoing queue just after it has
completed a previous message cycle.

Note that we can not consider releasing ns‘ new requests while master k is processing
a message cycle, since that would mean a deadline violation in master k (a new request
released before the completion of a previous one from the same stream). If there was no
message cycle being processed, there was no point in considering an earlier release time,
since one of those ns* requests would be processed in the preceding visit.

Due to both the deadline restriction and the FCFS behaviour of the outgoing queue,
no additional request may appear in master k till the time instant (t¢), when the last of the
ns‘ requests (made at t.) is completely processed, otherwise, a message deadline would
be missed. Therefore, we introduce Definition 4.2 and Theorem 4.1.

Definition 4.2 — Master’s Busy Period — We define the busy period in master k, as the
time interval between the critical instant, t;, and the time instant t,, when the last of the
ns* requests is completely processed.

Theorem 4.1 In P-NET networks, the worst-case response time of a master's message
request corresponds to the longest busy period in that master.



60 Real-Time Communications with P-NET Networks: Contributions to the Sate-of-the-Art

Proof: The busy period starts when a critical instant occurs. From the critical instant
definition, ns‘ requests are placed in the outgoing queue at the earliest possible instant.
Asthe end of the busy period is defined as being the time instant t, when the last of those
ns‘ requests is completely processed, the difference t. — t. gives the worst-case response
time for a message request in master k, since at time instant t,, a message reguest can be
in any position, from 1% to ns‘-nd, due to the FCFS behaviour of the outgoing queue. U1

Theorem 4.2 In P-NET networks, assuming that the token is fully utilised, the
worst-case response time of a message request in a master K is:

R<=ns*" Vv (4.5)

Proof: Assuming that the token is fully utilised, it will taket + (n—1) = H from instant
t. until the next visit to master k. At the first visit, the token arrives at
tb=t.+t +n+(n—-1)" H, and only then the master will be able to process the first of
the ns* pending requests. As only one of the ns message requests is processed per token
visit, the token will arrive at master k only at instant t; = t, + (ns— 1)~ V to process the
last of the ns* requests. The time elapsed since t; isthent; —t. =t + (Nn—1) ~ H +
+(ns*—1) ~ V. As the worst-case reaction time of a master isr, the last one of the ns*
message requests will start to be transmitted with a queuing delay Q = t +
+(N—-1)" H+(ns*—1)" V+r. Notethat aswe are assuming C¥ = Cy, " i, the worst-
case queuing delay is equal for all message requests in the same master (Q= Q% " ). As
R¥= QX+ Cy, the worst-case response time for a message stream i in master k is (note
that R¥isasoequa to R): R'=t +(n—=1) " H+ (ns'=1) " V +r + Cy, which,
considering that H=r +Cy,+t, can be re-written as follows:

Ro=n"H+(ng- 1) v=v+ns-1 v=ngv
0

Corollary 4.1 In P-NET networks, assuming that the token is fully utilised, the worst-
case queuing delay of a message request in amaster k is:

Q“ =t +(n-1)" H+(ns- 1) V+r =ns"" V- C, (4.6)

To illustrate Theorem 4.1 and Theorem 4.2, assume a network scenario with n = 3 and
ns' = 2. Fig. 4.1 shows both Q' and R* values for such scenario. Note that at t., the ns'
requests are placed in the outgoing queue in any arbitrarily order. Whichever the
ordering, the busy period corresponds to R*, and therefore, the worst-case response time
for amessage request in master 1is(6):ns'” V=2"V=2" 3" H=6" H.

Having found the value for the worst-case response time of a message request in each
master k, a pre-run-time schedul ability test results:

D3 R" (4.7)

That is, the worst-case response time (R* = R) of a message stream S* must be equal or
smaller than its relative deadline (D¥).
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Fig. 4.1 Queuing and response times of a P-NET message

4.4. Schedulability Analysis Considering the Actual Token Utilisation

In the previous section we derived a basic timing analysis for the evaluation of the
worst-case message response time. Such analysis may however be very pessimistic,
since we assumed the token as being fully utilised in the ns¢ consecutive token cycles of
the busy period. However, the token can only be fully utilised during that interval if:

ns’3 ns'," ., (4.8)

as, only in such case, the number of pending requests, in each master y, may be greater
than ns*. Otherwise, if $,.c ns’ < ns", the token utilisation depends on the periodicity of
message streams for those mastersyy.

Definition 4.3 — Master’s Eligible Reguests — We define the eligible requests of master
y 1 k, as the maximum number of requests generated in that master that will be pending*
within the busy period of master k.

If the number of eligible requests of master y (Er’) is smaller than ns, then master y
will not use all ns* token visits to process message cycles. Therefore, the evaluation of
the ErY is of paramount importance for the worst-case response time analysis considering
the actua token utilisation. We will use the following equation as the starting basis for
the evaluation of Er”:

1 Even they are processed during the busy period of master k, for awhile, they were pending.



62 Real-Time Communications with P-NET Networks: Contributions to the Sate-of-the-Art

=
2
> (D>

t

y
i

Er¥(t)=ns’ + (4.9)

.mo
OC\Ch

I\
:

Equation (4.9) gives the maximum number of requests generated by a master y within
atime interval t: ng’ requests are made at the beginning of the interval, and then, new
requests are made at their maximum rate. This is also known as the asap (as soon as
possible) pattern (Liu and Layland, 1973). By tailoring equation (4.9) to encompass the
P-NET MAC characteristics, we will be able to perform a worst-case message response
time analysis which considers the actual token utilisation.

4.4.1. Concept of P-NET Logical Ring Request Jitter

From equation (4.9), it is obvious that the larger the considered time interval is, the
higher is the value for Er’. Note, however, that this equation is a step function, hence it
varies only for multiples of T.

Consider that in each master y * k, ns’ requests are simultaneously made at the critical
instant (t;) of master k. Remembering that since the busy period is defined as [t td, it
would be reasonable to consider as the eligible requests of master y, all those requests
given by
EXY =ng + S, &t —to) / TP In the following analysis, we will show that the worst-
case situation appears when the ns’ requests are not simultaneously made in all masters
y 1t k, and that a quantity before t, must be considered for each master y, depending on its
position in the logical ring.

Assume that the critical instant, which must be considered for each master vy, is
denoted ast,”, witht” <t., " ;.. Basically we need to analyse how much earlier t,* can be
made, increasing the number of master y dligible requests EY = ns’ + S,y &te — t)/TY0,
without any of the initial ns’ requests being able to be processed in an earlier token visit,
prior to the critical instant in master k.

For master k%, which denotes the predecessor of master k, the instant t, can be shifted
back by Cy +r +t, being coincident with the starting of a busy period in master k*. The
critical instant t, cannot be shifted further back, since it would imply a deadline violation
in master k™ or one of theinitial ns’ requests would be processed prior to the busy period
in master k. Considering t as the token passing time implies that a message cycle was
just completed at instant t,. Otherwise, the token passing time would be reduce to s
(please refer to section 3.3.1). Consequently, the total amount that t, may be shifted back
for the case of master k,isCy +r +t = H.

Considering master k?, and following a similar analysis, t, could be shifted back up to
27 H. Thus, a different value for t,, denoted as t¥, must be considered for each master
y 1 k, and its value only depends on the relative logical ring position of master y with
respect to master k.

Definition 4.4 — Logical Ring Request Jitter — We define the logical ring request jitter of
master y, as the difference Jr¥ =t —t,, being t,” how much earlier than the critical instant
in k, a master y can made its ns’ requests, without violating a deadline, nor processing
any of those ns’ requests prior to the critical instant in master k.
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Resulting from the previous analysis, Jr¥ can be expressed as follows:

J'= 4H (4.10)
i=y,y?,..kt
which is equivalent to:
Jr¥ =[(n+k- y)mod n|]" H (4.11)

To illustrate this definition, assume the following network scenario (Table 4.1). For
simplification, the periodicity of streamsis expressed in multiples of H.

Table 4.1: Stream Set Scenario 1

Master | (C,T1,D)
1 nst=3 (Cw, 14, 14) (Cw, 20, 20) (Cw, 20, 20)
2 ng=1 (Cw, 8,8)
3 ns’=3 (Cw, 14, 14) (Cw, 20, 20) (Cw, 20, 20)
4 ns*=3 (Cw, 14, 14) (Cw, 20, 20) (Cw, 20, 20)

The time-line for the master 1 busy period will result as illustrated in Fig 4.2, where
(t? —t)), (t° —t) and (t* — t;) represent the logical ring request jitter, respectively of
msgsters 2, 3 and 4. Note that for master 2, its number of eligible requests is greater than
ns".
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Fig. 4.2 Busy Period of Master 1 with the Scenario of Table 4.1

Theorem 4.3 In P-NET networks, the longest busy period of master k occurs when al its
predecessors started their busy periods in the token cycle previous to the busy period in
master k.
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Proof: The worst-case length busy period in master k, results if al the eligible requests
of each master y are considered for transmission during the interval t, — t.. Considering
that in each master y, ns’ requests are placed in each master's outgoing queue at the
instant t. — JrY, then for each master y the number of eligible requests is EY = ng’ +
+ Si:l,..,nsy dte_ tc + try) / Tiya

Using the definitions of busy period and logical ring request jitter, if ns’ requests are
placed in the outgoing queues at t; — JrY, then, in the token cycle prior to the busy period
in master k, busy periods have started in all predecessors of k. a

Considering P-NET's logical ring request jitter concept, the number of eligible
requests (4.9) can now be updated to:

ns & _ +tY l:l
Er'=ns’ +Q etéie t°y & i (4.12)
=é I’ 0

which, by using Theorem 4.1, Theorem 4.3 and Definition 4.4, can be re-written as:

¥ eR +JrY 0
ErY =ns’ +5 an— o4 (4.13)
=é T 0

with Jr¥ as defined in (4.11).

4.4.2. Concept of P-NET Logical Ring Visit Jitter

Equation (4.13) is still pessimistic, since not all the eligible requests will be able to be
processed within the busy period of master k. The reason is obvious. If ns’ is greater than
ns’, only a maximum of ns‘ requests will be processed by master y within the busy
period. However, for our analysis, the relevant case is when ne’ < ns*, since it leads to a
scenario where the token is not fully utilised. For this case, even if Er¥ (as given by
equation (4.13)) is larger than ns’, it might happen that a number smaller than ns*
requests could be processed during the busy period.

Intuitively we can show that if a new request appears in the outgoing queue of master
y a time instant t, (t. < t, < t¢), this request may not be processed before t., even if the
outgoing queue was empty. Thisis the case of all the requests made in master y after the
last token visit (to master y) prior to the completion of the busy period in master k.

Assume the following example, where we modify, in Table 4.1, the periodicity of
stream S;% from 8 to 12. The time-line for the busy period in master k would be as shown
in Fig. 4.3, instead of that shown in Fig. 4.2. Note that a new request for master 2
appearing before t, can not be processed during the busy period of master 1.

Definition 4.5 — Processing Window of Master's Busy Period — We define the
processing window of master k busy period, as the time span between t. and t,” (t,” < to),
within which, a first-positioned pending request in master y will assuredly be processed.

Definition 4.6 — Logical Ring Visit Jitter — We define the logical ring visit jitter (V") of
master y, as the difference t, —t,”.
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Fig. 4.3 Thisfigureillustrates the concept of P-NET logical ring visit jitter

It becomes obvious that the worst-case response time of a message request in a master
k corresponds to processing windows in masters y * k as large as possible, since thisis
the case where more eligible requests would be processed during the busy period of
master k. Thus, the worst-case response time of a message request in a master k
corresponds to the minimum logical ring visit jitter in mastersy.

Such minimum logical ring visit jitter V' can be evauated considering that none of
the masters y processed any message request in the last token visit prior to the
completion of the busy period in master k.

Therefore,

W =[((n+k- y)modn)-1"s +r +C,, +(s - r) (4.14)

wherer + Cy, corresponds to the processing time of the last of the ns* requests in master
k (see Fig. 4.1), s + r corresponds to master y, and [((n + k —Yy) mod n) — 1] corresponds
to the number of masters between y and k.

There is a certain level of pessimism in considering that none of the masters y
processed any message request in the last token visit prior to the completion of the busy
period in master k. In fact, if for some of those masters ne’ 3 ns', then, they will
assuredly use the token in all ns‘ consecutive cycles of the busy period in master k. For
those masters, we may consider H instead of s, hence diminishing the length of the busy
period processing window.

Therefore, equation (4.14) can be updated to:

IV =[(n+k- y)mod n)]" s +C, + J(H-s) (4.15)
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For the previous example (Fig. 4.3), the number of eligible requests of master 2 would
be 2 However, as, for that master, the logica ring visit jitter is
WM=[(4+1-2)mod4) -1] * s + Cy + Scsswinrgent(H —5) =3" s + Cy +
+2" (H-s)=2" H+Cy+s, only one of those two €eligible requests is able to be
processed within the busy period of master 1.

4.4.3. Number of Unused Tokensduring the L ongest Busy Period

Using the previous analysis, we are now able to evaluate the maximum number of
eligible requests from each master y that may be processed during the busy period of
master k. Such maximum number will lead to the worst-case response time of a message
request in master k.

Definition 4.7 — Master’s Logical Ring Aggregate Jitter — We denote J&’ = Jr¥ — W as
the logical ring aggregate jitter of master y.

Definition 4.8 — Minimum Number of Unused Tokens During a Busy Period — We
define the minimum number of unused tokens by a master y (Ut") during the busy period
in master k, as the minimum number of times that a master y receives the token and does
not have any pending requests, during that period.

Theorem 4.4 The minimum number of unused tokens by a master y within a busy period
of master k, is Ut = ng —min{ns, ng’ + S, . &R + Ja) / TG} .

Proof: By Theorem 4.3, the maximum number of eligible requests of master vy is
ng + S.i.y R+ JrY) / TY0 From these requests, only those which arrive within the
master k processing window, will be able to be processed within the busy period.
Therefore, the evaluation interval for the asap patternis RS + Jr¥ — v/ = R + J&.

In amaster k, the number of token cycles during the busy period is, by Definition 4.1,
equal to ns". Thus, the actual token utilisation by a master y, during the busy period of
master k, ismin{ns’, ns’ + S, &R+ Ja) / T)(}.

As a consequence, the number of times master y does not use the token during the
busy period of master kiis:

Ut =ng" - mm.nsk,nsué‘?(R + 34 (4.16)

i aé T %

o

Theorem 4.5 The minimum number of unused tokens during a busy period of master k,
is

ut=g ur (4.17)

y=1
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Proof: Sincey =k, Ut = 0, the proof for this theorem is obvious.

4.4.4. Analysisof the Worst-Case Response Time

Considering that the token is fully utilised (Section 4.3), the worst-case response time of
amessage request in amaster k (equation (4.5)) isR=ng"" V.

It is now possible to update equation (4.5) to incorporate the actual token utilisation,
considering that, for each unused token we must subtract the corresponding value of the
token holding time (H), and add a's corresponding to the token passing time for the case
of an unused token:

Ri=ng"V-Ut (H-s) (4.18)

Using the results obtained along this sub-section, the worst-case response time of a
message request in a master k is:

€0 e N ¥ BR + Ja¥ (L
R<=ns" V- éeé_én§‘— minins', ns’ +g m%i (H-s) (4.19)
=1 | =1 e i

As expected, this equation embodies a mutual dependence, since R¢ appears in both
sides of the equation. In fact, all the previous analysis underlay this mutual dependence,
sincein order to evaluate R, Ut must be found, and vice-versa.

We can use the same approach as described in sub-section 2.4.3, and form the
following recurrence relationship:

.., Coe® 1 ¥ ANV™ + Ja (U,
W™ =ng "V - éeé?nsk- minjns,ns’ + g E?Ja::g (H-s) (4.20)
y=1 1 i=1 i

The set of values {W°, W*, W2, ..., W", ...} is monotonically non decreasing, since as
W evolves, less unused tokens are being considered. Starting with W’ = 0, when
W"= W™ the solution for equation (4.19) has been found.

4.4.5. Pre-Run-Time Schedulability Condition

For obvious reasons, inequality (4.7) holds for this analysis considering the actual token
utilisation, and thus, a pre-run-time schedul ability condition is:

D3 ng V-Ut (H-s) ", (4.21)

Note that inequality (4.21) constrains D;¥ to be larger than a value that is proportional
the number of message streams in master k. This aspect may be very restrictive for
masters dealing with a large number of remote I/O points. In Chapter 7, we will present
some solutions to overcome this problem, which is due to the FCFS characteristics of the
P-NET outgoing queue.
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4.4.6. Pre-Run-Time Schedulability Tool

As for the case of the response time analysis in a single processor environment, the
communication response time analysis imposes that each message stream must be
individually tested. However, as the proposed schedulability condition is to be done prior
to run time, no major cost exists, provided that a software analysis tool is available. In
Appendix A.1, we detail an algorithm which may be the basis for the implementation of
such a software tool.

4.4.7. Numerical Example
Assume the following message stream set:

Table 4.2: Another Message Stream Set Example

Master | (1,0
1 ns' =3 (Cw, 14, 14) (Cw, 20, 20) (Cw, 40, 40)
2 ng=1 (Cwm, 12, 12)
3 ns’=3 (Cw, 14, 14) (Cw, 20, 20) (Cw, 20, 20)
4 ns'=2 (Cw, 14, 14) (Cwm, 20, 20)

Applying equation (4.19) by using the recurrence relationship given by equation
(4.20), we will be able to find the worst-case response time for master 1.

As the number of streams in master 3 is equal to the number of streams in master 1,
we need only to focus on the unused tokens of masters 2 and 4.

Therefore, the network aggregate release jitter for master 2 will be:

Ja?=3 H-J#=3 H-(3s+C,+1 (H-s))=2"H-C,-2"s
and the network aggregate release jitter for master 4 will be:
Ja'=1 H- W =H- (s +C, +0)=H- C,, =r +t
For W’ = 0, then, WA is,
=34 H-nut' (H-s)=3 4" H-(2+) (H-s)=9"H+3s
For W =9 H+s, Wis:
=3 4" H-(2+1) (H-s)=9"H+3" s

The iterations stop at this point, as W = WX, This corresponds to the time-line
illustrated in Fig 4.4.

If we consider that the longest message cycle is composed by 67 P-NET frame bytes
(request + response), then this correspondsto 67 © 11= 670 bits. Including 30 bp, for the
worst-case reaction time of a slave, then Cy = 767 / 76800 =10 ms.

Therefore, H = (7 + 767+ 40) / 76800 = 10.6ms.

This means that the worst-case response time for a message request in master 1 is:
97°10.6+3" (10/76800) =95.79ms.
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Fig. 4.4 Busy Period of Master 1 within the Scenario of Table 4.2

4.4.8. Consideringthe Actual Transmission Time for M essage Cycles

In the previous analysis, the message cycles' length was considered, for simplification,
to be constant (Cik = Cw, " ix)- The results can now be updated, considering the actual
message cycles' length, or at least, the longest (smallest) message cycle in each master.

Considering M* = max.,_.+{ C*} as the longest message cycle in a master k and that
the token is fully utilised then, the worst-case queuing delay of a message request in
master k (updating (4.6)) is (note that now Q* = Q% " ; is not valid any more):

Q< =ng” a(r +M'+t)- C* (4.22)
1=1
Thelogical ring request jitter (4.10), can be updated to:
= §lr+mi+t) (4.23)

Thelogical ring visit jitter (4.15), can be updated to:

M= §s+ mm{Ck}+ al-s) (4.24)
=k e n)ésng‘l

where L' is defined as the smallest message cyclein amaster I: L' =r + min.,_{C'} +
t.

The worst-case response time of a message request in a master k (4.19) can be
updated to (we need now to consider the shortest holding time in each master):

n ns’ 0 u
Rk:n§'é_(r+M'+t) c- aé‘?né‘ mln¥n§‘ ns“aﬁww'(u-s)@ (4.25)

& f he T gy 4
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Finally, as R* may be different from stream to stream in each master, the pre-run-time
schedulability condition (4.7) must be updated to:

Dik 3 Rkiu ik (4.26)

4.5. Extending the Analysisto Multi-Hop P-NET Networks

P-NET hopping devices (labelled as gateways in the standard, but termed hopping
devices in this work) alow the interconnection of different network segments, each one
with independent logical virtual token-passing schemes. In P-NET, the function of a
gateway is to isolate two or more bus segments, and to automatically route a frame
between the connected buses. In our opinion, and according to 1SO-OSI definitions
(Perleman et al., 1988), the P-NET gateways combine techniques used in bridges and
routers, and thus the term “hopping devices’ is preferred.

