
Faculdade de Engenharia da Universidade do Porto
Departamento de Engenharia Electrotécnica e de Computadores

Supporting Real-Time Communications with
Standard Factory-Floor Networks

By

Eduardo Manuel de Médicis Tovar

A dissertation submitted in partial fulfilment of the requirements for the degree of
Doctor in Electrical and Computer Engineering

July 1999

Supervised by: Prof. Francisco Vasques

Doctoral Committee:

Prof. Alan BURNS, University of York
Prof. Carlos CARDEIRA, Universidade Técnica de Lisboa
Prof. Artur Capelo CARDOSO, Universidade do Porto
Prof. Adriano Silva CARVALHO, Universidade do Porto
Prof. Carlos Veiga da COSTA, Universidade do Porto
Prof. Jean-Dominique DECOTIGNIE, Ecole Polytechnique Fédérale de Lausanne
Prof. António Pessoa MAGALHÃES, Universidade do Porto
Prof. Francisco VASQUES, Universidade do Porto

Supporting Real-Time Communications with Standard
Factory-Floor Networks

Abstract

Fieldbus networks are widely used as the communication support for distributed
computer-controlled systems (DCCS), in applications ranging from process control to
discrete manufacturing. Usually, DCCS impose real-time requirements to the
communication network; that is, traffic must be sent and received within a bounded
interval, otherwise a timing fault is said to occur. This motivates the use of
communication networks where the Medium Access Control (MAC) protocol is able to
schedule messages according to their real-time requirements.

In the past, the scope of fieldbuses was dominated by vendor-specific solutions,
which were mostly restricted to specific application areas. More recently, vendor-
independent standardised fieldbuses, supporting the open system concept, have started to
be commonly used. Particular relevance must be given to the European Standard
EN 50170, which encompasses three widely used fieldbuses: P-NET, PROFIBUS and
WorldFIP.

The main research objective of this thesis is to develop analysis and methodologies to
guarantee, prior to run-time, that real-time distributed computer-controlled systems
(DCCS) can be successfully implemented with standard fieldbus communication
networks, such as those defined by the European Standard EN 50170.

In this thesis, we characterise the MAC temporal behaviour for each one of these
three EN 50170 profiles. More importantly, we provide analytical formulae for the
evaluation of the worst-case response time of messages in these networks. These
formulae constitute a set of powerful tools to guarantee the timing requirements of
distributed time-critical applications, where distribution is supported by one of the
EN 50170 profiles.

Finally, we also show how priority-based scheduling mechanisms can be
implemented at the application process level of P-NET and PROFIBUS masters, in order
to overcome the limitations of their FCFS outgoing queues. Moreover, we demonstrate
how the methodologies used to guarantee the timing requirements of tasks scheduling,
can be successfully adapted to encompass the characteristics of P-NET and PROFIBUS
networks.

Keywords: Real-time systems; Real-time communications; Fieldbus networks.

Suporte à Comunicação de Tempo-Real utilizando
Redes Industriais Normalizadas

Resumo

As redes industriais são largamente utilizadas para o suporte de sistemas controlados
por computador distribuídos (DCCS, em inglês), em aplicações que vão desde o controlo
de processos até à automação industrial. Habitualmente, os DCCS impõem requisitos de
tempo-real à rede de comunicação, segundo os quais mensagens devem ser enviadas e
recebidas num tempo inferior a um determinado limite, caso contrário diz-se que ocorreu
uma falha temporal. Este facto motiva a utilização de redes de comunicação, para as
quais o protocolo de controlo de acesso ao meio (MAC, em inglês) é capaz de escalonar
as mensagens de acordo com os seus requisitos de tempo-real.

No passado, a área das redes industriais encontrava-se dominada por soluções
proprietárias, as quais estavam frequentemente focalizadas para áreas de aplicação
específicas. Mais recentemente, redes industriais normalizadas começaram a ser
utilizadas com maior frequência. Uma particular relevancia deve ser dada à norma
Europeia EN 50170 que congrega três redes industriais largamente utilizadas: P-NET,
PROFIBUS e WorldFIP.

O objectivo fundamental de investigação desta tese é o de desenvolver análises e
metodologias que permitam garantir, a priori, que aplicações DCCS de tempo-real
podem ser implementadas com sucesso utilizando redes de comunicação industriais, em
particular as definidas pela norma EN 50170.

Neste trabalho de tese, caracterizamos o comportamento temporal do protocolo de
MAC para cada um dos três perfis da norma EN 50170. Mais precisamente, fornecemos
métodos analíticos para o cálculo do tempo de resposta, no pior caso, de mensagens
nestas redes. Estes métodos analíticos constituem a base de uma série de ferramentas
poderosas para a garantia dos requisitos temporais de aplicações DCCS, nas quais a
distribuição é suportada por um dos perfis da norma EN 50170.

Finalmente, também mostramos como mecanismos de escalonamento baseados em
prioridades podem ser implementados ao nível do processo de aplicação em estações
mestre de P-NET e de PROFIBUS, por forma a ultrapassar as limitações inerentes às
suas filas de saída FCFS. Também demonstramos como as metodologias utilizadas para
garantir os requisitos temporais no escalonamento de tarefas, podem ser adaptadas com
sucesso para incorporar as características de redes P-NET e PROFIBUS.

Palavras chave: Sistemas de Tempo-Real; Comunicações de Tempo-Real; Redes
Industriais.

Support de la Communication Temps-Réel en utilisant des
Réseaux Industriels Normalisés

Résumé

L’utilisation des réseaux industriels pour le support de la communication dans les
systèmes distribués controlés par ordinateur (DCCS, en anglais) est très répandue dans
les applications industrielles. Habituellement, les applications de DCCS imposent des
besoins temps-réel strict au réseau de communication, c’est-à-dire, soit le trafic est
envoyé et reçu dans un délai borné, soit on dit qu’il a eu une faute temporelle. Celle-ci
est la motivation pour l’usage des réseaux de communication qui possèdent des
protocoles de contrôle d’accès au médium (MAC, en anglais) capables d’ordonnancer
messages selon ses besoins temps-réel.

Dans le passé, le domain des réseaux industriels a été dominé par des solutions
propriétaires, qui étaient souvent ciblées pour des applications spécifiques. Récemment,
des réseaux industriels normalisés et donc non propriétaires, qui supportent le concept de
système ouvert, ont commencé a être habituellement utilisés. Parmi ces solutions
normalisées, une importance remarquable doit être donnée à la Norme Européenne
EN50170, qui regroupe trois réseaux industriels très utilisés: P-NET, PROFIBUS et
WorldFIP.

L’objectif principal de recherche de cette thèse est celui de developer des analyses et
des métodologies por garantir, hors-ligne, que les applications DCCS temps-réel peuvent
être implantées en utilisant des réseaux industriels normalisés, tels que ceux définis par
la norme EN 50170.

Dans cette thèse, nous caractérisons le comportement temporel du protocole MAC
pour chacun des trois profils de la norme EN 50170. En particulier, nous fournissons des
formules analytiques pour l’évaluation, dans le pire cas, du temps de réponse de
messages dans chacun de ces trois profils. Ces formules constituent un ensemble d’outils
crucialles pour la garantie des besoins temporels dans les applications distribuées temps
critique, où la distribution est supportée par un des profils de la norme EN 50170.

Finalement, nous montrons aussi comment implanter des mécanismes
d’ordonnancement par priorité au niveau du processus d’application des maîtres P-NET
et PROFIBUS, de façon à surpasser les limitations de ses files de sortie FCFS. En plus,
nous montrons comment les méthodologies utilisées pour garantir les besoins temporels
dans l’ordonnancement des tâches, peuvent être adaptées pour incorporer les
caractéristiques des réseaux P-NET et PROFIBUS.

Mots-clés: Systèmes Temps-Réel; Communications Temps-Réel; Réseaux Industriels.

aos meus Pais,
ao Gonçalo, à Bé e ao Filipe

Acknowledgements

First, I would like to express my deepest gratitude to Francisco Vasques. As my thesis
supervisor, he helped me select the right topic at the very beginning which importance to
this thesis can never be overemphasised. Throughout the course of this work, he has
given me constant encouragement, generous support, insightful comments, and
invaluable suggestions, which benefit the completion of this thesis. It would be hard to
find a more dedicated and concerned supervisor.

I have benefited greatly from many other people in the University of Porto, which
gave me remarkable opportunities that benefited my career in a long time to come. A
special thanks to Artur Cardoso for all his support and insightful comments.

I would like to acknowledge the financial support from FLAD (Fundação Luso-
Americana para o Desenvolvimento) and from DEMEGI-FEUP.

Special thanks to the Polytechnic Institute of Porto and its School of Engineering (IPP
and ISEP, respectively), for all the efforts and financial support, which made possible the
prosecution of this work. I address them to Prof. Luís Soares (President of the IPP), to
Vítor Santos (Chairman of the Executive Board of ISEP), to Carlos Ramos (Director of
the CIM Centre of ISEP), to Jorge Mendes (Head of the Computer Engineering
Department of ISEP) and to João Rocha (Co-ordinator of the Industrial Informatics
Group). I also acknowledge the support received from my colleagues of the Computer
Engineering Department and from the CIM Centre of ISEP.

Thanks also to the Department of Computer Science of the University of York. I have
benefited a lot from the visits to the Real-Time Systems Group. Thanks for all the
fruitful discussions and for the inspiring atmosphere.

IPP-HURRAY! - an IPP Research Group HUgging Real-time and Reliable
Architectures for computing sYstems. Mário, Miguel and Luís: many thanks for all the
support and friendship.

Finally, I am most grateful to my family and friends, for their dedicated support and
understanding.

Porto, 23 July 1999

 Eduardo Manuel de Médicis Tovar

i

Table of Contents

Chapter 1 - Overview.. 1
1.1. Introduction .. 1

1.1.1. Distributed Computer-Controlled Systems (DCCS) 1
1.1.2. Timing Requirements of Computer-Controlled Systems 4
1.1.3. Real-Time Aspects in DCCS Systems.. 7

1.2. Research Objectives ... 8
1.3. Research Approach .. 9
1.4. Organisation of the Thesis.. 9
1.5. Main Contributions of this Thesis .. 10
1.6. References .. 10

Chapter 2 - Schedulability Analysis of Tasks in Single Processor Systems:
Review of Relevant Work .. 13

2.1. Introduction .. 13
2.2. Classical Concepts of Real-Time Systems ... 14

2.2.1. Characterisation of Tasks ... 14
2.2.2. Scheduling Tasks in Real-Time Systems ... 15
2.2.3. Priority Assignment Schemes... 17
2.2.4. Pre-emptive and Non Pre-emptive Systems ... 17
2.2.5. Characteristics of the Priority Assignment Schemes.............................. 18

2.3. Approaches for the Pre-Run-Time Schedulability Analysis 18
2.4. Feasibility Tests: Case of the Fixed Priority Assignment 20

2.4.1. Basic Utilisation-Based Test .. 20
2.4.2. Extended Utilisation-Based Tests... 21
2.4.3. Response Time Tests for the Pre-emptive Context 21
2.4.4. Response Time Tests for the non Pre-emptive Context 22

2.5. Feasibility Tests: Case of the Dynamic Priority Assignment 23
2.5.1. Basic Utilisation-Based Test .. 23
2.5.2. Extended Utilisation-Based Tests for the Pre-emptive Context 25
2.5.3. Extended Utilisation-Based Tests for the non Pre-emptive Context 27
2.5.4. Response Time Tests for the Pre-emptive Context 27
2.5.5. Response Time Tests for the non Pre-emptive Context 29

2.6. Summary .. 30
2.7. References .. 30

Chapter 3 - Real-Time Communications with Fieldbus Networks:
Analysis of Previous Relevant Work.. 33

3.1. Introduction .. 33
3.1.1. What Fieldbuses? ... 34
3.1.2. Fieldbuses for DCCS.. 35

3.2. Controller Area Network (CAN).. 36
3.2.1. Main Characteristics of the CAN Protocol... 36

ii

3.2.2. Real-Time Communications with CAN: Review of Relevant Work...... 38
3.3. Process Network (P-NET).. 40

3.3.1. Main Characteristics of the P-NET Protocol.. 40
3.3.2. Real-Time Communications with P-NET:

Review of Relevant Work .. 42
3.4. PROcess FIeld BUS (PROFIBUS)... 42

3.4.1. Main Characteristics of the PROFIBUS Protocol 42
3.4.2. Real-Time Communications with PROFIBUS:

Review of Relevant Work .. 45
3.5. Factory Instrumentation Protocol (WorldFIP) ... 47

3.5.1. Main Characteristics of the WorldFIP Protocol 47
3.5.2. Real-Time Communications with WorldFIP:

Review of Relevant Work .. 52
3.6. Summary .. 53
3.7. References .. 54

Chapter 4 - Real-Time Communications with P-NET Networks:
Contributions to the State-of-the-Art.. 57

4.1. Introduction .. 57
4.2. Network and Message Models ... 57
4.3. Basic Analysis for the Worst-Case Response Time 58
4.4. Schedulability Analysis Considering the Actual Token Utilisation 61

4.4.1. Concept of P-NET Logical Ring Request Jitter 62
4.4.2. Concept of P-NET Logical Ring Visit Jitter .. 64
4.4.3. Number of Unused Tokens during the Longest Busy Period 66
4.4.4. Analysis of the Worst-Case Response Time .. 67
4.4.5. Pre-Run-Time Schedulability Condition .. 67
4.4.6. Pre-Run-Time Schedulability Tool .. 68
4.4.7. Numerical Example.. 68
4.4.8. Considering the Actual Transmission Time for Message Cycles........... 69

4.5. Extending the Analysis to Multi-Hop P-NET Networks................................ 70
4.5.1. Motivation .. 70
4.5.2. Sequence of Transactions in Multi-Hop Message Streams 71
4.5.3. Pre-run-time Schedulability Condition for Multi-hop Message

Streams... 72
4.5.4. Numerical Results .. 73
4.5.5. Considering the Actual Token Utilisation .. 75

4.6. Summary .. 77
4.7. References .. 78

Chapter 5 - Real-Time Communications with PROFIBUS Networks:
Contributions to the State-of-the-Art.. 79

5.1. Preliminary Protocol Analysis.. 79
5.2. Network and Message Models ... 79
5.3. Analysis for the Worst-Case Response Time... 80
5.4. PROFIBUS Token Cycle Time Analysis ... 82

5.4.1. Analysis of the PROFIBUS Token Lateness.. 82

iii

5.4.2. Evaluation of the Token Cycle Time.. 86
5.4.3. Setting the Target Token Rotation Time .. 88
5.4.4. Numerical Example.. 89

5.5. Constraining Low-Priority Traffic in PROFIBUS Networks......................... 90
5.5.1. Pre-Run-Time Schedulability Condition .. 90
5.5.2. Setting the TTR Parameter ... 91
5.5.3. Implementation Issues.. 92
5.5.4. Numerical Example.. 94

5.6. Summary .. 95
5.7. References .. 96

Chapter 6 - Real-Time Communications with WorldFIP Networks:
Contributions to the State-of-the-Art.. 97

6.1. Introduction .. 97
6.2. Network and Buffer Models... 98
6.3. Using the HCF/LCM Methodology for Setting the BAT............................... 99
6.4. Setting the WorldFIP BAT: a Rate Monotonic Approach 100

6.4.1. Algorithmic Approach for Building the BAT 100
6.4.2. A Feasibility Test Based on the Response Time Techniques............... 101
6.4.3. Numerical Example.. 102

6.5. Setting the WorldFIP BAT: a Earliest Deadline Approach.......................... 103
6.5.1. Algorithmic Approach for Building the BAT 103
6.5.2. A Feasibility Test Based on the Response Time Techniques............... 104
6.5.3. Numerical Example.. 105

6.6. Worst-Case Response Time for the Aperiodic Traffic 105
6.6.1. Upper Bound for the Dead Interval .. 107
6.6.2. Aperiodic Busy Interval ... 108
6.6.3. Worst-Case Response Time for Aperiodic Buffer Transfers................ 108
6.6.4. Numerical Example.. 109

6.7. Summary .. 110
6.8. References .. 111

Chapter 7 - Adding Local Scheduling Mechanisms to P-NET and
PROFIBUS Masters ... 113

7.1. Introduction .. 113
7.2. From Task to Message Scheduling: Analogies and Adaptations 114

7.2.1. Homogenisation of Notations... 114
7.2.2. Analogies to the Blocking and Task's Computation Times.................. 115
7.2.3. Basic Message Response Time Evaluation .. 117

7.3. (Token) Utilisation-Based Tests... 118
7.3.1. Case of Rate Monotonic Priority Assignment 118
7.3.2. Case of Earliest Deadline First Priority Assignment 120

7.4. Response Time Tests.. 120
7.4.1. Response Time Tests: Fixed Priority Assignment................................ 120
7.4.2. Response Time Tests: Dynamic Priority Assignment 122

7.5. Considering the effect of Unused Tokens (P-NET Networks) 127

iv

7.5.1. Extending the Response Time Tests for the Fixed Priority
Assignment... 128

7.5.2. Extending the Response Time Tests for the Dynamic
Priority Assignment.. 129

7.6. Summary .. 130
7.7. References .. 130

Chapter 8 - Conclusions and Future Work.. 131
8.1. Review of the Research Objectives.. 131
8.2. Main Research Contributions of this Thesis .. 133
8.3. Future Work ... 134

Appendix - Pseudo Code Algorithms .. 137
A. Pseudo Code Algorithms Referenced in Chapter 4 137

A.1. Message Worst-Case Response Time Considering Actual
Token Utilisation.. 137

B. Pseudo Code Algorithms Referenced in Chapter 5 139
B.1. Evaluation of the Token Lateness .. 139

C. Pseudo Code Algorithms Referenced in Chapter 6 141
C.1. Evaluation of the Microcycle ... 141
C.2. Evaluation of the Macrocycle... 141
C.3. Building the BAT (RM Approach)... 142
C.4. Building the BAT (EDF Approach) ... 143
C.5. Evaluation of the Communication Jitter... 144
C.6. Number of Microcycles in an Aperiodic Busy Interval........................ 146
C.7. Length of an Aperiodic Busy Interval .. 146

D. Pseudo Code Algorithms Referenced in Chapter 7 148
D.1. Evaluation of the Synchronous (Token) Busy Interval - L

(EDF case).. 148
D.2. Finding the Set of Values for a (EDF case).. 148
D.3. Evaluation of the Queuing Delay (EDF case) 149

Chapter 1

Overview

The main focus of this thesis is "how to guarantee real-time communications using
standard fieldbus networks". In this chapter we give an overview of the overall
research domain, in order to establish the context and research objectives of this
thesis. Finally, at the end of this chapter, we summarise the main contributions of
this work

1.1. Introduction

In the past decade, manufacturing schemes have changed dramatically. In particular, the
computer integrated manufacturing (Rembold et al., 1993) concept has been stressed as a
means to achieve greater production competitiveness. The driving forces behind the
changes also resulted from the increased development and utilisation of new
technologies, which make massive use of microprocessor-based equipment.

Integration implies that the different subsystems of the manufacturing environment
interact and co-operate with each other. This means transfer, storage and processing of
information in a widespread environment. In other words, integration requires efficient
support for data communications.

Nowadays, communication networks are available to virtually every aspect of the
manufacturing environment, ranging from the production planning to the field level
(Pimentel, 1990). However, the use of communication networks at the field level is a
much more recent trend (Decotignie and Pleinevaux, 1993). Indeed, only more recently
network interfaces become cost-effective for the interconnection of devices such as
sensors, actuators, and small controllers which, in the majority of the cases, are expected
to be cheaper than the equipment typically interconnected at upper control levels of the
manufacturing environment (e.g., workstations or numerically-controlled machines).

1.1.1. Distributed Computer-Controlled Systems (DCCS)

This thesis is focused on the field level, where typically the process-relevant field
devices are used by a computer system to automatically conduct the process.

A computer-controlled system can be decomposed into a set of three subsystems
(Fig. 1.1): the controlled object; the computer system; and the human operator
(Kopetz, 1997). Collectively, the controlled object and the human operator can be
referred to as the environment of the computer system.

2 Overview

Controlled Object

Instrumentation Interface (Sensors and Actuators)

Human-Machine Interface

Operator

Computer System

Fig. 1.1 This figure illustrates the interactions between the three subsystems that typically
compose a computer-controlled system

The interface between the human operator and the computer system is called the
man-machine interface, and the interface between the controlled object and the computer
system is called the instrumentation interface. The man-machine interface consists of
input devices (e.g., keyboard) and output devices (e.g., display) that interface to the
human operator. The role of the man-machine interface is to provide the computer
system with, for example, process control set points or device parameters for sensors and
actuators. It is also used to provide the operator with process control supervision. The
instrumentation interface consists of sensors and actuators that transform the physical
signals in the controlled object into a digital form suitable to the computer system and
vice-versa.

The role of the computer system is to react to stimuli from the controlled object (this
is the essence of a computer-controlled system) or the operator (Kopetz, 1997).
Basically, the computer system should be able to receive, via the instrumentation
interface, information about the status of the controlled object, compute new commands
according to the references provided by the man-machine interface, and transmit those
new commands to the actuators, also via the instrumentation interface. To perform these
operations, the computer system should be provided with a control application program.

A computer-controlled system can have a centralised architecture. By centralised
architecture we mean that there is only one single computer system unit, which has I/O
capabilities to support both the instrumentation and the man-machine interfaces. The
field devices (sensors and actuators) are connected to the computer system via point-to-
point links. Fig. 1.2a illustrates such an architecture.

There are several advantages if a field level communication network is used as a
replacement for the point-to-point links (between the sensors/actuators and the computer
system). The main advantage is an economical one. Indeed, this is perhaps its single best
advantage (Pimentel, 1990). As it can be depicted from Fig. 1.2, a cost reduction can be
obtained if a single wire, as a network communication medium, replaces a significant
part of the point-to-point wires. Naturally, the use of a single wire brings other important
advantages, such as easier installation and maintenance, easier detection and localisation
of cable faults, and easier expansion due to the modular nature of the network.

Overview 3

Controlled
Object

Computer
System

Operator

Sensors

Actuators

Controlled
Object

Computer
System

Operator

Actuators

µP

µP

µP

µP

µP

µP

Sensors
Field level

communication network

µP

Instrumentation Interface

Instrumentation Interface

a)

b)

µP

Fig. 1.2 This figure highlights the main advantage of a decentralised computer-controlled
architecture (b) when compared to a centralised computer-controlled architecture (a)

Typically, a field level network will be a broadcast network (like in most types of
local area networks), where several network nodes share a common communication
channel. Messages are transmitted from a source node to a destination node via the
shared communication medium. A major problem occurs when at least two nodes
attempt to send messages via the shared medium at about the same time. This problem is
solved by a medium access control (MAC) protocol. Although network protocols for the
field level are expected to be simpler than those used in upper level networks, the
connection of sensors and actuators1 to a shared medium implies the use of a
microprocessor-based network interface. This network interface implements all the
required field network protocols, and most notably the MAC protocol. The network
interface brings some processing capabilities closer to the sensors and actuators, and this
constitutes an additional advantage of a decentralised computer-controlled architecture,
as those processing capabilities may be used to perform some signal conditioning or
pre-processing operations before sending the data over the network.

With the increased availability of low cost technology, the decentralised
computer-controlled architecture can easily evolve to a distributed computer-controlled
architecture. Basically, the difference lies on the distribution of the algorithms related to
the control application. In a centralised computer-controlled architecture all the control

1 In Fig. 1.2b each field device is individually connected to the field level network. In actual applications,

each network node will typically encompass a group of I/O points.

4 Overview

algorithms are implemented in a single computer system. In a decentralised
computer-controlled architecture, all the control algorithms run also in a single computer
system (now also a network node), even if some of the processing tasks (signal
conditioning or pre-processing operations) can be executed in the network nodes that
interface the network to the sensors and actuators. Contrarily, in a distributed
computer-controlled architecture the tasks of the control algorithms may be distributed
throughout several computing nodes. Fig. 1.3 depicts the organisation of a distributed
computer-controlled architecture.

Controlled
Object

Operator

Field Level Network

µP

µP

µP µP µP

µP

µP µP

Computer Sytem implementing part of the control algorithms

Fig. 1.3 This figure shows an example of a distributed computer-controlled architecture

The ability to support distributed control algorithms is another advantage achievable
by the use of field level networks. This eases the design of computer-controlled systems
where distribution of control, decentralisation of measurement tasks, and number of
intelligent microprocessor-controlled devices is ceaselessly increasing. Control systems
based on distributed computer-controlled architectures are labelled as distributed
computer-controlled systems (DCCS) (Prince and Soloman, 1981).

1.1.2. Timing Requirements of Computer-Controlled Systems

Most of the computer-controlled systems are also real-time systems. For instance,
assume that one of the inputs of the computer system concerns an alarm condition. The
computer system must be able to handle such an alarm condition (process that input and
produce outputs accordingly), within a bounded time interval. Thus, a computer system
must not only react to stimuli from the controlled object, which in essence means the
provision of new commands based on the current state of the controlled object, but

Overview 5

emphatically it must react to stimuli of the controlled object within time intervals
dictated by its environment.

Suppose a simple centralised computer-controlled architecture. The control program
that runs on the computer system reads inputs from field devices, processes these inputs,
and then produces outputs to be sent to other field devices. Assume that the input data
from the field devices arrives to the computer system through asynchronous interrupts,
which are then processed in a first-come-first-served (FCFS) basis. Assume also that the
control program has a number of individual tasks (processes), each one assigned to the
processing of one of the inputs.

If there are as many input buffers as input devices, it may be a timing requirement to
be fulfilled by the computer system that no input values are overwritten before their
complete processing. Thus, we can say that the relative deadline for each task (assume
that they become ready to execute at the time of the input arrival) corresponds to the
periodicity of the related input arrivals. If the time interval between the arrival of an
input and the completion of the processing for that input is denoted as the response time
of a task then, the maximum admissible response time of the task must be smaller than
the periodicity of the related input arrival.

It is obvious that the longest response time for a task occurs when all the inputs arrive
simultaneously to the computer system. As for this scenario the interrupt requests can be
queued in any arbitrary order, the longest response time for a task is given by the sum of
the worst-case execution times of each individual input-related task. Fig 1.4 illustrates
this reasoning, for a system with 4 inputs, where the worst-case response time for task 4
is longer than the its deadline, and therefore deadlines can be missed.

Task 1

Task 2

Task 3

Task 4

input arrival

completion of task execution

worst-case execution time for task 1

worst-case execution time for task 3

worst-case execution time for task 2

worst-case execution time for task 4

longest response
time for any task

time

Input missed

Fig. 1.4 This figure illustrates an example of a system with 4 inputs, each one associated with a
single control task. As inputs are handled in a FCFS basis, deadlines can not be guaranteed

This simple example brings to evidence that when timing requirements must be
fulfilled, a FCFS approach may not be appropriate to deal with asynchronous interrupts.
A solution is often to assign different priority levels to the inputs. For example, the
smaller the arrival period, the higher is the priority level assigned to the related interrupt.

6 Overview

In this case, and assuming that tasks cannot be pre-empted, the longest response time
for task 4 occurs if input 4 arrives to the computer system just after input 1, as the task
related to input 1 has the longest execution time. Fig. 1.5 illustrates this situation.

Task 1

Task 2

Task 3

Task 4

longest response
time for task 4

time

Fig. 1.5 This figure illustrates the same example of Fig. 1.4, where inputs are handled according
to their priority level

In the previous example, we assumed that once a task starts its execution, it will
proceed until completion, even if a higher-priority input arrives. However, most of the
computer systems allow pre-emption. In a pre-emptable system, the processing of an
input may be pre-empted at the arrival of a higher-priority input, and will only be
resumed when there is no processing remaining at higher priorities. In these systems, the
worst-case response time of the highest priority task corresponds to its worst-case
execution time.

An alternative to the asynchronous interruption is the software polling of the inputs.
In the case of inputs arriving through asynchronous interrupts, tasks are said to be
event-triggered tasks. If the inputs arrive through software polling at specified intervals,
the tasks responsible for reading the inputs are said to be time-triggered tasks. Most of
the real-time computer-controlled systems need to encompass both types of tasks. For
example, in a simple control loop for controlling temperature, the temperature sensor
information may be cyclically polled by a timed-triggered task, whereas an alarm sensor
may be connected to the computer system through an interrupt line which is handled by
an event-triggered task.

Independently of the tasks’ operating mode, the issue of guaranteeing real-time
requirements is one of checking, prior to run-time, the feasibility of the system's task set;
that is, checking if the worst-case execution time of the tasks is smaller than its
admissible response time.

Obviously the reliability of such a feasibility test depends on some external factors
such as the components of the operating system (operating system kernel, interrupt
handling mechanisms, programming languages, synchronisation between tasks,
resources shared by the tasks, etc.). This means, for instance, that the time for task
switching must be considered. It also means that a careful evaluation of the worst-case
execution times of the tasks must be made, as its knowledge is crucial for the
development and analysis of real-time systems. It is also important to mention that an
implicit requirement for a real-time system is that it must be dependable, since in the
case of a system error, the timing requirements may not be guaranteed.

Overview 7

In this thesis we will not assess the dependability of the analysed systems, but we are
aware that the proposed real-time approaches to guarantee real-time communications at
the factory-floor level are only guaranteed if certain levels of dependability are provided
to the computer system.

1.1.3. Real-Time Aspects in DCCS Systems

A distributed computer-controlled system is implemented by a set of computational
devices. Each computational device runs a number of tasks. These tasks communicate
their results by passing messages between computational devices across a field level
communication network. In order to guarantee that the timing requirements of DCCS are
met, the communication delay between a sending task queuing a message, and the
related receiving task being able to access that message, must be upper bounded. This
total delay is termed end-to-end communication delay (Tindell et al., 1995), and is
composed of the following four major components:

1. generation delay: time taken by the sender’s task to generate and queue the
related message;

2. queuing delay: time taken by the message to gain access to the field level
communication network;

3. transmission delay: time taken by the message to be transmitted on the field level
communication network;

4. delivery delay: time taken to process the message at the destination processor
before finally delivering it to the destination task.

The queuing delay is a consequence not only of contention between message requests
from the same network node, but also with message requests from other network nodes.
The impact of the first factor in the overall queuing delay depends on the policy used to
queue the messages, while the second factor depends on the behaviour and timing
characteristics of the MAC protocol.

The worst-case response time of the distributed tasks must be evaluated considering
the end-to-end communication delay, since its execution may involve more than one
communication transaction.

Assume, for example, that in a controller, a task which reads a remote sensor, is
cyclically executed. Two of the crucial operations of that task are sending a request to
the remote node and receiving the related response. For this simple case, the response
time for the task results from the concatenation of 9 components (Fig. 1.6).

The evaluation of end-to-end communication delay starts when the sending task is
released, and starts competing against the other running tasks for the processor. The task
suspends as soon as the message request is passed to the communications device (�).
Then, the message request waits in a queue until it gains access to the communication
medium. This queuing delay depends on how the queue is implemented (first-come-first-
served queue, priority queue, etc.) and how the medium access control (MAC) behaves
(�). The message request is then transmitted. This time interval depends on the data rate
and length of the bus and also depends on the propagation delay (�).