The P-NET multi-segment feature allows for routing through up to ten hopping
devices. These multi-hopping capabilities are based on simple rules for address
conversion inside the hopping devices. P-NET supports four types of addresses: simple,
complex, extended and response address types (see Section 3.3.1). The complex address
can contain up to 24 bytes. P-NET uses the complex addressing scheme to route frames
through hopping devices. This complex address explicitly addresses each intermediate
device.

In P-NET, hopping devices isolate traffic between P-NET segments. If the different
segments group inter-related masters and slaves, the overall real-time capabilities are
improved, as the virtual token cycle time in each single segment becomes smaller.
However, if aparticular stream relates a master and a slave in two distinct segments, that
stream will have a higher response time. We denote message streams that are relayed
through at least one hopping device as multi-hop message streams. In this section, an
analysis for deriving the upper bound of the response time for multi-hop message
streamsis provided.

45.1. Motivation

Suppose a P-NET network composed of four masters (M1, M2, M3, M4) and four slaves

(el, €2, €3, e4), al connected to the same network segment. Each one of the masters

deals with two message streams, as shown in Fig. 4.5.
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Fig. 45 A P-NET network example
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Considering that the maximum token holding time in each station isH = 250" bp (this
means that the longest message cycles for each master is: max{ C}=203" bp," ,), then the
pre-run-time schedulability condition (4.7) is: D3 2" 4" 250" bp=2000" 1/76800 = 26ms.

The example in Fig. 4.5 illustrates, on a reduced scale, the advantages of
segmentation. In fact, the whole network could be composed of two segments, grouping
M1, M2, el and €2 in one segment, and M3, M4, €3 and e4 in another segment
(Fig. 4.6). For simplification, any of the existing masters (M1, M2, M3 or M4) is used to

implement the multi-hopping features.
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Fig. 4.6 Using one hopping device

As none of the message streams is to be relayed through the hopping device, the pre-
run-time schedulability condition becomes: D2 2" 3" 250" bp = 1500~ 1/76800 =
19.5ms.

However, in more complex systems, it is unlikely that all the message streams can be
restricted to their own segments. As real implementations of slave nodes group several
I/0 poaints in racks, it is possible that specific information flows will demand inter-
operation between masters and slavesin different network segments.

4.5.2. Sequence of Transactionsin Multi-Hop M essage Streams

Apart from having a longer address field, multi-hop message streams will have
additional queuing delays. Fig. 4.7 illustrates the message seguence corresponding to
master/slave transactions through two hopping devices. It isimportant to notice that each
hopping device embodies two masters (and in the general case, as many masters as the
number of segments that it interconnects).

If master M1 (in network segment 1) requires the reading of a sensor associated with
dave €3 (in network segment 3), hopping devices M5 and M4 are used to relay the
message stream. The sequence of message transactionsiis as follows.

1. When M1 gains access to the network (segment 1), and the message is the first
one in the outgoing queue, M1 sends a request and M5a responds immediately
with an “answer due later”.

2. When M5b gains access to segment 2, and the message is the first one in the
outgoing queue, M5b sends the request and M4a responds immediately with an
“answer due later”.

3. When M4b gains access to segment 3, and the message is the first one in the
outgoing queue, M4b sends the request and slave e3 responds immediately with
the reguested information.



72 Real-Time Communications with P-NET Networks: Contributions to the Sate-of-the-Art

4. When M4a gains access to segment 2, and the message containing the required
information is the first one in the outgoing queue, M4a sends a request without a
response to M5b.

5. When Mb5a gains access to segment 1, and the message is the first one in the
outgoing queue, M5a sends a request (containing the required information)
without aresponse to M1.

So, in general, if h represents the number of intermediate hopping devices through

which a message stream is to be relayed, there will be 2~ h + 1 queuing delays to be
considered.
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Fig. 4.7 An example of amulti-hop transaction

4.5.3. Prerun-time Schedulability Condition for Multi-hop M essage Streams

Each P-NET segment has its own virtual token-rotation procedure. Thus, the maximum
virtual token cycle time in a segment x can be defined as:

n
[o}

Ve=aH (4.27)
iTx
The upper bound for the response time of a message from stream S* can be derived
as follows. If the message stream is to be relayed through 0 hopping devices, then R is:

R“=ns*" Vv(k) (4.28)

where V(k) corresponds to the upper bound for the virtual token rotation time of the
network segment to which station k belongs.
If the message stream is to be relayed through 1 hopping device, then R¥ is:

R¢ = (ns* +nst) V(k)+ns? " V(r,)+2 f (4.29)

where ry is the hopping master in the same segment as master k, and r, is the hopping
master in the other segment. The symbol f stands for the time needed by the hopping
deviceto transfer frames between communication stacks.
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) If the message stream is to be relayed through h hopping devices (with h 3 2), then
R"is:

=

_l[(ns'“ +ns'? ) V(rz, J. )] +ns'zh V(r, )+

R = (ns* +nst ) v (k)+ 1 @20

.mo

]

+2" h' f

where r is the hopping master in the same segment as master kand r,, r3, ..., r> are the
hopping masters which relay the message from master k to its destination. For example,
for the scenario shown in Fig. 4.7, r, = Mb5a, r, = M5b, r; = M4a and r, = M4b. As a
conseguence, in equation (4.30) r; (i =1, ..., 2~ h) identifies the masters in hopping
devices according to the physical sequence from master k to the addressed slave devices
and not according to the sequence of transactions.

As for the non-segmented case (equations (4.28) or (4.5)), the same sufficient P-NET
pre-run-time schedulability condition (inequality (4.7) — DX 3 R) can be used to
guarantee that real-time multi-hop message streams are processed before their deadlines.
Depending on the number of hopping devices a message is relayed through, equation
(4.28), (4.29) or (4.30) is used to evaluate the upper bound of the message response time.

45.4. Numerical Results

In this section, a numerical example is provided, which exemplifies what a user of
P-NET can abtain from the proposed pre-run-time schedulability conditions. Although a
limited number of message streams per node is assumed, some useful information can be
obtained from this example:

1. how the maximum upper bound of each message-stream'’s response time, in both

anon-segmented and segmented P-NET network can be evaluated;

2. how a P-NET network can be segmented in order to reduce the maximum upper

bound for the message response time.

In this specific example, a comparison is also made between the response time's
upper bound in a non-segmented and a segmented P-NET network, clearly
demonstrating the impact of network segmentation.

Assume that a DCCS should be implemented using eight master networks. Also
assume that all message cycle lengths are bounded to 200" bp (2.6ms at 76800bps). The
number of streams related to each master is shown in Table 4.3 (atotal of twenty-eight
message streams, distributed by eight masters).

Table 4.3: Number of Message Streams Related to Each Master

M aster | 1 2 3 4 5 6 7 8
ns* 3 4 3 2 1 4 5 6
max{C}"} 200bp  200bp  200bp  200bp  200bp  200bp  200bp  200bp

In this case, the upper bound for the virtual token cycleisV=8" 247" bp =25.7ms.
Therefore, using equation (4.28), the upper bound for the message response times is as
shown in Table 4.4 (all streams in the same master will have the same upper bound for
their response times). Note that the generation and delivery delays at the application



74 Real-Time Communications with P-NET Networks: Contributions to the Sate-of-the-Art

process level are ignored, and must be evaluated at the level of the application process
software. However, ignoring such delays is not of major importance, and as P-NET
operates at 76800bps they will be usually much smaller than the transmission and
queuing delays.

Table 4.4: Upper Bound for the Message Response Times

M aster | 1 2 3 4 5 6 7 8
R¥(ms) | 771 102.1 77.1 51.4 25.7 1028 1285  154.2

If, for example, the application imposes deadlines smaler than 102.1ms for the
message streams of master 2, or less than 25.7ms for the message streams of master 5,
then the message stream set would not be schedulable.

Suppose that by re-organising the network into three network segments, as shown in
Fig. 4.8, only two message streams are multi-hop streams: S;* and S°. Then, tighter
deadlines can be supported for al but those two message streams.

| Segment 1 " Segment 2 | Segment 3 |
1 | 11 | 11 | 1
1 slave 2 314 5 slave 6!7 8 %
- " master | masters master - -
HD 1 HD 2

Fig. 4.8 Proposed segmentation of the network

Assume that streams S;* and S,° correspond to remote accesses, to slaves in segment
2 and segment 8, respectively. Table 4.5 illustrates the routing sequence for these
streams.

Table 4.5: Routing Sequence (Master IDs) for the Multi-Hop Streams

T | h | M 2 I3 la
S 1 3 2 N N
S° 2 ’ 7 6 4 3

These two streams will impose two additional message streams (resulting from
messages being relayed through the hopping device) in masters 3 and 4, and one
additional message stream in masters 6 and 7. Table 4.6 reflects the aggregate number of
message streams per master station.

Table 4.6: Aggregate number of message streams related to each master

M aster | 1 2 3 4 5 6 7 8
ns* [ 3 4 5 4 1 5 6 6

If, for simplification, the components f in equations (4.29) and (4.30) are ignored, as
well as the additional byte addresses in the multi-hop streams (thus maintaining 200~ bp
as the value for the longest message cycle in each master), then the results, shown in
Table 4.7, are obtained.
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Table 4.7: Upper Bound for the Virtual Token Cyclein Each Segment (Eq. (4.27))

Segment | 1 2 3
V(ms) | 965 9.65 6.43

By implementing the proposed network segmentation, an important reduction of
worst-case response times can be achieved, asillustrated in Tables 4.8 and 4.9.

Table 4.8: Upper Bound for the Response Times (Single-Segment Streams Eq. (4.28))

M aster | 1 2 3 4 5 6 7 8
R-F(ms) | 289 386 482 386 9.6 482 386 386

Table 4.9: Response Time Reduction as Compared to Table 4.4

Master | 1 2 3 4 5 6 7 8
RARF | 369%  375%  626%  751%  375%  46.9%  30.0%  24.5%

Obviously, for the multi-hop message streams S;* and S;® the upper bounds for their
response times increase, as compared to the figures given in Table 4.6 (77.1ms and
154.2ms, respectively).

The values are as follows. For R,* equation (4.29) is used and Table 4.6 gives the
number of streams for the masters. Its value is: R;* = (ns' + ns®) ~ V(1) + ns*”~ V(4) =
=(3+5) " 9.65+4 " 9.65=115.72ms.

For R,® equation (4.30) is used and Table 4.6 gives the number of streams for the
masters. Its valueis: R = (ns® + ns’) = V(8) + (ns + ns®) ~ V(6) +ns’~ V(3) =12~
6.43+9" 9.65+5" 9.65=212.36ms.

The upper bound for the response time of message stream S,* (for which h = 1)
becomes 150% higher, whereas message stream S,° (for which h = 2) becomes 137.7%
higher.

The impact of network segmentation on the response time of both single-segment and
multi-hop message streams is therefore clear.

45.5. Considering the Actual Token Utilisation

The pre-run-time schedulability conditions presented in Section 4.5.3 may now be
updated to consider the actual token utilisation (see Section 4.4).

Consider that R'* denotes the worst-case response time for a message stream s
considering the actual token utilisation. R’ Xis defined as follows:

h e
Reé =B R 8e2 1 (431)
€z=0 a

where ro, rq, ..., F>n In Section 4.5.3, we used the notation r; (i T A) to denote the
master stations which relay message stream S¥. In this section, r; is extended such that ro
denotes master k itself (thusri: i1 Ag).

In equation (4.31), R} denotes the worst-case response time of the individual
transaction concerning message stream S* in master r,, and is defined as follows (see
equation (4.19) for an analogy):



76 Real-Time Communications with P-NET Networks: Contributions to the Sate-of-the-Art

é i udl
én (; ns’ *T; \ U

R*: =ng- " V(r,)- 88 Cn* - minfnss,ng'+ ewt*y‘u (H-s) (432
é i E L

S
x I
<

MO0

1 S) - BRI s b

In equation (4.32), yl Xy, denotes all masters y belonging to the same network segment
as master r,. Also in the same equation, (S” not relates to S %) denotes all streams |n
master y except an eventual extrinsic stream related to the relaying of stream S*.
Ja¥ =Jr¥ — 3V is the logical ring aggregate jitter of master y as related to master r;, as
defined in Section 4.4.3. Equation (4.10), for the logical ring request jitter, and equation
(4.15), for the logical ring visit jitter, must be restricted to the considered segment. Thus,
equation (4.10) must be updated to:

¥'= @H (4.33)

and equation (4.15) must be updated to:

v = é_s +C,+ a(H-s)
I=y, ly)< ! I=y|*T1),(...,r,'1 (434)
ns¥'? ng'z

In equation (4.34), ng* is defined as follows:

_ins’,if ydonot relay Sk (4.35)

ns’' =
fns” -1, if yisused torelay S

The consideration of the actual token utilisation for multi-hop message streams is now
compared to the previous analysis in the following example. Consider again the same
multi-hop example (Fig. 4.8), where the timing characteristics of the message streams
are as shown in Table 4.10. The only streams that are multi-hop are streams S,* and S8
with arelaying table as shown in Table 4.5.

The worst-case response times for the single segmented streams, considering the
actual token utilisation are as shown in Table 4.10. We have used a software tool based
on the algorithm given in Appendix A.l. Therefore, we have excluded the eventual
extrinsic streams related with the relaying of stream S¥, and also the algorithm for the
evaluation of the visit jitter was based on equation (4.15) and not on equation (4.34).

Table 4.10: Characterisation of the Message Stream Set

M aster | 1 2 3 4 5 6 7 8
Ns¢ 3 4 3 2 1 4 5 6
Max{C} 200bp  200bp  200bp  200bp  200bp  200bp  200bp  200bp
T (ms) 300 200 500 200 100 500 500 500

Table 4.11: Upper Bound for the Response Times (Single-Segment Streams Eq. (4.5))

M aster | 1 2 3 4 5 6 7 8
R (ms) | 289 355 389 293 9.6 328 386 386
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For stream S, R*;* = 28.9 + 29.3 + 38.9 = 97.1ms. For stream S%, R*,® = 38.6 + 32.8
+38.9+29.3+38.6=178.2ms.

The results shown in Tables 4.2, 4.8 and 4.11, for a non-segmented network, a
segmented network (as shown in Fig. 4.6) and a segmented network considering the
actual token utilisation, respectively, are compared in the graph of Fig. 4.9.

160- -
140+ |
120+ 1 @ non-segmented network

100+ |l |
80+ |
60+ |

40+ s Bls B
B segmented network
201 considering token
04 LLD L utilisation

1 2 3 4 5 6 7 8

Master

O segmented network

Response Time (ms)

Fig. 4.9 This figure compares the worst-case response times for the example, resulting from the
different analysis drawn in this chapter

4.6. Summary

P-NET networks aim at the interconnection of field devices such as sensors, actuators
and small controllers. Therefore, they may be a privileged basis upon which Distributed
Computer-Controlled Systems (DCCS) are built. DCCS impose strict timeliness
requirements to the communication network; that is, they impose that traffic must be sent
and received within a bounded interval, otherwise atiming fault is said to occur.

P-NET is a multi-master fieldbus standard based on a virtual token passing scheme. In
P-NET each master is alowed to transmit only one message cycle per token visit. This
means that, in the worst-case, the communication response time of a message can be
derived considering that the token is fully utilised by al stations. Based on this
consideration, in Section 4.3, we introduce the concept of worst-case token rotation time,
and we provide a smple analytical formulation for expressing the response time of a
P-NET message (equation (4.5)). This equation allows the implementation of a simple
feasibility test (equation (4.7)) for P-NET message streams.

However, such analysis was proved to be quite pessimistic. Therefore, in Section 4.4,
we propose a more sophisticated P-NET model, which considers the actual token
utilisation by the different network masters. The major contribution of this model is to
provide a less pessimistic, and thus more accurate, anaysis for the evaluation of the
worst-case communication response time of P-NET messages (equation (4.18)). This
equation alows for the implementation of a more accurate feasibility test (eguation
(4.21)) for P-NET message streams.
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Finally, in Section 4.5 we extended the analysis performed in Sections 4.3 and 4.4 to
the case of multi-hop P-NET networks. We showed how, by using P-NET hopping
devices, a significant reduction on response times could be achieved for most of the
message transactions. In such way, tighter message deadlines can be supported.
However, we stress that the system designer must clearly understand that such
reductions are not possible for inter-segment message transactions. Therefore, care
should be taken to group masters and slaves involved in message transactions with
stringent deadlines in the same network segment.
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Chapter 5

Real-Time Communications with PROFIBUS
Networks:. Contributionsto the State-of-the-Art

In this chapter we develop a methodology for the worst-case response time
analysis of PROFIBUS messages. This chapter is largely drawn from the following
published work: "Real-Time Fieldbus Communications Using PROFIBUS
Networks' (Tovar and Vasgues, 1998a); "Guaranteeing Real-Time Message
Deadlines in PROFIBUS Networks" (Tovar and Vasques, 1998b); "Cycle Time
Properties of the PROFIBUS Timed Token Protocol” (Tovar and Vasgues, 1998c)
and "Setting Target Rotation Time in PROFIBUS Based Real-Time Distributed
Applications" (Tovar and Vasgues, 1998d).

5.1. Preliminary Protocol Analysis

The PROFIBUS medium access control (MAC) protocol is based on a token passing
procedure, used by master stations to grant bus access to each other, and a master-slave
procedure used by master stations to communicate with slave stations. Please refer to
Section 3.4.1 for a detailed description of the main characteristics of this protocol.

The remainder of this chapter is organised as follows. In Section 5.2 we introduce the
network and message models, which will be used throughout the rest of the chapter.
Considering a profile where the low-priority traffic is unconstrained, the worst-case
response time of PROFIBUS messages depends on the accurate definition of the
maximum token cycle time. This response time analysis is outlined in Section 5.3, and,
due to its relevance, the token cycle time properties are assessed in Section 5.4. Finaly,
in Section 5.5, a constrained low-priority traffic profile is considered, where, by
controlling the number of low-priority message transfers, all pending real-time traffic is
transmitted at each token arrival. A worst-case response time analysis is therefore
provided for this profile and some implementation issues are al so discussed.

5.2. Network and M essage M odels

Consider a bus topology containing n master stations. A specia frame (the token)
circulates around the logical ring formed by the masters. We denotet as the logical ring
latency (token walk time, including node latency delay, media propagation delay, etc.).
Message cycles generated in the system at run-time may be placed in a high-priority
outgoing queue (real-time messages) or in a low-priority outgoing queue (non real-time
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messages). We denote thei™ (i = 1, 2, ... nh*) high-priority message stream associated to
amaster k as Sh¥, which is characterised as follows:

S =(Ch, TH,DK) (5.1)

A message stream is a temporal sequence of message cycles concerning, for instance,
the remote reading of a specific process variable. Ch¥ is the longest message cycle
duration of stream Sh*. This duration includes the time needed to transmit the reguest
frame and completely receive the related response, and also the time needed to perform
the allowed number of message retries. Th is the periodicity of stream Sh* requests. In
order to have a subsequent timing analysis independent from the model of the tasks at
the application process level, we assume that this periodicity is the minimum interval
between two arrivals of Sh* requests to the outgoing queue. Dh is the relative deadline
of the message cycle; that is, the maximum admissible time interval between the instant
when the message request is placed in the outgoing queue and the instant when the
related response is completely received at the master's incoming queue. Finally, nh
denotes the number of high-priority message streams associated with a master k.

We assume only one low-priority message stream per master k, which gathers all the
non real-time traffic issued by that master (see Section 3.4.1). Thus, a low-priority
message stream S¥is characterised as:

g% =(Cl*,nlp“) (5.2)

where CI¥is the maximum amount of time required to perform a low-priority message
cycle in master k. nlp* is the maximum number of low-priority message cycles that a
master k is allowed to perform at each token arrival, which is a meaningful parameter to
constrain the low-priority traffic.

5.3. Analysisfor the Wor st-Case Response Time

In the PROFIBUS MAC protocol, and as long as there are pending high-priority
messages, a master station is guaranteed to transmit, at least, one high-priority message
per received token (even if there is not enough token holding time left). Assuming the
worst-case scenario (token aways arriving late), if there are m pending high-priority
messages, it will take m token visits to execute all those high-priority message cycles.
The worst-case is when the message with the shortest deadline becomes the last one in
the FCFS outgoing queue. Fig. 5.1 illustrates this scenario.

In this scenario, when master 1 sends the token to master 2, messages from all the nh'
streams arrive at the FCFS outgoing queue in the following order: Sh,*, Sha*, Shy', Shy™.
Considering that the message deadlines are as follows: Dh,">Dh;*>Dh,! >Dh,*, the most
stringent message (Sh;) will wait until the fourth token visit to be transmitted.
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Maximum Queuing Delay for Sh,*
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Fig.5.1 Example of the maximum queuing delay for a PROFIBUS message

For the queuing delay analysis, it is important to note that the maximum number of
pending messages will be nh*, corresponding to one message per each Sh¥ stream.
Indeed, if at any time there are two pending message requests from the same stream,
then a deadline for that message stream was missed.

We denote the worst-case response time of a stream Sh¥ as R Thistimeis measured
starting at the instant when the request is placed in the outgoing queue, until the instant
when the response is completely received at the incoming queue. Basically, this time
interval is made up of the two following components.

1. The time spent by the request in the outgoing queue, until gaining access to the

bus (queuing delay);
2. Thetime needed to process the message cycle.
Thus,

Rk - Q|k + Chk (52)

where Q¥ is the worst-case queuing delay of a message request from Shi*.

It is clear that, assuming that message deadlines are not missed (thus the maximum
number of high-priority pending messages is nh*), the upper bound for the message
queuing delay in amaster kis

Q“ =nh*" T, (5.3)
where chyde is the upper bound for the token inter-arrival time at a station k, hence the
upper bound for the real token rotation time (T zg). Note that, under our assumptions, the
gueuing delay for a message request in one station is independent of the message stream
Q*=Q " iet. k)

Combining equations (5.2) and (5.3), the worst-case response time of a PROFIBUS

high-priority messageis:
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R =nh*" T}

cycle

+Ch* (5.4)

Therefore, a pre-run-time schedulability condition for the high-priority message stream
setis:
Dh* 3 nh* " TX

cycle

+Chf (5.5)

5.4. PROFIBUS Token Cycle Time Analysis

From the proposed pre-run-time schedulability condition (5.5), it follows that an
accurate evaluation of the chyc.e parameter is of paramount importance for the response
time analysis in PROFIBUS networks. Therefore, such evaluation is the main focus of
this section.

5.4.1. Analysisof the PROFIBUS Token L ateness

In PROFIBUS networks, the real token rotation time (TkRR) is always smaller than T+g,
except when one or more masters in the logical ring induce the token to be late. Two
reasons justify alate token arrival at a master k.

1. Asonce a message cycle is started, it is always completed, even if the T, timer
has expired during its execution, a late token may be transmitted to the following
masters. We define this occurrence as an overrun of the T overrun timer.

2. If amaster receives a late token, it will still be able to transmit one high-priority
message, which may further increase the token lateness in the following masters.
This caseis not considered to be an overrun of the T¢; timer.

In this section, we analyse causes and consequences of the token lateness. We will
introduce and prove three theorems. Theorem 5.1 states that the token is never late
unless an overrun of Ty occurs in one of the masters that form the logical token-passing
ring. Theorem 5.2 states that even if more than one master overruns its Ty in a token
cycle, only the last one (as seen from the master for which Tgr is being measured) will
contribute to the token delay. Finally, Theorem 5.3 states that, in a specific situation, al
masters may contribute to the token lateness. These three theorems are the basis for the
evaluation of chyde (an upper bound for TkRR).

Theorem 5.1 In PROFIBUS networks, if the master holding the token releases it before
the expiration of T<m, then, the following master in the logical ring will receive an early
token.

Proof: We denote A(l) as the time instant when the token arrives to the master k for its
1" visit, and R¥(l) as the time instant when master k releases the token in that |™ visit.

If master k releases the token before the expiration of T, then, R{(1)-A%(I-1)<Trr.
Note that the real token rotation time is measured between token arrivals. Therefore, at
the time instant A(l), T is given the value Trg-T'zs, @ positive value (the token does
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not arrive late). If at the time instant R¢(1) master k releases the token and the T<p, timer
has not yet reached 0, then R(I)-A(I-1)<T. This equation is the starting assumption for
the remainder of the proof.

We denote the successor of master k as master k' (with k*!=(k+1) mod n). We want
to prove that if RY(I)-A(-1)<Tx is true, then A“Y()-A*(I-1)<Tr is aso true; that is,
after releasing the token at time instant R¥(1), the successor of k will receive an early
token.

As A“Y(1-1)=R{1-1)+t/n (since t denotes the total logical ring latency, k™ will
receive the token t/n time after the release of the token in k) and as A“*(I)=R¢(1)+t/n
then, combining these two expressions, it follows that A" *(1)-A*(1-1)=R¢(1)-R¥(I-1).

The starting assumption is that R(I)-A(I-1 <TTR As RY(- Flzz =A"(1-1)+t/n, it is true
saying that R¥(I-1)>AX(I-1). Therefore, if R(1)- A(I 1)<T+g then RY(1)-R¥(I-1)<Tr.

As AYYD-AY1-1)=R()-R(-1), if R()-R(I-1)<Tr then A“Y(1)-A“Y(1-1)<Trg is
true; that is, the successor of k receives an early token. a

Fig. 5.2 illustrates Theorem 5.1, where master 2 releases the token before the
expiration of T?y(1), and so master 3 receives an early token.

Trr (referenced to M2)
t/4 T (1)
<— o

Mester 1 i | i
-~ A=y

Master 3 i A¥(-1) R(-1) A RY)

A1) RY(D) A¥)
Master 4

T token arrival - high-priority message cycles with Ty, >0

I token passing time I:I low-priority message cycles with Ty >0

Fig. 5.2 Anillustrative example for Theorem 5.1
From Theorem 5.1, two corollaries result.

Corollary 5.1 In PROFIBUS, a master k receives an early token if master k™ releases it
before the Ty, expiration, even if there was any overrun of a Tryin masters k2, k3, ...

Corollary 5.2 In PROFIBUS, if none of the masters overrun their Ty, the token will
never be late.

Theorem 5.2 In a PROFIBUS network, in a specific token cycle, only one overrun of
T4 contributes to the token |ateness.
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Proof: Assume that a token delay is induced in the I"" token cycle. Hence, the token will
arrive late in the next token cycle. Consider the analysis focused on master k, and the
measurement of the time elapsed between AY(l) and A(I+1), that is, between two
consecutive token arrivals to master k (Tgg).

If k1, then the masters that may induce a delay in the token are, in sequence of
token holding, the master k itself and all other masters up to master n, in the I"™ token
rotation, and master 1 and all masters up to master k' in the (I+1)™ token rotation. If
k=1, then the masters that may induce a delay in the token are, in sequence of token
holding, the master k itself and all other masters up to master n, al in the I token
rotation.

For simplification of this proof, and without loss of generality, we assume that k=1.
In this case, the last master, before the (I+1)" visit of the token to master 1, which may
produce an overrun of the Ty, is master n, hence an overrun in Twy(1).

If in the I"™ visit to master n an overrun of T"y, occurs, then A'(1)-A"(I-1)£ Trg; that is,
the token arrived early to master n. If we denote b"(l) as the time instant when Ty
expires during the I visit to master n, then, as A(I)>A"(-1), it follows that
b"(1)-A%(1)ET+x, No matter if other overruns have occurred in the I rotation of the token
in any of the predecessors of master n. Thus, only one overrun may contribute to the
token lateness. a

Fig. 3 illustrates Theorem 2, where n is set to 4 and K is set to 1. In this illustrative
example, two overruns occur in the I"™ token rotation, in master 1 and in master 4. Only
the last one before Al(I+1), the one that took place in master 4, contributes to the
lateness of the token arriving to master 1 at A'(I+1).
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Al A ')
T token arrival - high-priority message cycles with Ty >0 I:I message cycles with Ty <0
I token passing time I:I low-priority message cycles with Try >0 high-priority message cycle with a late token

Fig. 5.3 Aniillustrative example for Theorem 5.2

Theorem 5.3 If a PROFIBUS master k holds the token for an interval greater than Trx-t,
all the following masters up to master k™ will receive a late token.
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Proof: Due to the token-passing time and other network latencies, it follows that
AD)-AY1-1)3 ((n-1)/n)" t; that is, the difference between the token arrival to a master k
and the token arrival to its successor in the previous token cycle is at least ((n-1)/n)" t
(corresponding to n-1 token-passing times).

AD)-AY1-1)3 (n-1)/n)" t can be re-written as A“Y(1-1)EAY)-((n-1)/n)" t. As the
master k holds the token for an interval greater than Trg-t, then RE(1)>AX(1)+Trx-t .

It is also evident that the arrival of the token to master k** occurs at A< (1)=R¥(1)+t/n,
that is at the time the token is released in k added to the time to pass the token to k™.

Thus, if we replace R¥(l) in the equation (A“*(1)=R¥1)+t/n) with the inequality
(R(>AK(1)+Trr-t), it follows that A“Y(1)>AX1)+Tr-((n-1)/n)" t. Hence, using this last
inequality and knowing that AX(I)-A“"}(I-1)3 (n-1)/n)" t O AY(I-1)EAY1)-((n-1)/n)" t, it
follows that A“Y(1)-A“"(1-1)>A (1) +Trr- ((n-1)/n)” t-A1)+((n-1)/n)" t=Trg.

Obviously this result extends to all the following masters which range from master k™
up to master k*. The starting assumption is that the token holding time in master k is
R{(1)-A()>Trr-t. As the token arrived in the other masters before AX(l), and after its
release from master k at time instant R(1) it will arrive at the other masters after R¥(l),
the token rotation time as measured in the other masters will give, for al of them, a
value greater than Tg. a

Fig. 5.4 illustrates Theorem 5.3, where k is set to 1.
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Fig. 5.4 Aniillustrative example for Theorem 5.3
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5.4.2. Evaluation of the Token Cycle Time

By using Theorem 5.3, we can define the token lateness in a master k (T ) as the
maximum excess to Tty at the token arrival to the master k. The token cycle time is then
given by:

Tk

cycle

= TTR + Tdti (5:6)

Assuming, for simplification, that all the message cycles have the same duration
(represented by C;) then, the worst-case token lateness in a master k would result from
the simultaneous occurrence of the three following conditions.

1. The time interval during which the master k actually holds the token is greater

than TTR't .
2. The master k itself causes an overrun of T, and this overrun starts with a
residual value of T

3. All the following masters (until the master k™) transmit, each one, one high-

priority message cycle, having received alate token.

Observed these three conditions, in the next token cycle, Tz reaches its upper
bound, which is chyc,e. In the case of equal length for al the message stream cycles,
T¢w=n" Cs, and thus:

T

k
cycle

:TTR +n’ Cs . master k (5.7)

This evaluation of the worst-case token cycle time improves the previous available
results from (Vasques, 1996; Vasgues and Juanole, 1994) presented in equation 3.6. This
evaluation of chyde will now be improved to consider message cycles with different
lengths.

In the general case (message cycles with different duration), the worst-case token
lateness may result not from an overrun of the Ty in master k but from one occurring in
one of the following masters (k** until k™).

Using Fig. 5.5 as an illustrative example, assume that master 1 does not overrun its
Ty (Fig. 5.5b). Then, master 2 may use its available token holding time and produce an
overrun of its T2y, overrun timer. If this overrun is longer than the sum of the longest
overrun of Ty, added to the longest Ch? (Fig. 5.5a), then this would lead to a higher
value for T . Similarly, if the longest overrun of T3y, islonger than the longest overrun
of T%y, added to the longest Ch?, then this would lead to a higher value for T .

Note that by Theorems 5.2 and 5.3, for the evaluation of T;q, We can only consider
one overrun in master j (with j ranging from master k to master k%), and one high-
priority message cycle per each master whose address is between j and k™
Consequently, we conclude that the evaluation of chyde depends on which master
produces the worst-case overrun of its Ty and on its relative position within the logical
ring sequence of token-passing.
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Fig. 5.5 A comparison between two scenarios with overrunning of Ty

For the evaluation of Ty, we introduce the following parameters: H¥, L and A*. H*
isthe longest high-priority message cycle that can be requested by a master k:

H*= maﬁk{Chk} (5.8
i=1,..,nl
L*is the longest low-priority message cycle that can be requested by a master k:
Lk = max {ci/} (5.9)
i=1,..,n%

Finally, A* is the longest message cycle that can be requested by a master k
(including both low and high-priority message cycles):

A< = max{H ¥, L} (5.10)

Using the analysis outlined in this section, we can thus define the maximum token
lateness in a PROFIBUS master k (T ) as being:
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P N
TS =maxi Al +Q H'y (5.11)

ifi g i,

where f ; is defined as being the following set of values:
{k,...n}, if k=1

i
fo=q (5.12)
T H KoL k- 3 if k> 1
and f , is defined as being the following set of values:
Ci{i+1.n) ifk=1 (5.13)

2 i+ 1n k-1 if k>1

Consequently, the worst-case token cycle time in a PROFIBUS fieldbus network
may be defined as follows:

Tk

cycle

[ U
=T +maxj Al + H'g (5.14)

s g it
I kn Appendix B.1 we give the pseudo code details of an algorithm used for evaluating
Tdd .

5.4.3. Settingthe Target Token Rotation Time

Based on the evaluation of the token cycle time (equations (5.6) and (5.14)), the pre-run-
time schedulability condition (5.5) for the high-priority message stream set, can be
re-written as follows:

Dh¥ 2 nh* " (T + T )+ChE o (5.15)
and, the following condition for setting the T+r parameter can be used:
th - Chik k n
0£TRE — Tea s mester k. sream S’ (5.16)

Note that that inequality (5.15) constrains Di¥ to be larger than a value which is
proportional to the number of high-priority message streams in master k. This may be
very restrictive for stations dealing with alarge number of 1/0O points.

In Chapter 7, we will present some solutions to overcome this problem, which, like in
P-NET networks, results from the FCFS characteristics of the PROFIBUS outgoing
queues.
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5.4.4. Numerical Example

Consider a PROFIBUS network with 3 masters, each one with the following message
streams:

Table5.1: A Numerical Example

Master 1 | Master 2 | Master 3
Ch’=8 ms Ch’=8 ms Ch*=8 ms
Chy'=6 ms Ch=15ms Ch =18 ms
Chs!=7 ms - -
Cl,'=10 ms Cl,>=30 ms ‘ -

- Cl>=18 ms -

For this numerical example, the results for each Ty are (using equation 5.11 -
detailed in an algorithmic form in Appendix B.1):

Table5.2; T,y Evaluation for the Numerical Example (case of Trg > t)

Master 1 Master 2 | Master 3

H'=8 ms H*=15ms | H*=18ms

A'=10 ms A%=30ms A®=18ms
Tla=A%+H*=48 ms T2aa=A%H*+H'=56 ms TP aa=A%+H4+H=41 ms

Consider that t=1ms. If we assume that the minimum value for Tyg should be
marginally greater than t (otherwise low-priority traffic would not be transferred at all),
then inequality (5.16) can be re-written as:

k k
Dh - Ch" TE " (5.17)

t £TTR £ Inhk master k, streamSh¥

Then, to evaluate the smaller value for each message's deadline we can use the
following inequality:
Dh* - Chf
T Tt (5.18)
which can be re-written as:
Dh >t +T ) nh* +ch’ (5.19)
Using inequality (5.19), the minimum deadline supported for each high-priority
message stream (Table 5.1) would be as follows:

Table 5.3: Minimum Admissible Deadlines (case of Trgr =t)

Master 1 | Master 2 | Master 3
Dh;*>155 ms Dh*>122 ms | Dh;*>92 ms
Dh,’>153 ms Dh,?>>129 ms Dh,*>>102ms

Dhs*>154 ms
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From inequality (5.16), it is obvious that T can be set to a value as small as 0. In
this case however the low-priority traffic would not be transferred at all. It also follows
that in this non-realistic situation, the low-priority traffic would not be considered for the
evaluation of ded. In fact, if Tqg is smaller than t, then equation (5.20) must replace
equation (5.11) for the evaluation of T, e.

T =4 H! (5.20)
i=1

It follows that chyc.e will have the same value for all masters. Using the same scenario as
shown in Table 5.1, each T, would then be:

Table5.4: T, Evaluation for the Numerical Example (case of Trg = 0)

Master 1 | Master 2 | Master 3
H=8 ms H?=15 ms H3=18 ms
The=41 ms T2e=41ms Tw=41ms

and the minimum deadline supported for each high-priority stream, would be as shown
in Table5.5.

Table 5.5: Minimum Admissible Deadlines (case of Trgr = 0)

Master 1 | Master 2 | Master 3
Dh*>131 ms Dh>>90 ms Dh:*>>90 ms
Dh,*>129 ms Dh,>>97 ms Dh;*>100 ms
Dhs'>130 ms - | -

5.5. Constraining Low-Priority Trafficin PROFIBUS Networks

In this section, a constrained low-priority traffic profile is considered for PROFIBUS
networks, where by controlling the number of low-priority message transfers, all
pending high-priority (real-time) traffic is transmitted at each token arrival.

5.5.1. Pre-Run-Time Schedulability Condition

Considering that al high-priority messages are to be sent at each token visit, it is a
sufficient pre-run-time schedulability condition to guarantee the deadlines of the
high-priority message stream set that:

min :'Dhikk/f Toser” (5.21)

i=L..h mester k

Furthermore, as each master must be able to transmit its high-priority traffic and, if
possible, its alowed low-priority traffic, an upper bound for the token cycle timeis:
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k

=3

n n
o]

cycle a.

(nip*~ c1¥)+t (5.22)

I\ g.)o
QJ°:

=~
=~
11,

1

where nlp*” CI* (see Section 5.2) corresponds to the maximum ammount of low-priority
traffic that can be transmitted at each token visit to a master k. Therefore, the pre-run-
time schedulability condition (5.21) can be re-written as follows:

nh*

londs &R ot & o 2
ke kl) k=1 i=1 k=1

5.5.2. Setting the T1gr Parameter

The T1g parameter must be set in order to guarantee that, at the token arrival, there will
be aways enough time to execute all pending high-priority traffic. This means that, at
the token arrival, Tty = Ttr- Trr Must be enough to transmit all high-priority traffic, i.e.:

i nh¥
o

Tr 2 Teycle+ max| a Ch g (5.24)

||-1

since Teye iS the upper bound for Tgg.
Combining inequalities (5.22) and (5.24), alower bound for T+r is given by:
g iy
Te®8ach +a 3 (ip CI¥)+t + mag § o /
| i=1

k=1 i=1

(5.25)

Inequalities (5.23) and (5.25) are the basis for setting the Tz parameter, when
considering the constrained low-priority traffic profile. It can aso be seen that an
implicit upper bound for the Trr parameter is imposed by the deadline constraint (5.21).
In fact, we can denote as Trrmn the minimum value of Ty that satisfies inequality (5.25):

=3
>

n nht n i” u
TR, = é. é. Ch' + é_ (nlpk e )+t + njla>n(:|~é' Chké (5.26)
k=l i=t k=1 1=t
which, by using equation (5.22), can be re-written as:
‘ nhk
TR = Tome * max' _a o ﬁ (5.27)

Therefore, the deadline constraint (5.21) can be re-defined to integrate such lower bound
for Tr asfollows:

(5.29)
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which imposes an upper bound for the for Ty parameter:

| I’\hk

R £ mm | Dh E+ maxj g Ch E (529

..... k=1. nA iz

Inequality (5.29) gives an upper bound for the Ty parameter, while inequality (5.25)
gives a lower bound for the same parameter. This alows the formulation of a pre-run-
time schedulability condition, which gives the range of Tir values satisfying the
real-time requirements of a constrained low-priority PROFIBUS profile:

=2

nh* nhk 7 nb* U

che+ 4 (nip*” ar*)+t + maxq a ch E;ETTRE min |Dh KV)+ max é Chkg," . (530

i QJo;

i
! k=1..
iz p 0 e nT i=1
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1
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1

By further elaboration over (5.30) it also turns out that:

n ¥ n
m|nk| Dhk dach-4apa)-teor, (5:31)
""" nhey g k=L i=1 =1
which is obviously equivalent to inequality (5.21)

Fig. 5.6 clarifies the analysis underlying this Section 5.5, exploring the example set
givenin Table5.6.