The message indication is then queued in the remote communication device (�). The
receiving task processes the message indication, and performs the actual reading of the
required data. The response frame is produced and queued (�). The message response

8 Overview

will suffer similar types of delays. A queuing delay in the remote transmitting queue
(�), a transmission delay (�), a queuing delay in the local receiving queue (�), and
finally the time for the local task to process the response (�).

Task 1

Host Processor A

Communications
Adapter A

Task 2

Task n

Task 1
Task 2

Task 3

Host Processor B

Communications
Adapter B

Shared Broadcast Bus

Sensor

�

�

�

�

�

�

�

�

�

Fig. 1.6 This figure identifies the 9 components that contribute to the worst-case response time of
a task in network node A (task 1). The role of this task is to obtain data from a process sensor
located in a network node B

In terms of the response time analysis of tasks, distribution brings the need to include
the end-to-end communication delays, as one of the components of the overall task’s
response time. In this thesis, we will essentially focus on the provision of methodologies
for the evaluation of the worst-case messages’ response times in fieldbus networks, as
these are the foundation for the feasibility analysis of real-time distributed computer-
controlled systems (DCCS).

1.2. Research Objectives

Broadcast local area networks aimed at the interconnection of sensors, actuators and
controllers are commonly known as fieldbus networks. In the past, the scope of
fieldbuses was dominated by vendor-specific solutions, which were mostly restricted to
specific application areas. Moreover, the concepts behind each proposed fieldbus
network were highly dependent on the manufacturer of the automation system. Each one
had different technical implementations and claimed to fulfil different application
requirements, or to fulfil the same requirements but with different technical solutions.
More recently, vendor-independent standardised fieldbuses, supporting the open system
concept, have started to be commonly used. Particular relevance must be given to the
European Standard EN 50170 (Cenelec, 1996), which encompasses three widely used

Overview 9

fieldbuses: P-NET (Pnet, 1994), PROFIBUS (Profibus, 1992) and WorldFIP (Afnor,
1990).

The main research objective of this thesis is to develop analysis and methodologies to
guarantee, prior to run-time, that real-time distributed computer-controlled systems
(DCCS) can be successfully implemented with standard fieldbus communication
networks, such as those defined by the European Standard EN 50170.

1.3. Research Approach

A potential leap towards the use of fieldbus networks as the communication support of
distributed computer-controlled systems lies on:

1. the evaluation of their MAC timing behaviour, since this is a crucial step to
obtain analytical models enabling the evaluation of the messages’ queuing and
transmission delays;

2. the evaluation of worst-case response times of tasks in non pre-emptive contexts,
since this analysis can be potentially adapted for the evaluation of message
response times in communication networks.

1.4. Organisation of the Thesis

The remainder of this thesis is organised as follows. In Chapter 2 we survey some
relevant results on the evaluation of the worst-case response time of tasks scheduled in
single processor environments. We survey some relevant results for the priority-based
schedulability analysis of real-time tasks, both for the fixed and dynamic priority
assignment schemes. We give a special emphasis to the worst-case response time
analysis in the non pre-emptive context, which is fundamental for the communication
schedulability analysis.

In Chapter 3 we describe the main fieldbus network standards, and survey the most
relevant previous work addressing their real-time characteristics. Particular relevance is
given to the CAN (ISO 11898), P-NET, PROFIBUS and WorldFIP protocols.

Concerning the real-time characteristics of these network standards, there are some
important results for the CAN protocol, which clearly characterises its real-time
capabilities. Contrarily, the three protocols comprising the EN 50170 standard have not
been devoted much analysis. This is particularly true for the P-NET and PROFIBUS
cases. Consequently, the real-time characteristics of P-NET, PROFIBUS and WorldFIP
will be especially focused within the following chapters of this thesis.

Hence, in Chapters 4, 5 and 6 we develop methodologies for the analysis and
evaluation of the worst-case messages' response time in P-NET, PROFIBUS and
WorldFIP networks, respectively.

Finally, in Chapter 7 we propose an approach for implementing priority-based
scheduling mechanisms at the application process level of P-NET and PROFIBUS
masters. A worst-case response time analysis is then provided, considering both the fixed
and dynamic priority assignments, which demonstrate the relevance of the proposed
approach.

10 Overview

The thesis concludes with Chapter 8, which summarises our contributions and
suggests future work.

1.5. Main Contributions of this Thesis

The main contributions of this thesis are:
1. The worst-case response time analysis of P-NET networks, for both the cases of

single-segment (Tovar and Vasques, 1998a; Tovar et al., 1999a) and multiple-
segment networks (Tovar et al., 1998b);

2. The improvement of the worst-case response time analysis of PROFIBUS
networks, for both the cases of unconstrained low-priority traffic (Tovar and
Vasques, 1998c; Tovar and Vasques, 1998d) and constrained low priority-traffic
(Tovar and Vasques, 1998e);

3. The accurate characterisation of the PROFIBUS token cycle time (Tovar and
Vasques, 1999b);

4. A methodology for setting the WorldFIP bus arbitrator tables (Tovar and
Vasques, 1999c), which is based in response time analysis considering both the
rate monotonic (Tovar and Vasques, 1999d) and the earliest deadline first
approaches (Tovar and Vasques, 1999e).

5. The improvement of the worst-case response time analysis of WorldFIP aperiodic
buffer exchanges (Tovar and Vasques, 1999c; Tovar and Vasques, 1999f);

6. To show how the analysis for the worst-case response time of tasks in non
pre-emptive contexts can be applied to P-NET (Tovar et al., 1998f) and
PROFIBUS (Tovar and Vasques, 1999g), if local scheduling mechanisms are
used to improve their real-time capabilities.

1.6. References

Afnor (1990). Normes FIP NF C46-601 to NF C46-607. Union Technique de l’Electricité.
Cenelec (1996). General Purpose Field Communication System. EN 50170, Vol. 1/3 (P-NET),

Vol. 2/3 (PROFIBUS), Vol. 3/3 (FIP), Cenelec.
Decotignie, J.-D. and Pleinevaux, P. (1993). A Survey on Industrial Communication Networks. In

Annales des Télécomunications, Vol. 48, No. 9-10, pp. 55-63.
ISO 11898. (1993). Road Vehicle - Interchange of Digital Information - Controller Area Network

(CAN) for High-Speed Communication. ISO.
Kopetz, H. (1997). Real-Time Systems: Design Principles for Distributed Embedded Applications.

Kluwer Academic Publishers.
Pimentel, J. (1990). Communication Networks for Manufacturing. Prentice-Hall International

Editions.
Pnet (1994). The P-NET Standard. International P-NET User Organisation ApS.
Prince, S. and Solomon, M. (1981). Communication Requirements for a Distributed Computer

Control System. In IEE Proceedings, Vol. 128, No. 1, pp. 21-34.
Profibus (1992). PROFIBUS Standard DIN 19245 part I and II. Translated from German, Profibus

Nutzerorganisation e.V.
Rembold, U., Nnaji, B. and Storr, A. (1993). Computer Integrated Manufacturing and Engineering.

Addison-Wesley.

Overview 11

Tindell, K., Burns, A. and Wellings, A. (1995). Analysis of Hard Real-Time Communications. In
Real-Time Systems, 9, pp. 147-171.

Tovar, E. and Vasques, F. (1998a). A Communication Support for Real-Time Distributed
Computer Controlled Systems. In Proceedings of the IEE International Workshop on Discrete
Event Systems, pp.178-183. Published by IEE.

Tovar, E., Vasques, F. and Burns, A. (1998b). Supporting Real-Time Distributed Computer-
Controlled Systems with Multi-hop P-NET Networks. Polytechnic Institute of Porto,
Technical Report HURRAY-TR-9813, September 1998, to appear in Control Engineering
Practice, Pergamon Publishers.

Tovar, E. and Vasques, F. (1998c). Guaranteeing Real-Time Message Deadlines in PROFIBUS
Networks. In Proceedings of the 10th Euromicro Workshop on Real-Time Systems, pp. 79-86,
Published by IEEE Computer Society Press.

Tovar, E. and Vasques, F. (1998d). Real-Time Fieldbus Communications Using PROFIBUS
Networks. Polytechnic Institute of Porto, Technical Report HURRAY-TR-9803, April 1998,
to appear in IEEE Transactions on Industrial Electronics.

Tovar, E. and Vasques, F. (1998e). Setting Target Rotation Time in PROFIBUS Based Real-Time
Distributed Applications. In Proceedings of the 15th IFAC Workshop on Distributed
Computer Control Systems, pp. 1-6, Published by Pergamon, an Imprint of Elsevier Science.

Tovar, E., Vasques, F. and Burns, A. (1998f). Adding Local Priority-Based Dispatching
Mechanisms to P-NET Networks: a Fixed Priority Approach. Polytechnic Institute of Porto,
Technical Report HURRAY-TR-9822, December 1998, to appear in the Proceedings of the
11th Euromicro Conference on Real-Time Systems.

Tovar, E., Vasques, F. and Burns, A. (1999a). Communication Response Time in P-NET
Networks: Worst-Case Analysis Considering the Actual Token Utilisation. Department of
Computer Science, University of York, Technical Report YCS 312, January 1999, submitted
for publication to the Journal of Real-Time Systems, Kluwer.

Tovar, E. and Vasques, F. (1999b). Cycle Time Properties of the PROFIBUS Timed Token
Protocol. Polytechnic Institute of Porto, Technical Report HURRAY-TR-9811, August 1998,
to appear in Computer Communications, Elsevier Science.

Tovar, E. and Vasques, F. (1999c). Distributed Computing for the Factory-Floor: a Real-Time
Approach using WorldFIP Networks. Polytechnic Institute of Porto, Technical Report
HURRAY-TR-9908, March 1999, submitted to Computers in Industry, Elsevier Science.

Tovar, E. and Vasques, F. (1999d). Factory Communications: on the Configuration of the
WorldFIP Bus Arbitrator Table. Polytechnic Institute of Porto, Technical Report HURRAY-
TR-9909, March 1999, submitted to ETFA'99.

Tovar, E. and Vasques, F. (1999e). Engineering Real-Time Applications with WorldFIP: Analysis
and Tools. Polytechnic Institute of Porto, Technical Report HURRAY-TR-9912, April 1999.

Tovar, E. and Vasques, F. (1999f). Contributions for the Worst-Case Response Time Analysis fo
Real-Time Sporadic Traffic in WorldFIP Networks. Polytechnic Institute of Porto, Technical
Report HURRAY-TR-9910, March 1999, to appear in the WIP session proceedings of the
Euromicro RTS'99.

Tovar, E. and Vasques, F. (1999g). From Task Scheduling in Single Processor Environments to
Message Scheduling in a Profibus Fieldbus Network. In Lecture Notes in Computer Science,
No. 1586, pp. 339-352.

Chapter 2

Schedulability Analysis of Tasks in Single Processor
Systems: Review of Relevant Work

In this chapter we survey some relevant results for the priority-based schedulability
analysis of real-time tasks, both for the fixed and for the dynamic priority
assignment schemes. We give emphasis to the worst-case response time analysis in
non pre-emptive contexts, since that analysis is of paramount importance to the
message schedulability analysis in communication networks.

2.1. Introduction

Real-time computing systems are defined as those systems in which the correctness of
the system depends not only on the logical result of computation, but also on the time at
which the results are produced (Stankovic, 1988). There are various examples of
real-time computing systems, such as command and control systems, flight control
systems or robotics.

A typical real-time computing system has a real-time program running on the system,
which reads inputs from input devices, processes these inputs, and often produces
outputs to be sent to output devices. The time between the arrival of an input from a
device and the completion of the processing for that input is called the response time for
the device (Joseph and Pandya, 1986). The relative deadline for the device can be
defined as the maximum interval between the instant of the input arrival and the
completion of the processing for that input. Hence, the response time for a device must
be smaller or equal to its relative deadline.

Assume that each input device is assigned a task (process) of the application program
and that the tasks share a same processor. The problem of determining whether the
system will meet its peak processing load, or in other words, whether no input from any
device will be lost, becomes one of schedulability analysis of tasks (Burns, 1991).

A round-robin scheduling policy ensures that each task gets a share of the processor.
However, such an approach may not be suitable for real-time systems. Assume the
following example (Krishna and Shin, 1997):

“Consider a computer controlling an aircraft. Among its tasks are maintaining
stability and keeping the cabin temperature within acceptable limits. Suppose the aircraft
encounters turbulence that makes it momentarily unstable. The computer is then
supposed to adjust the control surfaces to regain stability. If we use round-robin
scheduling for this application, the computer may switch context partway through
making the control adjustments in order to spend time making sure the cabin temperature

14 Schedulability Analysis of Tasks in Single Processor Systems: Review of Relevant Work

is just right. The result may well be a crash, and the fact that the cabin is being
maintained at optimum temperature will be scant consolation to the passengers as the
airliner falls out the sky. What we want is to give the stability-maintenance task a very
high priority, which ensures that when stability is threatened, all other interfering tasks
are elbowed out of the way to allow this all-important task enough computer cycles.”

It follows that the consideration of priority levels is crucial to a real-time computing
system. If different inputs have different response time requirements, we need to
consider different priority levels to schedule the related processing tasks. Consider a
real-time system, within which several devices are connected at different priority levels
to a single processor computer system. An input being processed, will be pre-empted
when another input of higher priority arrives, and will only be resumed when there is no
processing remaining at higher priorities.

Assume that the input from a device is saved in a buffer, until it is overwritten by the
next input of the same device. The problem is to determine whether for a given
assignment of priority levels, the system will meet its peak processing load (i.e. no input
from any device will be lost). A more basic problem is how to assign devices to
priorities in order to meet the system-processing load.

The remainder of this chapter is organised as follows. In Section 2.2 we outline some
of the classic concepts of real-time systems. These aspects include the characterisation of
the tasks and the description of the most commonly used priority assignment schemes.
As throughout this thesis we will deal with offline schedulability analysis, in Section 2.3
we provide a brief comparison between the main two approaches for performing such
schedulability analysis: based on the utilisation of the processor; based on the actual
response time of the tasks. In Sections 2.4 and 2.5 we survey the most important results
for the schedulability analysis of tasks in single processor systems, for the case of fixed
and dynamic priority assignment, respectively. In both cases of priority assignment
schemes, we present feasibility tests based on the utilisation of the processor and on the
task's response time, and both for pre-emptive and non pre-emptive contexts.

2.2. Classical Concepts of Real-Time Systems

2.2.1. Characterisation of Tasks

In the previous section we mentioned that, in the simplest case, input devices produce
inputs at regular intervals. However, in distributed computer-controlled systems (DCCS)
not all devices operate in such manner. For example, some may have minimum and
maximum time intervals between consecutive inputs, and others may even produce
inputs at random intervals. As a consequence, tasks can be characterised according to
their predictability. As it will be seen, this characteristic of the tasks affects their
schedulability analysis.

Concerning the predictability, three basic types of tasks can be defined: periodic,
aperiodic and sporadic.

Periodic tasks, as their name implies, are released on a regular basis. They are
characterised by their period, their deadline and their required execution time per period.

Schedulability Analysis of Tasks in Single Processor Systems: Review of Relevant Work 15

The deadline is often assumed to be equal to the period (the processing of an input must
be completed, at most, before the next input from the same device).

Aperiodic tasks are released only occasionally, and are usually triggered by an
external event. To allow worst-case calculations to be made, a minimum period between
any two aperiodic inputs (from the same device) is often defined. If this is the case, the
task involved is said to be sporadic, and its period corresponds to its minimum inter-
arrival time.

Tasks can also be characterised according to their criticality, depending on the
consequences of not being executed before their deadlines. Concerning their criticality
real-time tasks can be soft, hard or safety-critical real-time tasks.

Hard real-time tasks are those whose timely execution is critical. If deadlines are
missed, severe faults may occur in the system. If the fault is catastrophic, the task is said
to be a safety-critical real-time task. Time-utility functions are used in (Burns, 1991) to
characterise the types of tasks (Fig. 2.1). For a hard real-time task, if the computation is
completed before the deadline, the result will be fully useful; otherwise, it will not have
any utility. For a safety-critical real-time task, if the computation is completed before the
deadline, the result will be fully useful; otherwise it will have a negative utility.

In most large real-time systems, including DCCS, not all tasks will be hard or safety-
critical. Some will even have no deadlines associated, and others will have merely soft
deadlines. Soft real-time tasks are, as the name implies, not critical to the application.
However, they do deal with time-varying data and hence the utility of result may
diminish as the end of computation overpasses the deadline; but remain always positive.

a)

start
time

deadline

b)

start
time

deadline

c)

start
time

deadline

Fig. 2.1 a), b) and c) illustrate the time-utility function for a hard real-time task, a safety-critical
real-time task and a soft-real time task, respectively

2.2.2. Scheduling Tasks in Real-Time Systems

Scheduling involves the allocation of time (and resources) to tasks, in such a way that
timing requirements (or other performance requirements) are met. Scheduling has been
perhaps the most widely research topic within real-time systems. As a consequence,
there are multiple taxonomies for the scheduling schemes and for the methodologies for
the schedulability analysis.

In a single processor computing system, a set of tasks shares a common resource: the
processor. Schedulability analysis has to be performed to predict whether the tasks will
meet their timing constraints.

16 Schedulability Analysis of Tasks in Single Processor Systems: Review of Relevant Work

The schedulability analysis can be performed online or offline (Fig. 2.2). In the first
case the schedulability of the task set is analysed at run-time, whereas in the latter it is
performed prior to run-time (pre-run-time schedulability analysis). In (Ramamritham and
Stankovic, 1994) the authors use a different notation: dynamic and static scheduling, to
denote systems that perform and do not perform the schedulability analysis at run-time,
respectively. The offline scheduling has several advantages over the online scheduling: it
requires little run time overhead and the schedulability of the task set is guaranteed
before execution. However, it requires a prior knowledge of the tasks' characteristics,
which fortunately is possible in most of real-time systems. If the tasks’ characteristics
are not known prior to run time, schedulability analysis must be performed online. There
are basically two types of online schedulers (Ramamritham and Stankovic, 1994):
planning-based and best-effort schedulers. In the former, when a new task arrives, the
scheduler tries to re-define a new schedule, which is able to comply with both the
requirements of the new task and the requirements of the previously scheduled tasks.
The new task is only accepted for execution if the schedule is found feasible. In the
latter, when a new task arrives, the scheduler does not try to perform a new schedule.
The new task is accepted for execution, and the systems tries to do its best to meet
deadlines. However, no guarantees are provided for the new coming task, as it may be
aborted during execution.

Schedulability
Analysis

Online

Planning-Based
Scheduler

Best-Effort Scheduler

Offline

Explicity Schedule
(Table-driven scheduler)

Priority-Based
Scheduler

Fixed Priority
Assignment

Dynamic Priority
Assignment

Focus of this thesis

Fig. 2.2 This figure classifies some of the most important types of schedulability analysis

Two types of offline scheduling paradigms are also described in the literature,
depending on whether the schedulability analysis produces itself a schedule (or plan)
according to which tasks are dispatched at run-time. The table-driven approach (or cyclic
executive) is the best known example of an offline scheduling that produces a schedule.
The major drawback of the table-driven approach is that it imposes severe restrictions on
the period of the tasks (Locke, 1992).

The priority-based approach is one example of offline scheduling where no explicit
schedule is constructed. At run-time, tasks are executed in a highest-priority-first basis.
Priority-based approaches are much more flexible and accommodating than table-driven
approaches.

In the remainder of this chapter we will focus our attention on the offline scheduling
paradigms, for tasks dispatched according to priority-based schemes. We assume the
following notation (Burns and Wellings, 1996):

Schedulability Analysis of Tasks in Single Processor Systems: Review of Relevant Work 17

Table 2.1: Notation Used for the Schedulability Analysis of Tasks

Notation Description
C Worst-case computation time of the task
T Minimum time between task releases (period)
D Relative deadline of the task
P Priority level assigned to the task
R Worst-case response time of a task
U Utilisation of the task (C/T)
N Number of tasks in the system

2.2.3. Priority Assignment Schemes

One of the most used priority assignment schemes is to give the tasks a priority level
based on its period: the smaller the period, the higher the priority; that is, Ti < Tj ⇒
Pi > Pj. This assignment is intuitively explained by the fact that more critical devices will
provide inputs more frequently (via asynchronous interrupts), or will be polled more
frequently. Thus, if they have smaller periods, their worst-case response time must also
be smaller. This type of priority assignment is known as the rate monotonic (RM)
assignment, and the related pre-run-time schedulability analysis was firstly introduced in
(Liu and Layland, 1973).

If some of the tasks are sporadic, it may not be reasonable to consider the relative
deadline equal to the period. A different priority assignment can then be to give the tasks
a priority level based on its relative deadline: the smaller the relative deadline, the higher
the priority; that is, Di < Dj ⇒ Pi > Pj. This type of priority assignment is known as the
deadline monotonic (DM) assignment (Leung and Whitehead, 1982).

In both RM and DM priority assignments, priorities are fixed, in the sense that they
do not vary along time. At run-time, tasks are dispatched highest-priority-first. A similar
dispatching policy can be used if the task, which is chosen to run, is the one with the
earliest deadline. This also corresponds to a priority-driven scheduling, where the
priorities of the tasks vary along time. Thus, the earliest deadline first (EDF) is a
dynamic priority assignment scheme. Pre-run-time schedulability analysis for tasks
dispatched according to the EDF assignment scheme was also introduced in
(Liu and Layland, 1973).

In all three cases, the dispatching phase will take place either when a new task is
released or the execution of the running task ends.

2.2.4. Pre-emptive and Non Pre-emptive Systems

In a priority-based scheduler, a higher-priority task may be released during the execution
of a lower-priority one. If the tasks are being executed in a pre-emptive context, the
higher-priority task will pre-empt the lower-priority one. Contrarily, in a non
pre-emptive context, the lower-priority task will be allowed to complete its execution
before the higher-priority task starts execution. This situation can be described as a
priority inversion due to non pre-emption (a higher-priority task is delayed by a lower-
priority one).

18 Schedulability Analysis of Tasks in Single Processor Systems: Review of Relevant Work

2.2.5. Characteristics of the Priority Assignment Schemes

The EDF priority assignment scheme has several advantages over the fixed priority
assignment schemes (Spuri, 1996). A first advantage is that it always achieves higher
processor utilisation, as was demonstrated in (Liu and Layland, 1973). Additionally, and
contrarily to the RM or DM, EDF as been shown to be optimal when arbitrary deadlines
are assumed, that is when the relative deadlines are allowed to be greater than the period
of the tasks (Lehoczky, 1990).

On the other hand, fixed priority assignment schemes have some important
advantages over EDF. Indeed, the EDF dispatching policy is computationally more
demanding at run time. Although this aspect has more impact for the task scheduling in
single processor environments, it should not be discarded for message scheduling in
communication networks (Zuberi and Shin, 1995; Meshi et al., 1996). Most hard
real-time systems also have soft real-time components, which can execute at lower
priority levels. In EDF, these tasks may occasionally delay execution of more stringent
tasks (Sha et al., 1991). Another important drawback of the EDF dispatching policy is its
inability to deal with transient overloads (for instance due to exceptions or error recovery
actions), since in such a situation some tasks may not meet their deadlines. Contrarily,
with a fixed priority assignment approach, a subset of the more critical tasks would still
be able to meet their deadlines. With an EDF approach, this is much more difficult to
achieve (Buttazzo and Stankovic, 1993). At last, but not least, the analytical methods for
computing worst-case response times are much more complex in the case of EDF, even
though they are to be used offline.

Consider the following example (Table 2.2), which illustrates the differences between
RM and EDF scheduling. We assume relative deadlines equal to the tasks' periods.

Table 2.2: Task Set Example A

Task Computation Time (C) Period (T)
A 35 80
B 10 55
C 5 20

Fig. 2.3 illustrates a time-line (Gantt chart) of the schedule for this task set, assuming
that all of them share a common initial release time (at time instant 0), and the tasks are
pre-emptable. In Fig 2.3, a) and b) represent the time-lines for a RM-based and an
EDF-based schedule, respectively.

2.3. Approaches for the Pre-Run-Time Schedulability Analysis

Real-time computing systems with tasks dispatched according to a priority-based policy
(we consider only RM/DM or EDF), must be tested a-priori in order to check if, during
run time, no deadline will be lost. This feasibility test is called the pre-run-time
schedulability analysis of the task set.

Schedulability Analysis of Tasks in Single Processor Systems: Review of Relevant Work 19

Task A

Task B

Task C

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180

Task A

Task B

Task C

release of task

completion of task execution

task pre-empted by an higher priority task execution time for task A

execution time for task B

execution time for task C

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180

task pre-empted by an higher priority task,
but with less stringent deadline

a)

b)

Fig. 2.3 This figure illustrates the schedule for the tasks characterised by Table 2.2, according to
a) the RM priority assignment scheme, and b) the EDF priority assignment scheme. Note that in
the EDF schedule task B is occasionally delayed by task A

It can be shown that for periodic tasks, a set of tasks is schedulable if and only if there
is a feasible schedule for the LCM (least common multiple) of the periods (Lawler and
Martel, 1981). Moreover, it can also be shown that if the tasks share a common request
time (known as the critical instant), it is a pre-run-time schedulability sufficient
condition that the tasks are schedulable for the longest of the periods (Liu and Layland,
1973). This suggests that a time-line could be used to perform the schedulability
analysis. For instance, and concerning the example shown in Table 2.2, where the
longest period is 80, Fig. 2.3 shows that the schedule generated by both RM and EDF
schemes are feasible for the task set (if all the tasks share a common initial release time).
However, time-line approaches may not be effective for systems with a large number of
tasks. Hence, analytical methods are preferable.

There are mainly two types of analytical methods to perform pre-run-time
schedulability analysis. One is based on the analysis of the processor utilisation. The
other is based on the response time analysis for each individual task. In (Liu and
Layland, 1973), the authors demonstrated that by considering only the processor
utilisation of the task set, a test for the pre-run-time schedulability analysis could be
obtained.

20 Schedulability Analysis of Tasks in Single Processor Systems: Review of Relevant Work

Contrarily, a response time test must be performed in two stages. First, an analytical
approach is used to predict the worst-case response time of each task. The values
obtained are then compared, trivially, with the relative deadlines of the tasks.

The utilisation-based tests have a major advantage: it is a simple computation
procedure, which is applied to the overall task set. By this reason, they are very useful
for implementing schedulers that check the feasibility online. However, utilisation-based
tests have also important drawbacks, when compared with their response-time
counterparts. They do not give any indication of the actual response times of the tasks.
More importantly, and apart from particular task sets, they constitute sufficient but not
necessary conditions. This means that if the task set passes the test, the schedule will
meet all deadlines, but if it fails the test, the schedule may or may not fail at run-time
(hence, there is a certain level of pessimism). It is also worth mentioning that the
utilisation-based tests cannot be used for more complicated task models (Tindell, 1992).

In the next two sections, we survey the most relevant feasibility tests for task sets
scheduled both with fixed and dynamic priority schemes, and for both pre-emptive and
non pre-emptive contexts. Depending whether the tests are applied to the overall task set
or individually to each task, they are classified as utilisation-based tests or response time
tests, respectively.

2.4. Feasibility Tests: Case of the Fixed Priority Assignment

2.4.1. Basic Utilisation-Based Test

For the RM priority assignment, Liu and Layland introduced an utilisation-based pre-
run-time schedulability test, which, when satisfied, guarantees that tasks will always be
completely executed before their deadlines:

()121

1

−×≤∑
=

N
N

i i

i N
T

C (2.1)

This utilisation-based test is valid for periodic independent tasks, with relative
deadlines equal to the period, and for pre-emptive systems. As mentioned in the previous
section, typically the utilisation-based tests are sufficient but not necessary conditions.
For instance, for the task set shown in Table 2.2, the test fails (0.87 < 0.78 is false), but
the task set is schedulable, as can be seen by the time-line of Fig. 2.3a.

In (Lehoczky et al., 1990), the authors provide an exact analysis, as given below1:

() nii

i

j j

k

k

j

j
Rlk T

Tl

Tl

T
U

i
≤≤

=
∈

∀≤

































 ×
×

×
×∑ 1 ,

1
,

 ,1min
(2.2)

where Ri = {(k,l)} with 1 ≤ k ≤ i and l = 1, ..., Ti/Tk.

1 The ceiling function x is used to denote the smaller integer greater than or equal to x. Similarly, the floor

function x is used to denote the larger integer smaller than or equal to x.

Schedulability Analysis of Tasks in Single Processor Systems: Review of Relevant Work 21

It is clear that inequality (2.2) is not an easy to use utilisation-based test, hence
loosing one of the advantages inherent to the more basic formulations: its simplicity.

2.4.2. Extended Utilisation-Based Tests

Formulations for the utilisation-based tests with deadlines smaller than periods are not
available, to our best knowledge. It is however possible to formulate simple utilisation-
based test for the case of non pre-emptive tasks.

In (Sha et al., 1990), the authors update the basic utilisation based test (2.1) to include
blocking periods, during which higher-priority tasks are blocked by lower-priority ones,
to solve the problem of non-independence of tasks (for instance tasks that share
resources which are protected by mutual exclusion):

() Nii
i

i

i
i

i i

i i
T

B

T

C
≤≤

=

∀−×≤+







∑ 1 ,

1

1

 ,12 (2.3)

where Bi is the maximum blocking a task i can suffer (Sha et al., 1990). Inequality (2.3)
assumes that Pi+1 ≤ Pi, ∀i<N; that is, tasks are ordered by decreasing priority.

In a non pre-emptive context, a higher-priority task can also be "blocked" by a
lower-priority task. Assuming that the tasks are completely independent, the maximum
blocking time a task can suffer is given by:

{ }

()
{ } { }





≠=

==

=∈

=

j
Nj

ij
ilpj

i

j
Nj

ii

PPCB

PPB

,..,1

,..,1

min if ,max

min if ,0
(2.4)

where lp(i) denotes the set of lower-priority tasks (than task i).
Therefore, inequality (2.3) can be used as an utilisation-based test for a set of non

pre-emptable but independent tasks, with the blocking for each task as given by (2.4).
Moreover, accepting an increased level of pessimism, inequality (2.4) can be updated to
an even simpler formulation:

()12max 1

1 ,
1

−×≤








+







≤≤=

∑ N

i

i

Nii

N

i i

i i
T

B

T

C (2.5)

Note that if all tasks have the same computation time, (2.5) considers that each task
may be blocked at the rate of the highest-priority task.

2.4.3. Response Time Tests for the Pre-emptive Context

In (Joseph and Pandya, 1986) the authors proved that the worst-case response time Ri of
a task i is found when all tasks are synchronously released (critical instant) at their
maximum rate. Ri is defined as:

iii CIR += (2.6)

22 Schedulability Analysis of Tasks in Single Processor Systems: Review of Relevant Work

where Ii is the maximum interference that task i can experience from higher-priority
tasks in any interval [t, t + Ri). The maximum interference (Ii) occurs, when all
higher-priority tasks are released synchronously with task i (the critical instant). Without
loss of generality, it can be assumed that all processes are released at time instant 0.