Table 5.6: Example Scenario

Master 1 | Master 2 | Master 3
nh'=2 nh®=2 nh®=2
nlp'=3 nip?=1 nlp®=4

In master 1, assume
that all high-priority

messages appear in Minimum Tr
the queue just before
the token arrival
To/c\e
et cht ot go ot dChi' Cho'
Master 1
: >
ch’ ch’ Cf
Master 2
Ch® ch’ o of cof cP
Master 3
—_—

Fig. 5.6 Thisfigureillustrates the upper-bound for the token cycle time

5.5.3. Implementation | ssues

We propose two different alternatives to constrain the low-priority traffic at a master k.
1. Thefirst is based on the implementation of a low-priority message counter at
the MAC level, intended to control the number of transferred low-priority
messages per token visit.
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2. The second is based on the application level control of low-priority services,
such as application layer non-cyclical low-priority services and remote
management services.

The first approach may be implemented as follows. We define at each master k the
maximum number of low-priority messages to be transferred (nlp®), per token visit. The
low-priority traffic is then controlled by means of a low-priority message counter
(nlp_c). Fig. 5.7b illustrates such implementation, whereas 5.7a illustrates the traditional
PROFIBUS implementation (Fig. 5.7a details the shaded block of Fig. 3.8 in Section
3.4.1).

p_c=nip2>

n

) Tn<0 ?

n low priority
message 2,

%\ﬁl pc= nT;i 2>

n

'
|
'

b ’g‘lpﬁc: nl p:2>

n
y Trn<0 ? 0|

b)

Fig. 5.7 Handling procedures for the non high-priority messages. In a) the traditiona
implementation and b) the proposed implementation given in the first approach

The second approach is based on the control of low-priority services. Concerning the
traffic generated explicitly by the user, it is not advisable to use the Live List
management service. The Live List service requests the FDL status of all stations
(masters and slaves). It will generate multiple frames in the network. If, in the worst-
case, every master station requests a Live List, expression (5.22) would then be as
follows:
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nh*
ach'+
i=1

1

(nlpk ’ Clk)+t +n" aC (5.32)

live
1 k=1

T =

cycle

o QJO:
o Q.)O:

where C;;, Stands for a reguest status message cycle length and (n+s) corresponds to the
aggregate number of master and slave stations. This would lead to an excessively long
T cle:

CyConcerni ng low-priority non-cyclical services, the application process must be able to
accept a Teyqe parameter, in order to control the number of low-priority messages (nip)
generated in master k.

Equation (5.22) must also consider the influence of the Gap updating (see Section
3.4.1 and Fig. 5.7b). We denote Cg,, as the length of a Gap maintenance message cycle.
Therefore, equation (5.33) updates equation (5.22) to include the influence in Teyge
resulting from the Gap maintenance, considering that, in the worst-case, each master
executes one Gap maintenance message cycle in each token visit.

In order to support Poll List, an additional term must be added to (5.22). The user
must be careful while using Poll Lists, since Poll List messages are FDL triggered. Thus,
the whole list length must be considered for the evaluation of Tgyqe:

n np* n n
Tcycle =é. é. Chik + é, (nlpk e k)+t +n’ Cgap + é Cgoll (533)
k=L i=1

i=1 k=1

where C,* stands for the master k Poll List length.

5.5.4. Numerical Example

In this profile, as each master must be able to execute al its pending high-priority traffic
at each token visit, the token cycle time will be much longer than in the case of the
unconstrained low-priority traffic profile. Therefore, as each master will need to wait
more time to transmit its high-priority messages, the supported message deadlines are
necessarily looser than those supported by the unconstrained low-priority traffic profile.

However, with the constrained low-priority traffic profile, there is more available time
transmit low-priority traffic, which alows for an increased non real-time traffic
throughput.

Consider a PROFIBUS network with 6 master stations, with timing requirements as
shownin Table 5.7.

Table5.7: Another Example Scenario
| Master 1  Master 2  Master 3 Master 4 Master 5 Master 6

Dhy 50ms (Dmin) 90ms 120ms 60ms 60ms 80ms
Dh* 100ms 80ms 130ms 200ms 100ms 80ms
Dh* | - 140ms 110ms 140ms 100ms 100ms
C 2ms 2ms 2ms 2ms 2ms 2ms
nlp" 3 3 3 3 3 3

For simplification, we assume that the maximum message length is, in al cases, equal
to 2ms. Using a 1Mbps network, and if request and response frames total 400 bits, the
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frame duration is 400ns. Considering 260ns for communication stack and propagation
delay, each message cycle will take 660ns. Configuring each master to support up to 2
message replies, we get the 2ms figure for the total length of the message cycle. We aso
assumethat t = 0.1ms.
In order to assess the responsiveness of each proposed profile, the minimum relative
deadline of message stream Sh," will be evaluated.
For the unconstrained low-priority traffic, it follows that (using equation (5.11))
TS =67 2=12ms, ",
In this case, the upper bound for T+r (inequality (5.16)) is imposed by master 4 (or
master 5) and is given by:
60- 2
T, £———- 12ms=7.33ms
‘ 3
Using inequality (5.15), the minimum the minimum relative deadline for Sh," is either
Dmin, _; 5 =2"19.33+2=40.66ms

for Trr = 7.33ms, or
Dmin, ,=2"12+2=26ms
for Ttgr = Oms (in this case it would not be possible to transmit low-priority messages).

For the constrained low-priority traffic profile, it follows that the lower bound for Ttr
(inequality 5.25) is:
Tr35 3 2+2° 2+6” 3 2+0.1+6=76.1ms
and the minimum value for the relative deadlines of high-priority streams is (inequality
(5.28)):
Dmin, % 76.1- 6=701ms

This means that the message stream set shown in table 1 is not schedulable using the
constrained low-priority profile. In fact, with this profile, the most stringent deadline
must be at least 70.1 ms, which is larger than both Dh,*, Dh,* and Dh,°.

5.6. Summary

PROFIBUS networks aim at the interconnection of field devices such as sensors,
actuators and small controllers. Therefore, they may be a privileged basis upon which
Distributed Computer-Controlled Systems (DCCS) are built. DCCS impose strict
timeliness requirements to the communication network; that is, they impose that traffic
must be sent and received within a bounded interval, otherwise a timing fault is said to
occur.

The PROFIBUS MAC protocol is based on atoken passing procedure used by master
stations to grant the bus access to each one of them, and a master-slave procedure used
by master stations to communicate with slave stations. The PROFIBUS token passing
procedure uses a simplified version of the timed-token protocol (Grow, 1982).

It is possible to support real-time communications with PROFIBUS networks,
considering one of the two following approaches (Vasques, 1996; Vasques and Juanole,
1994).
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1. If the low-priority traffic is unconstrained, then the real-time traffic requirements
may be satisfied, considering that, at least, one pending high-priority message is
transmitted per token visit.

2. If the low-priority traffic can be constrained (controlling the number of
low-priority message transfers at each master station), then, by an appropriate
setting of the T.r parameter, al pending real-time traffic is guaranteed to be
transmitted at each token visit.

In this chapter we significantly improve the previous analysis made by Vasgues and

Juanole.

1. We provide a simple worst-case response time for PROFIBUS messages
(equation (5.4)), which reflects the FCFS behaviour the PROFIBUS queues. This
new formulation overcomes the problems identified in Chapter 3 for equation
(3.9).

2. The evauation of the worst-case response-time is highly dependent on the
accurate definition of the token cycletime. In Section 5.4, we provide an accurate
analysis of the PROFIBUS token cycle time (equation (5.14)), which
significantly improves the simple and inaccurate result presented in previous
analysis (equation (3.6)).

3. Finaly, to implement the second approach it is necessary to correctly identify the
low-priority traffic supported by PROFIBUS. It is important to note that some of
the low-priority traffic cannot be controlled at the user level. In Section 5.5.3 we
discuss how to implement such approach.
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Chapter 6

Real-Time Communications with WorldFIP
Networks:. Contributionsto the State-of-the-Art

In this chapter we develop methodologies to guarantee the real-time behaviour of
WorldFIP periodic and aperiodic buffer transfers. This chapter is largely drawn
from the following published work: "Distributed Computing for the Factory-Floor:
A Real-Time Approach using WorldFIP Networks' (Tovar and Vasgues, 1999a);
"Factory Communications. on the Configuration of the WorldFIP Bus Arbitrator
Table" (Tovar and Vasgues, 1999b); "Contributions for the Worst-Case Response-
Time Analysis of Sporadic Traffic in WorldFIP Networks® (Tovar and Vasques,
1999c¢).

6.1. Introduction

The WorldFIP protocol is based on a centralised medium access control mechanism,
where a specific station, the bus arbitrator (BA), controls all data transfers between the
different stations. At configuration time, the BA is given a list of process variables to
scan along with their corresponding periods. This piece of information is known as the
bus arbitrator table.

WorldFIP supports two basic types of transmission services. exchanges of identified
variables and exchanges of messages. In this work we address WorldFIP networks
supporting only exchanges of identified variables, since they are the basis of WorldFIP
real-time services. Asit was explained in Section 3.5.1, in WorldFIP identified variables
may be exchanged in a periodic or aperiodic basis. While for the periodic traffic, end-to-
end communication deadlines can be easily guaranteed, since for them the WorldFIP
BAT (Bus Arbitrator Table) implements a pre-defined static schedule, for the aperiodic
traffic more complex analysis must be performed.

The remainder of this chapter is organised as follows. In Section 6.2 we introduce the
network and message models, which will be used throughout the rest of the chapter. In
Section 6.3 we introduce the basic HCF/LCM methodology for building the bus
arbitrator table. In Section 6.4 and Section 6.5 we describe detailed algorithms for
obtaining the BAT schedule, based on RM and EDF approaches, respectively. Moreover,
in these two sections we provide feasibility tests, adapted from previous results on the
schedulability analysis. Sections 6.2 up to 6.6 form the ground basis upon we build (in
Section 6.6) a worst-case response time analysis for the WorldFIP aperiodic buffer
transfers. This integrated methodology is the more important since the analysis for the
aperiodic traffic depends for the most part on the schedule for the periodic traffic.
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6.2. Network and Buffer M odels

Consider a bus network with n stations. One of these n stations performs the role of
active bus arbitrator (BA), while the others are simple producer/consumer stations.

Associated to this set of stations there is a set of np periodic buffer transfer streams
(Sp). Each buffer transfer stream is a temporal sequence of periodic buffer transfer
concerning variables with the same identifier. Contrarily to the case of P-NET
(Section 4.2) and PROFIBUS (Section 5.2), these streams are not related with any
particular station. Sp; streams are characterised as follows:

%, =(Cp,,Tp,, Dp,) (6.1)

with i =1, ..., np. In the rest of this chapter, we will refer to Sp; streams as periodic
streams. Cp; represents the maximum amount of time to perform a periodic buffer
transfer, and its value is given by (refer to Fig. 3.12 and Fig. 3.13, in Section 3.5.1):

_len(id_dat_Sp, ) +len(rp_dat_Sp,)
- bps

Cp +27t, (6.2)

where bps stands for the network data rate (in bits per second) and len(<f r ane>) isthe
length, in bits, of frame <f r ame>. Tp; is the required periodicity for the buffer transfer,
and its value is a multiple of the microcycle value. For simplification, throughout this
chapter we assume that all periods are multiples of 1ms. Dp; is the deadline of the
periodic stream, which we assume that can be equal to its period; that is, a buffer transfer
concerning a periodic variable can have a communication jitter of up to (Tp;-Cp;), and
this conforms with the requirements of the distributed application (Fig. 6.1).

The first of the buffer transfers
microcycle concerning Sp; within a macrocycle,
occurs very close to its deadline

TN i [ | |
f f f

macrocycle

Communication Jitter for Sp;in
the first microcycle

<

Deadline = Period for Sp;

<

Periodic pattern for S
I transaction concerning Sp; T P i

I transactions concerning other streams other than Sp;

Fig. 6.2 Illustration of deadline and period in periodic streams (equation (6.1))
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Additionally, we consider a set of aperiodic buffer transfer streams (Sa,) associated
with each station k (k=1, ..., n):

Sk = (Ca1.k ,Ta¥, Daf) (6.3

Similarly to the case of periodic streams, in the rest of this chapter we will refer to
S5 streams as aperiodic streams. If na® is the number of aperiodic streams requested at a
station k, na denotes the sum of all na®in the overall network.

Note (see Section 3.5.1) that a station k can only have aperiodic streams if it produces
a variable related with a periodic stream. It is also important to note that two different
stations can have aperiodic streams related to a same variable identifier.

Ca* will later be addressed in more detail in Section 6.6. Ta) is the minimum time
interval between any two consecutive requests for Sa* being placed in the queue for
aperiodic requests of the requesting station (refer to Fig. 3.15 in Section 3.5.1). The
maximum admissible time interval between the time instant when the request is placed
in the local queue (requesting station) and the completion of the transfer of the identified
variable is denoted as Da;*.

6.3. Usingthe HCF/LCM Methodology for Setting the BAT

In WorldFIP networks, the bus arbitrator table (BAT) imposes the schedule of periodic
buffer transfers, and also regulates the aperiodic buffer transfers.
Following the HCF/LCM methodology to build the BAT (refer to Section 3.5.1), the
value of the microcycle (UCy) must be chosen as:
HCy = HCF(Tp)) (6.4)
where HCF stands for the highest common factor and corresponds to the following
value:

NP . Tp. _éTp.
=maxyW UWI A, with —=s+—~"". (6.5
uCy = max{W} woEwE
In Appendix C.1, we give the pseudo-code details of an algorithm for the evaluation

of the microcycle.
The macrocycle (MCy) is defined as:

MCy=N" pCy (6.6)

where N is the number of microcycles that compose a macrocycle. Using the LCM
(Least Common Multiple) rule, N can be evaluated as follows:

Ve T A F & F
N =min{fF}UF T A, with = & G (6.7)
mintF) o uey & /ey b

In Appendix C.2, we give the pseudo-code details of an algorithm for the evaluation
of the macrocycle is suggested.
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6.4. Setting the WorldFIP BAT: a Rate M onotonic Approach

6.4.1. Algorithmic Approach for Building the BAT

After defining the values for the microcycle and macrocycle, a schedule can easily be
built according to the rate monotonic (RM) algorithm (Section 2.2.3) as follows:
1. From variable with the shortest period until variable with the longest period

1.1. If the current load in a microcycle added to Cp; is still smaller than the value of
the microcycle, then schedule Sp, for each one of the microcycles (of a
macrocycle) corresponding to the periodic pattern of Sp,. Update the value of
the load in each concerned microcycle.

1.2. If the load in some of the microcycles does not allow to schedule a scan for
that stream, try to schedule it in the next microcycles up to the microcycle in
which a new scan for Sp; would be required. If this is not possible, the stream
set is not schedulable.

Assume an example where al variables have a data field with 4 bytes (all RP_DAT
have 92 hits), tr = 20ms and the network data rate is 2.5Mbps. Then, the duration of any
elementary transaction will be (64+80)/2.5+2" 20=97.6ps (equation (6.2)). Given the
example of Table 3.3 (with Cp;, = 0.0976ms, " ;) and considering the RM algorithm, the
BAT will result as shown in Table 6.1.

Table 6.1: BAT (using RM) for Example of Table 3.3

Microcycle

1 2 3 4 5 6 7 8 9 10 11 12
baffAcyclel | 1 1 1 1 1 1 1 1 1 1 1 1
bat[B,cycle] 1 0 1 0 1 0 1 0 1 0 1 0
bat[C,cycle] 1 0 0 1 0 0 1 0 0 1 0 0
bat[D,cycle] 1 0 0 0 1 0 0 0 1 0 0 0
bat[E,cycle] 1 0 0 O 1 0 0 O 1 0 0 O
bat[F,cycle] 1 0 0 0 0 0 1 0 0 0 0 0

where bat[i, j] isatable of booleans with i ranging from 1 up to np, and j ranging from 1
up to N (number of microcyclesin amacrocycle).

In Appendix C.3, a detailed algorithm for building the BAT using the RM algorithm
is presented. The algorithm indicates whether or not all traffic is schedulable (line 22). In
the algorithm, the vector load[ ] is used to store the load in each microcycle as the traffic
is scheduled. It also assumes that the array Vp[ , ] is ordered from the variable with the
smallest period (Vp[1, ]) to the variable with the longest period (Vp[np, ]).

The HCF/LCM/RM approach for building a WorldFIP BAT has the following
characteristic: the variables are not scanned at exactly regular intervals. For the given
example, only variables A and B are scanned exactly in the same "slot" within the
microcycle. All other variables suffer from a slight communication jitter. For instance,
concerning variable F, the interval between microcycles 1 and 7 is
(1-5" 0.0976)+5+(3" 0.0976)=5.8048ms, whereas the interval between microcycles 7 and
13is(1-3" 0.0976)+5+(5 0.0976)=6.1952ms.
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Note that by using the RM agorithm some of the variables with larger periods can be
scheduled for the next microcycles, thus inducing an increased communication jitter for
those variables. For example, if the network data rate is 1Mbps instead of 2.5Mbps
(Cpi=(64+80)/1+2" 20=184us), the BAT would be as shown in Table 6.2, since a
microcycleis only able to schedule up to 5 periodic buffer transfers (Fig 6.2).

Table 6.2: BAT (using RM) for Modified Example of Table 3.3

Microcycle
1 2 3 4 5 6 7 8 9 10 11 12
ba[Acyce] | 1 1 1 1 1 1 1 1 1 1 1 1
bat[Bcyde | 1 0 1 0 1 0 1 0 1 0 1 O
bat[C,cycle] 1 0 0 1 0 0 1 0 0 1 0 0
bat[D,cycle] | 1 0 0 0 1 0 0 0 1 0 0 0
bat[Ecydel | 1 0 0 O 1 O O O 1 0 O O
ba[Fcyde | O 1 0 O O O 1 0 O O 0 O
Not enough time to process
the sixth transaction
i ® |
E | | |
° (A | |
¢ | i | | |
sl | [ | | [ | [ | |
A

1 3 10 11 12 13 time (ms)
microcycle

macrocycle

Y.

Fig. 6.2 Schedule (RM Approach) for the set example of Table 3.3

6.4.2. A Feasibility Test Based on the Response Time Techniques

Although the rm_bat algorithm indicates whether all traffic is schedulable (line 22), a
simple pre-run-time schedulability test can be provided to check the schedulability of the
periodic stream set. The following analysis adapts to the WorldFIP case, the worst-case
response time analysis of tasks in a single processor environment presented in Section
24.3.

For smplicity of analysis we consider that all transactions have a length of Cp, with
Cp = max{Cp}, " i. In most of the cases this is a valid assumption, since the data field
for the periodic streams will concern process data which typically has a number of bytes
ranging from 2 to 4.

The interference that a periodic stream Sp; suffersin NR, microcyclesis given by:

eNR “ pCyu (6.8)



102 Real-Time Communications with WorldFIP Networks: Contributions to the Sate-of-the-Art

where |; corresponds to the number of "requests’ for higher-priority periodic streams.
Therefore, the number of requests to process during NR microcycles (including the
request for ) is:

eNR " pCyu (6.9)

1+1, =1+ a &E———1
i@ TP @

The maximum number of buffer exchanges that fit in amicrocycleis given by:

ég HCy U (6.10)
&Cp g

which is a constant. Therefore, the number of microcycles (NR)) needed to process the
request for Sp; is given by:

Tp,

NR =min{Y}UY T AUY EE “Cyugy e“q’“ (6.11)

, with 1+ é e—
im@)@ 'P; 0 eCpU

In (6.11), inequality 1 + I; £Y ~ &uCy/Cplis tested in successive iterations, starting
with'Y = 1. If the solution (if any) givesY > Tp; / uCy then the periodic stream Sp; is not
schedulable.

6.4.3. Numerical Example
Consider a WorldFIP network, with the following set of periodic streams.

Table 6.3: Set of Periodic Streams (Cp = 0.21ms)

| dentifier | A B C D E
Periodicity (ms) | 1 1 1 1 3

Stream e is RM schedulable if the related feasibility test (6.11) holds:

Y =1:
elu elu elu élu
~-=5£1 4, FALSE,
SiH g & &
and thus Spe is not schedulable in the first microcycle,
Y =2:

e2u e2u e2u e2u _

81H 1" &l &l

and thus Spe is not schedulable in the second microcycle,
Y =3:

e3u e?>u e3u é3u

ST

=9£2" 4, FALSE,

=13£3" 4, FALSE,
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which means that Spe is not schedulable at all, as Y must be smaller or equal than
Tpe/ uCy =3.

6.5. Settingthe WorldFIP BAT: a Earliest Deadline Approach

6.5.1. Algorithmic Approach for Building the BAT

An alternative approach for the BAT schedule can be the earliest deadline first (EDF)
approach (Section 2.2.3). With the EDF approach, periodic streams are scheduled
according to the earliest deadline (the microcycle when a new "request" appears). If
severa streams have the same deadline, priority is given to the periodic stream with the
earliest request.

In Appendix C.4 we give a detailed description of an algorithm that can be used for
building the BAT using the EDF approach. In that algorithm, the array disp[ , ] is used to
store in disp[i,1] if there is a pending request for variable i, in disp[i,2] the deadline
(multiple of the microcycle) and in disp[i,3] the microcycle at which the request is made.
Note that for algorithmic convenience, the first requests (for all the variables) appear in
cycle = 0, and from those, some will be scheduled in the first microcycle (cycle + 1).

The advantage of the EDF approach over the DM approach can be easily depicted
from the following example. Consider the periodic stream set example shown in
Table 6.4. In this example, the macrocycle is made of 6 microcycles, and the maximum
number of buffer exchanges that fit in amicrocycleis €/0.30=3

Table 6.4: Example Set of Periodic Streams (Cp = 0.30ms)

| dentifier | A B C D E F
Periodicity (ms) | 1 2 2 3 3 3

Considering the RM approach, the first request for Sor would miss a deadline
(Table 6.5).

Table 6.5: BAT (using RM) for Example of Table 6.4

Microcycle

1 2 3 4 5 6
bat[A,cycle] 1 1 1 1 1 1
bat[B,cycle] 1 0 1 0 1 0
bat[C,cycle] 1 0 1 0 1 0
bat[D,cycle] 0 1 0 1 0 0
bat[E,cycle] 0 1 0 1 0 0
bat[F,cycle] X X X 0 0 1

In fact, considering the RM approach, there is no empty slot for Spr in the first 3
microcycles. For the same periodic stream set (Table 6.4), considering the EDF
approach, the BAT schedule would be as shown in Table 6.6.
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Table 6.6: BAT (using EDF) for Example of Table 6.4

Microcycle

1 2 3 4 5 6
bat[A,cycle] 1 1 1 1 1 1
bat[B,cycle] 1 0 1 0 1 0
bat[C,cycle] 1 0 0 1 1 0
bat[D,cycle] 0 1 0 1 0 0
bat[E,cycle] 0 1 0 0 0 1
bat[F,cycle] 0 0 1 0 0 1

As it can be seen, with the EDF approach this stream set is now schedulable, which
was not possible with the RM approach. However, with the EDF approach the
communication jitter is increased. This results from the following: some of the buffer
transfers with more stringent relative deadlines are occasionally "delayed" by buffer
transfers with less stringent relative deadlines. For instance, variable C is scheduled for
the 4th microcycle, whereas with the RM approach it would be scheduled for the 3rd.

6.5.2. A Feasibility Test Based on the Response Time Techniques

Similarly to the RM case, a simple pre-run-time schedulability test can be derived to
check the schedulability of the periodic stream set, also based on the classic task's
response time analysis (Section 2.5.4). Note that the edf bat algorithm (Appendix C.4)
gives (line 10) whether the periodic traffic is schedulable or not. For the simplification of
the analysis we consider that all transactions have a length of Cp, with Cp = max{Cp},

The interference that a periodic stream Sp; suffersin NR; microcyclesis given by:

o
= a 9m|n,|[1+A R prU eD b, u}J

JSTQijQéijupg

D;£D;

(6.12)

This expression considers that, athough in the NR™ pCy time interva there is a
number of requests for streams that have relative deadlines smaller than the one for Sp;,
they can only be considered if they have absolute deadlines which are smaller than the
deadline for stream Sp;.

Therefore, the number of requests to process during NR, microcycles (including the
request for periodic stream §p)) is:

t éN eD D, (19
1+ § Qmm 1+é NR” uCy W
jti g T @ ij ij Cbzs

D;£D;

(6.13)

(@) g_\
[(1))) m)
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The number of microcycles (NR) needed to process the request for periodic stream
; isthen given by:

, vt AT Tp,
NR =min{Y}UYT AUY £ —,
R =min{Y} ey

c

@ } ey ucyl. eD-DGd  acya (€19
with 1+ § 9min}1+§Y “q/g, 1+e— JENHIEY' g&'
f & a & T (hy éCl

oC

Dj;f_iDi
In (6.14), inequality 1 + I; £Y ~ &uCy/Cplis tested in successive iterations, starting
with Y = 1. If the solution (if any) givesY > Tp; / pCy, then Vp; is not schedulable.

6.5.3. Numerical Example

Consider a WorldFIP network with a set of periodic streams as shown in Table 6.4,
where the maximum number of buffer exchanges that fit in a microcycle (6.10) is
€1 / 0.30= 3. The periodic stream Spr will be schedulable by the EDF agorithm if the
related feasibility test (6.14) holds.

Y =1:

1+ (min{2,3} + min{13} + min{L} + min{L + minfL)=7£1° 3, FALSE,
and thus Spr is not schedulable in the first microcycle,
Y =2:

1+ (min{3,3 + min{2.4 + min{L4 + min{1L} + min{L})=8£2° 3, FALSE,
and thus Spe is not schedulable in the second microcycle,
Y =3:

1+ (min{4,3} + min{2,} + min{L1} + min{L + min{L})=8£3" 3, TRUE,
which means that a buffer exchange for Spr is schedulable in the third microcycle.

6.6. Worst-Case Response Time for the Aperiodic Traffic

Concerning the aperiodic streams, we consider that they are all generated by the use of
the application layer service L_FREE UPDATE. req(! D_Ap, urgent), thus we
only consider the urgent queues (both at the requesting station and at the BA) (refer to
Fig. 3.15 for clarification).

It is important to stress that the urgent queue in the BA is only processed if, and only
if, the BA's ongoing aperiodic queue is empty, as detailed in Fig 6.3.

Asillustrated in Fig. 6.3, traffic concerning the aperiodic buffer transfers (transactions
| D_RQ/ RP_RQor | D_DAT /RP_DAT) can only be processed if there is still enough
time in a specific microcycle to completely process each one of them. That is, they are
atomically processed.

Therefore, we define the worst-case response time (Ra*) for an aperiodic transfer Sa
as the time interval between the arrival of the L_FREE UPDATE. req(| D_Ap,
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ur gent) to the urgent queue of station k (instant ty) and the completion of the buffer
transfer concerning the aperiodic stream KK

Start of aperiodic
window

Aperiodic ongoing
queue empty ?

Requests in the
urgent queue?

Time left to process
padding frame?

Time left to process
buffer exchange ?

Time left to process
buffer exchange ?

¢Yes

ID_RQ® | PAD ® |
| D_DAT(Aperiodic) ® RP_RO (List)
RP_DAT( Aperiodic) -
A
i End of aperiodic
window

Fig. 6.3 Sequence for aperiodic transfers

The response time associated to an aperiodic stream includes the following three
components (Fig. 6.4):

1. the time elapsed between t; and the time instant when the requesting station is
able to indicate the BA (via RP_DAT, with the request bit set) that there is a
pending aperiodic request. We define this time interval as the dead interval of a
producer station;

2. the time interval during which the request indication stays in the BA's urgent
queue until the related | D_RQ / RP_RQ pair of frames is processed in an
aperiodic window;

3. thetimeinterval during which the Sa¥ stays in the BA's ongoing aperiodic queue
until the related | D_DAT_Ap / RP_DAT pair of frames is processed in an
aperiodic window.

Request for the aperiodic -
buffer exchange ID_RQ +RP_RQ ID_DAT + RP_DAT concerning a
aperiodic variable

ID_DAT + RP_DAT concerning a.
periodic variable of station k

Y » » J

»
time

Dead interval

Response Time for an Aperiodic Stream Saf |
-
>

<

Fig. 6.4 Timings for the transactions associated with the processing of an aperiodic variable
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6.6.1. Upper Bound for the Dead Interval

The upper bound for the dead interval in a station k is related to the smallest scanning
rate of a produced periodic variable in that station. It is important to note that a periodic
stream (o) is not polled at regular intervals, since there is a communication jitter
inherent to the BAT setting. Therefore, the previous result for the evaluation of the dead
interval (refer to Section 3.5.2) in a station k must be updated to:

s*=Tp, +Jg, +Cp;, withSp, :Tp, =, pmicrldink{Tpi} (6.15)
where Jg, is the maximum communication jitter of a periodic stream Sp;. For example,
considering the periodic stream set of Table 3.3 (Section 3.5.1), if variable F is the only
produced periodic variable at station k, then s*=6+0.1952+0.0976= 6.2928ms (see
Section 6.4.1 for the evaluation of the communication jitter for variable F).

For the evaluation of the dead interval (6.15) it is aso considered that a local
aperiodic request is only processed (setting the request bit in the RP_DAT frame) if it
arrives before the start of the related | D_DAT. Hence, the term Cp; is included in
equation (6.15).

In Appendix C.5 we describe a detailed algorithm for the evauation of the
communication jitter associated to a periodic variable. This algorithm is the basis for the
evaluation of the dead interval in a specific k station.

Considering again the periodic stream set of Table 3.3, the value for the
communication jitter associated to each periodic variableis as shown in Table 6.7.

Table 6.7: Communication Jitter for the Periodic Stream Set of Table 3.3 (Cp; = 0.21ms)

| dentifier | A B c D E F
Communication Jitter (ms) | O 0 021 021 058 0.79

Thus, the periodic traffic schedule, according to the RM agorithm would be as
follows:

Table 6.8: BAT (using RM) for Example of Table 3.3 (Cp; = 0.21ms)

Microcycle

1 2 3 4 5 6 7 8 9 10 11 12
bat[A,cycle] 1 1 1 1 1 1 1 1 1 1 1 1
bat[B,cycle] 1 0 1 0 1 0 1 0 1 0 1 0
bat[C,cycle] 1 0 0 1 0 0 1 0 0 1 0 0
bat[D,cycle] 1 0 0 O 1 0 0 O 1 0 0 O
bat[E,cycle] 0 1 0 O 1 0 0 O 1 0 0 O
bat[F,cycle] 0 1 0 0 0 0 1 0 0 0 0 0

Note that considering all Cp, = 0.21ms, only 4 periodic variables can be
accommodated in each microcycle (1ms), and thus the jitter associated to the transfer of
the lower priority variablesis not negligible.
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6.6.2. Aperiodic Busy Interval

The worst-case response time for an aperiodic variable transfer occurs if, when the
request arrives at the BA's urgent queue (s* after to), this queue is aready full of requests
from al the other aperiodic streamsin the network.

We consider that:

1. for each aperiodic stream, a reguest for identification must be made, and thus the
network load is maximised. In practice this case only occurs if each station has
only one aperiodic stream, since the BA is able to manage the urgent queue to
avoid redundancy in | D_RQs addressed to a same station. This is the case which
generates the heavier network load, hence which leads to the worst-case response
time for aperiodic streams;

2. and that those aperiodic stream requests will start to contend for the medium
access when the BA is starting the macrocycle (with the RM scheduling policy
used to construct the BAT, this means maximum periodic load). This is defined
asthe critical instant.

We also consider that all aperiodic traffic has a minimum inter-arrival time between
requests, which is greater than its worst-case response time. Therefore, no other
aperiodic request appears before the completion of a previous one. Hence, the maximum
number of aperiodic requests pending in the BA is na, with na being the number of
aperiodic requests (two different station can require an aperiodic buffer transfer of a
same variable) that can be made in the network.

We define the time interval between the critical instant and the time instant when all
the aperiodic requests (which were pending at the critical instant) have been processed as
the aperiodic busy interval (ABI), since all aperiodic windows within the microcycles
are used to process aperiodic traffic.

It is also clear that to process al those na requests, the aperiodic windows will
perform alternately sequences of (I D_RQ/ RP_RQ and (I D_DAT / RP_DAT), as the
BA gives priority to the ongoing aperiodic queue (refer to Fig 6.3).

If all the aperiodic variables have asimilar length, Ca’ may be defined as:

ca’ = max| len(idl_dat) + len(rp_dat,) , . :, len(id_rg)+len(rp_rq) , . LU (619)

i=1..naf bps bps
which gives the longest transaction in an aperiodic window.
Therefore, the maximum number of transactions to be processed during the ABI is
2" na, corresponding to the set of | D_RQ/ RP_RQtransactions and the set of | D_DAT /
RP_DAT transactions.

Considering these assumptions, the analysis for the worst-case response time for the
aperiodic traffic is as follows.

6.6.3. Worst-Case Response Timefor Aperiodic Buffer Transfers

The worst-case response time of aperiodic buffer transfers is a function of the network
periodic load during the ABI, since it bounds the length of the available aperiodic
windows.



Real-Time Communications with WorldFIP Networks: Contributions to the Sate-of-the-Art 109

The length of the aperiodic window in the I™

evaluated as follows:

cycle(l =1, ., N, N+ 1, .) may be

np
aw(l*) = uCy - § (batfi,1*]" Cp,) (6.17)
i=1
where bat[i,[*] is a matrix representing the schedule of the periodic traffic and
I* = [(I-1) mod N] + 1. Therefore, the number of aperiodic transactions that fit in the I"
aperiodic window is:

saw(l *)a

nap(l) = 7/, (6.18)
PO g ca t

where Ca’ is as given by (6.16). It follows that the number of microcycles (N') in an ABI

is.

N
N'=min{Y}, with Y =3 nap(1*)UY 2 2" na (6.19)
1=1

that is, the minimum number of microcycles within which the number of available
"slots" (each "slot" with the length of Ca’) isat least 2 na.

In Appendix C.6 we describe a detailed algorithm for the evaluation of the number of
microcyclesin the aperiodic busy interval.

Knowing the number of microcycle in a ABI (N'), the length of the aperiodic busy
interval (len_abi) may be evaluated as follows:

np N'-1 ~
len_abi = (N 1) pCy +§ (batfi, N*]" Cp,)+& na- § nap(i*)? ca”  (6:20)
i=1 e 1=1 %]
where &i-1_np(bat[i,N*]" Cp;) gives the length of the periodic window in microcycle N,
with N*=[(N'-1) mod N] + 1 and (2" na-8,-;_n-1nap(I*))” Ca gives the length of the
aperiodic window, included in the aperiodic busy interval, also in microcycle N'.
In appendix C.7 adetailed algorithm for evaluating the length of the ABI is provided.
Therefore, the worst-case response time for an aperiodic buffer transfer requested at
station K is:

Ra“ =s “ +len_abi (6.21)

and thus, the minimum inter-arrival time between any two consecutive aperiodic
requests of the same aperiodic variable in astation k is:

Ta* 3 Ra =s * +len_abi (6.22)

6.6.4. Numerical Example

Consider a WorldFIP network with a set of periodic streams as shown in Table 3.3.
Assume that this system must also support 9 aperiodic buffer exchanges. Assume also
that the Cp,=Cp=0.0976ms, " ;, and that for aperiodic traffic Ca = 0.1ms.
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If the BAT is built as shown in Table 6.1, and the urgent aperiodic request queue is
full at the critical instant, a schedule for the aperiodic traffic is as represented in Fig. 6.5.
Obvioudly, as the BA urgent queue is a FCFS queue, the order of the aperiodic transfers
is arbitrary.

[sl4fals[slel6l7]  [7lefBlole]

Length of the ABI ;
AP (T[] [T
. | | |
E | | | |
o1 1 | 1
c |1 | | | |
| | | | | | |
A
>
1 2 3 4 5 6 7 8 9 10 11 12 13 time (ms)
N microcycle
! macrocycle >
>

I Periodic Elementary Transaction Length, periodic traffic
D ID_RP, RP_RQ Transaction Length, aperiodic traffic

D ID_DAT, RP_DAT Transaction Length, aperiodic traffic

Fig. 6.5 Schedule for the aperiodic traffic, considering the example of Table 3.3 (using RM to
schedul e the periodic traffic)

In Fig. 6.5, the time available for the aperiodic traffic in the first microcycle is
1-6" 0.0976=0.414ms. This time allows for the processing of four Ca’ transactions. In
the second microcycle the aperiodic window has the length of 1-0.097=0.902ms, which
dlows for nine Ca transactions. Finally, in the third microcycle the length of the
aperiodic window is 0.804ms, and all the remaining five Ca’ transactions are processed.
Note that each aperiodic transfer corresponds to, in the worst-case, two Ca’ transactions
(I D_RQ/ RP_RQfollowed by | D_DAT / RP_DAT). It follows that the length of the
aperiodic busy interval (ABI) is: 2" uCy+2" 0.0976+ +5" 0.1=2.695ms.

For an aperiodic request made at the station that produces periodic variable F (assume
that F is the only periodic variable produced in that station), the dead interval (given by
equation (6.15)) is 6.2928ms. Therefore, the worst-case response time of an aperiodic
variable requested in station k is: RaX=6.2928+2.695=8.9879ms.

6.7. Summary

In WorldFIP networks, the bus arbitrator table (BAT) regulates the scheduling of all
buffer transfers. In practice, two types of buffer transfers can be considered: periodic and
aperiodic (sporadic). The BAT imposes the schedule of the periodic buffer transfers, and
also regulates the aperiodic buffer transfers.

In this Chapter we provided a comprehensive study on how to configure a WorldFIP
bus arbitrator table (BAT), in order to guarantee that periodic data transfers are
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performed before their deadlines. Important contributions were made in the definition of
simple feasibility tests for the periodic traffic scheduled according to both the RM and
EDF approaches. We showed that while allowing for an increased utilisation level of the
network, the EDF scheduling induces an increased communication jitter.

Concerning the aperiodic traffic, we showed how some previous works (Pedro and
Burns, 1997; Vasques and Juanole, 1994) proved to be quite pessimistic. We
significantly improved previous results by approaching the analysis for the aperiodic
traffic in an integrated manner with the methodologies used to build the bus arbitrator
table. Thus, we reduce the pessimism considering the actual length of the periodic
window in each microcycle. We also considered the effect of both the communication
jitter and the padding window.
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Chapter 7

Adding Local Scheduling Mechanismsto P-NET
and PROFIBUS M asters

In this chapter we propose a methodology for the implementation of priority-based
scheduling mechanisms at the application process level of P-NET and PROFIBUS
masters. This chapter is partialy drawn from the following published work:
"Adding Local Priority-Based Dispatching Mechanisms to P-NET Networks: a
Fixed Priority Approach” (Tovar et al., 1998) and "From Task Scheduling in
Single Processor Environments to Message Scheduling in a Profibus Fieldbus
Network” (Tovar and Vasques, 1999).

7.1. Introduction

The worst-case response time of messages in P-NET and PROFIBUS networks, and thus
the pre-run-time schedulability condition, is highly dependent on the number of message
streams in each master station (please refer to Section 4.4.5 and Section 5.4.3 for the
P-NET and PROFIBUS cases, respectively). This problem, which is a consequence of
the first-come-first-served (FCFS) nature of the communication queues (Fig. 7.1a), may
preclude the use of P-NET and PROFIBUS networks, in applications involving master
stations dealing with a large number of 1/O points (resulting in a large number of
message streams per master station).

The impact of the FCFS behaviour in the message response time, motivated us to
consider priority-based queuing mechanisms implemented at the masters application
process (AP) level (Fig. 7.1b). The priority-based queuing mechanisms must be
implemented at the AP level, to preserve compliance with the standards.

In the proposed architecture, requests generated at the AP level are stored in an AP
gueue. Priority-based mechanisms are provided to guarantee that at each token visit, the
highest-priority message request will be in the MAC communication queue (which has a
length of one message). Priorities can be assigned using one of the following priority
assignment schemes: RM/DM or EDF. Note that in the case of PROFIBUS masters,
these priority-based mechanisms are only intended for message requests of the
high-priority type.

The remainder of this chapter is organised as follows. In Section 7.2 we discuss the
analogy between non pre-emptive task scheduling in single processor environments and
message scheduling in token-based networks. In Section 7.3, we provide (token)
utilisation-based tests for both types of token-passing networks. In Section 7.4 we
propose worst-case response time tests for both RM/DM and EDF dispatched messages
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in P-NET and PROFIBUS networks. We aso show how the (token) utilisation-based
tests can be quite pessimistic. In Section 7.5, we extend the proposed analysis
considering the actual token utilisation (presented in Section 4.4) in P-NET networks.