Consider a task j with higher-priority than task i. Within the interval [0, Ri), it will be
released Ri/Tj times. Therefore, each release of task j will impose an interference of Cj.
Hence, the overall interference is given by:

()
∑
∈ 










×












=

ihpj
j

j

i
i C

T

R
I (2.7)

where hp(i) denotes the set of higher-priority tasks (than task i). Substituting this value
back in equation (2.2), the worst-case response time Ri of a task τi is given by:

()
i

ihpj
j

j

i
i CC

T

R
R +














×












= ∑

∈

(2.8)

Equation (2.8) embodies a mutual dependence, since Ri appears in both sides of the
equation. In fact all the analysis underlay this mutual dependence, since in order to
evaluate Ri, Ii must be found, and vice-versa. The easiest way to solve such equation is to
form a recurrence relationship (Audsley et al., 1993):

()
i

ihpj
j

j

m
im

i CC
T

W
W +














×












= ∑

∈

+1 (2.9)

The recursion ends when Wi
m+1 = Wi

m = Ri, and can be solved by successive iterations
starting from Wi

0 = Ci. Indeed, it is easy to show that Wi
m is non-decreasing.

Consequently, the series either converges or exceeds Ti (in the case of RM) or Di (in the
case of DM). If the series exceeds Ti (or Di), the task τi is not schedulable.

2.4.4. Response Time Tests for the non Pre-emptive Context

In (Audsley et al., 1993) the authors updated the analysis of Joseph and Pandya to
include blocking factors introduced by periods of non pre-emption, due to the
non-independence of the tasks. The worst-case response time is then updated to:

()
i

ihpj
j

j

i
ii CC

T

R
BR +











×












+= ∑

∈
(2.10)

which may also be solved using a similar recurrence relationship. Bi is also as given by
equation (2.4).

Some care must be taken using equation (2.10) for the evaluation of the worst-case
response time of non pre-emptable independent tasks. In the case of pre-emptable tasks,
with equation (2.8) we are finding the processor's level-i busy period preceding the
completion of task i; that is, the time during which task i and all other tasks with a

Schedulability Analysis of Tasks in Single Processor Systems: Review of Relevant Work 23

priority level higher than the priority level of task i still have processing remaining. For
the case of non pre-emptive tasks, there is a slight difference, since for the evaluation of
the processor's level-i busy period we cannot include task i itself; that is, we must seek
the time instant preceding the execution start time of task i.

Therefore, equation (2.6) can be used to evaluate the task's response time of a task set
in a non pre-emptable context and independent tasks, where the interference must be
now re-defined:

()
∑
∈ 










×












+=

ihpj
j

j

i
ii C

T

I
BI (2.11)

Consider the following worst-case response time evaluation, assuming the task set
shown in Table 2.2, for both pre-emptive and non pre-emptive contexts.

The worst-case response time of task B for the pre-emptive context (2.9) is:

15105
20

15
 ;15105

20

10
 ;10 210 =+








×



==+








×



== BBB WWW

Iterations stop at this point since WB
2 = WB

1 = 15, and thus RB = 15, which coincides
with the value given by the time-line (Fig. 2.2).

The worst-case response time of task B for the non pre-emptive context (2.11),
considering that the blocking is equal to CA, is:

505
20

50
35

 ;505
20

45
35 ;455

20

35
35 ;35

3

210

=







×



+=

=







×



+==








×



+==

B

BBB

W

WWW

Therefore, RB = 10 + 50 = 60. This result shows that the task set example of Table 2.2
is not schedulable in a non pre-emptive context, as task B has a response time larger than
its period.

Note also that a re-definition for the critical instant must be made. The maximum
interference occurs when task i and all other higher-priority tasks are synchronously
released just after the release of the longest lower-priority task (than task i).

2.5. Feasibility Tests: Case of the Dynamic Priority Assignment

2.5.1. Basic Utilisation-Based Test

For the EDF priority assignment, Liu and Layland also introduced an utilisation-based
pre-run-time schedulability test (inequality (2.12)).

24 Schedulability Analysis of Tasks in Single Processor Systems: Review of Relevant Work

1
1

≤∑
=

N

i i

i

T

C (2.12)

Similarly to the pre-run-time schedulability test for the RM case (2.1), this result is
only valid for sets of non pre-emptive, independent, and periodic tasks, for which the
relative-deadline is equal to the period.

Inequality (2.12) can easily be updated to include blocking periods due to the
non-independence of the tasks. In (Baker, 1991), the author updated inequality (2.12) to:

Nii
i

i
i

i i

i

T

B

T

C
≤≤

=

∀≤+







∑ 1 ,

1

 ,1 (2.13)

where Bi is the maximum blocking a task i can suffer, considering the stack resource
protocol (SRP). Inequality (2.13) assumes that Ti+1 ≥ Ti, ∀i<N; that is tasks are ordered by
decreasing period.

The key idea behind the SRP is that when a job needs a resource which is not
available, it is blocked at the time it attempts to pre-empt, rather than later, when it
actually may need the shared resource. This makes inequality (2.13) valid for sets of non
pre-emptable tasks, dispatched according to the EDF scheme.

Similarly to the updating of (2.3) to (2.5), inequality (2.13) can be updated to a
simpler (but more pessimistic) test:

1max
1 ,

1

≤








+







≤≤=

∑
i

i

Nii

N

i i

i

T

B

T

C (2.14)

where Bi is now defined as:

{ }j
ij

i CB
≠

= max (2.15)

Another relevant result from (Baker, 1991) is that (2.13) can also be extended to task
sets within which tasks can have relative deadlines smaller than periods:

Nii
i

i
i

i i

i

D

B

D

C
≤≤

=

∀≤+







∑ 1 ,

1

 ,1 (2.16)

As a corollary, inequality (2.12) can be extended for task sets within which Di ≤ Ti:

1
1

≤∑
=

N

i i

i

D

C (2.17)

These simple utilisation-based tests ((2.14) and (2.16)) are however quite pessimistic.
Less pessimistic utilisation-based tests will now be addressed in Sections 2.5.2 and 2.5.3,
for pre-emptive and non pre-emptive tasks, respectively. Later, in Sections 2.5.4 and
2.5.5, very recent results on response time analysis will be addressed, for pre-emptive
and non pre-emptive tasks, respectively.

Schedulability Analysis of Tasks in Single Processor Systems: Review of Relevant Work 25

2.5.2. Extended Utilisation-Based Tests for the Pre-emptive Context

In (Zheng, 1993) the author extends the results of Liu and Layland in order to consider
sporadic tasks, where inequality (2.12) is updated to:

0
1

 , ≥
=

+

∀≤×






 −∑ t

N

i
i

i

i tC
T

Dt
(2.18)

with x+ = 0 if x < 0. The proof for this inequality is intuitive. Assume that at time t = 0,
there are no pending tasks. Then, a necessary condition to guarantee the tasks' deadlines
is that the amount of time, T, needed to transmit all tasks generated during [0, t] with
absolute deadlines ≤ t, is not greater than t. Since the minimum inter-arrival time for a
task i is Ti, there are at most (t – Di)/Ti

+ requests for that task during [0, t] with
deadlines ≤ t. Those requests will need, at most, (t – Di)/Ti

+ × Ci time to be completed.
Thus, the maximum value for T is given by ∑i=1,..,n((t – Di)/Ti

+ × Ci). Note that if Di = Ti,
inequality (2.18) is satisfied if (2.12) is satisfied, since in this case (t – Ti)/Ti

+ ≤ t/Ti.
This different formulation has advantages over (2.17), in the sense that it turns out to

be a sufficient and a necessary condition (theoretically without any level of pessimism).
However, inequality (2.18) can not be classified as a simple test (when compared to
(2.17)). It has an additional problem, since it must be checked over an infinite
continuous length interval [0, ∞).

However, considering that expression ∑i=1,..,n((t – Di)/Ti
+ × Ci) does only change at

k×Ti+Di time instants, inequality (2.18) does only need to be checked for these time
instants. Consider the task set example given by Table 2.3.

Table 2.3: Task Set Example B

Task Computation Time (C) Period (T) Deadline (D) Utilisation (U)
A 30 80 60 0.375
B 10 40 40 0.250
C 5 25 15 0.200

For this task set example, the left-hand side of inequality (2.18) is plotted against its
right-hand side (Fig. 2.4), and thus the task set is schedulable by the EDF priority
assignment in a pre-emptive context.

Although the consideration of steps for the evaluation of inequality (2.19) eases its
use, the problem still remains for the upper limit for t. Different authors have addressed
this issue. It is possible to prove that if the total utilisation of the processor is ≤ 1
(condition (2.12)), it exists a point tmax, such that ∑i=1,..,n((t – Di)/Ti

+ × Ci) ≤ t always
hold for∀t ≥ tmax. Consequentely, inequality (2.18) can be re-written as follows:

{ } [)max
11

,0, with , , tkTkDStC
T

Dt N

i
iiSt

N

i
i

i

i ∩







ℵ∈×+=∀≤×







 −

=
∈

=

+

∑ U (2.19)

In (Baruah et al., 1990a) and (Baruah et al., 1990b) the authors demonstrated that tmax

could be given by (U/(1-U))×maxi=1,...,.N{(Ti-Di)}, where U represents the overall
processor's utilisation (∑i=1,...,.N (Ci/Ti)). This result was further improved in (Ripoll et al.,
1996), where the upper limit for t is defined as tmax=((∑i=1,...,.N (1-Di/Ti)×Ci)/(1-U).

26 Schedulability Analysis of Tasks in Single Processor Systems: Review of Relevant Work

Although this last formulation gives a smaller value for tmax, it still suffers from the same
disadvantage: as the overall utilisation approaches 1, tmax becomes very large.

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170

10

20

30

40

50

60

70

80

90

100

110

120

130

140

y=t

y=L(t)

a)

Task A

Task B

Task C

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170

b)

Fig. 2.4 This figure illustrates a time-line (b) for the synchronous asap release pattern of task set
shown in Table 2.3. In a), the left-hand side of inequality (2.18), denoted as L(t), is represented

For this reason, another approach is considered in (Rippoll et al., 1996) and
(Spuri, 1995), where the authors demonstrate that tmax = L (synchronous processor's busy
period). The synchronous processor's busy period is defined as the time interval from the
critical instant up to the first instant when there are no more pending tasks in the system.
For instance, for the time-line shown in Fig. 2.4b), L = 65. Analytically, L can be found
as follows:

∑
=

×







=

N

i
i

i

C
T

L
L

1

(2.20)

Equation (2.20) is solved by recurrence, starting with L0 = ∑i=1,..,NCi. When
Lm+1 = Lm = L, the solution has been found (note that this recurrence relationship
converges if, and only if condition (2.12) is verified). For the task set of Table 2.3, it
follows that:

651520305
25

65
10

40

65
30

80

65

 ;651520305
25

60
10

40

60
30

80

60

 ;601020305
25

45
10

40

45
30

80

45
 ;45

3

2

10

=++=×



+×



+×



=

=++=×



+×



+×



=

=++=×



+×



+×



==

L

L

LL

and iterations stop, as L3 = L2 = L = 65.

Schedulability Analysis of Tasks in Single Processor Systems: Review of Relevant Work 27

2.5.3. Extended Utilisation-Based Tests for the non Pre-emptive Context

For the non pre-emptive context, a similar test was presented in (Zheng, 1993) and
(Zheng and Shin, 1994):

{ } { }j
Nj

Dt

N

i
j

,...,Nj
i

i

i DDtCC
T

Dt
,...,1

min
1

1
min with , ,max

min =≥
=

=

+

=∀≤+×






 −∑ (2.21)

Comparing to the test for the pre-emptive context (2.18), the inclusion of the blocking
factor is intuitive (see Section 2.5.1.). However, in (George et al., 1996) the authors
discuss the pessimism inherent to the inequality (2.21). The main argument is that in this
inequality it is considered that the cost of possible priority inversions is always initiated
by the longest task and, moreover, it is effective during the entire interval under analysis.
To reduce this level of pessimism, they suggest the following modification:

{ } { }∑
= >

=∈

>
=

+

>∃/=∀≤+×






 −N

i
jjj

tD
Nj

Stj

tD
Nj

i
i

i tDCtCC
T

Dt

jj
1

,...,1,...,1
: if 0max with , ,max (2.22)

That is, the blocking factor is only included if its deadline occurs after t.
Considering that the execution time of a task is expressed as a multiple of the system's

tick, the blocking task must start its execution one tick before the critical instant. As a
consequence, in the diverse formulations which have been including blocking factors
due to the system's non pre-emptability, such blocking could be expressed as (Ci - 1).

2.5.4. Response Time Tests for the Pre-emptive Context

The worst-case response time analysis for pre-emptive EDF scheduling was first
introduced in (Spuri, 1996). The starting point for such analysis was that the worst-case
response time for a general task set is not necessarily obtained considering the critical
instant, as defined for the fixed priority case. In his work, Spuri demonstrated that the
worst-case response time of a task i is found in the processor's deadline-i busy period
(analogous to the processor's level-i busy period in the case of fixed priorities).
However, the longest processor's deadline-i busy period may occur when all tasks but
task i (contrarily to the case of fixed priority assignment) are synchronously released and
at their maximum rate.

This means that, in order to find the worst-case response time of task i, we need to
examine multiple scenarios within which, while task i has an instance released at time a,
all other tasks are synchronously released at time t = 0. As an example, consider the task
set shown in Table 2.5.

Table 2.5: Task Set Example C

Task Computation Time (C) Period (T) Deadline (D) Utilisation (U)
A 1 4 4 0.250
B 2 6 6 0.333
C 2 9 9 0.222
D 2 15 15 0.133

28 Schedulability Analysis of Tasks in Single Processor Systems: Review of Relevant Work

Considering that all tasks are synchronously released at time instant 0, then a
time-line is as shown in Fig. 2.5.

Task A

Task B

Task D

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34

Task C

Response = 6 Response = 7

Fig. 2.5 This time-line illustrates the fact that, when evaluating the synchronous busy period, the
worst-case response time does not occur for the first instance of task C

From Fig. 2.5 we can conclude that the instance of task C which is released at time
instant t = 9 (a = 9) has a higher response time than the instance which is released at
t = 0 (a = 0). Thus, given a value of a, the response of an instance of task i, which is
released at time a, is:

() (){ }aaLCaR iii −= ,max (2.23)

where Li(a) is the length of the deadline-i busy period, which starts at time instant t = 0.
Li(a) can be evaluated by the following iterative computation:

() ()
i

i
DaD

ij
j

j

ji

j

i
i C

T

a
C

T

DDa

T

aL
aL

ij

×

















++














×























 −+
+












= ∑

+≤
≠

11 ,min (2.24)

Equation (2.17) can be solved by recurrence, starting with Li
0(a) = 0. When

Li
m+1(a) = Li

m(a) = Li(a), the solution has been found. Obviously, in equation (2.24), the
computational load only considers tasks that have deadlines earlier than Di. Consider the
task set example of Table 2.6.

Table 2.6: Task Set Example D

Task Computation Time (C) Period (T) Deadline (D)
A 1 4 4
B 2 10 10

Consider that a = 0. At time instant t = 9, and for task B, the number of instances
released for task A is 3 (9/4 = 3). However, from those 3 releases, only the first 2 have
absolute deadlines earlier than the deadline of task B (since 1 + (10 - 4)/4 = 2). Assume
again the scenario of Table 2.5. Using equation (2.24), with a = 0, the evaluation of the
response time for task C is:

Schedulability Analysis of Tasks in Single Processor Systems: Review of Relevant Work 29

() () ()
() { }() { }() ()
() { }() { }() ()
() { }() { }() () 620121,1min12,2min0

;620121,1min12,2min0

;520121,1min12,1min0

 ;220100 ;00

4

3

2

10

=×++×+×=

=×++×+×=

=×++×+×=

=×++==

C

C

C

CC

L

L

L

LL

Substituting this result back into equation (2.23), gives RC(0) = 6. The same
computation, but now a = 9 (also illustrated in the time-line given by Fig. 2.5) gives:

() () ()
() { }() { }() { }() ()
() { }() { }() { }() ()
() { }() { }() { }() ()
() { }() { }() { }() () 1621121,2min23,3min14,4min0

;1621121,1min23,3min14,4min0

 ;1321121,1min23,2min14,3min0

;921121,1min23,1min14,1min0

 ;421100 ;00

5

4

3

2

10

=×++×+×+×=

=×++×+×+×=

=×++×+×+×=

=×++×+×+×=

=×++==

C

C

C

C

CC

L

L

L

L

LL

Substituting this result back into equation (2.23), gives RC(9)=max {2, (16 - 9)} = 7,
and thus it is now clear that the worst-case response time of a task i is not necessarily
found when all tasks are synchronously released.

Finally, in the general case, the worst-case response time for a given task i is:

(){ }aRR i
a

i
0

max
≥

= (2.25)

The remaining problem is how to determine the values of a. Looking to the right-hand
side of equation (2.24), we can easily understand that its value only changes at k × Tj +
Dj – Di

 steps.

{ } [[LkDDTka
N

j
ijj ,0 ,

1
0 ∩ℵ∈−+×∈

=
U (2.26)

with L as given by equation (2.20).

2.5.5. Response Time Tests for the non Pre-emptive Context

The worst-case response time analysis for the non pre-emptive EDF scheduling was
introduced in (George et al., 1996). The main difference from the analysis for the
pre-emptive case is that a task instance with a later absolute deadline can possibly cause
a priority inversion. Thus, and similarly to what was said for the fixed priority case
(Section 2.4.4), instead of analysing the deadline-i busy period preceding the completion
time of task i, we must analyse the busy period preceding the execution start time of the
task’s instance. Consequently, the response time of the τi ‘s instance released at time a
is:

() (){ }aCaLCaR iiii −+= ,max (2.27)

where Li(a) is now the length of the busy period (preceding execution).

30 Schedulability Analysis of Tasks in Single Processor Systems: Review of Relevant Work

Thus, Ri(a) can be evaluated by means of the following iterative computation:

() { } ()
i

i
DaD

ij
j

j

ji

j

i
j

DaD
i C

T

a
C

T

DDa

T

aL
CaL

ij

ij

×







+













×























 −+
+












++= ∑

+≤
≠+>

1 ,1minmax (2.28)

This equation may be solved also by recurrence. Note again that the blocking factor
could be written as (Ci – 1). Note also that in order to analyse the busy period, the start
of execution time, 1 + Li(a) / Tj, is used instead of Li(a) / Tj.

2.6. Summary

In this chapter we provide a comprehensive survey of the most relevant results for the
pre-run-time schedulability analysis of task sets in single processor systems.

The feasibility tests have been classified as utilisation-based tests and response time
tests, according to the information which is provided by its evaluation; that is, in the
former and indication is provided on the overall processor utilisation, while on the latter,
the actual response time of each individual task is provided as a result.

Feasibility tests for fixed and dynamic priorities (both for the pre-emptive and non
pre-emptive contexts) are provided (when available).

The emphasis is given to feasibility tests for non pre-emptable, independent task sets,
within which tasks may have deadlines smaller than periods, as they will be the
foundation of Chapter 7, where they will be adapted to encompass the characteristics of
P-NET and PROFIBUS networks.

Finally, it is important to mention that this chapter is not an extended survey of all the
important scheduling aspects, which could be pertinent to DCCS. The presented results
are those strictly necessary as the background for the remaining chapters of this thesis.
Just to mention some of the aspects which were not addressed in detail in this chapter,
we can refer the problem of shared resources (Sha et al., 1990; Rajkumar et al., 1988),
the problem of co-operative scheduling (Tindell, 1992; Tindell, 1994; Tindell and Clark,
1994; Palencia and Harbour, 1998), the problem of arbitrary deadlines (Lehoczky, 1990;
Tindell and Clark, 1994; Palencia and Harbour, 1998) or the problem of finding the
worst-case execution time of tasks (Puschner and Koza, 1989).

2.7. References

Audsley, N., Burns, A., Richardson, M., Tindell, K and Wellings, A. (1993). Applying New
Scheduling Theory to Static Priority Pre-emptive Scheduling. In Software Engineering
Journal, Vol. 8, No. 5, pp. 285-292.

Baker, T. (1991). Stack-Based Scheduling of Real-Time Processes. In Real-Time Systems, Vol. 3,
No. 1, pp. 67-99.

Baruah, S., Howell, R., Rosier, L. (1990a). Algorithms and Complexity Concerning the Pre-
emptive Scheduling of Periodic Real-time Tasks on One Processor. In Real-Time Systems, 2,
pp. 301-324.

Schedulability Analysis of Tasks in Single Processor Systems: Review of Relevant Work 31

Baruah, S., Mok, A. and Rosier, L. (1990b). Preemptively Scheduling Hard-Real-Time Sporadic
Tasks on One Processor. In Proceedings of the 11th Real-Time Systems Symposium
(RTSS’90), pp. 182-190.

Burns, A. (1991). Scheduling Hard Real-Time Systems. In Software Engineering Journal, Special
Issue on Real-Time Systems, May 1991, pp. 116-128.

Burns, A. and Wellings, A. (1996). Real-Time Systems and Programming Languages. Addison-
Wesley, 2nd Edition.

Buttazzo, G. and Stankovic, J. (1993). RED: Robust Earliest Deadline Scheduling. In Proceedings
of the 3rd International Workshop on Responsive Computing Systems.

George, L., Rivierre, N., Spuri, M. (1996). Preemptive and Non-Preemptive Real-Time Uni-
Processor Scheduling. Technical Report No. 2966, INRIA.

Joseph, M. and Pandya, P. (1986). Finding Response Times in a Real-Time System. In The
Computer Journal, Vol. 29, No. 5, pp. 390-395.

Krishna, C. and Shin, K. (1997). Real-Time Systems. McGraw-Hill Series in Computer Sciences.
Lawler, E. and Martel, C. (1981). Scheduling Periodically Occurring Tasks on Multiple

Processors. In Information Processing Letters, Vol. 12, No. 1, pp. 9-12.
Lehoczky, J., Sha, L. Ding, Y. (1989). The Rate Monotonic Scheduling Algorithm: Exact

Characterization and Average Case Behaviour. In Proceedings of the 10th IEEE Real-Time
Systems Symposium, pp. 166-171.

Lehoczky, J. (1990). Fixed Priority Scheduling of Periodic Task Sets with Arbitrary Deadlines. In
Proceedings of the 11th IEEE Real-Time Systems Symposium, pp. 201-209.

Leung, J. and Whitehead, J. (1982). On the Complexity of fixed-priority Scheduling of Periodic
Real-Time Tasks. In Performance Evaluation, Vol. 22, No. 4, pp. 237-250.

Liu, C. and Layland, J. (1973). Scheduling Algorithms for Multiprograming in Hard-Real-Time
Environment. In Journal of the ACM, Vol. 20, No. 1, pp. 46-61.

Locke, C. (1992). Software Architecture for Hard Real-Time Applications: Cyclic Executives vs.
Fixed Priority Executives. In Real-Time Systems, Kluwer Academic Publishers, Vol. 4, No. 1,
pp. 37-53.

Meshi, A., Natale, M. and Spuri, A. (1996). Earliest Deadline Message Scheduling with Limited
Priority Inversion. In Proceedings of the Workshop on Parallel and Distributed Real Time
Systems.

Puschner, P. and Koza, C. (1989). Calculating the Maximum Execution Time of Real-Time
Programs. In Real-Time Systems, Vol. 1, No. 2, pp. 159-176.

Palencia, J. and Harbour, M. (1998). Schedulability Analysis for Tasks with Static and Dynamic
Offsets. In Proceedings of IEEE Real-Time Systems Symposium, pp. 26-37.

Rajkumar, R., Sha, L., and J. Lehoczky (1988). Real-Time Synchronisation Protocols for
Multiprocessors. In Proceedings of the IEEE Real-Time Systems Symposium, pp. 259-269.

Ramamritham, K. and Stankovic, J. (1994). Scheduling Algorithms and Operating Systems
Support for Real-Time Systems. In Proceedings of the IEEE, Vol. 82, No. 1, pp. 55-67.

Ripoll, I., Crespo, A., Mok, A. (1996). Improvement in Feasibility Testing for Real-time Systems.
In Real-Time Systems, 11, pp. 19-39.

Sha, L., Rajkumar, R. and J. Lehoczky (1990). Priority Inheritance Protocols: an Approach to
Real-Time Synchronisation. In IEEE Transactions on Computers, Vol. 39, No. 9, pp. 1175-
1185.

Sha, L., Klein, M. and Goodenough, J. (1991). Rate Monotonic Analysis for Real-Time Systems.
Carnegie Mellon University, Technical Report CMU/SEI-91-TR-6 1991.

Spuri, M. (1995). Earliest Deadline Scheduling in Real-time Systems. PhD Thesis, Scuola
Superiore Santa Anna, Pisa.

Spuri, M. (1996). Analysis of Deadline Scheduled Real-Time Systems. Technical Report No.
2772, INRIA.

32 Schedulability Analysis of Tasks in Single Processor Systems: Review of Relevant Work

Stankovic, J. (1988). Real-Time Computing Systems: the Next Generation. In Tuturial: Hard
Real-Time Systems, Stankovic, J. and K. Ramamritham (Editors), IEEE Computer Society
Press, Los Alamitos, USA, pp. 14-38.

Tindell, K. (1992). An Extendible Approach for Analysing Fixed Priority Hard Real-Time Tasks.
Department of Computer Science, University of York, Technical Report YCS-189.

Tindell, K. (1994). Adding Time-Offsets to Schedulability Analysis. Department of Computer
Science, University of York, Technical Report YCS-221.

Tindell, K. and Clark, J. (1994). Holistic Schedulability Analysis for Distributed Hard Real-Time
Systems. In Microprocessors and Microprogramming, Vol. 40, pp. 117-134.

Zheng, Q. (1993). Real-Time Fault-Tolerant Communication in Computer Networks. PhD Thesis,
University of Michigan.

Zheng, Q., Shin, K. (1994). On the Ability of Establishing Real-Time Channels in Point-to-Point
Packet-Switched Networks. In IEEE Transactions on Communications, Vol. 42, No. 2/3/4,
pp. 1096-1105.

Zuberi, K. and Shin, K. (1995). Non-Preemptive Scheduling of Messages on Controller Area
Network for Real-Time Control Applications. In Proceedings of Real-Time Technology and
Applications Symposium, pp. 240-249.

Chapter 3

Real-Time Communications with Fieldbus
Networks: Analysis of Previous Relevant Work

In this chapter, we describe the main characteristics of relevant fieldbus networks,
which directly target the support of distributed computer-controlled systems
(DCCS). Particular relevance is given to CAN, P-NET, PROFIBUS and WorldFIP
protocols. We will also survey some of the most relevant results concerning the
ability of these fieldbus protocols to support real-time communications.

3.1. Introduction

Local area networks (LANs) are becoming increasingly popular in industrial computer-
controlled systems. LANs allow field devices like sensors, actuators and controllers to be
interconnected at low cost, using less wiring and requiring less maintenance than
point-to-point connections (Lenhart, 1993). Besides the economic aspects, the use of
LANs in industrial computer-controlled systems is also reinforced by the increasing
decentralisation of control and measurement tasks, as well as by the increasing use of
intelligent microprocessor-controlled devices. Broadcast LANs aimed at the
interconnection of sensors, actuators and controllers are commonly known as fieldbus
networks.

Similarly to other types of LANs, fieldbus networks are based on a layered structure
derived from the seven-layer OSI model (Day and Zimmermann, 1983). However, due
to the specialised requirements that must be met, the use of a full seven-layered
architecture is precluded. Since transmission of states associated with sensors and
actuators across the networks can be avoided, the network layer is not needed. The
transport layer is also not needed, since as the network layer is not present, its most
important functions (e.g., error control, and reliable data transfer with error recovery)
can be performed by the data link and application layers, respectively. Similarly, the
session layer is not needed, since its basic functions (e.g., process-to-process
communications) can be performed by the application layer, and its more sophisticated
functions (e.g., dialog synchronisation) are not needed in the context of fieldbus
applications.

Consequently, a typical fieldbus network is based on a three-layered structure -
physical layer, data link layer and application layer - even if some of these layers
embody functionalities similar to those found in the other four layers of the OSI
reference model.

34 Real-Time Communications with Fieldbus Networks: Analysis of Previous Relevant Work

There are multiple services and protocols that can be chosen for each of those three
layers. The choice depends, essentially, on the original objectives of the fieldbus
designers; that is:

1. either the fieldbus is to be merely a means to simplify the wiring between
devices;

2. or the fieldbus is to be the backbone of a distributed real-time computing system.
These two different points of view about fieldbuses are one of the essential reasons

for the proliferation of fieldbus systems (Thomesse, 1997). Other reasons relate to the
lack of a unique and generic international standard. More than 30 product names or
standards appeared, as the need for fieldbus has been felt in each industrial area, and
since the beginning of the 80s, the international standardisation efforts have been trying
to emerge in a sea populated by tens of already available products and services.

3.1.1. What Fieldbuses?

Relevant national fieldbus initiatives started in the beginning of the 80s: Factory
Instrumentation Protocol (FIP), in France; Process Network (P-NET), in Denmark;
Controller Area Network (CAN), in Germany; Process Field Bus (PROFIBUS) also in
Germany.

In parallel, the standardisation efforts started at the international level, within the
International Electrotechnical Commission (IEC). Several architectures were proposed
for consideration. Some, like the MIL 1553B (Haverty, 1986), HART (Rosemount,
1991) or BITBUS (Intel, 1984) were already based on existing products, or at least
prototypes. Others, like FIP or PROFIBUS, were, at the time, only paper proposals. All
these proposals were based on different views on what should be a fieldbus. Therefore,
till the end of the 80s no progress has been achieved at this level. In fact, only in 1993
the first (and, up to this moment, the only one) international standard has been agreed:
the physical layer (IEC 1158-2, 1993).

At the national and regional levels, the standardisation has made more progress.
P-NET is a Danish national standard since 1990 (DS 21906, 1990), PROFIBUS is a
German standard since 1990 (DIN 19245, 1990), and FIP (later re-baptised as WorldFIP)
is a French standard since 1989 (NF C46, 1989). Different technical options were taken
for each of them.

As a consequence of the difficulty to achieve a truly international fieldbus standard, in
1995 the CENELEC (European Committee for Electrotechnical Standardisation)
proposed an interim European standard, comprising the three national standards existing
in Europe: P-NET, PROFIBUS and WorldFIP. This initiative led, in 1996, to the
EN 50170 (EN 50170, 1996). Although this European standard is a set of not compatible
profiles, it simplifies the choice in Europe, from several tens of fieldbus options down to
three.

An additional proposal is being considered as a forth profile within the EN 50170: the
Fieldbus Foundation. Fieldbus Foundation was formed in late 1994 from a merger of
WorldFIP North America and the Interoperable Systems Project. In 1996, Fieldbus
Foundation introduced its own specification (BSI DD 238, 1996), which is now being
considered for the EN 50170.

Real-Time Communications with Fieldbus Networks: Analysis of Previous Relevant Work 35

Other committees within international standardisation bodies have been working to
define other LAN technologies for specific application domains. Within ISO
(International Organisation for Standardisation) and IEC, some of the more relevant are
ISO TC72 (Textile Industry), ISO/IEC-JTC1 SC25 (Home Automation), IEC TC9
(Trains), ISO TC8 (Shipbuilding), ISO TC67 (Mineral-oil Industry), ISO TC82 (Mining
Industry). At the European level, some of the more relevant are CEN TC247 (Building
Automation) and CEN TC251 (Medical Domain and Hospitals).

Still, lots of different fieldbuses are being developed and sold. And some are also
being standardised at the international level. For instance, Interbus-S (DIN 19258, 1995)
and Actuator to Sensor Interface (ASI, 1996), among others, are being considered as new
standards (EN 50254, 1996) for "High Efficiency Communications Subsystems for
Small Data Packages". Also being considered is the PROFIBUS-PA (DIN 19245-4,
1996) and the Device WorldFIP (NF C46-638, 1996), simplified variants of PROFIBUS
and WorldFIP, respectively. For instance, ASI does only aim to inter-connect
Boolean-state devices, and its frame only supports a reduced number of data bits.

Other initiatives have experienced a different evolution. CAN is a success story. It
was originally designed for use within road vehicles to solve cabling problems arising
from the growing use of microprocessor-based components in vehicles. CAN was
standardised by ISO (ISO 11898, 1993) has a "Road Vehicle - Interchange of Digital
Information" system and since then it is a standard for the automotive applications, a
domain area where VAN (ISO 11519, 1995) is a small contender. Due to its very
interesting characteristics, CAN is also being considered for the automated
manufacturing and distributed process control environments (Zuberi and Shin, 1997),
and is being used as the communication interface in proprietary architectures, such as
DeviceNet (Noonen et al., 1994; Rockwell, 1997), which targets DCCS.

3.1.2. Fieldbuses for DCCS

When compared to other LANs, fieldbuses must fulfil different requirements. In
(Pimentel, 1990) the author defines the following generic requirements to support
DCCS.

1. Ability to handle very short messages in an efficient manner. Clearly, adding 60
bytes of overhead to every 2 bytes of information is not efficient at all.

2. Ability to handle periodic and aperiodic traffic. Periodic traffic is due to sample
data, and aperiodic traffic is due to event conditions, such as a conveyor failure.

3. Bounded response times, to support both periodic traffic, and event-driven traffic,
such as alarm messages.

4. No single point failure. The design should provide a minimum level of
redundancy, to cover failure of devices, which may bring the network down (e.g.,
cables and master controllers).

5. Low network interface cost. This requirement implies serial communications to
save on cable costs, and virtually all features of protocols and their
implementations must be significantly simpler than in networks used at other
levels in the automated manufacturing hierarchy.

In our opinion, P-NET, PROFIBUS and WorldFIP are the International Fieldbus
Standards (EN 50170, 1996) which directly target DCCS. Standards from other domains

36 Real-Time Communications with Fieldbus Networks: Analysis of Previous Relevant Work

are primarily aimed at the lower level functionality, particularly for remote I/O
(EN 50254, 1996) or specific application areas like automotive (ISO 11898, 1993). In
general they do not aim to cover DCCS applications. However, due to its characteristics,
the CAN protocol, combined with an upper level protocol like DeviceNet is also suitable
for some DCCS applications. Some other technologies, which do not meet the full
requirements of a fieldbus, are being used in areas which do not need peer-to-peer
communication and away from time-critical distributed control. Two very different
examples of such fieldbuses are HART and Echelon/LONWorks (Echelon, 1993).

Therefore, in the remainder of this chapter we will focus our attention on the
following four communication networks: CAN (Section 3.2), P-NET (Section 3.3),
PROFIBUS (Section 3.4) and WorldFIP (Section 3.5). For each of these protocols, we
describe their main characteristics and analyse some of the most relevant results
concerning their ability to support real-time communications. As it will be highlighted,
extensive response time analysis have only been already performed for the CAN
protocol. Concerning the other three fieldbus protocols, fewer results are available, and
thus the ability to support real-time communication with these three fieldbus protocols
will be the main focus of this thesis.

3.2. Controller Area Network (CAN)

3.2.1. Main Characteristics of the CAN Protocol

The CAN protocol implements a priority-based bus with a carrier sense multiple access
with collision avoidance (CSMA/CA) MAC. In this protocol any station can access the
bus when the bus becomes idle. However, contrarily to Ethernet-like networks, the
collision resolution is non-destructive, in the sense that one of the messages being
transmitted will succeed. The collision resolution mechanism is very simple and is
supported by the frame structure, namely by its twelve (or thirty, if the extended
specification is used) leading bits, denoted as start bit and identifier fields (Fig. 3.1).

Data
(0,...,8) × 8 bits

Identifier
11 bits

CRC
15 bits

EOF+IFS
10 bits

ACK
2 bits

DLC
4 bits

Start
1 bit

r0
1 bit

RTR
1 bit

IDE
1 bit

Fig. 3.1 This figure shows the structure of a CAN message. Although the identifier is said to
have 11 bits, CAN 2.0B specification allows for 29 bits in this field. Description for the specific
fields (start, RTR, IDE, r0, DLC, CRC, ACK and EOF+IFS) can be found in (ISO 11898, 1993)

This identifier field serves for two different purposes. On one hand it identifies a
message stream in a CAN network: a temporal sequence of messages concerning, for

Real-Time Communications with Fieldbus Networks: Analysis of Previous Relevant Work 37

instance, the remote reading of a specific process variable. On the other hand, it is a
priority field, which enables the collision resolution mechanism to schedule the
contending messages.

This collision resolution mechanism in CAN works as follows: when the bus becomes
idle, every station with pending messages will start to transmit. Due to its open-collector
nature, the CAN bus acts as AND-gate, where each station is able to read the bus status.
During the transmission of the identifier field, if a station is transmitting a "1" and reads
a "0", it means that there was a collision with at least one higher-priority message, and
consequently this station aborts the message transmission. The highest-priority message
being transmitted will proceed without perceiving any collision, and thus will be
successfully transmitted. Obviously, each message stream must be uniquely identified.

To illustrate this collision resolution mechanism consider the following message
stream set (Table 3.1) and the related collision resolution (Fig. 3.2).

Table 3.1: Message Stream Set Example

Message Identifier field
A 01000111111
B 01000011111
C 01000001111
D 01000000111

message B

message C

message D

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

message A

1

0 1 0 0 0

0 1 0 0 0

0 1 0 0 0

0 1 0 0 0

1 Suspends

0

0

0

1 Suspends

0

0

1 Suspends

0 1

Start bit

1 1

Time (in bits)

rest of the message

Logical Bus Value

1

0

Fig. 3.2 This figure illustrates the collision resolution mechanism in CAN networks. The
message D has the lowest binary identifier; that is, it is the highest-priority message on the bus

This collision resolution mechanism imposes that the different stations contending for
the bus synchronously start transmitting their highest-priority pending message. It
follows that this requirement brings strict limitations to the physical characteristics of the
network: its bus length and its transmission data rate. For instance, considering a bus
length of 40m, the maximum data rate is 1Mbps. Longer buses are only possible at the
cost of a data rate reduction.

38 Real-Time Communications with Fieldbus Networks: Analysis of Previous Relevant Work

3.2.2. Real-Time Communications with CAN: Review of Relevant Work

The CAN network is based on a priority-bus. Therefore, the schedulability analysis of
tasks in single processor systems can be easily adapted to the schedulability analysis of
CAN messages.

In (Tindell et al., 1994; Tindell et al., 1995), the authors addressed in detail the
analysis of real-time communications in CAN, assuming fixed priorities for message
streams. In such case, the worst-case response time of a queued message, measured from
the release of the queuing task to the time the message is fully transmitted, is:

mmmm CIJR ++= (3.1)

This equation is analogous to equation (2.6). Jm is the queuing jitter of message
stream Sm, inherited from the worst-case response time Rsender(m) (where sender(m)
denotes the task which queues the message m). The term Im represents the worst-case
queuing delay - longest time between placing the message in the priority-ordered
outgoing queue, and the start of the message transmission.

The deadline monotonic (DM) priority assignment can be directly implemented in a
CAN network, by setting the identifier field of each message stream to a unique priority,
according to the DM rule. Therefore, by analogy with equation (2.11):

()

∑
∈∀ 










×











 ++
+=

mhpj

j
j

bitjm
mm C

T

JI
BI

τ
(3.2)

where Bm is the worst-case blocking factor, which is equal to the longest time taken to
transmit a lower priority message, and given by:

()
{ }km CB

mlpk

,0max
∈∀

= (3.3)

The set lp(m) is the set of message streams with lower-priority than message stream Sm

(see equation (2.7)). τbit is the time taken to transmit a bit on the bus and hp(m) is the set
of message streams in the system with higher-priority than the message stream Sm.

Cm is the longest time taken to transmit a message from stream Sm. CAN has a 47 bit
overhead per message, and a stuff width of 5 bits. Only 34 of the 47 bits of overhead are
subject to stuffing, so Cm can be defined as:

bitm
m

m s
db

C τ×







×++







 ×+
= 847

5

834 (3.4)

where dbm is the number of data bytes in the message.

An alternative for the fixed priority assignment are the dynamic priority schemes,
such as the non pre-emptive earliest deadline first (EDF). In (Zuberi and Shin, 1995;
Zuberi and Shin, 1997), the authors analyse how the EDF could be used to schedule
CAN messages. In these works, the authors propose the use of a mixed traffic scheduler
(MTS), which attempts to give a high utilisation (like EDF) while using the standard 11-
bit format for the identifier field.

Real-Time Communications with Fieldbus Networks: Analysis of Previous Relevant Work 39

The goal of the MTS scheduler is to make the identifier fields of different message
streams to reflect the deadlines of messages. However, considering that each message
must have a unique identifier field (which is a requirement of CAN), they suggested the
division of the identifier field into three sub-fields, as shown in Fig. 3.3.

uniqueness
5 bits

Identifier
11 bits

a)

1

deadline
5 bits

Identifier
11 bits

0

DM Priority
9 bits

1

b)

Identifier
11 bits

0

Low Priority
9 bits

0

c)

Fig. 3.3 This figure illustrates the proposed structure for the identifier field. a) is for the messages
that are to be scheduled according to the EDF. b) is for messages to be scheduled according to the
DM, and finally c) is for low-priority messages. The first bit of the identifier field ensures that
higher priority messages are scheduled according to the EDF (note that Zuberi and Shin assume a
Wired-OR bus, thus '1' being the dominant bit)

For the higher-priority message, the deadline field is derived from the deadline of the
message. To deal with the case where two messages have the same deadline, the one
with the highest uniqueness code will win (note that Zuberi and Shin assume a Wired-
OR bus, thus '1' being the dominant bit). The uniqueness code also serves to identify the
message for reception purposes. To encode the deadline field, the authors solved the two
following problems.

1. The first is that the remaining slack time of a message changes with every clock
tick. This requires identifiers of all messages to be continually updated, and also
that each local clock must be synchronised.

2. The second is that, in a typical system, message streams may have largely
different deadlines, which rises a problem with the length of the identifier field
(only 5 bits to encode the deadline).

To solve the second problem, the authors divide time into regions and encode
deadlines according to which region they fall in. Deadlines are then expressed relatively
to a periodically increasing reference called the start of epoch (SOE). Fig. 3.4 illustrates
this concept for a m = 2 case.

region length

SOE end of epoch

Deadline
sub-field

11 10 01 00

Fig. 3.4 This figure illustrates the value of the deadline field, considering that it is encoded in
only two bits

For the pre-run-time schedulability analysis of the EDF traffic, analytical expressions
described in Sections 2.5.3 and 2.5.5 can be used.

To our best knowledge, these are the most relevant works on how to guarantee real-
time communications using CAN networks.

40 Real-Time Communications with Fieldbus Networks: Analysis of Previous Relevant Work

3.3. Process Network (P-NET)

3.3.1. Main Characteristics of the P-NET Protocol

P-NET is a multi-master standard based on a virtual token-passing (VTP) scheme. In
P-NET all communication is based on a message cycle principle, where a master sends a
request and the addressed slave immediately returns a response. Fig. 3.5 illustrates the
hybrid-operating mode of the P-NET's MAC.

Master Stations

PLC

Sensor

PLCPC

Sensor Drive Actuator Sensor

Slave Stations

LOGICAL VIRTUAL TOKEN RING

P-NET

Fig. 3.5 Token passing and master-slave procedures in P-NET networks

The P-NET standard uses a data rate of 76800bps. This data rate resulted from
weighing up the conflicting requirement for data to be transported as fast as possible, but
not at such speed as to negate the use of standard microprocessor UARTS, or restrict the
usable distance or cable type (Jenkins, 1997).

The VTP scheme is implemented using two protocol counters. The first one, the
access counter (AC), holds the node address of the currently transmitting master. When a
request has been completed and the bus has been idle for τ = 40 bit periods (520µs at
76,8Kbps), each one of the access counters is incremented by one. The master whose
access counter value equals its own unique node address is said to be holding the token,
and is allowed to access the bus. When, as the access counter is incremented, it exceeds
the “maximum number of masters”, the access counter in each master is reset to one.
This allows the first master in the cycling chain to gain access again.

The second counter, the idle bus bit period counter (IBBPC), increments for each
inactive bus bit period. Should any transactions occur, the counter is reset to zero. As
explained above, when the bus has been idle for 40 bit periods following a transfer, all
the access counters are incremented by one, and the next master is thus allowed to access
the bus.

If a master has nothing to transmit (or indeed is not even present), the bus will
continue to be inactive. Following a further period of σ = 10 bit periods (130µs), the idle
bus bit period counter will have reached 50, (60, 70,…) so all the access counters will be
incremented again, allowing the next master access. The virtual token passing will
continue every 10 bit periods, until a master does require access.

Real-Time Communications with Fieldbus Networks: Analysis of Previous Relevant Work 41

The P-NET standard allows each master to perform at most one message cycle per
token visit. This is an important idea for the timing analysis of P-NET MAC
mechanisms.

After receiving the token, the master must transmit a request before a certain time has
elapsed. This is denoted as the master’s reaction time, and the standard imposes a
worst-case value of up to ρ = 7 bit periods. A slave is allowed to access the bus between
11 and 30 bit periods after receiving a request, measured from the beginning of the stop
bit in the last byte of the request frame. The maximum allowed delay is then 30 bit
periods (390µs). This delay is denoted as the slave's turnaround time. To illustrate these
basic MAC procedures and the notation used, please refer to Fig. 3.6.

3

Bus

Access
Counter 4 1 2 3 4

IBBPC
40 50 60

70 80

Response Request

2-7 Bit Periods 11-30 Bit Periods

Response

1

40

σ τρ

Message Cycle

Token Holding Time (H)

None of these masters
used the token

Fig. 3.6 This figure illustrates the concepts of message cycle, token holding time (H), slave's
turnaround time, master's reaction time (ρ), idle token time (σ) and token passing time (τ)

It is also important to understand the idea of a P-NET message cycle length. A P-NET
frame (Fig. 3.7) contains five fields: node address field (2 bytes); control/status field (1
byte); information length field (1 byte); information field (0-63 bytes); error detection
field (1-2 bytes). The node address field may have up to 24 frame bytes. P-NET uses
these complex addresses if special devices (P-NET hopping devices) are used to relay
frames between different segments.

Address
2 bytes

Control/Status
1 bytes

Info. Length
1 bytes

Data
(0,...,63) bytes

Error Detection
1-2 bytes

Fig. 3.7 This figure illustrates the structure of a P-NET frame. Although the address field is
represented with only 2 bytes, it can go up to 24 frame bytes

As each frame byte in P-NET actually corresponds to 11 bits, a frame may have up to
759 bits (69×11 bits). In P-NET all the frame bytes are sent asynchronously, with one
start bit (logical zero), 8 data bits (with LSB first), one address/data bit and one stop bit.
Within a frame, a start bit must immediately follow a stop bit.

Thus, considering the case where both the request and response frames have 759 bits
(realistically it is more likely that either the request will be longer, in cases of data being

42 Real-Time Communications with Fieldbus Networks: Analysis of Previous Relevant Work

sent to a slave, or the response will be longer, in cases of data being received from a
slave), the overall sum for the longest message cycle is 1548 bit periods, corresponding
to 20.15ms at 76800bps. This includes the worst-case slave’s turnaround time (30 bit
periods). Table 3.2 gives the worst-case duration of the token holding time in P-NET,
with the explicit weight of the different contributing components.

Table 3.2: Worst-Case Duration for the Token Holding Time

Component Worst-Case Duration of Token Holding Time
(in bit periods)

Master's Reaction Time 7
Request Transmission Time 759
Slave's Turnaround Time 30
Response Transmission Time 759
Token Passing 40
Total 1595

3.3.2. Real-Time Communications with P-NET: Review of Relevant Work

To our best knowledge, there is no previous relevant work on how to support real-time
communications with P-NET networks.

3.4. PROcess FIeld BUS (PROFIBUS)

3.4.1. Main Characteristics of the PROFIBUS Protocol

The PROFIBUS MAC protocol is based on a token passing procedure used by master
stations to grant the bus access to each other, and a master-slave procedure used by
master stations to communicate with slave stations. Fig. 3.5 can also be used to illustrate
such hybrid MAC protocol. The PROFIBUS token passing procedure uses a simplified
version of the Timed-token protocol (Grow, 1982).

These MAC procedures are implemented at the layer 2 of the OSI reference model,
which, in PROFIBUS, is called Fieldbus Data Link (FDL). In addition to controlling the
bus access and the token cycle time (a feature that will be later explained), the FDL is
also responsible for the provision of data transmission services for the FDL user (e.g.,
the application layer).

PROFIBUS supports four data transmission services: Send Data with No
acknowledge (SDN); Send Data with Acknowledge (SDA); Request Data with Reply
(RDR) and Send and Request Data (SRD).

The SDN is an unacknowledged service used for broadcasts from a master station to
all other stations on the bus. Conversely, all other transmission services are based on a
real dual relationship between the initiator (master station holding the token) and the
responder (slave or master station not holding the token). An important characteristic of
these services is that they are immediately answered (as in P-NET networks), with a

Real-Time Communications with Fieldbus Networks: Analysis of Previous Relevant Work 43

response or an acknowledgement. This feature, also called "immediate-response", is
particularly important for the real-time bus operation.

In addition to these services, industrial applications often require the use of cyclical
transmission methods. A FDL-controlled polling method (cyclical polling) may be used
to scan field devices, such as sensors or actuators. PROFIBUS enables a poll list to be
created at the FDL layer, allowing the execution of cyclical polling services based on
RDR and SDR services.

An important PROFIBUS concept is the message cycle. A message cycle consists of a
master's action frame (request or send/request frame) and the associated responder's
acknowledgement or response frame. User data may be transmitted in the action frame
or in the response frame. The acknowledgement or response must arrive within a
predefined time, the slot time, otherwise the initiator repeats the request. At the network
set-up phase, the maximum number of retries, before a communication error report, must
be defined in all master stations. The PROFIBUS real-time analysis presented in the
following section is based on the knowledge of the message cycle duration.

One of the main functions of the PROFIBUS MAC is the control of the token cycle
time. After receiving the token, the measurement of the token rotation time begins. This
measurement expires at the next token arrival and results in the real token rotation time
(TRR). A target token rotation time (TTR) must be defined in a PROFIBUS network. The
value of this parameter is common to all masters, and must be chosen small enough to
meet the responsiveness requirements of all masters. When a station receives the token,
the token holding time (TTH) timer is given the value corresponding to the difference, if
positive, between TTR and TRR.

In PROFIBUS there are two main categories of messages: high-priority and low-
priority. These two categories of messages use two independent outgoing queues. If at
the arrival, the token is delayed, that is, the real token rotation time (TRR) was greater
than the target token rotation time (TTR), the master station may execute, at most, one
high-priority message cycle. Otherwise, the master station may execute high-priority
message cycles while TTH > 0. TTH is always tested at the beginning of the message cycle
execution. This means that once a message cycle is started it is always completed,
including any required retries, even if TTH expires during the execution. We denote this
occurrence as a TTH overrun. The low-priority message cycles are executed if there are
no high-priority messages pending, and while TTH > 0 (also evaluated at the start of the
message cycle execution, thus leading to a possible overrun of TTH).

Apart from distinguishing high and low-priority message cycles, the PROFIBUS
MAC differentiates three subtypes of low-priority message cycles: poll list, non-cyclic
low-priority (application layer and remote management services) and Gap List message
cycles. The Gap is the address range between two consecutive master addresses, and
each master must periodically check the Gap addresses to support dynamic changes in
the logical ring.

After all high-priority messages have been carried out, poll list message cycles are
started. If the poll cycle is completed within TTH, the requested low-priority non-cyclical
messages are then carried out, and a new poll cycle starts at the next token arrival with
available TTH. If a poll cycle takes several token visits, the poll list is processed in
segments, without inserting requested low-priority non-cyclical messages. Low-priority
non-cyclical message cycles are carried out only at the end of a complete poll cycle. At

44 Real-Time Communications with Fieldbus Networks: Analysis of Previous Relevant Work

most one Gap address is checked per token visit, if there is still available TTH, and there
are no pending messages. Fig. 3.8 synthesises the PROFIBUS MAC procedures.

Token Receipt

Reset and Release TRR (up)
TTH ← TTR - TRR

Release TTH (down)

process high
priority message

high priority
 message ?

y

n

low priority
 message ?

Token Pass

n

y

TTH < 0 ?

y

n

y

TTH < 0 ?

process high
priority message

high priority
 message ?

y

n

process low
priority message

y

n

TTH < 0 ?

Non high-priority
messages processing

Fig. 3.8 This figure illustrates how PROFIBUS masters handle the two types of basic traffic

To illustrate the token passing mechanisms between the n master stations (n = 4)
please refer to Fig. 3.9, where the ith real token rotation time, as seen by master 4 (T4

RR),
corresponds to the time of the network token rotation (none of the stations used the token
to transmit messages). At that ith token visit, master 4 uses part of its available token
holding time (T4

TH) to transmit two message cycles.

Master 1

Master 2

Master 3

TTR

two message cycles
performed in the ith token
visit to master 4

token arrival token passing time message cycle

Master 4

T4
RR(i)

used T4
TH (i)

available T4
TH (i)

a)

first message cycle:
request followed by
an immediate
response (e.g.,
remote reading of a
process variable)

Master 4

second message
cycle: request
followed by an
immediate
response (e.g.,
remote writting of a
process variable)

slave's immediate
response timesT4

RR (i)

b)

Fig. 3.9 Example of token usage. b) details the message cycles transmitted by master 4 in a)

Real-Time Communications with Fieldbus Networks: Analysis of Previous Relevant Work 45

3.4.2. Real-Time Communications with PROFIBUS: Review of Relevant Work

Compared to the timed-token protocol (Grow, 1982), the main difference in the
PROFIBUS token passing consists in the absence of synchronous bandwidth allocation
(Hi). For the timed-token protocol this is a relevant station parameter, since it specifies
the amount of time a station has to transfer its synchronous (real-time) traffic.

In PROFIBUS, the absence of synchronous bandwidth allocation prevents the use of
the traditional real-time analysis for the timed-token protocol. In fact, real-time solutions
for networks based on the timed-token protocol, such as (Agrawal et al., 1994; Zheng
and Shin, 1995), for FDDI networks (ISO 9314-2, 1989) or (Montuschi et al., 1992) for
the IEEE 802.4 token bus (IEEE 802.4, 1985), rely on the possibility of allocating
specific bandwidth for the real-time traffic.

These results cannot however be applied to PROFIBUS, as significant differences to
the timed-token protocol exist. We consider the following two differences as the most
relevant ones (Tovar and Vasques, 1998).

1. In PROFIBUS there is no synchronous capacity allocation (Hi). If a station
receives a late token (TRR is greater than TTR), then, at most, only one high-priority
message may be transmitted. As a consequence, low-priority traffic may
drastically affect the capabilities of the PROFIBUS networks to support high-
priority (real-time) traffic. Fig. 3.10 illustrates this situation. Contrarily, in the
original timed-token protocol the station can transmit synchronous (high-priority)
messages during Hi time, even if it has received a late token.

2. In PROFIBUS, both high-priority and low-priority message cycles may overrun
the TTH timer. As previously stressed, in PROFIBUS a message cycle can be
initiated with a residual TTH value and will be performed until the end. In the
timed-token protocol this overrun of TTH is only possible for asynchronous
(low-priority) messages, as the transmission of synchronous messages can only
be started if the message cycle fits in the time allocated for synchronous
transmission.

Master 1

Master 2

Master 3

TTR

Message cycle
processed causing an
overrun of the TTH timer

token arrival

token passing time

high-priority message cycles with TTH > 0

low-priority message cycles with TTH > 0

message cycles with TTH < 0

high-priority message cycle with a late token

Fig. 3.10 This figure illustrates how low-priority traffic can affect the high-priority traffic
capabilities in PROFIBUS networks

46 Real-Time Communications with Fieldbus Networks: Analysis of Previous Relevant Work

In (Vasques, 1996; Vasques and Juanole, 1994) the authors derive pre-run-time
schedulability analysis for the PROFIBUS protocol, considering two complementary
approaches.

1. If the low-priority traffic is unconstrained, then the real-time traffic requirements
may be satisfied, considering that, at least, one pending high-priority message is
transmitted per token visit.

2. If the low-priority traffic can be constrained (controlling the number of
low-priority message transfers at each master station), then, by an appropriate
setting of the TTR parameter, all pending real-time traffic is guaranteed to be
transmitted at each token visit.

For the first approach, a deadline constraint is proposed, which, if satisfied,
guarantees that the real-time traffic is schedulable:

  k
kM cycleii

TP
∀≤∑

∈

 ,1
1 (3.5)

where Mi is a high-priority message in master k, Pi is its period, and Tcycle is the
maximum time interval between two consecutive token arrivals to the master.

It is however easy to show that inequality (3.5) does not consider that PROFIBUS
message requests are queued in a FCFS (First-Come-First-Served) queue. Assume, as an
example, that a master issues three high-priority messages, with periods of 40ms, 15ms
and 10ms, respectively. The highest value of Tcycle that satisfies inequality (3.5) is 5ms;
that is, 1 / 40 / 5 + 1 / 15 / 5 + 1 / 10 / 5 = 0.958 ≤ 1. If the request with a period
(deadline) of 10 ms is the last one in the FCFS queue, and the token as just been passed
to the next master, that message request will only be processed after 3 token visits.
Consequently, it may suffer (considering that only one request will be processed at each
token visit) a queuing delay of up to 15ms, which is a value greater than its period
(deadline).

Inequality (3.5) has additionally two major drawbacks.
1. It does not give any estimation of the worst-case response time of each individual

message.
2. It does not allow the consideration of sporadic high-priority messages, which

typically will have relative deadlines much smaller than their period.
Inequality (3.5) is a function of Tcycle. In (Vasques, 1996; Vasques and Juanole, 1994)

the authors present the following evaluation for Tcycle, which will the basis to set the TTR

parameter:

() CnTT TRcycle ×−++= 1τ (3.6)

where τ represents the network latencies (including the token-passing time), n is the
number of masters in the network, and C is the maximum length of a high-priority
message. This evaluation of Tcycle suffers from a number of inaccuracies, which will later
be addressed in Chapter 5.

Real-Time Communications with Fieldbus Networks: Analysis of Previous Relevant Work 47

For the second approach (constrained low-priority traffic profile), the authors define
Tcycle as follows:

τ++= ∑∑ jicycle CCT (3.7)

where ∑Ci gives the load concerning high-priority traffic per token cycle, and ∑Cj the
allowable load concerning low-priority traffic, also per token cycle. Therefore, the value
for the TTR parameter must respect the following condition:









+≥ ∑
i

i
k

cycleTR CTT max (3.8)

with, of course, the following restriction:

{ } i,kcyclei TP ∀≥ ,min (3.9)

Condition (3.8) guarantees that even when the token rotation time is at its maximum
value, master k will still be able to process all its pending high-priority traffic. There are,
however, some limitations inherent to such analysis.

1. The authors do not identify the low-priority traffic supported by PROFIBUS. It is
important to note that some of the low-priority traffic cannot be controlled at the
user level.

2. The authors do not discuss how is it possible to implement such an approach.
In Section 5.5, we will address in detail these open issues.
Finally, it is worth mentioning a previous work based on the use of the poll list at the

FDL to support real-time communication in PROFIBUS (Li and Stoeckli, 1994). In this
approach, message deadlines are guaranteed since the token cycle time is bounded. The
major drawback of this approach is that, in order to evaluate the token cycle time, neither
high-priority traffic nor low-priority traffic (other than cyclic traffic) are allowed. This
prevents the transfer of event-driven messages with high-priority, such as alarms.
Furthermore, remote management services (which in PROFIBUS are mapped into low-
priority non-cyclic services) are also not covered by this approach.

To our best knowledge, these are the most relevant works on how to guarantee
real-time communications with PROFIBUS networks.

3.5. Factory Instrumentation Protocol (WorldFIP)

3.5.1. Main Characteristics of the WorldFIP Protocol

A WorldFIP network interconnects stations with two types of functionalities: bus
arbitration and production/consumption functions. At any given instant, only one station
can perform the function of active bus arbitration. Hence, in WorldFIP, the medium
access control (MAC) is centralised, and performed by the active bus arbitrator (BA).

48 Real-Time Communications with Fieldbus Networks: Analysis of Previous Relevant Work

WorldFIP supports two basic types of transmission services: exchange of identified
variables and exchange of messages. In this section we address WorldFIP networks
supporting only exchange of identified variables, since they are the basis of the
WorldFIP real-time services. The exchange of messages, which is used to support
manufacturing message services (ISO 9506, 1990), is out of the scope of this work.

In WorldFIP, the exchange of identified variables is based on a
producer/distributor/consumer (PDC) model, which relates producers and consumers
within a distributed system. In this model, for each process variable there is one, and
only one producer, and several consumers. For instance, consider the variable associated
with a process sensor. The station that provides the variable value will act as the variable
producer and its value will be provided to all the consumers of the variable (e.g., the
station that acts as process controller for that process variable or the station that is
responsible for building an historical data base).

In order to manage transactions associated with a single variable, a unique identifier is
associated with each variable. The WorldFIP data link layer (DLL) is made up of a set of
produced and consumed buffers, which can be locally accessed (through application
layer (AL) services) or remotely accessed (through network services).

The AL provides two basic services to access the DLL buffers: L_PUT.req, to write
a value in a local produced buffer, and L_GET.req to obtain a value from the local
consumed buffer. None of these services generate activity on the bus.

Produced and consumed buffers can also be remotely accessed through a network
transfer (service also known as buffer transfer). The bus arbitrator broadcasts a question
frame ID_DAT, which includes the identifier of a specific variable. The DLL of the
station that has the corresponding produced buffer responds with the value of the
variable using a response frame RP_DAT. The DLL of the station that contains the
produced buffer then notifies the local AL with a (L_SENT.ind). The DLL of the
station(s) that has the consumed buffers accepts the value contained in the RP_DAT,
overwriting the previous value and notifying the local AL with a L_RECEIVED.ind.
These mechanisms are illustrated in Fig. 3.11.

BUSData Link LayerApplication Layer

35

12

Produced buffer,
Identifier k

Consumed buffer,
Identifier x

ID_DAT_k

RP_DAT(35)L_SENT.ind(id_k)

ID_DAT_x

RP_DAT(12)L_RECEIVED.ind(id_x)

≈ ≈

≈ ≈

L_GET.req(id_x)

L_PUT.ind(id_k)
≈ ≈

Fig. 3.11 This figure illustrates the case of a station with one produced buffer (for identifier k) and
one consumed buffer (for identifier x).