Application

Requests from Process (AP)

tasks

=

Response

Requests
(Priority Queue)

Requests from
tasks

Application Low AP Queues
Process (AP)
" CJ

—

it

Response
Communication Communication Qlieue [ ] ( Communication
FCFS queue (length = Stack (length 1) Stack
number of streams) [: 7_1
Bus Bus
a) b)

Fig. 7.1 Thisfigureillustrates compares the original architecture of both P-NET and PROFIBUS
masters (a) with the proposed architecture (b)

7.2. From Task to Message Scheduling: Analogies and Adaptations

In this section we discuss the analogy between task scheduling in a single processor
environment and message scheduling in token-passing networks (considering, at most,
one processed message per token visit). This analogy will later enable the formulation of
feasibility tests for P-NET and PROFIBUS message stream sets.

7.2.1. Homogenisation of Notations

Firstly, in order to apply the proposed methodology to both token-passing networks, we
need to homogenise the assumptions and the notations used in the previous analysis of
P-NET (Chapter 4) and PROFIBUS (Chapter 5) networks.

The proposed methodology is based on the following assumption: in P-NET and
PROFIBUS networks, at each token visit, at most only one real-time message cycle is
performed. While in the case of P-NET networks this is its standard behaviour, in the
case of PROFIBUS networks this results from considering the unconstrained
low-priority traffic profile (Section 3.4.2).

Concerning the previously defined notations, the upper bound for the token
inter-arrival time at a master station k has been denoted as V (equation (4.4)) or as chyde
(equation (5.6)), for the cases of P-NET and PROFIBUS networks, respectively. In order
to have a similar notation for both cases, we will use V to denote the upper bound for the
token cycle time. We will also use the notation ns‘ to refer to the number of real-time
message streams in a master k (P-NET or PROFIBUS master). Therefore, ns* stands for
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nh*, which was used in Chapter 5 to denote the number of high-priority message streams
belonging to a PROFIBUS master. Similarly, the PROFIBUS high-priority message
stream set is now denoted as S¥, instead of Sh/*.

7.2.2. Analogiesto the Blocking and Task's Computation Times

In the schedulability analysis of tasks in non pre-emptive single processor environments,
the concept of processor's busy period denotes the time interval within which the
processor is not idle (see Section 2.4.4). Assume the following task set:

Table7.1: A Task Set Example (D =T)
Task Computation Time (C) Period (T)
60

A 10

B 10 80
C 10 100
D 10 100

Assuming a RM priority assignment policy in a non pre-emptive context, Fig. 7.2
illustrates a time-line considering that the first instance of task D (lower-priority task) is
released marginally after time instant 0, and before all other instances of higher-priority
tasks.

When this request Maximum blocking for Time utilisation of the
appears, there is no ahigher priority task shared resource
pending task (as all Cs are equal) (processor) by a task
—
Task D * L 4
— ——
Task C T T

Task B

t |
t

1

Task A I | :
t . ' L

[ |

1

r U P
Do
10 20 30 4 50 60 70 80 90 100 110 120 130 140 150 160 170 180

processor busy period

T release of task

Fig. 7.2 Scheduling example (using RM) for the task set shown in Table 7.1

Note that the blocking of atask in a non pre-emptive context is equal to the maximum
execution length of alower-priority task (see equation (2.4), in Chapter 2).
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Assume now the following message stream set for a token-passing example:
Table 7.2: Message Stream Set Example (D =T)

Message Message Cycle Length (C) Period (T)
60

A 2

B 2 80
C 2 100
D 2 100

This case will be shown to be loosely equivalent to the previous task scheduling
example, if the token cycletimeis equal to the tasks' execution time (V = Ciagl)-

Consider Fig. 7.3, which illustrates the time-line for a message scheduling with a
messages' release pattern (arrival of requests to the queue) similar to the previous tasks
release pattern.

Thls request appears Maximum blocking for ;F;In;ree;l\rléssa(\;b?zeof the

just after the token any-priority message Cakonnetmord by a

arrival, hence it is not cycle

able to be processed message cycle, as

in this token visit slee[r_1 by the local
station

= , ]

Message D <

—

Message C T T
Message B T T -I ;

Message A

'
|
1 +
i

10 20 30 40 5|O 60 70 80 90 100 110 120 130 140 150 160 170 180

|
token busy period ' v

T Arrival of the request to the queue @ Instant of token arrival
Fig. 7.3 Scheduling example (using RM) for the message cycle set shown in Table 7.2

It is clear that the message blocking time is equal to the token cycle time. However,
this blocking term is independent of the priority ordering of message transfers.
Therefore, the blocking problem in the task scheduling theory can only be considered to
be loosely equivalent to the blocking problem in token-passing networks, since the
priority ordering property is not preserved.

It is also clear that the tests available for the schedulability analysis of non pre-
emptable tasks in single processor systems can be adapted to the message scheduling in
token-passing networks, considering that the blocking term is equal to the token cycle
time, independently of the message priority.

Therefore, the computation time of a task can be considered equivalent to the token
cycle time, since in a token-passing network, where, at most, only one message is
processed per token visit, the shared resource (network access/token) is only available
once in every V interval. This means that the contribution of each higher-priority
message cycle to the overall queuing delay of a lower-priority message cycle is always
equal to V.
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Finally, in Table 7.3 we summarise the anal ogies between task scheduling in non pre-
emptive single processor environments and message scheduling in specific token-
passing networks (considering, at most, one processed message per token visit).

Table 7.3: Analogies between Task Scheduling and Message Scheduling in Token Passing

Networks
Task Scheduling Message Scheduling
Maximum blocking (except for the lowest - Y,
priority task/message) B -W%{C‘ }
Maximum blocking (lowest priority 0 V
task/message)
Resource usage time for the higher- C, vV
priority tasks/messages
Resource usage time for the task/message C C

itself

7.2.3. Basic Message Response Time Evaluation

Considering priority-based dispatching mechanisms, the worst-case response time for a
message request occurs when the request is placed in the master's queue just after the
token arrival, hence not being able to be processed in that token visit. If there were any
other message request pending before the token arrival, then the token would have been
used to transmit that message; otherwise, the master would not use the token at all.

Therefore, the generic worst-case response time of a message stream Sk will be as
follows:

R =Q +C =V +F "V +C 7.9

where the first term V denotes the message blocking, and the symbol F denotes the
number of higher-priority messages (interference) that can be scheduled ahead of a
message from S¥.

Equation (7.1) is similar to equation (5.4) for the PROFIBUS case, considering
F =nh* - 1, which means that a message from stream Sh¥ will suffer the interference
from, at most, all other (nh* - 1) messages.

For the P-NET case (equation (4.5)) there is however a dlightly difference, which isa
conseguence of the better characterisation of its token holding time. In fact, we
considered that the critical instant (FCFS case) occurs when all ns* requests are placed in
the outgoing queue just after a message cycle has been completed (see Fig. 4.1). In this
chapter, we must re-define the critical instant as being the instant when a message
request is placed in the outgoing queue just after the token arrival, hence, not being able
to be processed in that token visit. This reflects the worst-case situation, since in the case
of priority-based outgoing queues, the message, even if it is the highest-priority one, will
be blocked during V. Therefore, Fig. 7.4 updates Fig. 4.4 to reflect this new definition of
the critical instant.

This new definition of the critical instant enables the formulation of the response time
of a P-NET message similarly to equation (7.1). In fact, adding C* to the previous
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response time formulation (equation (4.5)), it follows that: R* = n&*~ V + CX as
illustrated by Fig. 7.4.

highest priority
request from master 1
released marginally

after the token arrival a lower priority

message induces a
priority inversion with
length V

highest priority
requests processed
here

req(S:")  res(Si")

~« B0 B0 BD B0 |0

Access *
Counter 1 2 3 1 I 2 J

Fig. 7.4 New definition of the critical instant

7.3. (Token) Utilisation-Based Tests

In this section, we derive (token) utilisation-based feasibility tests for both fixed and
dynamic priority assignment schemes. Such feasibility tests, which can be quite
pessimistic, provide an easy tool to evaluate the schedulability of the overall message set
with areduced complexity.

7.3.1. Caseof Rate Monotonic Priority Assignment

Considering the analogies to the blocking and tasks computation time drawn in the
previous section, the schedulability test (2.5) for the RM dispatched tasks can be adapted
to encompass the characteristics of the P-NET/PROFIBUS token-passing protocols, as
follows:

Vo, v, @b 0
A =it maXi—y £ ns 2 - 15", (7.2
i=1 TI 1£I£n'I\T_ ﬂ

As the worst-case token cycle time (V) is constant, equation (7.2) can be re-written as:

Je 10 1 U = .0 (7.3)

£nsk” g2 - 1—
LTl S

Note that, as we are considering token-passing networks, where, at most, one message
is transmitted per token arrival, the interference from other masters is only reflected on
the evaluation of the V parameter.
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Consider the following message stream set:
Table 7.4: Message Stream Set Example

Stream Period
k
5
o .
S 8
S 12

Considering that the worst-case token rotation time is V = 1, it follows that the
schedulability test (7.3) is:

ey 10 1u el o.
v aa 2% e B o titiii i loosc0s
ST 5 54 - 578 12 5

Therefore the message stream set presented in Table 7.4 is schedulable by the RM
algorithm in a token-passing network. In Fig. 7.5, we present a possible time-line for the
message scheduling, assuming that all messages are requested just before the first token
arrival, but with none of them being dispatched in that first token visit. In this way, we
represent a blocking term right at the beginning of the time-line.

3
> p p
Sk
Requests at : f f f
the AP level S5 r r r
s:r A
Token arrivals
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
| | | |
. ! I I o, |
Message cycle processed II I I:I I:I |I I I:I II I:I I I I:I
! ! | | !
| | | | | | |
low
Priority queue (RM)
" O 8 80 ¥ 0 BAR0
TENE
D+ O«

Fig. 7.5 Schedule example for the message stream set of Table 7.4

This example highlights some of the pessimism associated to the utilisation-based
tests, since, although the schedulability test is just marginally true, none of the message
cyclesis scheduled close to its deadline.
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7.3.2. Caseof Earliest Deadline First Priority Assignment

Considering again the analogies to the blocking and tasks computation time drawn in
Section 7.2, the schedulability test (inequality (2.14), in Section 2.5.1) for the EDF
dispatched tasks can also be adapted to encompass the characteristics of the
P-NET/PROFIBUS token-passing protocols, as follows:

S 106 1 U (7.4)
Vi&a it —rqUEL ",
3775 pufily
Consider the following message stream set, where we consider values for periods that
are marginally smaller than multiples of the worst-case token cycle time (V = 1):
Table 7.5: Message Stream Set Example

Stream Period
K T
gzk 5
S 6
SF 8

The application of the schedulability test (7.4) to this message stream set is:

- 0 u R . R
v ah L% te10 Bl 1%:90 090£1 TRUE
ST, 4y & 5 6 8 4g

Hence, this message stream set is schedulable considering the EDF priority
assignment scheme, while with the RM assignment scheme would not pass the
feasibility test (7.3): 0.99 £ 0.76 is FALSE.

7.4. Response Time Tests

In this section we derive response time feasibility tests for both fixed and dynamic
priority assignment schemes. Such feasibility tests, compared to the (token) utilisation-
based tests are more complex, but also much less pessimistic, as it will be shown in this
section. This is an expected result, as response time tests for task scheduling are
sufficient and necessary conditions, while the utilisation-based tests are generally only
sufficient conditions (refer to Chapter 2). It is also important to note that for the case of
Di < T; there are no simple utilisation-based tests for the case of fixed priorities.

7.4.1. Response Time Tests: Fixed Priority Assignment

Based on the analogies made in Section 7.2.2, which led to equation (7.1), the worst-case
response time analysis for the non pre-emptive context (refer to Section 2.4.4) can be
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adapted to encompass the characteristics of the P-NET/PROFIBUS token-passing
protocols. The worst-case message response timeiis:

R¢=Q +Ck (7.5)
where Q is defined as:
e k0o
Q =V + 5 gQ—u V=V’ G+ é_ gQ_'H— (7.6)
Y- LI & 0@l Og

Note that this queuing delay is the equivalent to the task's interference in a non pre-
emptive context (equation 2.11). Considering again the message stream set example
presented in Table 7.5, the worst-case response time for each message stream will be as
shown in Table 7.6 (assuming C= 0.2, " ).

Table 7.6: Worst-Case Response Times (RM Case) for the Stream Set of Table 7.5

Stream Response
S 1.2
S 2.2
S 32
Sk 7.2

For S, theiterations for evaluating the queuing delay are as follows:

k(0) é0g é0u éou K@ élu élu élu
=1+ A— 4+ A — ~—n=1 =1+ ~— + ~— ~ =4

N M S 2 B T M

k() édu é4u é4n «(3) é5u é5u é5u
=1+ i+—c+ri—v+r—- =5 = At A+t A —2=0

: +84'H+85H B T M

k@) _ u é6 u éb U é70 é7u é7u
“ta—n=7; =1+ ~— + ~— ~ =7

S TR N B oM = =

and iterations stop at this point, since as Q;® = Q¥ = 7. Therefore, R*= 7+ 0.2=7.2,
which is smaller than its relative deadline (its period), and thus, the message stream set is
RM schedulable.

Considering the same message stream set, the (token) utilisation-based test (7.3) gives
0.99 £ 0.76, which is equivalent to state that this message stream set may or not be
schedulable. Therefore, it turns out that the response time test is much less pessimistic
than the (token) utilisation-based test.

The time-line presented in Fig. 7.6 illustrates the above results.
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Fig. 7.6 RM Schedule for the message stream set of Table 7.5. This figure also illustrates the
worst-case response time for the message stream set (Table 7.6)

=

7.4.2. Response Time Tests: Dynamic Priority Assignment

Based on the analogies made in Section 7.2.2, which led to equation (7.1), the worst-case
response time analysis for the non pre-emptive context (refer to Section 2.5.5) can aso
be adapted to encompass the characteristics of the P-NET/PROFIBUS token-passing
protocols.

The worst-case message response time is, obvioudy, given by equation (7.5).
However, amajor difference exists for the definition of the queuing delay, which for the
EDF case must be defined as:

e N A , A
oy Sy 8 it 8QU eDf- DG
Q =V ' ¢l+ a minjl+e= - 1+é——wy~+ (7.7)
¢ o ! elia e T L

that is, a message request concerning stream S* will be delayed by all message requests
of other streams having earlier or equal absolute deadlines than the absolute deadline for
S¥ (absolute deadlines are the difference between the relative deadline, DY, and the
beginning of the evaluation interval - assumed at time instant 0). Note that while
8(1+&Q*/ T 0) requests having relative deadlines smaller or equal to D can be
placed in the AP queue, from those requests, only a maximum of 1 + & (D" - D)/ T @
will have absolute deadlines earlier than D*. Weillustrate thisin the following example.
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Assume the message stream set example of Table 7.7 (D =T).
Table 7.7: Message Stream Set Example

Stream Period
S a4
S* 5
S 6
S¥ 7

If we consider the synchronous release pattern for message streams, a time-line for
the EDF schedule will be asillustrated in Fig. 7.7.
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Fig. 7.7 Schedule for the message stream set of Table 7.7, with messages dispatched according
the EDF priority assignment, and considering a synchronous rel ease pattern

=

As it can be seen from Fig. 7.7, there is a request for S arriving to the queue before
the processing of the first request for S,. However, as that request for S* has an absolute
deadline which is later than the absolute deadline for S, it will be processed only after
the request for S, This behaviour of the EDF scheduler is effectively translated by
equation (7 7), as can be seen by the following successive iterations (V = 1):

é 0 i 0]
Q4 —1+m|n|1+§£91 euu +|1+(~3£L111+e—5u
| 84 H e 8 H e

+i %§,1+ guﬂg =1+ m|n{L1}+ mm{],l}+ mm{Ll}
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@ i1 @640, €7 -4 1, @4, €7 -5 10U
Qs —l+m|n|1+ plte——tilt i lve—y+
) B ESs W B5H &S5 G

Hiltgoplt 66— 01+ min{2,1} + min{1, 1} + min{1, 1} = 4
U

and iterations stop a this point, as QY = Q,“? = 4. The maximum queuing delay for a
request of stream S, considering that the streams have a synchronous release pattern, is
thus as shown in the time-line illustrated in Fig. 7.7.

Note however that the worst-case response time for EDF dispatched messages is not
necessarily found with this synchronous release pattern (refer to Sections 2.5.4 and
2.5.5). Therefore, equation (7.7) must be updated to:

xe 0

o & i Dk DX 0 &

Q@)=Ba)+v < & Gminj1+ 2l 1+§""+T—$ e 09
¢ & f eliag e T &'

@DkEa+Df

where BX is defined as follows:

iV, a=0
B (a) = ;[. . k k (7.9)
i1V, at0 U $;: Df>a+D,

Note that while with the RM/DM approach (Section 7.4.1) the blocking term is V and
effective for all the message streams, with the EDF approach, we must only consider
(ifat 0) ablocking if it exists amessage stream S( * i) with an absolute deadline | ater
than the relative deadline of the instance of S* released at time instant a.

A main difference exists in comparison to the analogous formulation for task
scheduling (equation 2.28), since in the case of our token-passing model, for a = O there
is aways a blocking with the value V.

Similarly to the case of task scheduling, a belongs to the following set of values:

1
al j0,{E{Y " T*+Dl- D, Y1 AjJco, L[ﬁ; (7.10)
P

where the (token) synchronous busy period is given by:

ns*

L=a

> (D
f_

IS
"D_’FI
N\ C

U\, (7.12)

In Appendix D.1, we give the pseudo code details of the algorithm used to evaluate
the valuefor L.
The queuing delay isthus:

QF =max{0,Q' (a)- 3} (7.12)
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since the computation Q;“(a) may occasionally give a value smaller than a (for instance,
when the value of a corresponds to more than one request of S* during the interval under
analysis, theinterval [0,Q(a)].

Finally, substituting equation (7.12) back in equation (7.5), we define the worst-case
response time of a message stream dispatched according to the EDF scheme as follows:

R* = max{0,Q! (a)- a}+C' (7.13)

In Appendix D.1, D.2 and D.3, we give the pseudo code details for the evaluation of L
(equation (7.11)), for the determination of the a values for each stream S* (equation
(7.10)), and for the evaluation of the Q (equation (7.8)), respectively.

The analysis outlined will be now illustrated for the stream set example of table 7.7.
The results presented were obtained using the following exact characterisation of the
message stream set of table 7.7:

Table 7.8: Exact Characterisation of the Message Stream Set of Table 7.7

Stream ck T D
SK 0.2 3.99 3.99
S¥ 0.2 4.99 4.99
S 0.2 5.99 5.99
S¥ 0.2 6.99 6.99

For this message stream set, the value for L (upper bound for a) is (using (7.11) -
Algorithm D.1): L = 9. Therefore, the values of a that must be tested for each message
stream (equation (7.10) - Algorithm D.2) is:

Table 7.9: a Vaues Concerning Stream Set of Table 7.8

Stream a=0 al a2 a3 a4 a5 ab a7
S 000 100 200 300 399 599 798 7.99
S* 000 100 200 299 499 698 699 899
S 000 100 199 399 598 599 799 898
SK 000 099 299 498 499 699 798 897

In order to evaluate the queuing delay for each release pattern, equation (7.8) must be
evaluated for each a value (Algorithm D.3). Theresults for (Q(a) - a) are:

Table 7.10: Results for al (Q(a) - a) Concerning the Message Stream Set of Table 7.8

Stream a=0 al a2 a3 a4 ab ab a7
S 100 100 1.00 000 -0.99 | 1.01 -098 0.01
S 200 200 100 001 -199 002 201 101
S< 300 200 101 -099 -298 -299 201 202
SK 400 201 001 -198 -199 -399 302 203

In this table, for each message stream the value of max{0, QXa) - a} is highlighted.
The worst-case response times for the message streams are presented in Table 7.11.
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Table 7.11: Worst-Case Response Times for the Message Stream Set of Table 7.8

Stream Response a
SX 2.01+0.2=1.21 5.99
S¥ 2.01+0.2=2.21 6.99
S 3.00+0.2=3.20 0.00
Sk 4.00+0.2=4.20 0.00

Therefore, the message stream set is EDF schedulable, since R¥ £ T (D), " i, while
it would not be schedulable with the RM approach. In fact, stream S, and using
equation (7.6), will have the following worst-case queuing delay:

(0) é0u, é0u,élu_,, W_,,élu élu élu_
e TN M R i T i
k(@ é4u é4u,é4u k(3) €50 ,é5u,é5u

=1l+x—+s—1+a—+=5 =l+x—r +i— +1—"=6
) g4l &Y &Y ) g2l &Y &Y
k(@) é6u €60, €6u k() é70, é70, €70

=l+x—rta—pta—7y=7 Q =1+ —r+i—7+i—r=7
) g2l &H & H ) gl &H &Y

and thus R = 7 + 0.2 = 7.2, which is larger than T, (D, )= 6.99. Fig. 7.8 puts this to
evidence.
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Fig. 7.8 RM schedule for the stream set of Table 7.7

As a final remark, it is important to note that the stream set of Table 7.8 does not
emphasise the importance of parameter a in equation (7.10). This is only due to the
specific characteristics of the particular stream set. In fact, the results in Tables 7.10
and 7.11 show that considering a = O corresponds virtually to the actual worst-case
response time. The following example will better illustrate the importance of parameter
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a in the evauation of the queuing delay. The only difference to the previous example is
the value of D,~.