Real-Time Communications with Fieldbus Networks: Analysis of Previous Relevant Work 49

A buffer transfer implies the transmission of a pair of frames: ID_DAT, followed by a
RP_DAT. We denote this sequence as an elementary transaction. The duration of this
transaction equals the time needed to transmit the ID_DAT frame, plus the time needed
to transmit the RP_DAT frame, plus twice the turnaround time (tr). The turnaround time
is the time elapsed between any two consecutive frames. Fig. 3.12 illustrates the concept
of an elementary transaction in WorldFIP.

ID_DAT_ABus Arbitrator (BA)

Producer (ID_A) RP_DAT_A

tr (Producer) tr (BA)

ID_DAT_B

Producer (ID_B) RP_DAT_B

tr (Producer)

…

Message Transaction

Fig. 3.12 Concept of elementary transaction in WorldFIP networks

Every transmitted frame is encapsulated with control information from the physical
layer. Specifically, the frame is placed between a DTR field (begin of frame) and an
FTR field (end of frame). A WorldFIP frame begins with a control byte, which is used
by network stations to recognise the type of frame, and ends with two FCS (Frame
Check Sequence) bytes, used by the frame receivers to verify the integrity of the
received frame. The structure of both ID_DAT and RP_DAT frames is as illustrated in
Fig. 3.13. As it can be depicted, an ID_DAT frame has always 64 bits, whereas a
RP_DAT frame has at least 48 bits. Note that the turnaround time (tr) is imposed (Afnor,
1990) to be within the interval 10 bits < tr < 70 bits.

ID_DAT

2 bytes 2 bytes 2 bytes1 byte 1 byte

RP_DAT

2 bytes n bytes (n ≤ 128) 2 bytes1 byte 1 byte

Useful info. (User Layer)

Application Layer

Data Link Layer

Physical Layer

DTR

DTR Control

Control

FCS FTRIDENTIFIER

FCS FTRDATA

Fig. 3.13 Structure of the ID_DAT and RP_DAT frames

In WorldFIP networks, the bus arbitrator table (BAT) regulates the scheduling of all
buffer transfers. In practice, two types of buffer transfers can be considered: periodic and
aperiodic (sporadic). The BAT imposes the schedule of the periodic buffer transfers, and
also regulates the aperiodic buffer transfers.

Assume a distributed system within which 6 variables are to be periodically scanned,
with scan frequencies as shown in Table 3.3. The WorldFIP BAT must be set in order to
cope with these timing requirements.

50 Real-Time Communications with Fieldbus Networks: Analysis of Previous Relevant Work

Table 3.3: Example Set of Periodic Buffer Transfers

Identifier A B C D E F
Periodicity (ms) 1 2 3 4 4 6

Two important parameters are associated with a WorldFIP BAT: the microcycle
(elementary cycle) and the macrocycle. The microcycle imposes the maximum rate at
which the BA performs a set of scans. Usually, the microcycle is set equal to the highest
common factor (HCF) of the required scan periodicities. Using this rule, and for the
example shown in Table 3.3, the value for the microcycle is set to 1ms. A possible
schedule for all the periodic scans can be as illustrated in figure 3.15, where we consider
C=97,6µs for each elementary transaction.

A

B

C

D

E

F

...

time (ms)1 2 3 4 5 6 7 8 9 10 11 12 13

ID_DAT(25.6µs)

RP_DAT(32µs)tr(20µs)

microcycle

macrocycle

Fig. 3.14 Illustration of a possible schedule for the example of Table 3.3

It is easy to depict that, for this example, the sequence of microcycles repeats each 12
microcycles. This sequence of microcycles is said to be the macrocycle, and its length is
given by the lowest common multiple (LCM) of the scan periodicities. As a
consequence, the scanning periods of the periodic variables must be multiples of the
microcycle.

In a WorldFIP system, not all identified variables are to be included in the BAT.
Some variables may only be occasionally exchanged, and thus do not need to be
periodically scanned. Typically such exchanges will concern application events or
alarms, which by their own nature do not occur with a periodic pattern. Therefore, it is
preferable to map these variables into aperiodic buffer transfers, in order to reduce the
network load.

The BA handles aperiodic buffer transfers only after processing the periodic traffic in
a microcycle. The portion of the microcycle reserved for the periodic buffer exchanges is
denoted as the periodic window of the microcycle. The time interval left after the
periodic window until the end of the microcycle is denoted as the aperiodic window of
the microcycle. The aperiodic buffer transfers take place in three stages (Fig. 3.15a).

1. When processing the BAT schedule, the BA broadcasts an ID_DAT frame
concerning a periodic variable, say identifier X. The producer of variable X
responds with a RP_DAT and sets an aperiodic request bit in the control field of
its response frame (RP_DAT_RQ). The bus arbitrator stores variable X in a queue

Real-Time Communications with Fieldbus Networks: Analysis of Previous Relevant Work 51

of requests for transfers of aperiodic variables. Two priority levels can be set
when the request for aperiodic transfer is made: Urgent or Normal. The BA has
two queues, one for each priority level (Fig. 3.15b).

2. In the aperiodic window, the BA uses an identification request frame (ID_RQ) to
request the producer of the identifier X to transmit its list of pending aperiodic
requests. The producer of X responds with a RP_RQ frame (list of identifiers).
This list of identifiers is placed in another BA's queue, the ongoing aperiodic
queue (Fig. 3.15b).

3. Finally, the BA processes the requests for aperiodic transfers that are stored in its
ongoing aperiodic queue. For each transfer of aperiodic variables, the BA uses
the same mechanism as the used for the periodic buffer transfers (ID_DAT
followed by RP_DAT).

A station that requests an aperiodic transfer can be: the producer of the variable; the
consumer of the variable; both producer and consumer; neither producer nor consumer
(third-party variables). It is however important to note that a station can only request
aperiodic transfers using responses to periodic variables that it produces and which are
configured in the BAT.

BUSData Link LayerApplication Layer

35

Produced buffer,
Identifier k

Urgent queue

ID_DAT_k

RP_DAT_RQ(35)
L_SENT.ind(id_k)

≈ ≈

L_FREE_UPDATE.cnf(a+)

L_FREE_UPDATE.req(id_a, Urgent)

L_FREE_UPDATE.req(id_b, Urgent)

b a

≈

Normal queue

≈
ID_RQ_k

RP_RQ (a,b)

L_FREE_UPDATE.cnf(b+) ≈≈
ID_DAT_a

RP_DAT (11)

1

2

4 3

5

a)

Requesting Station

BA's DLL Services to the AL

Pending Aperiodic
Requests

BA

microcycle

macrocycle

Ongoing Aperiodic
Queue

transmission reception

b)

Fig. 3.15 a) illustrates the sequence of transactions concerning an aperiodic buffer transfer
request. b) illustrates the structure of the BA's queues

It is worth mentioning that the schedule shown in Fig. 3.14 represents a macrocycle
composed of synchronous microcycles, that is, for the specific example, each microcycle
starts exactly 1ms after the previous one. Within a microcycle, if there is spare time after
processing the aperiodic traffic, the BA transmits padding identifiers, to indicate to the
other stations that it is still functioning. A WorldFIP BA can also manage asynchronous
microcycles, not transmitting padding identifiers at the end of the microcycle. In such
case, a new microcycle starts as soon as the periodic traffic is performed and there are no
pending aperiodic buffer transfers or message transfers. Initial periodicities are not
respected, since identifiers may be more frequently scanned.

52 Real-Time Communications with Fieldbus Networks: Analysis of Previous Relevant Work

3.5.2. Real-Time Communications with WorldFIP: Review of Relevant Work

For the periodic traffic, end-to-end communication deadlines can be easily guaranteed,
since the BAT implements a static schedule for the periodic variables. Therefore,
real-time guarantees for periodic traffic very much rely on methodologies for building
the WorldFIP BAT. Several authors have already addressed this issue; examples are the
works by Laine (Laine, 1991) and by Kim et al. (Kim et al., 1998). It is also worth to
mention some works, while not directly focusing WorldFIP networks, address generic
fieldbus networks with some of the characteristics of WorldFIP networks (Raja et al.,
1993; Raja and Noubir, 1993; Almeida et al., 1999).

Concerning the aperiodic traffic, some previous results for pre-run-time schedulability
analysis can be found in (Vasques, 1996; Vasques and Juanole, 1994). Those results are
however quite pessimistic. Later, in (Pedro and Burns, 1997) the level of pessimism is
identified and an improved analysis is proposed. Next, we briefly describe such
improved analysis.

The response time analysis of an aperiodic request is given by:

∑+






 −
++=

j
j

mc

kn
skn C

T

R
TR

σ
δσ max (3.10)

In equation (3.10), δ represents the sum of turnaround times concerning the
transactions related to aperiodic requests, Ts

max is the maximum length of a periodic
window and Cj is the length of aperiodic transactions. Finally, σk is the length of the
dead interval - concept introduced in (Vasques and Juanole, 1994) - in a station k. As a
station can only request an aperiodic transfer in a response to an ID_DAT locally
produced, an aperiodic request may only be notified to the BA after a time σk after the
request have been locally queued:

{ }ik Tmin=σ (3.11)

In equation (3.11) Ti corresponds to the periods of periodic variables that station k
produces.

The analysis by Pedro and Burns still contains, however, the following drawbacks.
1. The authors consider equal lengths for periodic windows since they do not

discuss the BAT construction, and thus they cannot evaluate the actual length of
the periodic window in each microcycle. Thus, the overall results are also very
pessimistic.

2. The authors do not consider that at the end of each microcycle some transactions
would simply not fit, and thus would not be schedulable.

3. Finally, the authors do not also consider the communication jitter for the
evaluation of the dead interval. Note that within each microcycle the variables are
not scanned exactly in the same "slot", and they may be even scanned at irregular
intervals (not with the same number of microcycles in between), depending on
the methodology used to build the BAT.

The analysis presented in Chapter 6, improves previous results from (Pedro and
Burns, 1997) considering the three above mentioned aspects, in an integrated manner

Real-Time Communications with Fieldbus Networks: Analysis of Previous Relevant Work 53

with the methodologies for building the WorldFIP BAT, thus performing an integrated
analysis of periodic and aperiodic traffic.

3.6. Summary

Fieldbus networks are widely used as the communication support for distributed
computer-controlled systems (DCCS), in applications ranging from process control to
discrete manufacturing. There are several advantages in the use of fieldbuses as a
replacement for the traditional point-to-point links between sensors/actuators and
computer-based control systems. Besides economical reasons (cable savings), fieldbuses
allow an increased decentralisation and distribution of the processing power over the
field.

Usually, DCCS impose real-time requirements; that is, traffic must be sent and
received within a bounded interval, otherwise a timing fault is said to occur. This
motivates the use of communication networks within which the MAC protocol is able to
schedule messages according to their real-time requirements. Therefore, a potential leap
towards the use of fieldbuses in such time-critical applications lies on the accurate
characterisation of the temporal behaviour of its MAC protocol.

In this chapter we describe four different fieldbus solutions: CAN, P-NET,
PROFIBUS and WorldFIP. While the first was originally intended for use as an
in-vehicle network, its very interesting characteristics make it also appealing for DCCS
applications. CAN is a priority bus, hence its real-time characteristics can be easily
evaluated and improved by the traditional analysis for the scheduling of non pre-emptive
and independent tasks in single processor environments. This is also the reason why
CAN has been the focus of research teams from the real-time systems area. However, its
physical limitations prevent its use in most part of the typical factory-floor applications.

For typical factory-floor applications, the profiles encompassed in the EN 50170
standard (P-NET, PROFIBUS and WorldFIP) are strong contenders, since they all offer
deterministic access.

In FIP, the determinism is guaranteed by a bus arbitrator, which, for periodic traffic,
controls data transfers according a static scanning table. PROFIBUS adopts a simplified
version of the timed-token protocol (Grow, 1982). Despite some differences to the
timed-token protocol, it is still possible to guarantee real-time behaviour with
PROFIBUS networks. P-NET also offers a deterministic access, since it is based on a
virtual token passing (VTP) mechanism. The determinism is not achieved by means of
controlling the token rotation time, as it happens in networks based on the timed-token
protocol. Instead, the bounded access delay is implicitly guaranteed by the fact that at
each token visit only one message request may be performed.

In this chapter, we describe the main characteristics of the fieldbus protocols
encompassed in the EN 50170 standard. We also survey the most relevant results
concerning their ability to support real-time communications, identifying some of the
open research issues.

54 Real-Time Communications with Fieldbus Networks: Analysis of Previous Relevant Work

3.7. References

Agrawal, G., Chen, B., Zhao, W. and Davari, S. (1994). Guaranteeing Synchronous Message
Deadline with the Timed Token Medium Access Control Protocol. In IEEE Transactions on
Computers, Vol. 43, No. 3, pp. 327-339.

Almeida, L., Pasadas, R. and Fonseca, J. (1999). Using a Planning Scheduler to Improve the
Flexibility of Real-Time Fieldbus Networks. In Control Engineering Practice, 7, pp. 101-108.

ASI. (1996). Actuator and Sensor Interface, Low Voltage Switchgear and Controlgear. CENELEC
TC17B8secretariat) 146.

BSI DD 238. (1996). Fieldbus Foundation. Draft for Development.
Day, J. and Zimmermann, H. (1983). The OSI Reference Model. In Proceedings of the IEEE, Vol.

71, No. 12, pp. 1334-1340.
DIN 19245. (1990). PROFIBUS, Process FieldBus. German Standard.
DIN 19258. (1995). Interbus-S, Sensor and Actuator Network for Industrial Control Systems.

German Draft Standard.
DIN 19245-4. (1996). PROFIBUS-PA, Profibus for Process Automation. German Standard.
DS 21906. (1990). P-Net, multi-master, multi-net fieldbus for sensor, actuator and controller

communications. Danish Standard.
Echelon. (1993). LONTalk Protocol. In LONWorksEngineering Bulletin, Part Number 005-0017-

01 Rev. C.
EN 50170. (1996). General Purpose Field Communication System. EN 50170-1 (P-NET), EN

50170-2 (PROFIBUS), EN 50170-3 (WorldFIP). CENELEC.
EN 50254. (1996). High Efficiency Communications Subsystems for Small Data Packages. CLC

TC/65CX, CENELEC EN 50254 Project.
Grow, R. (1982). A Timed Token Protocol for Local Area Networks. In Proceedings of Electro'82,

Token Access Protocols, Paper 17/3.
Haverty, N. (1986). MIL-STD 1553 - A Standard for Data Communications. In Communication

and Broadcasting, Vol. 10, No. 1, pp. 29-33.
IEC 1158-2. (1993). IEC Standard 1158-2, Fieldbus Standard for Use in Industrial Control

Systems - Part2 Physical Layer Specification and Service Definition.
IEEE 802.4. (1985). IEEE Standard 802.4: Token Passing Bus Access Method and Physical Layer

Specification, IEEE.
Intel (1984). The Bitbus Interconnect Serial Control Bus Specifications. In Distributed Control

Modules. Also (1991) IEEE 1118, Standard Microcontroller System Serial Control Bus.
ISO 9314-2. (1989). Information Processing Systems - Fibre Distributed Data Interface (FDDI) -

Part 2: Token Ring Media Access Control (MAC). ISO.
ISO 11519. (1995). Road Vehicles - Low-Speed Serial Data Communication (Part 1 - Part 4). ISO.
ISO 11898. (1993). Road Vehicle - Interchange of Digital Information - Controller Area Network

(CAN) for High-Speed Communication. ISO.
Jenkins, C. (1997). P-NET as a European Fieldbus Standard EN 50170 Vol. 1. In Institute of

Measurement + Control Journal, Vol. 30, April, pp. 75-79.
Kim, Y., Jeong, S. and Kown, W. (1998). A Pre-Run-Time Scheduling Method for Distributed

Real-Time Systems in a FIP Environment. In Control Engineering Practice, Vol. 6, pp. 103-
109.

Laine, T. (1991). Modélisation d'Application Réparties pour la Configuration Automatique d'un
Bus de Terrain. (in french), PhD Thesis, CRIN, Nancy, France.

Lenhart, G. (1993). A Fieldbus Approach to Local Control Networks. In Advances in
Instrumentation and Control, Vol. 48, No. 1, pp. 357-365.

Real-Time Communications with Fieldbus Networks: Analysis of Previous Relevant Work 55

Li, M. and Stoeckli, L. (1994). The Time Characteristics of Cyclic Service in Profibus. In
Proceedings of the EURISCON'94, Vol. 3, pp. 1781-1786.

Montuschi, P., Ciminiera. L. and Valenzano, A. (1992). Time Characteristics of IEE802.4 Token
Bus Protocol. In IEE Proceedings, Vol. 139, No. 1, pp. 81-87.

NF C46. (1989). FIP Bus for Exchange of Information Between Transmitters, Actuators and
Programmable Controllers. French Standard.

NF C46-638. (1996). Système de Communication Haute Performance pour Petits Modules de
Donnés. French Standard.

Noonen, D., Siegel, S. and Maloney, P. (1994). DeviceNet Application Protocol. In Proceedings of
International CAN Conference.

Pedro, P. and Burns, A. (1997). Worst Case Response Time Analysis of Hard Real-time Sporadic
Traffic in FIP Networks. In Proceedings of the 9th Euromicro Workshop on Real-Time
Systems, pp. 3-10.

Pimentel, J. (1990). Communication Networks for Manufacturing. Prentice-Hall International
Editions, Englewood Cliffs, New Jersey.

Raja, P. and Noubir, G. (1993). Static and Dynamic Polling Mechanisms for Fieldbus Networks.
In ACM Operating Systems Review, Vol. 27, No. 3, pp. 34-45.

Raja, P., Noubir, G., Ruiz, L., Hernandez, J. and Decotignie, J.-D. (1993). Analysis of Polling
Protocols for Fieldbus Networks. In Computer Communication Review, Vol. 23, No. 3, pp.
69-90.

Rockwell Automation (1997). DeviceNet Produc Overview. Publication DN-2.5, Rockwell.
Rosemount Inc. (1991). HART Smart Communications Protocol Specification. Rev. 5.1.4,

Rosemount.
Tindell K., Hansson, H. and Wellings, A. (1994). Analysing Real-Time Communications:

Controller Area Network (CAN). In Proceedings of the IEEE Real-Time Systems Symposium,
pp. 259-263.

Tindell K., Burns, A. and Wellings, A. (1995). Calculating Controller Area Network (CAN)
Message Response Time. In Control Engineering Practice, Vol. 3, No. 8, pp. 1163-1169.

Thomesse, J. (1997). The Fieldbuses. In Proceedings of the International Symposium on
Intelligent Components and Instruments for Control Applications, pp. 13-23.

Tovar, E. and Vasques, F. (1998). Cycle Time Properties of the PROFIBUS Timed Token
Protocol. Polytechnic Institute of Porto, Technical Report HURRAY-TR-9811, August 1998,
to appear in Computer Communications, Elsevier Science.

Vasques, F. and Juanole, G. (1994). Pre-run-time Schedulability Analysis in Fieldbus Networks. In
Proceedings of the Annual Conference of the IEEE Industrial Electronics Society, pp. 1200-
1204.

Vasques, F. (1996). Sur l'Integration de Mecanismes d'Ordonnacement et de Communication dans
la Sous-couche MAC de Reseaux Locaux Temps-reel. PhD Thesis (in French), available as
Technical Report LAAS No. 96229.

Zheng, Q. and Shin, K. (1995). Synchronous Bandwidth Allocation in FDDI Networks. In IEEE
Transactions on Parallel and Distributed Systems, Vol. 6, No. 12, pp. 1332-1338.

Zuberi, K, and Shin, K. (1995). Non-Preemptive Scheduling of Messages on Controller Area
Network for Real-Time Control Applications. In Proceedings of the IEEE Real-Time Systems
Symposium, pp. 240-249.

Zuberi, K, and Shin, K. (1997). Scheduling Messages on Controller Are Network for Real-Time
CIM Applications. In IEEE Transactions on Robotics and Automation, Vol. 13, No. 2, pp.
310-314.

Chapter 4

Real-Time Communications with P-NET Networks:
Contributions to the State-of-the-Art

In this chapter we develop a methodology for the worst-case response time
analysis of P-NET messages. This chapter is largely drawn from the following
published work: "A Communication Support for Real-Time Distributed Computer
Controlled Systems" (Tovar and Vasques, 1998a); "Communication Response
Time in P-NET Networks: Worst-Case Analysis Considering the Actual Token
Utilisation" (Tovar et al., 1999); "Supporting Real-Time Distributed Computer-
Controlled Systems with Multi-hop P-NET Networks" (Tovar et al., 1998b).

4.1. Introduction

The P-NET medium-access-control (MAC) protocol is based on a virtual token-passing
(VTP) procedure, used by master stations to grant bus access to each other, and a master-
slave procedure, used by master stations to communicate with slave stations. Please refer
to Section 3.3.1 for a detailed description of the main characteristics of this protocol.

The remainder of this chapter is organised as follows. In Section 4.2 we introduce the
network and message models, which will be used throughout the rest of the chapter. In
Section 4.3 we provide a basic response time analysis considering the worst-case token
rotation time. In Section 4.4 we extend the basic analysis to consider the actual token
utilisation. Finally, in Section 4.5 we assess the real-time characteristics of multi-hop
P-NET networks.

4.2. Network and Message Models

Consider a network with n masters, with addresses ranging from 1 to n. Each master
accesses the network according to the VTP scheme; hence, first master 1, then masters 2,
3, … until master n, and then again masters 1, 2, … . Slaves will have network addresses
higher than n.

We assume the following message stream model:

),,(k
i

k
i

k
i

k
i DTCS = (4.1)

Si
k defines a message stream i in master k (k = 1, ..., n). A message stream is a

temporal sequence of message cycles concerning, for instance, the remote reading of a

58 Real-Time Communications with P-NET Networks: Contributions to the State-of-the-Art

specific process variable. Ci
k is the longest message cycle duration of stream Si

k. This
duration includes both the longest request and response transmission times, and also the
worst-case slave's turnaround time. Ti

k is the periodicity of stream Si
k requests. In order

to have a subsequent timing analysis independent from the model of the tasks at the
application process level, we assume that this periodicity is the minimum interval
between two consecutive arrivals of Si

k requests to the outgoing queue. Finally, Di
k is the

relative deadline of a message cycle; that is, the maximum admissible time interval
between the instant when the message request is placed in the outgoing queue and the
instant at which the related response is completely received at the master's incoming
queue. Finally, nsk denotes the number of message streams associated with a master k.

4.3. Basic Analysis for the Worst-Case Response Time

In our model, the relative deadline of a message can be equal or smaller than its period
(Di

k ≤ Ti
k). Thus, if in the outgoing queue there are two message requests from the same

message stream, this means that a deadline for the first of the requests was missed.
Actually, we can be more precise saying that deadlines will be missed if a new request
appears, in the outgoing queue, before the completion of a previous message cycle for
the same request. Therefore, the maximum number of pending requests in the outgoing
queue will be, in the worst-case, nsk.

We denote the worst-case response time of a message stream Si
k as Ri

k. This time is
measured starting at the instant when the request is placed in the outgoing queue, until
the instant when the response is completely received at the incoming queue. Basically,
this time span is made up of the two following components.

1. The time spent by the request in the outgoing queue, until gaining access to the
bus (queuing delay);

2. The time needed to process the message cycle, that is, to send the request and
receive the related response (transmission delay). As the bit rate in P-NET is
76800bps, the propagation delay can be neglected, even for P-NET networks
with a length of some kilometres.

Thus,

k
i

k
i

k
i CQR += (4.2)

where Qi
k is the worst-case queuing delay of a message request from Si

k.
A basic analysis for the worst-case response time can be performed if the worst-case

token rotation time is assumed for all token cycles. Assume also that CM is the maximum
transmission duration of a message cycle. If a master uses the token to perform a
message cycle, we can define the token holding time as:

τρ ++= MCH (4.3)

It is not usual to include the token passing time in the token holding time. However,
due to the specificity of the Virtual Token Passing scheme, we decided to associate the
token holding time with the state of the P-NET access counter.

Real-Time Communications with P-NET Networks: Contributions to the State-of-the-Art 59

In equation (4.3), τ (= 40 bit periods) corresponds to the time to pass the token after a
message cycle has been performed. ρ (≤ 7 bit periods) denotes the worst-case master’s
reaction time. If a station does not use the token to perform a message cycle, the bus will
be idle during σ (= 10 bit periods) before all access counters are incremented (please
refer to Section 3.3.1).

As the token rotation time is the time interval between two consecutive visits of the
token to a particular station, the worst-case token rotation time, denoted as V, is:

HnV ×= (4.4)

with H as defined in equation (4.3). The value V represents the worst-case time interval
between two consecutive token arrivals to any master k (k = 1, ..., n).

In P-NET, the outgoing queue is implemented as a FCFS queue. Therefore, a message
request can be in any position within the nsk pending requests. nsk is also the maximum
number of requests which, at any time, can be pending in the master k outgoing queue.
This results from the adopted message stream model, which considers Di

k ≤ Ti
k. Hence,

the maximum number of token visits needed to process a message request in master k, is
nsk.

The worst-case queuing delay occurs if nsk requests are placed in the outgoing queue
just after a message cycle was completed (at the beginning of the token passing interval:
τ) and the token is fully utilised in the next nsk consecutive token cycles. We denote this
time instant as tc. We consider that a message cycle was just completed since the token
passing time is τ (= 40 bp) instead of σ (= 10 bp). Considering the value τ leads to the
largest time span till the next visit of the token to that same master k. Only then master k
will be able to process the first of the nsk requests that were placed in the outgoing queue
at time instant tc (please refer to Fig. 4.1 for a specific example).

Definition 4.1 – Master's Critical Instant – We define the critical instant in master k, as
the time instant when nsk requests are placed in its outgoing queue just after it has
completed a previous message cycle.

Note that we can not consider releasing nsk new requests while master k is processing
a message cycle, since that would mean a deadline violation in master k (a new request
released before the completion of a previous one from the same stream). If there was no
message cycle being processed, there was no point in considering an earlier release time,
since one of those nsk requests would be processed in the preceding visit.

Due to both the deadline restriction and the FCFS behaviour of the outgoing queue,
no additional request may appear in master k till the time instant (te), when the last of the
nsk requests (made at tc) is completely processed, otherwise, a message deadline would
be missed. Therefore, we introduce Definition 4.2 and Theorem 4.1.

Definition 4.2 – Master’s Busy Period – We define the busy period in master k, as the
time interval between the critical instant, tc, and the time instant te, when the last of the
nsk requests is completely processed.

Theorem 4.1 In P-NET networks, the worst-case response time of a master’s message
request corresponds to the longest busy period in that master.

60 Real-Time Communications with P-NET Networks: Contributions to the State-of-the-Art

Proof: The busy period starts when a critical instant occurs. From the critical instant
definition, nsk requests are placed in the outgoing queue at the earliest possible instant.
As the end of the busy period is defined as being the time instant te when the last of those
nsk requests is completely processed, the difference tc – te gives the worst-case response
time for a message request in master k, since at time instant tc, a message request can be
in any position, from 1st to nsk-nd, due to the FCFS behaviour of the outgoing queue. o

Theorem 4.2 In P-NET networks, assuming that the token is fully utilised, the
worst-case response time of a message request in a master k is:

VnsR kk ×= (4.5)

Proof: Assuming that the token is fully utilised, it will take τ + (n – 1) × H from instant
tc until the next visit to master k. At the first visit, the token arrives at
t2 = tc + τ + n + (n – 1) × H, and only then the master will be able to process the first of
the nsk pending requests. As only one of the nsk message requests is processed per token
visit, the token will arrive at master k only at instant t3 = t2 + (nsk – 1) × V to process the
last of the nsk requests. The time elapsed since tc is then t3 – tc = τ + (n – 1) × H +
+ (nsk – 1) × V. As the worst-case reaction time of a master is ρ, the last one of the nsk

message requests will start to be transmitted with a queuing delay Qk = τ +
+ (n – 1) × H + (nsk – 1) × V + ρ. Note that as we are assuming Ci

k = CM, ∀i,k, the worst-
case queuing delay is equal for all message requests in the same master (Qi

k = Qk, ∀i). As
Ri

k = Qi
k + CM, the worst-case response time for a message stream i in master k is (note

that Ri
k is also equal to Rk): Rk = τ + (n – 1) × H + (nsk – 1) × V + ρ + CM, which,

considering that H=ρ+CM+τ, can be re-written as follows:

() () VnsVnsVVnsHnR kkkk ×=×−+=×−+×= 11

o

Corollary 4.1 In P-NET networks, assuming that the token is fully utilised, the worst-
case queuing delay of a message request in a master k is:

() () M
kkk CVnsVnsHnQ −×=+×−+×−+= ρτ 11 (4.6)

To illustrate Theorem 4.1 and Theorem 4.2, assume a network scenario with n = 3 and
ns1 = 2. Fig. 4.1 shows both Q1 and R1 values for such scenario. Note that at tc, the ns1

requests are placed in the outgoing queue in any arbitrarily order. Whichever the
ordering, the busy period corresponds to R1, and therefore, the worst-case response time
for a message request in master 1 is (6): ns1 × V = 2 × V = 2 × 3 × H = 6 × H.

Having found the value for the worst-case response time of a message request in each
master k, a pre-run-time schedulability test results:

ki
kk

i RD , , ∀≥ (4.7)

That is, the worst-case response time (Ri
k = Rk) of a message stream Si

k must be equal or
smaller than its relative deadline (Di

k).

Real-Time Communications with P-NET Networks: Contributions to the State-of-the-Art 61

ρ

2

H

res(S1
1)

3 1 2

req(S1
1)

τ

Bus

Access
Counter 3 1

res(S2
1)req(S2

1)

Q1

1

R1

CM
τ

both requests from
master 1 placed in
outgoing queue

tc t2 t3 te

busy period in master 1

Fig. 4.1 Queuing and response times of a P-NET message

4.4. Schedulability Analysis Considering the Actual Token Utilisation

In the previous section we derived a basic timing analysis for the evaluation of the
worst-case message response time. Such analysis may however be very pessimistic,
since we assumed the token as being fully utilised in the nsk consecutive token cycles of
the busy period. However, the token can only be fully utilised during that interval if:

ky
ky nsns ≠∀≥ , (4.8)

as, only in such case, the number of pending requests, in each master y, may be greater
than nsk. Otherwise, if ∃y≠k: nsy < nsk, the token utilisation depends on the periodicity of
message streams for those masters y.

Definition 4.3 – Master’s Eligible Requests – We define the eligible requests of master
y ≠ k, as the maximum number of requests generated in that master that will be pending1

within the busy period of master k.

If the number of eligible requests of master y (Ery) is smaller than nsk, then master y
will not use all nsk token visits to process message cycles. Therefore, the evaluation of
the Ery is of paramount importance for the worst-case response time analysis considering
the actual token utilisation. We will use the following equation as the starting basis for
the evaluation of Ery:

1 Even they are processed during the busy period of master k, for a while, they were pending.

62 Real-Time Communications with P-NET Networks: Contributions to the State-of-the-Art

() ∑
=









+=

yns

i
y

i

yy

T

t
nstEr

1

(4.9)

Equation (4.9) gives the maximum number of requests generated by a master y within
a time interval t: nsy requests are made at the beginning of the interval, and then, new
requests are made at their maximum rate. This is also known as the asap (as soon as
possible) pattern (Liu and Layland, 1973). By tailoring equation (4.9) to encompass the
P-NET MAC characteristics, we will be able to perform a worst-case message response
time analysis which considers the actual token utilisation.

4.4.1. Concept of P-NET Logical Ring Request Jitter

From equation (4.9), it is obvious that the larger the considered time interval is, the
higher is the value for Ery. Note, however, that this equation is a step function, hence it
varies only for multiples of Ti

y.
Consider that in each master y ≠ k, nsy requests are simultaneously made at the critical

instant (tc) of master k. Remembering that since the busy period is defined as [tc, te], it
would be reasonable to consider as the eligible requests of master y, all those requests
given by
Er

y = nsy + Σi=1,..,nsy (te – tc) / Ti
y. In the following analysis, we will show that the worst-

case situation appears when the nsy requests are not simultaneously made in all masters
y ≠ k, and that a quantity before tc must be considered for each master y, depending on its
position in the logical ring.

Assume that the critical instant, which must be considered for each master y, is
denoted as tr

y, with tr
y < tc, ∀y≠k. Basically we need to analyse how much earlier tr

y can be
made, increasing the number of master y eligible requests Er

y = nsy + Σi=1,..,nsy (te – tc)/Ti
y,

without any of the initial nsy requests being able to be processed in an earlier token visit,
prior to the critical instant in master k.

For master k-1, which denotes the predecessor of master k, the instant tr can be shifted
back by CM + ρ + τ, being coincident with the starting of a busy period in master k-1. The
critical instant tr cannot be shifted further back, since it would imply a deadline violation
in master k-1 or one of the initial nsy requests would be processed prior to the busy period
in master k. Considering τ as the token passing time implies that a message cycle was
just completed at instant tr. Otherwise, the token passing time would be reduce to σ
(please refer to section 3.3.1). Consequently, the total amount that tr may be shifted back
for the case of master k-1, is CM + ρ + τ = H.

Considering master k-2, and following a similar analysis, tr could be shifted back up to
2 × H. Thus, a different value for tr, denoted as tr

y, must be considered for each master
y ≠ k, and its value only depends on the relative logical ring position of master y with
respect to master k.

Definition 4.4 – Logical Ring Request Jitter – We define the logical ring request jitter of
master y, as the difference Jry = tr

y – tc, being tr
y how much earlier than the critical instant

in k, a master y can made its nsy requests, without violating a deadline, nor processing
any of those nsy requests prior to the critical instant in master k.

Real-Time Communications with P-NET Networks: Contributions to the State-of-the-Art 63

Resulting from the previous analysis, Jry can be expressed as follows:

∑
−+=

=
11 ..., ,, kyyi

y HJr (4.10)

which is equivalent to:

()[] HnyknJr y ×−+= mod (4.11)

To illustrate this definition, assume the following network scenario (Table 4.1). For
simplification, the periodicity of streams is expressed in multiples of H.

Table 4.1: Stream Set Scenario 1

Master (C, T, D)
1 ns1 = 3 (CM, 14, 14) (CM, 20, 20) (CM, 20, 20)
2 ns2 = 1 (CM, 8, 8)
3 ns3 = 3 (CM, 14, 14) (CM, 20, 20) (CM, 20, 20)
4 ns4 = 3 (CM, 14, 14) (CM, 20, 20) (CM, 20, 20)

The time-line for the master 1 busy period will result as illustrated in Fig 4.2, where
(tr

2 – tc), (tr
3 – tc) and (tr

4 – tc) represent the logical ring request jitter, respectively of
masters 2, 3 and 4. Note that for master 2, its number of eligible requests is greater than
ns2.

Master 1

Master 2

Master 3

1 2 3 4 5 6 7 8 9 units of H

master 1 busy period for scenario of table 4.1

Master 4

10 11

�

� �

0-1

�

�

Jr2

Jr3

tr
2 tr

3 tr
4 tc

τ

#Token Holding Time (H)

σ

= nsx requests placed in the outgoing queue of master x

te

Fig. 4.2 Busy Period of Master 1 with the Scenario of Table 4.1

Theorem 4.3 In P-NET networks, the longest busy period of master k occurs when all its
predecessors started their busy periods in the token cycle previous to the busy period in
master k.

64 Real-Time Communications with P-NET Networks: Contributions to the State-of-the-Art

Proof: The worst-case length busy period in master k, results if all the eligible requests
of each master y are considered for transmission during the interval te – tc. Considering
that in each master y, nsy requests are placed in each master’s outgoing queue at the
instant tc – Jry, then for each master y the number of eligible requests is Er

y = nsy +
+ Σi=1,..,nsy (te – tc + tr

y) / Ti
y.

Using the definitions of busy period and logical ring request jitter, if nsy requests are
placed in the outgoing queues at t1 – Jry, then, in the token cycle prior to the busy period
in master k, busy periods have started in all predecessors of k. o

Considering P-NET's logical ring request jitter concept, the number of eligible
requests (4.9) can now be updated to:

∑
=








 +−
+=

yns

i
y

i

y
rceyy

T

ttt
nsEr

1

(4.12)

which, by using Theorem 4.1, Theorem 4.3 and Definition 4.4, can be re-written as:

∑
=








 +
+=

yns

i
y

i

yk
yy

T

JrR
nsEr

1

(4.13)

with Jry as defined in (4.11).

4.4.2. Concept of P-NET Logical Ring Visit Jitter

Equation (4.13) is still pessimistic, since not all the eligible requests will be able to be
processed within the busy period of master k. The reason is obvious. If nsy is greater than
nsk, only a maximum of nsk requests will be processed by master y within the busy
period. However, for our analysis, the relevant case is when nsy < nsk, since it leads to a
scenario where the token is not fully utilised. For this case, even if Ery (as given by
equation (4.13)) is larger than nsk, it might happen that a number smaller than nsk

requests could be processed during the busy period.
Intuitively we can show that if a new request appears in the outgoing queue of master

y at time instant t2 (tc < t2 < te), this request may not be processed before te, even if the
outgoing queue was empty. This is the case of all the requests made in master y after the
last token visit (to master y) prior to the completion of the busy period in master k.

Assume the following example, where we modify, in Table 4.1, the periodicity of
stream S1

2 from 8 to 12. The time-line for the busy period in master k would be as shown
in Fig. 4.3, instead of that shown in Fig. 4.2. Note that a new request for master 2
appearing before te, can not be processed during the busy period of master 1.

Definition 4.5 – Processing Window of Master’s Busy Period – We define the
processing window of master k busy period, as the time span between tc and tv

y (tv
y < te),

within which, a first-positioned pending request in master y will assuredly be processed.

Definition 4.6 – Logical Ring Visit Jitter – We define the logical ring visit jitter (Jvy) of
master y, as the difference te – tv

y.

Real-Time Communications with P-NET Networks: Contributions to the State-of-the-Art 65

Master 1

Master 2

Master 3

1 2 3 4 5 6 7 8 9 units of H

master 1 busy period for modified scenario of table 4.1

Master 4

10 11

�

� �

0-1

�

�

Jr2

Jr3

τ

tetv
2

Master 2 requests not
being considered
during the master 1
busy period

Fig. 4.3 This figure illustrates the concept of P-NET logical ring visit jitter

It becomes obvious that the worst-case response time of a message request in a master
k corresponds to processing windows in masters y ≠ k as large as possible, since this is
the case where more eligible requests would be processed during the busy period of
master k. Thus, the worst-case response time of a message request in a master k
corresponds to the minimum logical ring visit jitter in masters y.

Such minimum logical ring visit jitter Jvy can be evaluated considering that none of
the masters y processed any message request in the last token visit prior to the
completion of the busy period in master k.

Therefore,

()()[] ()ρσρσ −+++×−−+= M
y CnyknJv 1 mod (4.14)

where ρ + CM corresponds to the processing time of the last of the nsk requests in master
k (see Fig. 4.1), σ + ρ corresponds to master y, and [((n + k – y) mod n) – 1] corresponds
to the number of masters between y and k.

 There is a certain level of pessimism in considering that none of the masters y
processed any message request in the last token visit prior to the completion of the busy
period in master k. In fact, if for some of those masters nsy ≥ nsk, then, they will
assuredly use the token in all nsk consecutive cycles of the busy period in master k. For
those masters, we may consider H instead of σ, hence diminishing the length of the busy
period processing window.

Therefore, equation (4.14) can be updated to:

()()[] ()∑
≥

= −+

−++×−+=

ky nsns
with

kyi
M

y HCnyknJv
11 ,...,

 mod σσ (4.15)

66 Real-Time Communications with P-NET Networks: Contributions to the State-of-the-Art

For the previous example (Fig. 4.3), the number of eligible requests of master 2 would
be 2. However, as, for that master, the logical ring visit jitter is
Jv2 = [((4 + 1 – 2) mod 4) –1] × σ + CM + Σi=3,4 with nsi≥ns1(H – σ) = 3 × σ + CM +
+ 2 × (H – σ) = 2 × H + CM + σ, only one of those two eligible requests is able to be
processed within the busy period of master 1.

4.4.3. Number of Unused Tokens during the Longest Busy Period

Using the previous analysis, we are now able to evaluate the maximum number of
eligible requests from each master y that may be processed during the busy period of
master k. Such maximum number will lead to the worst-case response time of a message
request in master k.

Definition 4.7 – Master’s Logical Ring Aggregate Jitter – We denote Jay = Jry – Jvy as
the logical ring aggregate jitter of master y.

Definition 4.8 – Minimum Number of Unused Tokens During a Busy Period – We
define the minimum number of unused tokens by a master y (Uty) during the busy period
in master k, as the minimum number of times that a master y receives the token and does
not have any pending requests, during that period.

Theorem 4.4 The minimum number of unused tokens by a master y within a busy period
of master k, is Uty = nsy – min{nsk, nsy + Σi=1,..,nsy (Rk + Jay) / Ti

y}.

Proof: By Theorem 4.3, the maximum number of eligible requests of master y is
nsy + Σi=1,..,nsy (Rk + Jry) / Ti

y. From these requests, only those which arrive within the
master k processing window, will be able to be processed within the busy period.
Therefore, the evaluation interval for the asap pattern is Rk + Jry – Jvy = Rk + Jay.

In a master k, the number of token cycles during the busy period is, by Definition 4.1,
equal to nsk. Thus, the actual token utilisation by a master y, during the busy period of
master k, is min{nsk, nsy + Σi=1,..,nsy (Rk + Jay) / Ti

y}.
As a consequence, the number of times master y does not use the token during the

busy period of master k is:

()















 +
+−= ∑

=

yns

i
y

i

yk
ykky

T

JaR
nsnsnsUt

1

 ,min (4.16)

o

Theorem 4.5 The minimum number of unused tokens during a busy period of master k,
is

∑
=

=
n

y

yUtUt
1

(4.17)

Real-Time Communications with P-NET Networks: Contributions to the State-of-the-Art 67

Proof: Since y = k, Uty = 0, the proof for this theorem is obvious.
o

4.4.4. Analysis of the Worst-Case Response Time

Considering that the token is fully utilised (Section 4.3), the worst-case response time of
a message request in a master k (equation (4.5)) is Rk = nsk × V.

It is now possible to update equation (4.5) to incorporate the actual token utilisation,
considering that, for each unused token we must subtract the corresponding value of the
token holding time (H), and add a σ corresponding to the token passing time for the case
of an unused token:

()σ−×−×= HUtVnsR kk (4.18)

Using the results obtained along this sub-section, the worst-case response time of a
message request in a master k is:

()σ−×





































 +
+−−×= ∑ ∑

= =

H
T

JaR
nsnsnsVnsR

n

y

ns

i
y

i

yk
ykkkk

y

1 1

 ,min (4.19)

As expected, this equation embodies a mutual dependence, since Rk appears in both
sides of the equation. In fact, all the previous analysis underlay this mutual dependence,
since in order to evaluate Rk, Ut must be found, and vice-versa.

We can use the same approach as described in sub-section 2.4.3, and form the
following recurrence relationship:

()σ−×





































 +
+−−×= ∑ ∑

= =

+ H
T

JaW
nsnsnsVnsW

n

y

ns

i
y

i

ym
ykkkm

y

1 1

1 ,min (4.20)

The set of values {W0, W1, W2, …, Wm, …} is monotonically non decreasing, since as
W evolves, less unused tokens are being considered. Starting with W0 = 0, when
Wm = Wm+1, the solution for equation (4.19) has been found.

4.4.5. Pre-Run-Time Schedulability Condition

For obvious reasons, inequality (4.7) holds for this analysis considering the actual token
utilisation, and thus, a pre-run-time schedulability condition is:

() ki
kk

i HUtVnsD , , ∀−×−×≥ σ (4.21)

Note that inequality (4.21) constrains Di
k to be larger than a value that is proportional

the number of message streams in master k. This aspect may be very restrictive for
masters dealing with a large number of remote I/O points. In Chapter 7, we will present
some solutions to overcome this problem, which is due to the FCFS characteristics of the
P-NET outgoing queue.

68 Real-Time Communications with P-NET Networks: Contributions to the State-of-the-Art

4.4.6. Pre-Run-Time Schedulability Tool

As for the case of the response time analysis in a single processor environment, the
communication response time analysis imposes that each message stream must be
individually tested. However, as the proposed schedulability condition is to be done prior
to run time, no major cost exists, provided that a software analysis tool is available. In
Appendix A.1, we detail an algorithm which may be the basis for the implementation of
such a software tool.

4.4.7. Numerical Example

Assume the following message stream set:

Table 4.2: Another Message Stream Set Example

Master (C, T, D)
1 ns1 = 3 (CM, 14, 14) (CM, 20, 20) (CM, 40, 40)
2 ns2 = 1 (CM, 12, 12)
3 ns3 = 3 (CM, 14, 14) (CM, 20, 20) (CM, 20, 20)
4 ns4 = 2 (CM, 14, 14) (CM, 20, 20)

Applying equation (4.19) by using the recurrence relationship given by equation
(4.20), we will be able to find the worst-case response time for master 1.

As the number of streams in master 3 is equal to the number of streams in master 1,
we need only to focus on the unused tokens of masters 2 and 4.

Therefore, the network aggregate release jitter for master 2 will be:
()() σσσ ×−−×=−×++×−×=−×= 221333 22

MM CHHCHJvHJa
and the network aggregate release jitter for master 4 will be:

() τρσ +=−=++−=−×= MM CHCHJvHJa 01 24

For W0 = 0, then, W1 is,
() () () σσσ ×+×=−×+−××=−×−××= 39124343 HHHHnutH

For W1 = 9×H+ σ, W2 is:
() () σσ ×+×=−×+−××= 391243 HHH

The iterations stop at this point, as W2 = W1. This corresponds to the time-line
illustrated in Fig 4.4.

If we consider that the longest message cycle is composed by 67 P-NET frame bytes
(request + response), then this corresponds to 67 × 11= 670 bits. Including 30 bp, for the
worst-case reaction time of a slave, then CM = 767 / 76800 =10 ms.

Therefore, H = (7 + 767+ 40) / 76800 = 10.6ms.
This means that the worst-case response time for a message request in master 1 is:

9 ×10.6 + 3 × (10 / 76800) = 95.79ms.

Real-Time Communications with P-NET Networks: Contributions to the State-of-the-Art 69

Master 1

Master 2

Master 3

1 2 3 4 5 6 7 8 9 units of H

Q1
1

Master 4

R1
1

10 11

�

� �

0-1

�

�

τ

Fig. 4.4 Busy Period of Master 1 within the Scenario of Table 4.2

4.4.8. Considering the Actual Transmission Time for Message Cycles

In the previous analysis, the message cycles’ length was considered, for simplification,
to be constant (Ci

k = CM, ∀i,k). The results can now be updated, considering the actual
message cycles’ length, or at least, the longest (smallest) message cycle in each master.

Considering Mk = maxi=1,..,nsk{Ci
k} as the longest message cycle in a master k and that

the token is fully utilised then, the worst-case queuing delay of a message request in
master k (updating (4.6)) is (note that now Qi

k = Qk, ∀i is not valid any more):

() k
i

n

l

lkk
i CMnsQ −++×= ∑

=1

τρ (4.22)

The logical ring request jitter (4.10), can be updated to:

()∑
−+=

++=
11 ..., ,, kyyi

iy MJr τρ (4.23)

The logical ring visit jitter (4.15), can be updated to:

{ } ()∑∑
≥

=
=

= −+−

−++=
kl

k

nsns
kyl

lk
i

nsi
kyl

y LCJv
11 ,..,

,..,1
,..,

min σσ (4.24)

where Ll is defined as the smallest message cycle in a master l: Ll = ρ + mini=1,..,nsl{Ci
l} +

τ.
The worst-case response time of a message request in a master k (4.19) can be

updated to (we need now to consider the shortest holding time in each master):

() ()∑ ∑∑
= == 











−×




































 +
+−−−++×=

n

y

y
ns

j
y

j

yk
iykkk

i

n

l

lkk
i L

T

JaR
nsnsnsCMnsR

y

1 11

 ,min στρ (4.25)

70 Real-Time Communications with P-NET Networks: Contributions to the State-of-the-Art

Finally, as Ri
k may be different from stream to stream in each master, the pre-run-time

schedulability condition (4.7) must be updated to:

ki
k
i

k
i RD , , ∀≥ (4.26)

4.5. Extending the Analysis to Multi-Hop P-NET Networks

P-NET hopping devices (labelled as gateways in the standard, but termed hopping
devices in this work) allow the interconnection of different network segments, each one
with independent logical virtual token-passing schemes. In P-NET, the function of a
gateway is to isolate two or more bus segments, and to automatically route a frame
between the connected buses. In our opinion, and according to ISO-OSI definitions
(Perleman et al., 1988), the P-NET gateways combine techniques used in bridges and
routers, and thus the term “hopping devices” is preferred.

The P-NET multi-segment feature allows for routing through up to ten hopping
devices. These multi-hopping capabilities are based on simple rules for address
conversion inside the hopping devices. P-NET supports four types of addresses: simple,
complex, extended and response address types (see Section 3.3.1). The complex address
can contain up to 24 bytes. P-NET uses the complex addressing scheme to route frames
through hopping devices. This complex address explicitly addresses each intermediate
device.

In P-NET, hopping devices isolate traffic between P-NET segments. If the different
segments group inter-related masters and slaves, the overall real-time capabilities are
improved, as the virtual token cycle time in each single segment becomes smaller.
However, if a particular stream relates a master and a slave in two distinct segments, that
stream will have a higher response time. We denote message streams that are relayed
through at least one hopping device as multi-hop message streams. In this section, an
analysis for deriving the upper bound of the response time for multi-hop message
streams is provided.

4.5.1. Motivation

Suppose a P-NET network composed of four masters (M1, M2, M3, M4) and four slaves
(e1, e2, e3, e4), all connected to the same network segment. Each one of the masters
deals with two message streams, as shown in Fig. 4.5.

M1 e2 M2e1 M3 e4 M4e3

S2
1

S1
1

S1
2

S2
2

S2
3

S1
3

S1
4

S2
4

Fig. 4.5 A P-NET network example

Real-Time Communications with P-NET Networks: Contributions to the State-of-the-Art 71

Considering that the maximum token holding time in each station is H = 250×bp (this
means that the longest message cycles for each master is: max{Ck}=203×bp,∀k), then the
pre-run-time schedulability condition (4.7) is: D ≥ 2×4×250×bp=2000× 1/76800 = 26ms.

The example in Fig. 4.5 illustrates, on a reduced scale, the advantages of
segmentation. In fact, the whole network could be composed of two segments, grouping
M1, M2, e1 and e2 in one segment, and M3, M4, e3 and e4 in another segment
(Fig. 4.6). For simplification, any of the existing masters (M1, M2, M3 or M4) is used to
implement the multi-hopping features.

M1 e2 M2e1 M3 e4 M4e3

S2
1

S1
1

S1
2

S2
2

S2
3

S1
3

S1
4

S2
4

M5a M5b

Fig. 4.6 Using one hopping device

As none of the message streams is to be relayed through the hopping device, the pre-
run-time schedulability condition becomes: D ≥ 2 × 3 × 250 × bp = 1500 × 1/76800 =
19.5ms.

However, in more complex systems, it is unlikely that all the message streams can be
restricted to their own segments. As real implementations of slave nodes group several
I/O points in racks, it is possible that specific information flows will demand inter-
operation between masters and slaves in different network segments.

4.5.2. Sequence of Transactions in Multi-Hop Message Streams

Apart from having a longer address field, multi-hop message streams will have
additional queuing delays. Fig. 4.7 illustrates the message sequence corresponding to
master/slave transactions through two hopping devices. It is important to notice that each
hopping device embodies two masters (and in the general case, as many masters as the
number of segments that it interconnects).

If master M1 (in network segment 1) requires the reading of a sensor associated with
slave e3 (in network segment 3), hopping devices M5 and M4 are used to relay the
message stream. The sequence of message transactions is as follows.

1. When M1 gains access to the network (segment 1), and the message is the first
one in the outgoing queue, M1 sends a request and M5a responds immediately
with an “answer due later”.

2. When M5b gains access to segment 2, and the message is the first one in the
outgoing queue, M5b sends the request and M4a responds immediately with an
“answer due later”.

3. When M4b gains access to segment 3, and the message is the first one in the
outgoing queue, M4b sends the request and slave e3 responds immediately with
the requested information.

72 Real-Time Communications with P-NET Networks: Contributions to the State-of-the-Art

4. When M4a gains access to segment 2, and the message containing the required
information is the first one in the outgoing queue, M4a sends a request without a
response to M5b.

5. When M5a gains access to segment 1, and the message is the first one in the
outgoing queue, M5a sends a request (containing the required information)
without a response to M1.

So, in general, if h represents the number of intermediate hopping devices through
which a message stream is to be relayed, there will be 2 × h + 1 queuing delays to be
considered.

M1 M2e1 M3 M4aE4

¬

M5a M3 e3

­ ®

Segment 1 Segment 2 Segment 3

° ¯

M5b M4b

Fig. 4.7 An example of a multi-hop transaction

4.5.3. Pre-run-time Schedulability Condition for Multi-hop Message Streams

Each P-NET segment has its own virtual token-rotation procedure. Thus, the maximum
virtual token cycle time in a segment ξ can be defined as:

∑
∈
=

=
n

i
i

HV

ξ

ξ
1

(4.27)

The upper bound for the response time of a message from stream Si
k can be derived

as follows. If the message stream is to be relayed through 0 hopping devices, then Ri
k is:

()kVnsR kk
i ×= (4.28)

where V(k) corresponds to the upper bound for the virtual token rotation time of the
network segment to which station k belongs.

If the message stream is to be relayed through 1 hopping device, then Ri
k is:

() () () φ×+×+×+= 22
21 rVnskVnsnsR rrkk

i
(4.29)

where r1 is the hopping master in the same segment as master k, and r2 is the hopping
master in the other segment. The symbol φ stands for the time needed by the hopping
device to transfer frames between communication stacks.

Real-Time Communications with P-NET Networks: Contributions to the State-of-the-Art 73

If the message stream is to be relayed through h hopping devices (with h ≥ 2), then
Ri

k is:

() () () ()[] ()

φ××+

+×+×++×+= ×

−

=
×

×+××∑
h

rVnsrVnsnskVnsnsR h
r

h

j
j

rrrkk
i

hjj

2

2

1

1
2

21221

(4.30)

where r1 is the hopping master in the same segment as master k and r2, r3, …, r2×h are the
hopping masters which relay the message from master k to its destination. For example,
for the scenario shown in Fig. 4.7, r1 = M5a, r2 = M5b, r3 = M4a and r4 = M4b. As a
consequence, in equation (4.30) ri (i = 1, …, 2 × h) identifies the masters in hopping
devices according to the physical sequence from master k to the addressed slave devices
and not according to the sequence of transactions.

As for the non-segmented case (equations (4.28) or (4.5)), the same sufficient P-NET
pre-run-time schedulability condition (inequality (4.7) – Di

k ≥ Ri
k) can be used to

guarantee that real-time multi-hop message streams are processed before their deadlines.
Depending on the number of hopping devices a message is relayed through, equation
(4.28), (4.29) or (4.30) is used to evaluate the upper bound of the message response time.

4.5.4. Numerical Results

In this section, a numerical example is provided, which exemplifies what a user of
P-NET can obtain from the proposed pre-run-time schedulability conditions. Although a
limited number of message streams per node is assumed, some useful information can be
obtained from this example:

1. how the maximum upper bound of each message-stream's response time, in both
a non-segmented and segmented P-NET network can be evaluated;

2. how a P-NET network can be segmented in order to reduce the maximum upper
bound for the message response time.

In this specific example, a comparison is also made between the response time's
upper bound in a non-segmented and a segmented P-NET network, clearly
demonstrating the impact of network segmentation.

Assume that a DCCS should be implemented using eight master networks. Also
assume that all message cycle lengths are bounded to 200×bp (2.6ms at 76800bps). The
number of streams related to each master is shown in Table 4.3 (a total of twenty-eight
message streams, distributed by eight masters).

Table 4.3: Number of Message Streams Related to Each Master

Master 1 2 3 4 5 6 7 8
nsk 3 4 3 2 1 4 5 6
max{Cj

k} 200bp 200bp 200bp 200bp 200bp 200bp 200bp 200bp

In this case, the upper bound for the virtual token cycle is V = 8 × 247 × bp = 25.7ms.
Therefore, using equation (4.28), the upper bound for the message response times is as
shown in Table 4.4 (all streams in the same master will have the same upper bound for
their response times). Note that the generation and delivery delays at the application

74 Real-Time Communications with P-NET Networks: Contributions to the State-of-the-Art

process level are ignored, and must be evaluated at the level of the application process
software. However, ignoring such delays is not of major importance, and as P-NET
operates at 76800bps they will be usually much smaller than the transmission and
queuing delays.

Table 4.4: Upper Bound for the Message Response Times

Master 1 2 3 4 5 6 7 8
Ri

k (ms) 77.1 102.1 77.1 51.4 25.7 102.8 128.5 154.2

If, for example, the application imposes deadlines smaller than 102.1ms for the
message streams of master 2, or less than 25.7ms for the message streams of master 5,
then the message stream set would not be schedulable.

Suppose that by re-organising the network into three network segments, as shown in
Fig. 4.8, only two message streams are multi-hop streams: S1

1 and S2
8. Then, tighter

deadlines can be supported for all but those two message streams.

1 slave

Segment 1 Segment 2 Segment 3

3… 2
master

4
mastersmaster

5
master

slave … 6 7
masters

8
master

slave …

HD 1 HD 2

Fig. 4.8 Proposed segmentation of the network

Assume that streams S1
1 and S2

8 correspond to remote accesses, to slaves in segment
2 and segment 8, respectively. Table 4.5 illustrates the routing sequence for these
streams.

Table 4.5: Routing Sequence (Master IDs) for the Multi-Hop Streams

h r1 r2 r3 r4

S1
1 1 3 4 - -

S2
8 2 7 6 4 3

These two streams will impose two additional message streams (resulting from
messages being relayed through the hopping device) in masters 3 and 4, and one
additional message stream in masters 6 and 7. Table 4.6 reflects the aggregate number of
message streams per master station.

Table 4.6: Aggregate number of message streams related to each master

Master 1 2 3 4 5 6 7 8
nsk 3 4 5 4 1 5 6 6

If, for simplification, the components φ in equations (4.29) and (4.30) are ignored, as
well as the additional byte addresses in the multi-hop streams (thus maintaining 200 × bp
as the value for the longest message cycle in each master), then the results, shown in
Table 4.7, are obtained.

Real-Time Communications with P-NET Networks: Contributions to the State-of-the-Art 75

Table 4.7: Upper Bound for the Virtual Token Cycle in Each Segment (Eq. (4.27))

Segment 1 2 3
V (ms) 9.65 9.65 6.43

By implementing the proposed network segmentation, an important reduction of
worst-case response times can be achieved, as illustrated in Tables 4.8 and 4.9.

Table 4.8: Upper Bound for the Response Times (Single-Segment Streams Eq. (4.28))

Master 1 2 3 4 5 6 7 8
R*i

k (ms) 28.9 38.6 48.2 38.6 9.6 48.2 38.6 38.6

Table 4.9: Response Time Reduction as Compared to Table 4.4

Master 1 2 3 4 5 6 7 8
R*i

k/Ri
k 36.9% 37.5% 62.6% 75.1% 37.5% 46.9% 30.0% 24.5%

Obviously, for the multi-hop message streams S1
1 and S2

8 the upper bounds for their
response times increase, as compared to the figures given in Table 4.6 (77.1ms and
154.2ms, respectively).

The values are as follows. For R1
1 equation (4.29) is used and Table 4.6 gives the

number of streams for the masters. Its value is: R1
1 = (ns1 + ns3) × V(1) + ns4 × V(4) =

= (3+5) × 9.65 + 4 × 9.65 = 115.72ms.
For R2

8 equation (4.30) is used and Table 4.6 gives the number of streams for the
masters. Its value is: R2

8 = (ns8 + ns7) × V(8) + (ns6 + ns4) × V(6) + ns3 × V(3) = 12 ×
6.43 + 9 × 9.65 + 5 × 9.65 = 212.36ms.

The upper bound for the response time of message stream S1
1 (for which h = 1)

becomes 150% higher, whereas message stream S2
8 (for which h = 2) becomes 137.7%

higher.
The impact of network segmentation on the response time of both single-segment and

multi-hop message streams is therefore clear.

4.5.5. Considering the Actual Token Utilisation

The pre-run-time schedulability conditions presented in Section 4.5.3 may now be
updated to consider the actual token utilisation (see Section 4.4).

Consider that R*
i
k denotes the worst-case response time for a message stream Si

k,
considering the actual token utilisation. R*

i
k is defined as follows:

φ××+







= ∑

×

=

hRR
h

z

r
i

k
i

z 2**
2

0

(4.31)

where r0, r1, ..., r2×h. In Section 4.5.3, we used the notation ri (i ∈ ℵ) to denote the
master stations which relay message stream Si

k. In this section, ri is extended such that r0

denotes master k itself (thus ri: i ∈ ℵ0).
In equation (4.31), R*

i
rz denotes the worst-case response time of the individual

transaction concerning message stream Si
k in master rz, and is defined as follows (see

equation (4.19) for an analogy):

76 Real-Time Communications with P-NET Networks: Contributions to the State-of-the-Art

() ()σ

ξ

−×





























































 +
+−−×= ∑ ∑

∈
=

 →←
=

H
T

JaR
nsnsnsrVnsR

n

y
y

ns

SS
j

y
j

yr
iyrr

z
rr

i

zr

y

k
i

y
j

z

zzzz

1 1
 torelatesnot

*
 ,min* (4.32)

In equation (4.32), y∈ξrz denotes all masters y belonging to the same network segment
as master rz. Also in the same equation, (Sj

y not relates to Si
k) denotes all streams in

master y except an eventual extrinsic stream related to the relaying of stream Si
k.