Table 7.12: Message Stream Set Example

Stream Cik Tik Dik
SX 0.2 3.99 3.99
S 0.2 4.99 3.90
SK 0.2 599 5.99
Sk 0.2 6.99 6.99

For this stream set example, the set of values for a would be as follows (L = 9):
Table 7.13: a Values Concerning Stream Set of Table 7.12

Stream a=0 al a2 a3 a4 ab ab EY
SK 000 200 300 399 490 798 7.99
S 000 009 209 309 408 499 807 8.8
S< 0.00 100 199 290 598 599 789 7.99
sk 0.00 0.99 190 498 499 689 699 897

Using the resulting values for each QX(a), the difference (Q¥@) - a) results as
follows:

Table 7.14: Results for al (QX(@) - a) Concerning the Message Stream Set of Table 7.12

Stream a=0 al a2 a3 a4 ab ab a7
Sk 2.00 100 000 -099 110 -098 o0.01
S 100 191 091 -009 -108 -199 -1.07 0.92
s 300 200 101 010 -298 -299 111 301
sk 400 201 110 -198 -199 -389 -399 203

Asit can be seen, for stream S,¥, with a = 0.09, the queuing delay (as compared to the
case of a = 0) increases from 1.00 to 1.91. This is an understandable result, as its
"absolute deadline" will then be 0.09 + 3.90 = 3.99, and therefore, S* will be scheduled
earlier.

7.5. Considering the effect of Unused Tokens (P-NET Networks)

The worst-case response time tests developed in Section 7.3 and 7.4 embody a non-
negligible level of pessimism, which results from considering that the real token rotation
timeis constant and equal to V.

In this section we extend that analysis to consider the approach outlined in
Section 4.4, where we devel oped worst-case response time analysis of P-NET messages
considering the effect of the unused tokens, hence considering the actual token rotation
time.
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7.5.1. Extending the Response Time Testsfor the Fixed Priority Assignment

The worst-case queuing delay (7.6) can be updated to include the effect of unused tokens
asfollows:

v } e kuo n y
Q =V’ &+ 3 S_H -gaUt T (H-s) (7.14)
" ihe(i) ] 4]

with H as defined in equation (4.3), and with Ut” (4.16) re-defined as follows:

] i nsy + *Y (U
UtY = NC*- minj NCX, ns’ +Q eQT—Jauy (7.15)
7 1= & i Up

In equation (7.15), NG is the worst-case number of consecutive token visits needed

to process a message cycle of stream S*. Note that this number is no longer ns‘ and it
depends on the priority of the particular message stream. NC¥ is given by:

éox u
NCK=1+ & & (7.16)
w0811

In equation (5.15), Ja*¥ denotes the master's logical ring aggregate jitter (refer to
Definition 4.7, in Chapter 4). Its evaluation must be subject to some modifications,
which will now be explained.

The critical instant in master k is nhow assumed to be marginaly after the token
arrival. Compared to the critical instant (t;) defined in Section 4.4, the new definition for
the critical instant (refer to Section 7.2.3) isi t.+t +r.

Therefore, the master's logical ring request jitter (see Definition 4.4) is now given by:

Y=Y+t +r (7.17)

where Jr¥ is the previously defined logical ring request jitter (4.11).

Some adaptations must also be made for the definition of the logical ring visit jitter
(v - see Definition (4.6)), since equation (7.14) is only for the queuing delay (refer to
Section 2.4.4 for an explanation). Therefore, Jv*¥ must be defined as:

NY =W - C, (7.18)

with Jv’ as defined by equation (4.15), and Cy the length of any message cycle in the
network.
Consequently, Ja*¥ is defined as follows:

Y=V - =Y+t +r - W HC, =dY- W +H=Ja’ +H (7.19)

Finally, substituting equations (7.15) and (7.16) in (7.14) we have the formulation for
the worst-case queuing delay of a stream S scheduled according to RM/DM priority
scheme, and considering the actual token rotation times.
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with Ja*” as defined in equation (7.19).

7.5.2. Extending the Response Time Testsfor the Dynamic Priority Assignment

As the worst-case response time may occur for a message request of stream S* produced
at time instant a we need first to determine the value for a that leads to the worst-case
r&spgnse time (using the methodology outlined in Section 7.4). We denote this value of a
asa .

Equation (7.8) can be updated to:

0
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with a being the value of a which verifies equation (7.12) with respect to equation
(7.8).
Ut (4.16) must be re-defined as follows:

K+ Ja*y +W- af (il
T oh

Ut = NCedf * - mm,1 NCedf *, ns’ +§ &
1 1=1 €

In this equation we are considering the maximum interference from mastersy (y * k),
as we are considering that ns’ requests are placed in each master y at time instant
J*r¥ + W before a*. W represents the offset for the logical ring release jitter (difference
between the value of a and the previous token arrival at master k). Finnaly, the number
of consecutive token visits needed to process a message cycle of stream S* is now
defined as follows:

(7.22)
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Note that equation (7.23) gives only the number of token rotations starting from time
instant a*, since we are subtracting the value é&* /Viy as é* /VU corresponds to the
number of token rotations from the beginning of the interval under evaluation (time
instant 0) up to time instant a;*.

7.6. Summary

The worst-case response time of messages in P-NET and PROFIBUS networks is highly
dependent on the number of message streams in each master. The impact of the FCFS
behaviour in the message response time, motivated us to consider priority-based queuing
mechanisms implemented at the masters' application process (AP) level.

We proposed an architecture where requests generated at the AP level are stored in an
AP gueue. Priority-based mechanisms are then provided to guarantee that at each token
visit, the highest-priority message request will be the one to be transmitted.

Our main contribution was the adaptation, by providing the convenient analogies, of
the feasibility tests available for task sets such as they could also be used as feasibility
tests of messagesin P-NET and PROFIBUS.

We reasoned on how the blocking effect (resulting from non pre-emption) in the
schedulability analysis of tasks could be mapped to each case of priority scheme used to
schedule messages. We showed how the worst-case execution time of tasks could be
translated to the upper bound of the token rotation time in P-NET and PROFIBUS token
passing networks. More important, we demonstrated how the simple utilisation-based
feasibility tests for non pre-emptive independent tasks could be easily adapted to be used
as (token) utilisation-based tests. However, as these tests can be quite pessimistic, we
developed response-time tests which were also adapted from the well know response
time tests used for RM/DM scheduled non pre-emptable independent tasks and we aso
adapted the more recently developed response time tests for EDF scheduled non pre-
emptable independent tasks. Finally, we illustrated, for the P-NET case, how the analysis
may turn even more effective by embodying previous analysis (Section 4.4) considering
the actual token rotation time.
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Chapter 8

Conclusions and Future Work

In this chapter we review both the research objectives and results of this thesis,
giving emphasis on how the main contributions targeted the origina research
objectives. Finally, we provide some perspectives on future research work

8.1. Review of the Resear ch Objectives

Fieldbus networks are widely used as the communication support for distributed
computer-controlled systems (DCCS), in applications ranging from process control to
discrete manufacturing. Usually, DCCS impose real-time requirements; that is, traffic
must be sent and received within a bounded interval, otherwise a timing fault is said to
occur.

Fieldbus networks are usually broadcast networks, where several network nodes share
a common communication medium. Messages are transmitted from a source node to a
destination node via the shared communication medium. As a consequence, messages to
be transmitted by a specific network node may experience some queuing delays,
resulting not only from contention between message requests from the same network
node, but also with message requests from the other network nodes.

Therefore, a potential leap towards the use of fieldbuses in time-critical applications
lies on the accurate characterisation of the temporal behaviour of its Medium Access
Control (MAC) protocol.

The main research objective of this thesis was to develop analysis and methodol ogies
to guarantee, prior to run-time, that real-time distributed computer-controlled systems
(DCCYS) could be successfully implemented with standard fieldbus communication
networks, such as those defined by the European Standard EN 50170: P-NRT,
PROFIBUS and WorldFIP.

A DCCS is implemented by a set of computational devices. Each computational
device runs a number of tasks. These tasks communicate their results by passing
messages between computational devices across a communication network.

In this thesis we addressed one of the components that contribute to the overall
latencies of the communicating tasks: messages response time. In order to guarantee that
the timing requirements of DCCS are met, the communication delay between a sending
task queuing a message, and the related receiving task (it can be in the same network
node, or even the same task) being able to access that message, must be upper bounded.

A basic requirement for a network used as the communication support for DCCS, is
that a deterministic access to the shared communication medium must be provided to the
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message requests, or in other words, the queuing delay of a message request must be
upper bounded.

Considering this broad definition for deterministic access, al the three anaysed
protocols fulfil this basic requirement. In fact, not many local area networks miss this
requirement, at least in the way we have defined it. A notable example that confirms the
exception isthe CSMA/CD MAC protocol.

In WorldFIP, and concerning the periodic traffic, the deterministic access is
guaranteed by the bus arbitrator, which controls data transfers according a static-
scanning table. For the aperiodic traffic, the deterministic access is also guaranteed,
provided that there is at least one microcycle with an aperiodic window length suitable
for processing aperiodic requests. Note that in the analysis presented in Chapter 6,
Section 6.6, only urgent requests for aperiodic buffer transfers are considered. If
message requests and/or norma requests for aperiodic buffer transfers were also
supported, these would have unbounded queuing delays, since the BA gives priority to
process the urgent queue for aperiodic buffer transfers. However, as these two other
services are not intended to support real-time data transfers, the aperiodic transfers can
also be considered to have deterministic access.

PROFIBUS adopts a simplified version of the timed-token protocol where each
master has a bounded interval to access the network. As in the original time-token
protocol, PROFIBUS considers two types of quality of service: synchronous
(high-priority or real-time) and asynchronous (low-priority). The main difference of the
PROFIBUS protocol, as compared to the original timed-token protocal, is the absence of
synchronous bandwidth allocation. In the original timed-token protocol, this parameter
could be configured in each station, providing a guaranteed token holding time for
processing high-priority messages. In the PROFIBUS protocol, each master is
guaranteed to be able to process, at least, one high-priority message request. This
configures also a deterministic access type. Contrarily, the other services (low-priority
requests) that are provided by the PROFIBUS data link layer offer no guarantees of
deterministic access. It depends on the network load of high-priority traffic and on how
the token target rotation timer (T+g) is set. Significantly, if Tris set very close to O, low-
priority traffic will have no access to the network at all. As a conclusion, the low-priority
traffic may affect the throughput of the high-priority traffic. However, and considering
the worst-case situation, the high-priority traffic still has a guaranteed deterministic
access. Hence, we considered that only the high-priority PROFIBUS quality of serviceis
intended to support real-time traffic.

Finally, P-NET also offers a deterministic access, since it is based on a virtual token
passing (VTP) mechanism, where each master is guaranteed a bounded access delay.
This determinism is not achieved by means of controlling the token rotation time, as for
the timed-token protocol. Instead, the bounded access delay is implicitly guaranteed by
the fact that, at each token visit, only one message request may be performed. For the
P-NET case, it is however important to mention that there is only one type of quality of
service for message transfers, which means that, as non real-time traffic cannot be
distinguished from real-time traffic, it interferes even more significantly with the real-
time traffic.

Therefore, the basic real-time requirement for each one of these three fieldbus
protocolsis fulfilled: deterministic access.
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The subsequent step to achieve our research objectives was to provide analysis to test
the messages' timing requirements (namely their deadlines) against the worst-case peak
load conditions.

In this thesis we developed, for each one of the three network protocols, a set of
analytical methods to analyse, prior to run-time, if no message deadline will be missed.
These methods constitute a set of powerful tools to guarantee the timing requirements of
distributed time-critical applications where distribution is supported by the
communication services of one of these three networks. These methods were presented
in Chapters 4, 5 and 6, for P-NET, PROFIBUS and WorldFIP networks, respectively.

In distributed computer-controlled systems, the real-time performance depends also
on the ability of the communication networks to schedule messages according to their
priorities. While in WorldFIP networks the periodic messages (concerning identified
variables) can be scheduled by the bus arbitrator on a priority basis, in P-NET and
PROFIBUS networks, the first-come-first-served (FCFS) behaviour of their
communication queues precludes this ability. In this thesis we proposed a methodology
to guarantee the schedulability of messages based on the priority ordered application
process queue, in both P-NET and PROFIBUS masters. The implementation of this
priority based scheduling is even more important in P-NET networks, since, as it was
mentioned, its communication queue treats all the reguests in the same manner. It is
however important to stress that RM/DM scheduling is preferable to EDF scheduling in
the case of P-NET networks, since, a fixed priority scheme enables the definition of
higher-priority and lower-priority message streams and thus the lower-priority traffic
does not interfere with the scheduling of the higher-priority message streams.

8.2. Main Resear ch Contributions of this Thesis

We have made some important contributions to the schedulability analysis of messages,
for al the three EN 50170 profiles. In fact, and contrarily to the case of CAN networks,
there were not much previous work addressing real-time aspects devoted to these
fieldbus networks. Thisis not a surprise, since as CAN is based on a priority bus, al the
methodologies used for the task scheduling can amost be directly applied. For the
EN 50170 networks, real-time analysis is more challenging, since they must combine
specific models for the MAC behaviour with the traditional real-time analysis. We hope
that we have made relevant contributions to fill this gap. Below, we summarise our main
contributions.

1. We developed a simple methodology to evaluate the worst-case response-time of
P-NET messages, based on the concept of full token utilisation. This approach to
evaluate the response time of P-NET messages is only effective for P-Net
networks with high bus utilisation. Therefore, we extended the analysis to a more
sophisticated P-NET model, which considers the actual token utilisation by the
different network masters. The major contribution of this model is to provide a
less pessimistic, and thus more accurate, analysis for the evaluation of the worst-
case communication response time of P-NET messages.
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2. Also concerning P-NET networks, we showed how, by using P-NET hopping
devices, asignificant reduction in the messages' response time could be achieved.
However, this increase in the network responsiveness can only be obtained for
message transactions within the same network segment. Such multi-hop
messages may aso have real-time requirements, and thus, we also developed
feasibility analysis for this type of messages.

3. We developed a simple worst-case response time analysis for PROFIBUS
messages. This analysis improves previous related work, where the FCFS
behaviour of the communication queues was not considered. It also improves
previous works in the sense that our analysis is based on response time tests,
hence less pessimistic.

4. Due to the absence of synchronous bandwidth allocation, guaranteed real-time
approaches for PROFIBUS networks very much depend on the upper bound for
the inter-arrival time of the token to a station. Therefore, the PROFIBUS token
cycle time is an important parameter for the real-time analysis. In this thesis, we
provide an accurate evaluation of the PROFIBUS token cycle time, which allows
for an accurate evaluation of the worst-case response time of PROFIBUS
messages.

5. For the WorldFIP periodic traffic, message deadlines can be easily guaranteed,
since the bus arbitrator implements a static schedule for the periodic variables.
Therefore, real-time guarantees for periodic traffic very much rely on
methodologies for building the WorldFIP BAT. In this thesis, we show how the
typical priority assignment schemes can be used to build a WorldFIP BAT,
guaranteeing the real-time requirements of the periodic traffic.

6. Concerning the aperiodic traffic, we showed how some previous works revealed
to be quite pessimistic. We significantly improved previous results by
approaching the analysis for the aperiodic traffic in an integrated way with the
methodol ogies used to set the bus arbitrator table. Thus, we reduce the pessimism
by taking into consideration the actual length of the periodic window in each
microcycle. Also important, we introduced both the effect of the communication
jitter and of the padding window.

7. We demonstrated how the methodologies used to guarantee the timing
requirements of tasks in single processor environments, can be successfully
adapted to encompass the characteristics of P-NET and PROFIBUS networks.
The major importance of these methodologies is that they enable the real-time
analysis of P-NET and PROFIBUS messages that are scheduled, at the
application process level, according to priority-based schemes. For the proposed
architecture we developed feasibility tests, adapted from both the utilisation-
based and response time tests used for the schedulability analysis of tasks in
single processor environments.

8.3. FutureWork

Although the provided analysis and methodologies constitute a set of powerful tools to
guarantee the messages timing requirements of the EN 50170 profiles, some
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improvements can still be made. More precisely, some reductions in the pessimism level
of some results may be achieved, thus improving the analysis in the sense that systems
with tighter communication deadlines may be guaranteed.

It is also important to stress that aimost all the provided pre-run-time schedulability
analysis restrict, in some way, the average utilisation of the system (either the shared
processor - for the case of tasks scheduling, or the shared communication medium - in
the case of message transfers). This is a consequence of the real-time guaranteed
approaches, which rely on testing the systems schedulability against worst-case peak
Situations. This is why priority-based dispatching has major advantages over the
first-come-first-served dispatching. This is also why among priority-based schemes, and
from the schedulability point of view, dynamic priority-based (EDF) have important
advantages over fixed priority-based (RM/DM) schemes. Finaly, this is also why the
determination of the worst-case peak-load conditions must be as close to redlity as
possible.

In this context we survey some of the provided results which can be improved or
extended. This section also briefly describes some interesting research topics, which are
worthwhile investigating further.

1. For the case of PROFIBUS networks, in the performed analysis we considered
the worst-case token rotation time. This assumption has an important level of
pessimism, particularly in the case of alow network load. It would be worthwhile
to develop models giving the worst-case time elapsed between any number of
token visits, by considering the rate characteristics of the different message
streams. In this way the analysis would be improved in the same sense as the
analysis provided for P-NET networks in Section 4.4.

2. One important parameter of the origina timed-token protocol is the station's
synchronous bandwidth allocation. As the P-NET standard alows the on-line
change of the master's address, it would be worthwhile to investigate the
advantages of allocating a set of addresses to each master instead of a single one.
With this method it would be possible to emulate the timed-token protocol, and
thus the well-known bandwidth allocation schemes could be applied to P-NET
networks.

3. In P-NET, hopping devices relay messages at the data link / network layer. This
precludes the use of AP priority-based mechanisms to the P-NET multi-hop
messages. It would be worthwhile to investigate methodologies to overcome this
aspect. A hypothesis would be to give higher priorities to the multi-hop message
streams.

4. For the PROFIBUS, in Section 55 we addressed the so-called Constrained
Low-Priority Traffic Profile. The approach used to guarantee the real-time
behaviour of the high-priority traffic was to set the Tg parameter as large as
possible such that at each token visit all high-priority traffic would be processed.
Typically this resultsin a large value for Trg, able to comply with the worst-case
peak load token rotation, and therefore, in average, part of the token visits will
not be fully utilised to transmit high-priority-traffic. This "time not used" to
transmit high-priority traffic, could be used to transmit low-priority traffic, thus
enhancing the throughput of the low-priority traffic.
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In the evaluation of the worst-case response time for the WorldFIP aperiodic
requests, the critical instant was defined at the beginning of the macrocycle. This
is valid for the methodol ogies used to set the WorldFIP BAT, as they produce a
static schedule where the microcycles most loaded with periodic scans are at the
beginning of the macrocycle. There are however some other possibilities to set
the WorldFIP BAT. In such case, the critical instant should be re-defined as the
worst-case response time for an aperiodic request would occur at a different point
of the macrocycle. A solution can be to test all possible microcycles.

In the performed analysis, the feasibility tests (both response time and
utilisation-based tests) use information on the periodicity of the message streams
(minimum inter-request time). However, message requests are queued by
application tasks, and therefore, in some way, message requests inherit from tasks
their period, and in the case of message requests dispatched in a priority-basis,
also their priority. Therefore, one could approach differently the provided
feasibility tests, not considering directly the periodicities of the message stream
reguests but the periodicities of the tasks that generate such requests. In this case,
one should include the effect of message release jitter; that is, the minimum inter-
arrival time between message requests from the same message stream is likely to
be smaller than the minimum interval between two consecutive releases of the
sending task. In the worst-case, the message release jitter can be equal to the
worst-case response time of the sending task. This approach has been addressed
in the literature, and offers a number of advantages, as it is easier to engineer the
overall real-time DCCS from the perspective of timing characteristics of the
applications tasks.