Jay = Jry – Jvy is the logical ring aggregate jitter of master y as related to master ri, as
defined in Section 4.4.3. Equation (4.10), for the logical ring request jitter, and equation
(4.15), for the logical ring visit jitter, must be restricted to the considered segment. Thus,
equation (4.10) must be updated to:

∑
∈

= −+

=

zr

z
l

ryyl

y HJr

ξ
11 ,...,,

(4.33)

and equation (4.15) must be updated to:

()∑∑
≥

∈
=

∈
= −+−+

−++=

zry
zr

l

zr

z

nsns

l
ryl

M

l
ryyl

y HCJv

*

1111 ,...,,...,,
ξξ

σσ
(4.34)

In equation (4.34), nsy
* is defined as follows:







−
=

k
i

y

k
i

y
y

Syns

Syns
ns

relay toused is if ,1

relay not do if ,* (4.35)

The consideration of the actual token utilisation for multi-hop message streams is now
compared to the previous analysis in the following example. Consider again the same
multi-hop example (Fig. 4.8), where the timing characteristics of the message streams
are as shown in Table 4.10. The only streams that are multi-hop are streams S1

1 and S2
8,

with a relaying table as shown in Table 4.5.
The worst-case response times for the single segmented streams, considering the

actual token utilisation are as shown in Table 4.10. We have used a software tool based
on the algorithm given in Appendix A.1. Therefore, we have excluded the eventual
extrinsic streams related with the relaying of stream Si

k, and also the algorithm for the
evaluation of the visit jitter was based on equation (4.15) and not on equation (4.34).

Table 4.10: Characterisation of the Message Stream Set

Master 1 2 3 4 5 6 7 8
Nsk 3 4 3 2 1 4 5 6
Max{Cj

k} 200bp 200bp 200bp 200bp 200bp 200bp 200bp 200bp
Ti

k (ms) 300 200 500 200 100 500 500 500

Table 4.11: Upper Bound for the Response Times (Single-Segment Streams Eq. (4.5))

Master 1 2 3 4 5 6 7 8
R♣♣

i
k (ms) 28.9 35.5 38.9 29.3 9.6 32.8 38.6 38.6

Real-Time Communications with P-NET Networks: Contributions to the State-of-the-Art 77

For stream S1
1, R*1

1 = 28.9 + 29.3 + 38.9 = 97.1ms. For stream S2
8, R*2

8 = 38.6 + 32.8
+ 38.9 + 29.3 + 38.6 = 178.2ms.

The results shown in Tables 4.2, 4.8 and 4.11, for a non-segmented network, a
segmented network (as shown in Fig. 4.6) and a segmented network considering the
actual token utilisation, respectively, are compared in the graph of Fig. 4.9.

0

20

40

60

80

100

120

140

160

R
es

p
o

n
se

 T
im

e
(m

s)

1 2 3 4 5 6 7 8

Master

non-segmented network

segmented network

segmented network
considering token
utilisation

Fig. 4.9 This figure compares the worst-case response times for the example, resulting from the
different analysis drawn in this chapter

4.6. Summary

P-NET networks aim at the interconnection of field devices such as sensors, actuators
and small controllers. Therefore, they may be a privileged basis upon which Distributed
Computer-Controlled Systems (DCCS) are built. DCCS impose strict timeliness
requirements to the communication network; that is, they impose that traffic must be sent
and received within a bounded interval, otherwise a timing fault is said to occur.

P-NET is a multi-master fieldbus standard based on a virtual token passing scheme. In
P-NET each master is allowed to transmit only one message cycle per token visit. This
means that, in the worst-case, the communication response time of a message can be
derived considering that the token is fully utilised by all stations. Based on this
consideration, in Section 4.3, we introduce the concept of worst-case token rotation time,
and we provide a simple analytical formulation for expressing the response time of a
P-NET message (equation (4.5)). This equation allows the implementation of a simple
feasibility test (equation (4.7)) for P-NET message streams.

However, such analysis was proved to be quite pessimistic. Therefore, in Section 4.4,
we propose a more sophisticated P-NET model, which considers the actual token
utilisation by the different network masters. The major contribution of this model is to
provide a less pessimistic, and thus more accurate, analysis for the evaluation of the
worst-case communication response time of P-NET messages (equation (4.18)). This
equation allows for the implementation of a more accurate feasibility test (equation
(4.21)) for P-NET message streams.

78 Real-Time Communications with P-NET Networks: Contributions to the State-of-the-Art

Finally, in Section 4.5 we extended the analysis performed in Sections 4.3 and 4.4 to
the case of multi-hop P-NET networks. We showed how, by using P-NET hopping
devices, a significant reduction on response times could be achieved for most of the
message transactions. In such way, tighter message deadlines can be supported.
However, we stress that the system designer must clearly understand that such
reductions are not possible for inter-segment message transactions. Therefore, care
should be taken to group masters and slaves involved in message transactions with
stringent deadlines in the same network segment.

4.7. References

Liu, C. and Layland, J. (1973). Scheduling Algorithms for Multiprograming in Hard-Real-Time
Environment. In Journal of the ACM, Vol. 20, No. 1, pp. 46-61.

Perleman, R., Harvey, A., and Varghese, G. (1988). Choosing the Appropriate ISO Layer for LAN
Interconnection. In IEEE Network, Vol. 2, No. 1, pp. 81-86.

Tovar, E. and Vasques, F. (1998a). A Communication Support for Real-Time Distributed
Computer Controlled Systems. In Proceedings of the IEE International Workshop on Discrete
Event Systems, pp.178-183. Published by IEE.

Tovar, E., Vasques, F. and Burns, A. (1998b). Supporting Real-Time Distributed Computer-
Controlled Systems with Multi-hop P-NET Networks. Polytechnic Institute of Porto,
Technical Report HURRAY-TR-9813, September 1998, to appear in Control Engineering
Practice, Pergamon Publishers.

Tovar, E., Vasques, F. and Burns, A. (1999). Communication Response Time in P-NET Networks:
Worst-Case Analysis Considering the Actual Token Utilisation. Department of Computer
Science, University of York, Technical Report YCS 312, January 1999, submitted for
publication to the Journal of Real-Time Systems, Kluwer Academic Publishers.

Chapter 5

Real-Time Communications with PROFIBUS
Networks: Contributions to the State-of-the-Art

In this chapter we develop a methodology for the worst-case response time
analysis of PROFIBUS messages. This chapter is largely drawn from the following
published work: "Real-Time Fieldbus Communications Using PROFIBUS
Networks" (Tovar and Vasques, 1998a); "Guaranteeing Real-Time Message
Deadlines in PROFIBUS Networks" (Tovar and Vasques, 1998b); "Cycle Time
Properties of the PROFIBUS Timed Token Protocol" (Tovar and Vasques, 1998c)
and "Setting Target Rotation Time in PROFIBUS Based Real-Time Distributed
Applications" (Tovar and Vasques, 1998d).

5.1. Preliminary Protocol Analysis

The PROFIBUS medium access control (MAC) protocol is based on a token passing
procedure, used by master stations to grant bus access to each other, and a master-slave
procedure used by master stations to communicate with slave stations. Please refer to
Section 3.4.1 for a detailed description of the main characteristics of this protocol.

The remainder of this chapter is organised as follows. In Section 5.2 we introduce the
network and message models, which will be used throughout the rest of the chapter.
Considering a profile where the low-priority traffic is unconstrained, the worst-case
response time of PROFIBUS messages depends on the accurate definition of the
maximum token cycle time. This response time analysis is outlined in Section 5.3, and,
due to its relevance, the token cycle time properties are assessed in Section 5.4. Finally,
in Section 5.5, a constrained low-priority traffic profile is considered, where, by
controlling the number of low-priority message transfers, all pending real-time traffic is
transmitted at each token arrival. A worst-case response time analysis is therefore
provided for this profile and some implementation issues are also discussed.

5.2. Network and Message Models

Consider a bus topology containing n master stations. A special frame (the token)
circulates around the logical ring formed by the masters. We denote τ as the logical ring
latency (token walk time, including node latency delay, media propagation delay, etc.).

Message cycles generated in the system at run-time may be placed in a high-priority
outgoing queue (real-time messages) or in a low-priority outgoing queue (non real-time

80 Real-Time Communications with PROFIBUS Networks: Contributions to the State-of-the-Art

messages). We denote the ith (i = 1, 2, … nhk) high-priority message stream associated to
a master k as Shi

k, which is characterised as follows:

),,(k
i

k
i

k
i

k
i DhThChSh = (5.1)

A message stream is a temporal sequence of message cycles concerning, for instance,
the remote reading of a specific process variable. Chi

k is the longest message cycle
duration of stream Shi

k. This duration includes the time needed to transmit the request
frame and completely receive the related response, and also the time needed to perform
the allowed number of message retries. Thi

k is the periodicity of stream Shi
k requests. In

order to have a subsequent timing analysis independent from the model of the tasks at
the application process level, we assume that this periodicity is the minimum interval
between two arrivals of Shi

k requests to the outgoing queue. Dhi
k is the relative deadline

of the message cycle; that is, the maximum admissible time interval between the instant
when the message request is placed in the outgoing queue and the instant when the
related response is completely received at the master's incoming queue. Finally, nhk

denotes the number of high-priority message streams associated with a master k.
We assume only one low-priority message stream per master k, which gathers all the

non real-time traffic issued by that master (see Section 3.4.1). Thus, a low-priority
message stream Slk is characterised as:

),(kkk nlpClSl = (5.2)

where Clk is the maximum amount of time required to perform a low-priority message
cycle in master k. nlpk is the maximum number of low-priority message cycles that a
master k is allowed to perform at each token arrival, which is a meaningful parameter to
constrain the low-priority traffic.

5.3. Analysis for the Worst-Case Response Time

In the PROFIBUS MAC protocol, and as long as there are pending high-priority
messages, a master station is guaranteed to transmit, at least, one high-priority message
per received token (even if there is not enough token holding time left). Assuming the
worst-case scenario (token always arriving late), if there are m pending high-priority
messages, it will take m token visits to execute all those high-priority message cycles.
The worst-case is when the message with the shortest deadline becomes the last one in
the FCFS outgoing queue. Fig. 5.1 illustrates this scenario.

In this scenario, when master 1 sends the token to master 2, messages from all the nh1

streams arrive at the FCFS outgoing queue in the following order: Sh4
1, Sh3

1, Sh2
1, Sh1

1.
Considering that the message deadlines are as follows: Dh4

1>Dh3
1>Dh2

1 >Dh1
1, the most

stringent message (Sh1
1) will wait until the fourth token visit to be transmitted.

Real-Time Communications with PROFIBUS Networks: Contributions to the State-of-the-Art 81

Ch4
1

Sh4
1, Sh3

1, Sh2
1, Sh1

1

TTRTTR - τ

Master 1

Master 2

Master 3

Master 4

Ch3
1 Ch2

1 Ch1
1

Maximum Queuing Delay for Sh1
1

Shortest Deadline

Fig. 5.1 Example of the maximum queuing delay for a PROFIBUS message

For the queuing delay analysis, it is important to note that the maximum number of
pending messages will be nhk, corresponding to one message per each Shi

k stream.
Indeed, if at any time there are two pending message requests from the same stream,
then a deadline for that message stream was missed.

We denote the worst-case response time of a stream Shi
k as Ri

k. This time is measured
starting at the instant when the request is placed in the outgoing queue, until the instant
when the response is completely received at the incoming queue. Basically, this time
interval is made up of the two following components.

1. The time spent by the request in the outgoing queue, until gaining access to the
bus (queuing delay);

2. The time needed to process the message cycle.
Thus,

k
i

k
i

k
i ChQR += (5.2)

where Qi
k is the worst-case queuing delay of a message request from Shi

k.
It is clear that, assuming that message deadlines are not missed (thus the maximum

number of high-priority pending messages is nhk), the upper bound for the message
queuing delay in a master k is

k
cycle

kk TnhQ ×= (5.3)

where Tk
cycle is the upper bound for the token inter-arrival time at a station k, hence the

upper bound for the real token rotation time (Tk
RR). Note that, under our assumptions, the

queuing delay for a message request in one station is independent of the message stream
(Qi

k = Qk, ∀i=1,. .., nhk).
Combining equations (5.2) and (5.3), the worst-case response time of a PROFIBUS

high-priority message is:

82 Real-Time Communications with PROFIBUS Networks: Contributions to the State-of-the-Art

k
i

k
cycle

kk
i ChTnhR +×= (5.4)

Therefore, a pre-run-time schedulability condition for the high-priority message stream
set is:

k
i

k
cycle

kk
i ChTnhDh +×≥ (5.5)

5.4. PROFIBUS Token Cycle Time Analysis

From the proposed pre-run-time schedulability condition (5.5), it follows that an
accurate evaluation of the Tk

cycle parameter is of paramount importance for the response
time analysis in PROFIBUS networks. Therefore, such evaluation is the main focus of
this section.

5.4.1. Analysis of the PROFIBUS Token Lateness

In PROFIBUS networks, the real token rotation time (Tk
RR) is always smaller than TTR,

except when one or more masters in the logical ring induce the token to be late. Two
reasons justify a late token arrival at a master k.

1. As once a message cycle is started, it is always completed, even if the Tk
TH timer

has expired during its execution, a late token may be transmitted to the following
masters. We define this occurrence as an overrun of the Tk

TH overrun timer.
2. If a master receives a late token, it will still be able to transmit one high-priority

message, which may further increase the token lateness in the following masters.
This case is not considered to be an overrun of the Tk

TH timer.
In this section, we analyse causes and consequences of the token lateness. We will

introduce and prove three theorems. Theorem 5.1 states that the token is never late
unless an overrun of TTH occurs in one of the masters that form the logical token-passing
ring. Theorem 5.2 states that even if more than one master overruns its TTH in a token
cycle, only the last one (as seen from the master for which TRR is being measured) will
contribute to the token delay. Finally, Theorem 5.3 states that, in a specific situation, all
masters may contribute to the token lateness. These three theorems are the basis for the
evaluation of Tk

cycle (an upper bound for Tk
RR).

Theorem 5.1 In PROFIBUS networks, if the master holding the token releases it before
the expiration of Tk

TH, then, the following master in the logical ring will receive an early
token.

Proof: We denote Ak(l) as the time instant when the token arrives to the master k for its
lth visit, and Rk(l) as the time instant when master k releases the token in that lth visit.

If master k releases the token before the expiration of Tk
TH then, Rk(l)-Ak(l-1)<TTR.

Note that the real token rotation time is measured between token arrivals. Therefore, at
the time instant Ak(l), Tk

TH is given the value TTR-Tk
RR, a positive value (the token does

Real-Time Communications with PROFIBUS Networks: Contributions to the State-of-the-Art 83

not arrive late). If at the time instant Rk(l) master k releases the token and the Tk
TH timer

has not yet reached 0, then Rk(l)-Ak(l-1)<TTR. This equation is the starting assumption for
the remainder of the proof.

We denote the successor of master k as master k+1 (with k+1=(k+1) mod n). We want
to prove that if Rk(l)-Ak(l-1)<TTR is true, then Ak+1(l)-Ak+1(l-1)<TTR is also true; that is,
after releasing the token at time instant Rk(l), the successor of k will receive an early
token.

As Ak+1(l-1)=Rk(l-1)+τ/n (since τ denotes the total logical ring latency, k+1 will
receive the token τ/n time after the release of the token in k) and as Ak+1(l)=Rk(l)+τ/n
then, combining these two expressions, it follows that Ak+1(l)-Ak+1(l-1)=Rk(l)-Rk(l-1).

The starting assumption is that Rk(l)-Ak(l-1)<TTR. As Rk(l-1)=Ak(l–1)+τ/n, it is true
saying that Rk(l-1)>Ak(l-1). Therefore, if Rk(l)-Ak(l-1)<TTR then Rk(l)-Rk(l-1)<TTR.

As Ak+1(l)-Ak+1(l-1)=Rk(l)-Rk(l-1), if Rk(l)-Rk(l-1)<TTR then Ak+1(l)-Ak+1(l-1)<TTR is
true; that is, the successor of k receives an early token. o

Fig. 5.2 illustrates Theorem 5.1, where master 2 releases the token before the
expiration of T2

TH(l), and so master 3 receives an early token.

Master 1

Master 2

Master 3

TTR (referenced to M2)

Master 4

A2(l-1) R2(l-1)

A3(l-1) R3(l-1)

A2(l) R2(l)

A3(l)

τ/4

token arrival

token passing time

high-priority message cycles with TTH > 0

low-priority message cycles with TTH > 0

T2
TH (l)

Fig. 5.2 An illustrative example for Theorem 5.1

From Theorem 5.1, two corollaries result.

Corollary 5.1 In PROFIBUS, a master k receives an early token if master k-1 releases it
before the Tk-1

TH expiration, even if there was any overrun of a TTH in masters k-2, k-3, …

Corollary 5.2 In PROFIBUS, if none of the masters overrun their TTH, the token will
never be late.

Theorem 5.2 In a PROFIBUS network, in a specific token cycle, only one overrun of
TTH contributes to the token lateness.

84 Real-Time Communications with PROFIBUS Networks: Contributions to the State-of-the-Art

Proof: Assume that a token delay is induced in the lth token cycle. Hence, the token will
arrive late in the next token cycle. Consider the analysis focused on master k, and the
measurement of the time elapsed between Ak(l) and Ak(l+1), that is, between two
consecutive token arrivals to master k (Tk

RR).
If k≠1, then the masters that may induce a delay in the token are, in sequence of

token holding, the master k itself and all other masters up to master n, in the lth token
rotation, and master 1 and all masters up to master k-1 in the (l+1)th token rotation. If
k=1, then the masters that may induce a delay in the token are, in sequence of token
holding, the master k itself and all other masters up to master n, all in the lth token
rotation.

For simplification of this proof, and without loss of generality, we assume that k=1.
In this case, the last master, before the (l+1)th visit of the token to master 1, which may
produce an overrun of the TTH, is master n, hence an overrun in Tn

TH(l).
If in the lth visit to master n an overrun of Tn

TH occurs, then An(l)-An(l-1)≤ TTR; that is,
the token arrived early to master n. If we denote βn(l) as the time instant when Tn

TH

expires during the lth visit to master n, then, as An(l)>An(l-1), it follows that
βn(l)-Ak(l)≤TTR, no matter if other overruns have occurred in the lth rotation of the token
in any of the predecessors of master n. Thus, only one overrun may contribute to the
token lateness. o

Fig. 3 illustrates Theorem 2, where n is set to 4 and k is set to 1. In this illustrative
example, two overruns occur in the lth token rotation, in master 1 and in master 4. Only
the last one before A1(l+1), the one that took place in master 4, contributes to the
lateness of the token arriving to master 1 at A1(l+1).

Master 1

Master 2

Master 3

TTR (referenced to M1)

Master 4

A2(l-1)

τ/4

≤ TTR (referenced to M4)

A4(l-1) A4(l)

A1(l) A1(l+1)

A2(l)

β4(l)

A1(l-1)

TTR (referenced to M4)

token arrival

token passing time

high-priority message cycles with TTH > 0

low-priority message cycles with TTH > 0

message cycles with TTH < 0

high-priority message cycle with a late token

Fig. 5.3 An illustrative example for Theorem 5.2

Theorem 5.3 If a PROFIBUS master k holds the token for an interval greater than TTR-τ,
all the following masters up to master k-1 will receive a late token.

Real-Time Communications with PROFIBUS Networks: Contributions to the State-of-the-Art 85

Proof: Due to the token-passing time and other network latencies, it follows that
Ak(l)-Ak+1(l-1)≥((n-1)/n)×τ; that is, the difference between the token arrival to a master k
and the token arrival to its successor in the previous token cycle is at least ((n-1)/n)×τ
(corresponding to n-1 token-passing times).

Ak(l)-Ak+1(l-1)≥((n-1)/n)×τ can be re-written as Ak+1(l-1)≤Ak(l)-((n-1)/n)×τ. As the
master k holds the token for an interval greater than TTR-τ, then Rk(l)>Ak(l)+TTR-τ.

It is also evident that the arrival of the token to master k+1 occurs at Ak+1(l)=Rk(l)+τ/n,
that is at the time the token is released in k added to the time to pass the token to k+1.

Thus, if we replace Rk(l) in the equation (Ak+1(l)=Rk(l)+τ/n) with the inequality
(Rk(l)>Ak(l)+TTR-τ), it follows that Ak+1(l)>Ak(l)+TTR-((n-1)/n)×τ. Hence, using this last
inequality and knowing that Ak(l)-Ak+1(l-1)≥((n-1)/n)×τ ⇔ Ak+1(l-1)≤Ak(l)-((n-1)/n)×τ, it
follows that Ak+1(l)-Ak+1(l-1)>Ak(l)+TTR- ((n-1)/n)×τ-Ak(l)+((n-1)/n)×τ=TTR.

Obviously this result extends to all the following masters which range from master k+2

up to master k-1. The starting assumption is that the token holding time in master k is
Rk(l)-Ak(l)>TTR-τ. As the token arrived in the other masters before Ak(l), and after its
release from master k at time instant Rk(l) it will arrive at the other masters after Rk(l),
the token rotation time as measured in the other masters will give, for all of them, a
value greater than TTR. o

Fig. 5.4 illustrates Theorem 5.3, where k is set to 1.

Master 1

Master 2

Master 3

TTR

Master 4

A2(l-1)

token lateness

R1(l) A1(l+1)

A2(l)

A1(l)

τ/4

A1(l-1)

token arrival

token passing time

high-priority message cycles with TTH > 0

low-priority message cycles with TTH > 0

message cycles with TTH < 0

high-priority message cycle with a late token

token holding time in M1 > TTR

T3
RR(l) (and also in M2 and M4) > TTR

⇓⇓

Fig. 5.4 An illustrative example for Theorem 5.3

86 Real-Time Communications with PROFIBUS Networks: Contributions to the State-of-the-Art

5.4.2. Evaluation of the Token Cycle Time

By using Theorem 5.3, we can define the token lateness in a master k (Tk
del) as the

maximum excess to TTR at the token arrival to the master k. The token cycle time is then
given by:

k
delTR

k
cycle TTT += (5.6)

Assuming, for simplification, that all the message cycles have the same duration
(represented by Cσ) then, the worst-case token lateness in a master k would result from
the simultaneous occurrence of the three following conditions.

1. The time interval during which the master k actually holds the token is greater
than TTR-τ.

2. The master k itself causes an overrun of Tk
TH, and this overrun starts with a

residual value of Tk
TH.

3. All the following masters (until the master k-1) transmit, each one, one high-
priority message cycle, having received a late token.

Observed these three conditions, in the next token cycle, Tk
RR reaches its upper

bound, which is Tk
cycle. In the case of equal length for all the message stream cycles,

Tk
del=n×Cσ, and thus:

kmasterTR
k

cycle CnTT , ∀×+= σ
(5.7)

This evaluation of the worst-case token cycle time improves the previous available
results from (Vasques, 1996; Vasques and Juanole, 1994) presented in equation 3.6. This
evaluation of Tk

cycle will now be improved to consider message cycles with different
lengths.

In the general case (message cycles with different duration), the worst-case token
lateness may result not from an overrun of the TTH in master k but from one occurring in
one of the following masters (k+1 until k-1).

Using Fig. 5.5 as an illustrative example, assume that master 1 does not overrun its
T1

TH (Fig. 5.5b). Then, master 2 may use its available token holding time and produce an
overrun of its T2

TH overrun timer. If this overrun is longer than the sum of the longest
overrun of T1

TH added to the longest Ch2
i (Fig. 5.5a), then this would lead to a higher

value for T1
del. Similarly, if the longest overrun of T3

TH is longer than the longest overrun
of T2

TH added to the longest Ch3
i, then this would lead to a higher value for T1

del.
Note that by Theorems 5.2 and 5.3, for the evaluation of Tk

del, we can only consider
one overrun in master j (with j ranging from master k to master k-1), and one high-
priority message cycle per each master whose address is between j and k-1.
Consequently, we conclude that the evaluation of Tk

cycle depends on which master
produces the worst-case overrun of its TTH and on its relative position within the logical
ring sequence of token-passing.

Real-Time Communications with PROFIBUS Networks: Contributions to the State-of-the-Art 87

Master 1

Master 2

Master 3

TTR

Master 4

A2(l-1)

token lateness

R1(l) A1(l+1)

A2(l)

A1(l)

τ/4

A1(l-1)

Master 1

Master 2

Master 3

TTR

Master 4

A2(l-1)

token lateness

R1(l) A1(l+1)

A2(l)

A1(l)

τ/4

A1(l-1)

a)

b)
TTR

Fig. 5.5 A comparison between two scenarios with overrunning of TTH

For the evaluation of Tk
del, we introduce the following parameters: Hk, Lk and Ak. Hk

is the longest high-priority message cycle that can be requested by a master k:

{ }k
i

nhi

k ChH
k,..,1

max
=

= (5.8)

Lk is the longest low-priority message cycle that can be requested by a master k:

{ }k
i

nli

k ClL
k,..,1

max
=

= (5.9)

Finally, Ak is the longest message cycle that can be requested by a master k
(including both low and high-priority message cycles):

{ }kkk LHA ,max= (5.10)

Using the analysis outlined in this section, we can thus define the maximum token
lateness in a PROFIBUS master k (Tk

del) as being:

88 Real-Time Communications with PROFIBUS Networks: Contributions to the State-of-the-Art









+= ∑
∈∈

2
1

max
φφ

i

ij

j

k
del HAT (5.11)

where φ1 is defined as being the following set of values:

{ }
{ }




>−
=

=
1 if ,1,...,1,,...,

1 if ,,...,
1 kknk

knk
φ (5.12)

and φ2 is defined as being the following set of values:

{ }
{ }




>−+
=+

=
1 if ,1,...,1 ,,...,1

1 if ,,...,1
2 kknj

knj
φ (5.13)

Consequently, the worst-case token cycle time in a PROFIBUS fieldbus network
may be defined as follows:









++= ∑
∈∈

2
1

max
φφ

i

ij

j
TR

k
cycle HATT (5.14)

In Appendix B.1 we give the pseudo code details of an algorithm used for evaluating
Tdel

k.

5.4.3. Setting the Target Token Rotation Time

Based on the evaluation of the token cycle time (equations (5.6) and (5.14)), the pre-run-
time schedulability condition (5.5) for the high-priority message stream set, can be
re-written as follows:

() k
iShstreamkmaster

k
i

k
delTR

kk
i ChTTnhDh

 ,
,∀++×≥ (5.15)

and, the following condition for setting the TTR parameter can be used:

k
iShstreamkmaster

k
delk

k
i

k
i

TR T
nh

ChDh
T

 ,
 ,0 ∀−

−
≤≤ (5.16)

Note that that inequality (5.15) constrains Di
k to be larger than a value which is

proportional to the number of high-priority message streams in master k. This may be
very restrictive for stations dealing with a large number of I/O points.

In Chapter 7, we will present some solutions to overcome this problem, which, like in
P-NET networks, results from the FCFS characteristics of the PROFIBUS outgoing
queues.

Real-Time Communications with PROFIBUS Networks: Contributions to the State-of-the-Art 89

5.4.4. Numerical Example

Consider a PROFIBUS network with 3 masters, each one with the following message
streams:

Table 5.1: A Numerical Example

Master 1 Master 2 Master 3
Ch1

1=8 ms Ch1
2=8 ms Ch1

3=8 ms
Ch2

1=6 ms Ch2
2=15 ms Ch2

3=18 ms
Ch3

1=7 ms - -
Cl1

1=10 ms Cl1
2=30 ms -

- Cl2
2=18 ms -

For this numerical example, the results for each Tk
del are (using equation 5.11 -

detailed in an algorithmic form in Appendix B.1):

Table 5.2: Tk
del Evaluation for the Numerical Example (case of TTR > τ)

Master 1 Master 2 Master 3
H1=8 ms H2 = 15 ms H3 = 18 ms
A1=10 ms A2 = 30 ms A3 = 18 ms

T1
del=A2+H3=48 ms T2

del=A2+H3+H1=56 ms T3
del=A3+H1+H2=41 ms

Consider that τ=1ms. If we assume that the minimum value for TTR should be
marginally greater than τ (otherwise low-priority traffic would not be transferred at all),
then inequality (5.16) can be re-written as:

k
iShstreamkmaster

k
delk

k
i

k
i

TR T
nh

ChDh
T

 ,
 , ∀−

−
≤≤τ (5.17)

Then, to evaluate the smaller value for each message's deadline we can use the
following inequality:

τ>−
− k

delk

k
i

k
i T
nh

ChDh (5.18)

which can be re-written as:

() k
i

kk
del

k
i ChnhTDh +×+> τ (5.19)

Using inequality (5.19), the minimum deadline supported for each high-priority
message stream (Table 5.1) would be as follows:

Table 5.3: Minimum Admissible Deadlines (case of TTR = τ)

Master 1 Master 2 Master 3
Dh1

1>155 ms Dh1
2>122 ms Dh1

3>92 ms
Dh2

1>153 ms Dh2
2>129 ms Dh2

3>102ms
Dh3

1>154 ms - -

90 Real-Time Communications with PROFIBUS Networks: Contributions to the State-of-the-Art

From inequality (5.16), it is obvious that TTR can be set to a value as small as 0. In
this case however the low-priority traffic would not be transferred at all. It also follows
that in this non-realistic situation, the low-priority traffic would not be considered for the
evaluation of Tk

del. In fact, if TTR is smaller than τ, then equation (5.20) must replace
equation (5.11) for the evaluation of Tk

cycle.

∑
=

=
n

i

ik
del HT

1

(5.20)

It follows that Tk
cycle will have the same value for all masters. Using the same scenario as

shown in Table 5.1, each Tk
del would then be:

Table 5.4: Tk
del Evaluation for the Numerical Example (case of TTR = 0)

Master 1 Master 2 Master 3
H1=8 ms H2=15 ms H3=18 ms

T1
del=41 ms T2

del=41 ms T3
del=41 ms

and the minimum deadline supported for each high-priority stream, would be as shown
in Table 5.5.

Table 5.5: Minimum Admissible Deadlines (case of TTR = 0)

Master 1 Master 2 Master 3
Dh1

1>131 ms Dh1
2>90 ms Dh1

3>90 ms
Dh2

1>129 ms Dh2
2>97 ms Dh2

3>100 ms
Dh3

1>130 ms - -

5.5. Constraining Low-Priority Traffic in PROFIBUS Networks

In this section, a constrained low-priority traffic profile is considered for PROFIBUS
networks, where by controlling the number of low-priority message transfers, all
pending high-priority (real-time) traffic is transmitted at each token arrival.