As a fina remark, it would be interesting to combine the proposed real-time
analysis with some dependability analysis. That is, how mechanisms provided to
support some fault-tolerance level can affect the real-time behaviour of the
DCCS, redlising, on the other hand, that system's dependability is a requirement
for a hard real-time system.
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Pseudo Code Algorithms

A. Pseudo Code Algorithms Referenced in Chapter 4

A.1l. Message Wor st-Case Response Time Considering Actual Token Utilisation

Function pnet _sched_anal ysi s;

i nput : n /* nunber of masters */
pass /* time to pass the token after nessage cycle */
ide /* time to pass the token if no nessage cycle */
/* transmitted */
ns[w /* array containing nunber of streans in each naster; */

/* wranges from1l to n */
Mx, y, z] [/* nessage streans information; */

/* x ranges from1l to n; */

/* y ranges from1l to max (ns[])*/

/* z ranges 1 to 3; */

/* z = 1(len. of nes. cycle); z = 2 (period); */
/* z = 3 (relative deadline) */

output: Jdx, y] [/* simlar to M[x, y, z] except for z */
/* if x, y] =1 stream narked as not schedul abl e; */
/* if dx, y] = 0 stream schedul. */
R[x, y] /* worst-case response tinme; x ranges from1 to n; */
/* y ranges from1l to max (ns[])*/

begi n
1 /* computation of CM*/
2: CM = 0;
3 for i =1 to n do
4: for j =1 to ns[i] do
5: if Mi, j, 11 > CMthen
6: cM = Mi, j, 1]
7 end if
8: end for
9: end for;
10: H = react + CM + pass;
11: for i =1to n do
12: R tdma = ns[i] * n * H
13: R = 0;
14: r epeat
15: R Before = R, unt = 0;
16: for j =1to n do
17: if j <>i then
18: /* conmputation of visit jitter */
19: jv = calc_visit (i, j)
20: /* conputation of aggregate jitter */

21: jitter = ((n+1i —j) mdn) * H-jv;
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22: add_req = O;

23:

24: for I =1 to ns[j] do

25: add_req = add_req + int ((R+ jitter)/Mj, |, 2])
26: end for;

27: if (add_req + ns[j]) < ns[i] then

28: unt = unt + (ns[i] — add_req — ns[j])

29: end if

30: end if;

31: R=Rtdma - unt * (H - idle)

32: end for

33: until R = R Before;

34: for j =1 to ns[i] do

35: Ri, j] = R

36: if Mi, j, 3] <Rthen

37: /* mark nmessage streamj of master i not schedul able */
38: ai, j] =1

39: end if

40: end for

41: end for
return O M

Function visit_jitter (i, j);

i nput: i /* equival ent master k */

j /* master y */

H, ns[w], idle /* global vars */
output: vj /[* visit jitter */
Begi n

1: jv=((n+i —j) nodn) * idle + CM
2 if j >i then

3 for k =j +1ton do

4: if ns[k] >= ns[i] then
5: jv=jv +H-ide
6: end if

7 end for

8 for Kk =1toi -1 do

9: if ns[k] >= ns[i] then
10: jv =jv + H-idle
11: end if

12: end for

13: el se

14: for k =j +1toi -1 do
15: if ns[k] >= ns[i] then
16: jv=jv +H-ide
17: end if

18: end for

19: end if

return jv
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B. Pseudo Code Algorithms Referenced in Chapter 5

B.1. Evaluation of the Token L ateness

function t_del;

i nput: n /* nunber of master */
nh[ k] /* nunber of high-priority nessage streans */

/* in each master k */
nh[ k] /* nunber of lowpriority nessage streans */

/* in each master k */

Ch[i,j] /* array containing the |l ength of each nessage */
/* high-priority nessage stream */
/* i ranging from1 to n (nunber of masters) */
/* each j ranging from1 to nh* */

C[i,j] [/* array containing the length of each nessage */
/* lowpriority message stream */
/* i ranging from1l to n */
/* each j ranging from1 to nlk */

out put :
t _del [K] /* k ranging from1 to n */

begi n

1: /* evaluate the max Ch for each master */

2: /* evaluate the max O for each master */

3: for k =1to n do

4: maxh = 0;

5: maxl = 0;

6: for i =1 to nh[k] do

7: if Ch[i,k] > maxh then

8: maxh = Ch[i, k];

9: end if;

10: if Ad[i,k] > maxl then

11: maxl = Ch[i, k];

12 end if;

13 end for;

14 max_h[ k] = maxh;

15 max_| [k] = maxl;

16; end for;
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64:

/* evaluate tdel for each master */
k =1ton do

maxt del = 0;

for j =k ton do

if max_h[j] > max_I[j] then
terml = max_h[j];

el se
terml = max_I[j];

end if;

tern2 = O;

for i =j +1ton do

tern2 = tern2 + nax_h[i];

end for;

for i =1tok - 1do
tern2 = tern2 + nax_h[i];

end for;

if (termL + ternR) > maxtdel then
maxtdel = terml + terng;

end if;

end for;

for j =1to k- 1do

if max_h[j] > max_I[j] then
terml = max_h[j];

el se
terml = max_I[j];
end if;
tern2 = O;
if k <> n then
for i =j +1ton do
tern2 = tern2 + max_h[i];
end for;
for i =1tok - 1 do

tern2 = tern2 + max_h[i];
end for;
el se
for i =j +1ton do
tern2 = tern2 + max_h[i];
end for;
end if;
if (terml + tern2) > maxtdel then
maxtdel = terml + terng;
end if;

end for;

t _del [k] = nmextdel;
end for;
return t_del;

Appendix - Pseudo Code Algorithms
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C. Pseudo Code Algorithms Referenced in Chapter 6

C.1. Evaluation of the Microcycle

function mcrocycl e;

i nput : np /* nunber of periodic variables */
tpli] /* vector containing the periodicity of the variables */

output: upCy /* value of the mcrocycle */
begi n

1: mn = MAXI NT;

2 for i =1 to np do

3 if tp[i] < mn then

4: mn =tp[i]

5: end if

6: end for;

7 pCy = min + 1;

8 repeat

9: HGy = uQy - 1

10: ctrl = TRUE;

11: for i =1 to np do

12: if tp[i] mod pCy <> 0 then

13: ctrl = FALSE

14: end if

15: end for

16: until control = TRUE
return pCy;

C.2. Evaluation of the Macrocycle

function nmacrocycl e;

i nput: np /* nunber of periodic variables */
tpli] /* vector containing the periodicity of the variables */
uCy /* value of the mcrocycle */

output: My /* value of the macrocycle */

begi n

1: max = 0;

2: for i =1 to np do

3: if tp[i] > max then
4: max = tp[i]

5: end if

6: end for;

7: N = max - 1;

8: ctrl = FALSE;
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9: while ctrl = FALSE do

10: N=N+ 1;

11: ctrl = TRUE;

12: for i =1 to np do

13: if Nnod (tp[i]/pCy) <> 0 then
14: ctrl = FALSE

15: end if

16: end for

17: end while;
18: My = N~ uCy;
return My;

function rmbat;
i nput : np /* nunber of periodic variables */

Vp[i,j] [/* array containing the periodicity of the variables */
/* ORDERED by periodicities; i ranging from1 to np */
/* and the length of Cpi, j ranging from1l to 2 */

puCy /* value of the mcrocycle */
N /* nunber of microcycles in the nacrocycle */
out put :
bat[i, cycl e] /* i ranging from1 to np */
/* cycle ranging from1 to N */
begi n

1: for i =1 to np do
2 cycle = 1;
3 repeat
4: if load[cycle] + Vp[i,2] <= pCy then
5: bat[i,cycle] = 1;
6: | oad[ cycl e] = load[cycle] + 1;
7 cycle = cycle + (Vp[i,1] div pCy)
8 el se;
9: cyclel = cyclel + 1;
10: ctrl = FALSE;
11: r epeat
12: if load[cyclel] + Vp[i,2] <= puCy then
13: ctrl = TRUE
14: end if;
15: until (ctrl = TRUE) or (cyclel >= (cycle + (Vp[i, 1]
16: div udy)));
17: if cyclel >= (cycle + (Vp[i,1] div pCy)) then
18: bat[i,cyclel] = 1;
19: | oad[ cycl el] = |l oad[cyclel] + 1;
20: cycle = cycle + (Vp[i,1] div pCy)
21: el se
22: /* MARK Vpi NOT SCHEDULABLE with RM Al gorithm */
23: cycle = cycle + (Vp[i,1] div pCy)
24: end if
25: end if
26: until cycle > N

27: end for
return bat;
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C.4. Buildingthe BAT (EDF Approach)

- Earliest Deadline First for Building the BAT

function edf_bat;

i nput :

out put :

begi n

crxNoarwNE

np /* nunber of periodic variables */

Vp[i,j] [/* array containing the periodicity of the variables */
/* i ranging from1l to np */
/* and the length of Cpi, j ranging from1l to 2 */

pCy /* value of the microcycle */

N /* nunber of microcycles in the nmacrocycle */

bat[i, cycl e] /* i ranging from1 to np */
/* cycle ranging from1 to N */

cycle = 0;
r epeat
/* determ ne request generated in each mcrocycle */
for i =1 to np do
if cycle mod Vp[i,1] = 0 then

disp[i,1] = 1;
disp[i,2] = Vp[i,1] + cycle;
disp[i,3] = cycle
el se
/* MARK variabl e Vpi NOT SCHEDULABLE */
end if
end for;

/* Schedul e Variables in Current Mcrocycle */
| oad_full = FALSE;
r epeat
no_rq = TRUE
earliest = MAXI NT;
var _chosen = 0; /* no variable chosen */

/* Chose Earliest Deadline from Pendi ng Requests */
for i =1 to np do
if disp[i,1] = 1then /* if there is request */
no_rq = FALSE;
if disp[i,2] <= earliest then
if var_chosen = 0 then
earliest = disp[i, 2];
var_chosen = i
el se
/* decide earliest request fromtwo */
/* with equal deadlines */
if disp[i,3] < disp[var_chosen, 3] then
earliest = disp[i,2];
var_chosen =i
end if
end if
end if
end if
end for;

/* Verify the Load in the Current Mcrocycle */
if load[cycle + 1] + Vp[i,2] <= pCy then
bat [ var_chosen, cycle + 1] =1



144 Appendix - Pseudo Code Algorithms

44: | oad[ cycl e + 1] = load[cycle + 1] + Vp[var_chosen, 2];
45: di sp[var_chosen, 1] = 0;
46: di sp[var_chosen, 2] = 0;
a47: di sp[var_chosen, 3] = 0;
48: el se
49: load_full = TRUE
50: end if;
51: until (load_full = TRUE) or (no_rq = TRUE)
52:
53: cycle = cycle + 1;
54: until cycle = N,
return bat;

- evaluation of the maximumcomm jitter of a periodic var
function Jitter;
i nput: np /* nunmber of periodic variables */
Vpl[i,j] [/* array containing the periodicity of */
/*the variables */
/* i ranging from1 to np */
/* and the length of Cpi, */
/* j ranging from1l to 2 */
uCy /* value of the mcrocycle */
N /* nurmber of microcycles in the */
/* macrocycle */
bat[i, cycl e] /* i ranging from1 to np */
/* cycle ranging from1 to N */
output: J[i] /* maximumpolling jitter of variable Vp, */

begi n
1: for i =1 to np do
2:
3: /* Eval uate nunber of hits of variable Vpi */
4: hits = 0;
5: for cycle =1 to N do
6: if bat[i,cycle] = 1 then
7: hits = hits + 1;
8: end if
9: end for;
10:
11: /* Find first hit in a macrocycle */
12: cycle = 0;
13: repeat
14: cycle = cycle + 1
15: until bat[i,cycle] = 1;
16:
17: /* Find last hit in a macrocycle */
18: cyclel = N + 1;
19: r epeat
20: cyclel = cyclel - 1
21: until bat[i,cyclel] = 1;
22:
23: /* Evaluate tine span between the last hit in a */

24: /* macrocycle and the 1st in a subsequent */
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25: span = (N - cyclel + cycle - 1) = puCy;
26: | oad_par = O;

27: for j =1toi - 1 do

28: if bat[j,cycle] = 1 then

29: | oad_par = load_par + Vp[j, 2]
30: end if

31: end for;

32: span = span + | oad_par;

33: | oad_par = 0;

34: for j =1toi - 1 do

35: if bat[j,cyclel] = 1 then

36: | oad_par = load_par + Vp[j, 2]
37: end if

38: end for;

39: span = span + (pCy - |l oad_par);

40:

41: /* Eval uate tine span between each of the hits */
42: /* within a macrocycle */

43: for k =1 to hits - 1 do

44: cyclel = cycle;

45: r epeat

46: cyclel = cyclel + 1

47: until bat[i,cyclel] = 1;

48: spanl = (cyclel - cycle - 1) ° uCy;
49: | oad_par = O;

50: for j =1toi - 1 do

51: if bat[j,cycle] = 1 then

52: | oad_par = load_par + Vp[j, 2]
53: end if

54: end for;

55: spanl = spanl + (pCy - |oad_par);
56: | oad_par = 0;

57: for j =1toi - 1 do

58: if bat[j,cyclel] = 1 then

59: | oad_par = load_par + Vp[j, 2]
60: end if

61: end for;

62: spanl = spanl + |oad_par;

63:

64: if spanl > span then

65: span = spanl

66: end if;

67: cycle = cyclel;

68: end for;

69: J[i] = span - Vp[i,1];

70: end for
return J,;
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C.6. Number of Microcyclesin an Aperiodic Busy Interval

function ncy_apbi;

i nput : np /* nunber of periodic variables */
na /* nunber of aperiodic variables */
uCy /* value of the mcrocycle */
bat[i,I] /* i ranging from1 to np */
ca /* length of any aperiodic transaction */
cp /* length of all periodic transaction */
N /* nunber of microcycles in the */

/* macrocycle */
output: ncy_abi /* nunber of cycles of the abi */

begi n
1: cycle = 0;
2: na_aux = 0;
3: r epeat
4: cycle = cycle + 1;
5: count _p = 0;
6: for i =1 to np do
7: if bat[i,((cycle - 1) mod N) + 1] = 1 then
8: count_p = count_p + 1,
9: end if;
10: end for;
11: aw = pCy - count_p ~ cp;
12: na_aux = na_aux + aw div ca;
13: until na_aux >= 2 ° na;

14: ncy_abi = cycle;
return ncy_abi;

C.7. Length of an Aperiodic Busy Interval

function | en_apbi;

i nput : np /* nunber of periodic variables */
na /* nunber of aperiodic variables */
uCy /* value of the mcrocycle */
bat[i,I] /* i ranging from1 to np */
ca /* length of any aperiodic transaction */
cp /* length of all periodic transactions */
N /* nunber of microcycles in the */

/* macrocycle */
ncy_abi /* nunber of microcycles of the abi */
output: len_abi /* length of the aperiodic busy interval */

begi n
: /* determ ne nunber of aperiodic transfers in */

2: /* the ncy_abi - 1 microcycles */

3: for cycle =1 to ncy_abi - 1 do



Appendix - Pseudo Code Algorithms 147

4 count _p = 0;

5: for i =1 to np do

6: if bat[i, ((cycle - 1) mbd N) + 1] = 1 then
7: count_p = count_p + 1

8 end if

9: end for;

10: aw = pCy - count_p ~ cp;

11: na_aux = na_aux + aw div ca

12: end for;

13:

14: /* determ ne the nunmber of periodic scans */
15: /* in mcrocycle */

16: /* nunber ncy_abi */
17: count _p = 0;

18: for i =1 to np do

19: if bat[i, ((ncy_abi - 1) mbod N) + 1] = 1 then
20: count_p = count_p + 1

21: end if

22: end for;

23: len_p = count_p ~ cp;

24:

25: /* determ ne | ength of aperiodic busy w ndow */
26: len_abi = (ncy_abi - 1) " pCy + len_p + (2~ na -
27: na_aux) ~ ca

return | en_abi;
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D. Pseudo Code Algorithms Referenced in Chapter 7

D.1. Evaluation of the Synchronous (Token) Busy Interval - L (EDF case)

function TSBP;
i nput: ns /* nunber of streans of master k */
Y, /* token cycle tinme */
s[i,j] /* i ranging from1l to ns */
/* j =1 ->1length of a message cycle of the stream */
/* j =2 ->periodicity of the stream*/
/* j =3 ->relative deadline of the stream*/

output: L /* (Token) Synchronous Busy Period */
begi n

1: L=ns "V

2: r epeat

3: L_before = L;

4: for i =1 to ns do

5: aux = L/ s[i,2];

6: if (frac(aux) <> 0) then

7: L=L+ (trunc(aux) + 1) "~V

8: el se

9: L =L+ trunc(aux) "~V

10: end if;

11: until L_before = L;

return L;

D.2. Findingthe Set of Valuesfor a (EDF case)

function a_val ues;

i nput: ns /* nunmber of streams of master k */
L /* value of for the synchronous busy period */
s[i,j] /* i ranging from1 to ns */
/[* 1 ->length of a nessage cycle of stream*/

~
*
L

2 -> periodicity of the stream*/
/*j =3 ->relative deadline of the stream*/
str /* particular streamto evaluate
output: List_a[str,i] /* list of the values for parameter a, */
/* concerning streamstr */
/* i ranges from1l to na[str] */
naf str] /* nunmber of values for parameter a, */
/* concerning streamstr */
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begi n
1: kapa = 0;
2 na[str] = 1,
3: r epeat
4: store = FALSE;
5: for j =1 to ns do
6 aux = kapa ~ s[j,2] + s[j,3] - s[str,3];
7 if (aux < L) and (aux > 0) then
8: exi st = FALSE;
9: i =1;
10: while List_a[str,i] <> aux do
11: =i+ 1
12: end whil e;
13: if List_a[str,i] <> 0 then
14: for il =1to na[str] + 1 downto i do
15: List_a[str, i1] = List_a[str, il - 1]
16: end for;
17: List_a[str, il] = aux;
18: na[str] = na[str] + 1
19: end if;
20: store = TRUE;
21: end if;
22: if (aux < 0) then
23: store = TRUE;
24 end if;
25: end for;
26: kapa = kapa + 1

27: until store = FALSE
return List_a, na;

function Q Del ay;

i nput : ns /* nunmber of streams of master k */
Y, /* token cycle time */
s[i,j] /* i ranging from1l to ns */

/*j =1 ->1length of a nmessage cycle */
/* of the stream*/
/* j =2 ->periodicity of the stream*/

L /* (Token) Synchronous Busy Period */
List_a[str,i] /* list of the values for paraneter a, */
/* concerning streamstr */

/* i ranges from1l to na[str] */
naf[ str] /* nunmber of values for parameter a, */
/* concerning streamstr */

out put :
qd[i] /* maxi mum queui ng delay for a streami */
/* i ranging from1 to ns */

= 3 ->relative deadline of the stream*/

149
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begi n
1: for i =1 to ns do
2 for iter =1 to nafi] /* for each value of a */
3 a = List_a[i,iter];
4: q=0;
5: r epeat
6: q_before = q;
7 requests = 0;
8 for j =1 to ns do
9: if j <>1i then
10: if s[j,3] <= (a + a[i,3]) then
11: terml =1 + trunc (q / s[j,2]);
12: termlL =1 + trunc ((a + s[i,2] - s[j,3]) /
13: s[j,2];
14: if ternl < ternR then
15: mni mum = ternl
16: el se
17: mni mum = ternR
18: end if;
19: m ni mum = mni num + trunc(a/sfi, 3]);
20: end if;
21: end if;
22: requests = requests + m ni mum
23: end for
24:
25: block = 0
26: if a=0then
27: bl ock = V
28: end if;
29: for z =1 to ns do
30: if z <>i then
31: if s[z,3] > (a + s[i,3]) then
32: bl ock = 1;
33: end if;
34: end if;
35: end for
36
37: g = (block + req) "~V
38: until g = g_before
39: if (q- a) >qd[i] then
40: qd[i] = (q - a)
41: end if;
42: end for; /* cycle concerning values for a */

43: end for
return qd
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