5.5.1. Pre-Run-Time Schedulability Condition

Considering that all high-priority messages are to be sent at each token visit, it is a
sufficient pre-run-time schedulability condition to guarantee the deadlines of the
high-priority message stream set that:

kmcycle
k
i

nhi
TDh

k aster
,...,1

,min ∀≥








=
(5.21)

Furthermore, as each master must be able to transmit its high-priority traffic and, if
possible, its allowed low-priority traffic, an upper bound for the token cycle time is:

Real-Time Communications with PROFIBUS Networks: Contributions to the State-of-the-Art 91

() τ+×+= ∑∑∑
== =

n

k

kk
n

k

nh

i

k
icycle ClnlpChT

k

11 1

(5.22)

where nlpk × Clk (see Section 5.2) corresponds to the maximum ammount of low-priority
traffic that can be transmitted at each token visit to a master k. Therefore, the pre-run-
time schedulability condition (5.21) can be re-written as follows:

() τ+×+≥






 ∑∑∑

== =

n

k

kk
n

k

nh

i

k
i

k
i

ki
ClnlpChDh

k

11 1
,

min (5.23)

5.5.2. Setting the TTR Parameter

The TTR parameter must be set in order to guarantee that, at the token arrival, there will
be always enough time to execute all pending high-priority traffic. This means that, at
the token arrival, TTH = TTR - TRR must be enough to transmit all high-priority traffic, i.e.:









+≥ ∑
=

=

knh

i

k
i

nk
TR ChTcycleT

1
..1

max (5.24)

since Tcycle is the upper bound for TRR.
Combining inequalities (5.22) and (5.24), a lower bound for TTR is given by:

()








++×+≥ ∑∑∑∑
=

=
== =

kk nh

i

k
i

nk

n

k

kk
n

k

nh

i

k
iTR ChClnlpChT

1
..1

11 1

maxτ (5.25)

Inequalities (5.23) and (5.25) are the basis for setting the TTR parameter, when
considering the constrained low-priority traffic profile. It can also be seen that an
implicit upper bound for the TTR parameter is imposed by the deadline constraint (5.21).
In fact, we can denote as TTRmin the minimum value of TTR that satisfies inequality (5.25):

()








++×+= ∑∑∑∑
=

=
== =

kk nh

i

k
i

nk

n

k

kk
n

k

nh

i

k
iTR ChClnlpChT

1
..1

11 1

max
min

τ (5.26)

which, by using equation (5.22), can be re-written as:









+= ∑
==

knh

i

k
i

nk
cycleTR ChTT

1
..1

max
min (5.27)

Therefore, the deadline constraint (5.21) can be re-defined to integrate such lower bound
for TTR as follows:

k

nh

i

k
i

nk
TR

k
i

nhi

k

k
ChTDh

1
..1,...,1

,maxmin
min

∀








−≥






 ∑

=
==

(5.28)

92 Real-Time Communications with PROFIBUS Networks: Contributions to the State-of-the-Art

which imposes an upper bound for the for TTR parameter:

k

nh

i

k
i

nk

k
i

nhi
TR

k

k
ChDhT

1
..1,...,1

,maxmin
min

∀








+








≤ ∑
=

==

(5.29)

Inequality (5.29) gives an upper bound for the TTR parameter, while inequality (5.25)
gives a lower bound for the same parameter. This allows the formulation of a pre-run-
time schedulability condition, which gives the range of TTR values satisfying the
real-time requirements of a constrained low-priority PROFIBUS profile:

() k

nh

i

k
i

nk

k
i

nhi
TR

nh

i

k
i

nk

n

k

kk
n

k

nh

i

k
i

k

k

kk

ChDhTChClnlpCh
1

..1,...,1
1

..1
11 1

,maxminmax ∀








+








≤≤








++×+ ∑∑∑∑∑
=

===
=

== =

τ (5.30)

By further elaboration over (5.30) it also turns out that:

() k

n

k

kk
n

k

nh

i

k
i

k
i

nhi
ClnlpChDh

k

k
∀≥−×−−







 ∑∑∑

== ==
 ,0min

11 1,...,1
τ (5.31)

which is obviously equivalent to inequality (5.21)
Fig. 5.6 clarifies the analysis underlying this Section 5.5, exploring the example set

given in Table 5.6.

Table 5.6: Example Scenario

Master 1 Master 2 Master 3
nh1 = 2 nh2 = 2 nh3 = 2
nlp1 = 3 nlp2 = 1 nlp3 = 4

Minimum TTR

Master 1

Master 2

Master 3

Tcycle

Cl1
Cl(1) Cl1

Ch1
2 Ch2

2 Cl2

Ch1
3 Ch2

3 Cl3 Cl3 Cl3 Cl3

Ch1
1 Ch2

1

In master 1, assume
that all high-priority
messages appear in
the queue just before
the token arrival

Ch1
1 Ch2

1

Fig. 5.6 This figure illustrates the upper-bound for the token cycle time

5.5.3. Implementation Issues

We propose two different alternatives to constrain the low-priority traffic at a master k.
1. The first is based on the implementation of a low-priority message counter at

the MAC level, intended to control the number of transferred low-priority
messages per token visit.

Real-Time Communications with PROFIBUS Networks: Contributions to the State-of-the-Art 93

2. The second is based on the application level control of low-priority services,
such as application layer non-cyclical low-priority services and remote
management services.

The first approach may be implemented as follows. We define at each master k the
maximum number of low-priority messages to be transferred (nlpk), per token visit. The
low-priority traffic is then controlled by means of a low-priority message counter
(nlp_c). Fig. 5.7b illustrates such implementation, whereas 5.7a illustrates the traditional
PROFIBUS implementation (Fig. 5.7a details the shaded block of Fig. 3.8 in Section
3.4.1).

m = pl_len
?

m = m + 1

poll
Poll_List

low priority
 message ?

process low
priority message

TTH < 0 ?

gap update

Token Pass

y

y

n

TTH < 0 ?

m = pl_len
?

y

n

y

n

y n

m = 1
n

a)

m = pl_len
?

m = m + 1

poll
Poll_List

low priority
 message ?

process low
priority message

TTH < 0 ?

gap update

Token Pass

y

y

n

TTH < 0 ?

m = pl_len
?

y

n

y

n

y n

m = 1
n

npl_c=0

nlp_c=nlp_c+1

y

n

nlp_c=nlp ?

nlp_c=nlp_c+1

y

n

nlp_c=nlp ?

y

n

nlp_c=nlp ?

b)

Fig. 5.7 Handling procedures for the non high-priority messages. In a) the traditional
implementation and b) the proposed implementation given in the first approach

The second approach is based on the control of low-priority services. Concerning the
traffic generated explicitly by the user, it is not advisable to use the Live List
management service. The Live List service requests the FDL status of all stations
(masters and slaves). It will generate multiple frames in the network. If, in the worst-
case, every master station requests a Live List, expression (5.22) would then be as
follows:

94 Real-Time Communications with PROFIBUS Networks: Contributions to the State-of-the-Art

() ∑∑∑∑
+

=== =

×++×+=
sn

k
live

n

k

kk
n

k

nh

i

k
icycle CnClnlpChT

k

111 1

τ (5.32)

where Clive stands for a request status message cycle length and (n+s) corresponds to the
aggregate number of master and slave stations. This would lead to an excessively long
Tcycle.

Concerning low-priority non-cyclical services, the application process must be able to
accept a Tcycle parameter, in order to control the number of low-priority messages (nlpk)
generated in master k.

Equation (5.22) must also consider the influence of the Gap updating (see Section
3.4.1 and Fig. 5.7b). We denote Cgap as the length of a Gap maintenance message cycle.
Therefore, equation (5.33) updates equation (5.22) to include the influence in Tcycle

resulting from the Gap maintenance, considering that, in the worst-case, each master
executes one Gap maintenance message cycle in each token visit.

In order to support Poll List, an additional term must be added to (5.22). The user
must be careful while using Poll Lists, since Poll List messages are FDL triggered. Thus,
the whole list length must be considered for the evaluation of Tcycle:

() ∑∑∑∑
=== =

+×++×+=
n

i

k
pollgap

n

k

kk
n

k

nh

i

k
icycle CCnClnlpChT

k

111 1

τ (5.33)

where Cpoll
k stands for the master k Poll List length.

5.5.4. Numerical Example

In this profile, as each master must be able to execute all its pending high-priority traffic
at each token visit, the token cycle time will be much longer than in the case of the
unconstrained low-priority traffic profile. Therefore, as each master will need to wait
more time to transmit its high-priority messages, the supported message deadlines are
necessarily looser than those supported by the unconstrained low-priority traffic profile.

However, with the constrained low-priority traffic profile, there is more available time
transmit low-priority traffic, which allows for an increased non real-time traffic
throughput.

Consider a PROFIBUS network with 6 master stations, with timing requirements as
shown in Table 5.7.

Table 5.7: Another Example Scenario

Master 1 Master 2 Master 3 Master 4 Master 5 Master 6
Dh1

k 50ms (Dmin) 90ms 120ms 60ms 60ms 80ms
Dh2

k 100ms 80ms 130ms 200ms 100ms 80ms
Dh3

k -------- 140ms 110ms 140ms 100ms 100ms
C 2ms 2ms 2ms 2ms 2ms 2ms
nlpk 3 3 3 3 3 3

For simplification, we assume that the maximum message length is, in all cases, equal
to 2ms. Using a 1Mbps network, and if request and response frames total 400 bits, the

Real-Time Communications with PROFIBUS Networks: Contributions to the State-of-the-Art 95

frame duration is 400µs. Considering 260µs for communication stack and propagation
delay, each message cycle will take 660µs. Configuring each master to support up to 2
message replies, we get the 2ms figure for the total length of the message cycle. We also
assume that τ = 0.1ms.

In order to assess the responsiveness of each proposed profile, the minimum relative
deadline of message stream Sh1

1 will be evaluated.
For the unconstrained low-priority traffic, it follows that (using equation (5.11))

k
k

delT ∀=×= ms,1226
In this case, the upper bound for TTR (inequality (5.16)) is imposed by master 4 (or

master 5) and is given by:

ms33.7ms12
3

260
4/

=−
−

≤TRT

Using inequality (5.15), the minimum the minimum relative deadline for Sh1
1 is either

ms 66.40233.192min 33.7/TTR
=+×==D

for TTR = 7.33ms, or
ms 262122min 0/TTR

=+×==D

for TTR = 0ms (in this case it would not be possible to transmit low-priority messages).

For the constrained low-priority traffic profile, it follows that the lower bound for TTR

(inequality 5.25) is:
ms 1.7661.023622235 =++××+×+××≥TRT

and the minimum value for the relative deadlines of high-priority streams is (inequality
(5.28)):

ms 1.7061.76min 3/nlp =−≥=D

This means that the message stream set shown in table 1 is not schedulable using the
constrained low-priority profile. In fact, with this profile, the most stringent deadline
must be at least 70.1 ms, which is larger than both Dh1

1, Dh1
4 and Dh1

5.

5.6. Summary

PROFIBUS networks aim at the interconnection of field devices such as sensors,
actuators and small controllers. Therefore, they may be a privileged basis upon which
Distributed Computer-Controlled Systems (DCCS) are built. DCCS impose strict
timeliness requirements to the communication network; that is, they impose that traffic
must be sent and received within a bounded interval, otherwise a timing fault is said to
occur.

The PROFIBUS MAC protocol is based on a token passing procedure used by master
stations to grant the bus access to each one of them, and a master-slave procedure used
by master stations to communicate with slave stations. The PROFIBUS token passing
procedure uses a simplified version of the timed-token protocol (Grow, 1982).

It is possible to support real-time communications with PROFIBUS networks,
considering one of the two following approaches (Vasques, 1996; Vasques and Juanole,
1994).

96 Real-Time Communications with PROFIBUS Networks: Contributions to the State-of-the-Art

1. If the low-priority traffic is unconstrained, then the real-time traffic requirements
may be satisfied, considering that, at least, one pending high-priority message is
transmitted per token visit.

2. If the low-priority traffic can be constrained (controlling the number of
low-priority message transfers at each master station), then, by an appropriate
setting of the TTR parameter, all pending real-time traffic is guaranteed to be
transmitted at each token visit.

In this chapter we significantly improve the previous analysis made by Vasques and
Juanole.

1. We provide a simple worst-case response time for PROFIBUS messages
(equation (5.4)), which reflects the FCFS behaviour the PROFIBUS queues. This
new formulation overcomes the problems identified in Chapter 3 for equation
(3.9).

2. The evaluation of the worst-case response-time is highly dependent on the
accurate definition of the token cycle time. In Section 5.4, we provide an accurate
analysis of the PROFIBUS token cycle time (equation (5.14)), which
significantly improves the simple and inaccurate result presented in previous
analysis (equation (3.6)).

3. Finally, to implement the second approach it is necessary to correctly identify the
low-priority traffic supported by PROFIBUS. It is important to note that some of
the low-priority traffic cannot be controlled at the user level. In Section 5.5.3 we
discuss how to implement such approach.

5.7. References

Grow, R. (1982). A Timed Token Protocol for Local Area Networks. In Proceedings of Electro'82,
Token Access Protocols, Paper 17/3.

Tovar, E. and Vasques, F. (1998a). Real-Time Fieldbus Communications Using PROFIBUS
Networks. Polytechnic Institute of Porto, Technical Report HURRAY-TR-9803, April 1998,
to appear in IEEE Transactions on Industrial Electronics.

Tovar, E. and Vasques, F. (1998b). Guaranteeing Real-Time Message Deadlines in PROFIBUS
Networks. In Proceedings of the 10th Euromicro Workshop on Real-Time Systems, pp. 79-86,
Published by IEEE Computer Society Press.

Tovar, E. and Vasques, F. (1998c). Cycle Time Properties of the PROFIBUS Timed Token
Protocol. Polytechnic Institute of Porto, Technical Report HURRAY-TR-9811, August 1998,
to appear in Computer Communications, Elsevier Science.

Tovar, E. and Vasques, F. (1998d). Setting Target Rotation Time in PROFIBUS Based Real-Time
Distributed Applications. In Proceedings of the 15th IFAC Workshop on Distributed
Computer Control Systems, pp. 1-6, Published by Pergamon, an Imprint of Elsevier Science.

Vasques, F. and Juanole, G. (1994). Pre-run-time Schedulability Analysis in Fieldbus Networks. In
Proceedings of the Annual Conference of the IEEE Industrial Electronics Society, pp. 1200-
1204.

Vasques, F. (1996). Sur l'Integration de Mecanismes d'Ordonnacement et de Communication dans
la Sous-couche MAC de Reseaux Locaux Temps-reel. PhD Thesis (in French), available as
Technical Report LAAS No. 96229.

Chapter 6

Real-Time Communications with WorldFIP
Networks: Contributions to the State-of-the-Art

In this chapter we develop methodologies to guarantee the real-time behaviour of
WorldFIP periodic and aperiodic buffer transfers. This chapter is largely drawn
from the following published work: "Distributed Computing for the Factory-Floor:
A Real-Time Approach using WorldFIP Networks" (Tovar and Vasques, 1999a);
"Factory Communications: on the Configuration of the WorldFIP Bus Arbitrator
Table" (Tovar and Vasques, 1999b); "Contributions for the Worst-Case Response-
Time Analysis of Sporadic Traffic in WorldFIP Networks" (Tovar and Vasques,
1999c).

6.1. Introduction

The WorldFIP protocol is based on a centralised medium access control mechanism,
where a specific station, the bus arbitrator (BA), controls all data transfers between the
different stations. At configuration time, the BA is given a list of process variables to
scan along with their corresponding periods. This piece of information is known as the
bus arbitrator table.

WorldFIP supports two basic types of transmission services: exchanges of identified
variables and exchanges of messages. In this work we address WorldFIP networks
supporting only exchanges of identified variables, since they are the basis of WorldFIP
real-time services. As it was explained in Section 3.5.1, in WorldFIP identified variables
may be exchanged in a periodic or aperiodic basis. While for the periodic traffic, end-to-
end communication deadlines can be easily guaranteed, since for them the WorldFIP
BAT (Bus Arbitrator Table) implements a pre-defined static schedule, for the aperiodic
traffic more complex analysis must be performed.

The remainder of this chapter is organised as follows. In Section 6.2 we introduce the
network and message models, which will be used throughout the rest of the chapter. In
Section 6.3 we introduce the basic HCF/LCM methodology for building the bus
arbitrator table. In Section 6.4 and Section 6.5 we describe detailed algorithms for
obtaining the BAT schedule, based on RM and EDF approaches, respectively. Moreover,
in these two sections we provide feasibility tests, adapted from previous results on the
schedulability analysis. Sections 6.2 up to 6.6 form the ground basis upon we build (in
Section 6.6) a worst-case response time analysis for the WorldFIP aperiodic buffer
transfers. This integrated methodology is the more important since the analysis for the
aperiodic traffic depends for the most part on the schedule for the periodic traffic.

98 Real-Time Communications with WorldFIP Networks: Contributions to the State-of-the-Art

6.2. Network and Buffer Models

Consider a bus network with n stations. One of these n stations performs the role of
active bus arbitrator (BA), while the others are simple producer/consumer stations.

Associated to this set of stations there is a set of np periodic buffer transfer streams
(Spi). Each buffer transfer stream is a temporal sequence of periodic buffer transfer
concerning variables with the same identifier. Contrarily to the case of P-NET
(Section 4.2) and PROFIBUS (Section 5.2), these streams are not related with any
particular station. Spi streams are characterised as follows:

()iiii DpTpCpSp ,,= (6.1)

with i = 1, ..., np. In the rest of this chapter, we will refer to Spi streams as periodic
streams. Cpi represents the maximum amount of time to perform a periodic buffer
transfer, and its value is given by (refer to Fig. 3.12 and Fig. 3.13, in Section 3.5.1):

() ()
ri t

bps

lenlen
Cp ×+

+
= 2

rp_dat_Spid_dat_Sp ii (6.2)

where bps stands for the network data rate (in bits per second) and len(<frame>) is the
length, in bits, of frame <frame>. Tpi is the required periodicity for the buffer transfer,
and its value is a multiple of the microcycle value. For simplification, throughout this
chapter we assume that all periods are multiples of 1ms. Dpi is the deadline of the
periodic stream, which we assume that can be equal to its period; that is, a buffer transfer
concerning a periodic variable can have a communication jitter of up to (Tpi-Cpi), and
this conforms with the requirements of the distributed application (Fig. 6.1).

microcycle

macrocycle

transaction concerning Spi

Communication Jitter for Spi in
the first microcycle

Deadline = Period for Spi

The first of the buffer transfers
concerning Spi within a macrocycle,

occurs very close to its deadline

transactions concerning other streams other than Spi

Periodic pattern for Spi

Fig. 6.2 Illustration of deadline and period in periodic streams (equation (6.1))

Real-Time Communications with WorldFIP Networks: Contributions to the State-of-the-Art 99

Additionally, we consider a set of aperiodic buffer transfer streams (Sai
k) associated

with each station k (k = 1, ..., n):

()k
i

k
i

k
i

k
i DaTaCaSa ,,= (6.3)

Similarly to the case of periodic streams, in the rest of this chapter we will refer to
Sai

k streams as aperiodic streams. If nak is the number of aperiodic streams requested at a
station k, na denotes the sum of all nak in the overall network.

Note (see Section 3.5.1) that a station k can only have aperiodic streams if it produces
a variable related with a periodic stream. It is also important to note that two different
stations can have aperiodic streams related to a same variable identifier.

Cai
k will later be addressed in more detail in Section 6.6. Tai

k is the minimum time
interval between any two consecutive requests for Sai

k being placed in the queue for
aperiodic requests of the requesting station (refer to Fig. 3.15 in Section 3.5.1). The
maximum admissible time interval between the time instant when the request is placed
in the local queue (requesting station) and the completion of the transfer of the identified
variable is denoted as Dai

k.

6.3. Using the HCF/LCM Methodology for Setting the BAT

In WorldFIP networks, the bus arbitrator table (BAT) imposes the schedule of periodic
buffer transfers, and also regulates the aperiodic buffer transfers.

Following the HCF/LCM methodology to build the BAT (refer to Section 3.5.1), the
value of the microcycle (µCy) must be chosen as:

()i
npi

TpHCFµCy
,..,1=

= (6.4)

where HCF stands for the highest common factor and corresponds to the following
value:

{ } i
ii TpTp

µCy ∀





Ω
=

Ω
 ℵ,∈Ω∧Ω= ,with max (6.5)

In Appendix C.1, we give the pseudo-code details of an algorithm for the evaluation
of the microcycle.

The macrocycle (MCy) is defined as:

µCyNMCy ×= (6.6)

where N is the number of microcycles that compose a macrocycle. Using the LCM
(Least Common Multiple) rule, N can be evaluated as follows:

{ } i
ii µCyTpµCyTp

N ∀






 Φ
=

Φ
ℵ,∈Φ∧Φ= , with min (6.7)

In Appendix C.2, we give the pseudo-code details of an algorithm for the evaluation
of the macrocycle is suggested.

100 Real-Time Communications with WorldFIP Networks: Contributions to the State-of-the-Art

6.4. Setting the WorldFIP BAT: a Rate Monotonic Approach

6.4.1. Algorithmic Approach for Building the BAT

After defining the values for the microcycle and macrocycle, a schedule can easily be
built according to the rate monotonic (RM) algorithm (Section 2.2.3) as follows:
1. From variable with the shortest period until variable with the longest period

1.1. If the current load in a microcycle added to Cpi is still smaller than the value of
the microcycle, then schedule Spi for each one of the microcycles (of a
macrocycle) corresponding to the periodic pattern of Spi. Update the value of
the load in each concerned microcycle.

1.2. If the load in some of the microcycles does not allow to schedule a scan for
that stream, try to schedule it in the next microcycles up to the microcycle in
which a new scan for Spi would be required. If this is not possible, the stream
set is not schedulable.

Assume an example where all variables have a data field with 4 bytes (all RP_DAT
have 92 bits), tr = 20ms and the network data rate is 2.5Mbps. Then, the duration of any
elementary transaction will be (64+80)/2.5+2×20=97.6µs (equation (6.2)). Given the
example of Table 3.3 (with Cpi = 0.0976ms, ∀i) and considering the RM algorithm, the
BAT will result as shown in Table 6.1.

Table 6.1: BAT (using RM) for Example of Table 3.3

Microcycle
1 2 3 4 5 6 7 8 9 10 11 12
1 1 1 1 1 1 1 1 1 1 1 1
1 0 1 0 1 0 1 0 1 0 1 0
1 0 0 1 0 0 1 0 0 1 0 0
1 0 0 0 1 0 0 0 1 0 0 0
1 0 0 0 1 0 0 0 1 0 0 0

bat[A,cycle]
bat[B,cycle]
bat[C,cycle]
bat[D,cycle]
bat[E,cycle]
bat[F,cycle] 1 0 0 0 0 0 1 0 0 0 0 0

where bat[i, j] is a table of booleans with i ranging from 1 up to np, and j ranging from 1
up to N (number of microcycles in a macrocycle).

In Appendix C.3, a detailed algorithm for building the BAT using the RM algorithm
is presented. The algorithm indicates whether or not all traffic is schedulable (line 22). In
the algorithm, the vector load[] is used to store the load in each microcycle as the traffic
is scheduled. It also assumes that the array Vp[,] is ordered from the variable with the
smallest period (Vp[1,]) to the variable with the longest period (Vp[np,]).

The HCF/LCM/RM approach for building a WorldFIP BAT has the following
characteristic: the variables are not scanned at exactly regular intervals. For the given
example, only variables A and B are scanned exactly in the same "slot" within the
microcycle. All other variables suffer from a slight communication jitter. For instance,
concerning variable F, the interval between microcycles 1 and 7 is
(1-5×0.0976)+5+(3×0.0976)=5.8048ms, whereas the interval between microcycles 7 and
13 is (1-3×0.0976)+5+(5×0.0976)=6.1952ms.

Real-Time Communications with WorldFIP Networks: Contributions to the State-of-the-Art 101

Note that by using the RM algorithm some of the variables with larger periods can be
scheduled for the next microcycles, thus inducing an increased communication jitter for
those variables. For example, if the network data rate is 1Mbps instead of 2.5Mbps
(Cpi=(64+80)/1+2×20=184µs), the BAT would be as shown in Table 6.2, since a
microcycle is only able to schedule up to 5 periodic buffer transfers (Fig 6.2).

Table 6.2: BAT (using RM) for Modified Example of Table 3.3

Microcycle
1 2 3 4 5 6 7 8 9 10 11 12
1 1 1 1 1 1 1 1 1 1 1 1
1 0 1 0 1 0 1 0 1 0 1 0
1 0 0 1 0 0 1 0 0 1 0 0
1 0 0 0 1 0 0 0 1 0 0 0
1 0 0 0 1 0 0 0 1 0 0 0

bat[A,cycle]
bat[B,cycle]
bat[C,cycle]
bat[D,cycle]
bat[E,cycle]
bat[F,cycle] 0 1 0 0 0 0 1 0 0 0 0 0

Not enough time to process
the sixth transaction

A

B

C

D

E

F

...

time (ms)1 2 3 4 5 6 7 8 9 10 11 12 13

microcycle

macrocycle

Fig. 6.2 Schedule (RM Approach) for the set example of Table 3.3

6.4.2. A Feasibility Test Based on the Response Time Techniques

Although the rm_bat algorithm indicates whether all traffic is schedulable (line 22), a
simple pre-run-time schedulability test can be provided to check the schedulability of the
periodic stream set. The following analysis adapts to the WorldFIP case, the worst-case
response time analysis of tasks in a single processor environment presented in Section
2.4.3.

For simplicity of analysis we consider that all transactions have a length of Cp, with
Cp = max{Cpi}, ∀i. In most of the cases this is a valid assumption, since the data field
for the periodic streams will concern process data which typically has a number of bytes
ranging from 2 to 4.

The interference that a periodic stream Spi suffers in NRi microcycles is given by:

()
∑
∈ 










 ×
=

ihpj j

i
i Tp

µCyNR
I (6.8)

102 Real-Time Communications with WorldFIP Networks: Contributions to the State-of-the-Art

where Ii corresponds to the number of "requests" for higher-priority periodic streams.
Therefore, the number of requests to process during NRi microcycles (including the
request for Spi) is:

()
∑
∈ 










 ×
+=+

ihpj j

i
i Tp

µCyNR
I 11 (6.9)

The maximum number of buffer exchanges that fit in a microcycle is given by:









Cp

µCy (6.10)

which is a constant. Therefore, the number of microcycles (NRi) needed to process the
request for Spi is given by:

{ }
()









×Ψ≤











 ×Ψ
+≤Ψ∧ℵ∈Ψ∧Ψ= ∑

∈ Cp

µCy

Tp

µCy

µCy

Tp
NR

ihpj j

i
i 1 with ,min (6.11)

In (6.11), inequality 1 + Ii ≤ Ψ × µCy/Cp is tested in successive iterations, starting
with Ψ = 1. If the solution (if any) givesΨ > Tpi / µCy then the periodic stream Spi is not
schedulable.

6.4.3. Numerical Example

Consider a WorldFIP network, with the following set of periodic streams.

Table 6.3: Set of Periodic Streams (Cp = 0.21ms)

Identifier A B C D E
Periodicity (ms) 1 1 1 1 3

Stream SpE is RM schedulable if the related feasibility test (6.11) holds:

FALSE, ,415
1

1

1

1

1

1

1

1
1

:1

×≤=



+



+



+



+

=Ψ

and thus SpE is not schedulable in the first microcycle,

FALSE, ,429
1

2

1

2

1

2

1

2
1

:2

×≤=



+



+



+



+

=Ψ

and thus SpE is not schedulable in the second microcycle,

FALSE, ,4313
1

3

1

3

1

3

1

3
1

:3

×≤=



+



+



+



+

=Ψ

Real-Time Communications with WorldFIP Networks: Contributions to the State-of-the-Art 103

which means that SpE is not schedulable at all, as Ψ must be smaller or equal than
TpE / µCy = 3.

6.5. Setting the WorldFIP BAT: a Earliest Deadline Approach

6.5.1. Algorithmic Approach for Building the BAT

An alternative approach for the BAT schedule can be the earliest deadline first (EDF)
approach (Section 2.2.3). With the EDF approach, periodic streams are scheduled
according to the earliest deadline (the microcycle when a new "request" appears). If
several streams have the same deadline, priority is given to the periodic stream with the
earliest request.

In Appendix C.4 we give a detailed description of an algorithm that can be used for
building the BAT using the EDF approach. In that algorithm, the array disp[,] is used to
store in disp[i,1] if there is a pending request for variable i, in disp[i,2] the deadline
(multiple of the microcycle) and in disp[i,3] the microcycle at which the request is made.
Note that for algorithmic convenience, the first requests (for all the variables) appear in
cycle = 0, and from those, some will be scheduled in the first microcycle (cycle + 1).

The advantage of the EDF approach over the DM approach can be easily depicted
from the following example. Consider the periodic stream set example shown in
Table 6.4. In this example, the macrocycle is made of 6 microcycles, and the maximum
number of buffer exchanges that fit in a microcycle is 1/0.3 = 3

Table 6.4: Example Set of Periodic Streams (Cp = 0.30ms)

Identifier A B C D E F
Periodicity (ms) 1 2 2 3 3 3

Considering the RM approach, the first request for SpF would miss a deadline
(Table 6.5).

Table 6.5: BAT (using RM) for Example of Table 6.4

Microcycle
1 2 3 4 5 6
1 1 1 1 1 1
1 0 1 0 1 0
1 0 1 0 1 0
0 1 0 1 0 0
0 1 0 1 0 0

bat[A,cycle]
bat[B,cycle]
bat[C,cycle]
bat[D,cycle]
bat[E,cycle]
bat[F,cycle] X X X 0 0 1

In fact, considering the RM approach, there is no empty slot for SpF in the first 3
microcycles. For the same periodic stream set (Table 6.4), considering the EDF
approach, the BAT schedule would be as shown in Table 6.6.

104 Real-Time Communications with WorldFIP Networks: Contributions to the State-of-the-Art

Table 6.6: BAT (using EDF) for Example of Table 6.4

Microcycle
1 2 3 4 5 6
1 1 1 1 1 1
1 0 1 0 1 0
1 0 0 1 1 0
0 1 0 1 0 0
0 1 0 0 0 1

bat[A,cycle]
bat[B,cycle]
bat[C,cycle]
bat[D,cycle]
bat[E,cycle]
bat[F,cycle] 0 0 1 0 0 1

As it can be seen, with the EDF approach this stream set is now schedulable, which
was not possible with the RM approach. However, with the EDF approach the
communication jitter is increased. This results from the following: some of the buffer
transfers with more stringent relative deadlines are occasionally "delayed" by buffer
transfers with less stringent relative deadlines. For instance, variable C is scheduled for
the 4th microcycle, whereas with the RM approach it would be scheduled for the 3rd.

6.5.2. A Feasibility Test Based on the Response Time Techniques

Similarly to the RM case, a simple pre-run-time schedulability test can be derived to
check the schedulability of the periodic stream set, also based on the classic task's
response time analysis (Section 2.5.4). Note that the edf_bat algorithm (Appendix C.4)
gives (line 10) whether the periodic traffic is schedulable or not. For the simplification of
the analysis we consider that all transactions have a length of Cp, with Cp = max{Cpi},
∀i.

The interference that a periodic stream Spi suffers in NRi microcycles is given by:

∑
≤
≠ 




































 −
+











 ×
+=

ij DD
ij j

ji

j

i
i Tp

DD

Tp

µCyNR
I 1 ,1min (6.12)

This expression considers that, although in the NRi×µCy time interval there is a
number of requests for streams that have relative deadlines smaller than the one for Spi,
they can only be considered if they have absolute deadlines which are smaller than the
deadline for stream Spi.

Therefore, the number of requests to process during NRi microcycles (including the
request for periodic stream Spi) is:

∑
≤
≠ 




































 −
+











 ×
++

ij DD
ij j

ji

j

i

Tp

DD

Tp

µCyNR
1 ,1min1 (6.13)

Real-Time Communications with WorldFIP Networks: Contributions to the State-of-the-Art 105

The number of microcycles (NRi) needed to process the request for periodic stream
Spi is then given by:

{ }









×Ψ≤




































 −
+











 ×Ψ
++

≤Ψ∧ℵ∈Ψ∧Ψ=

∑
≤
≠ Cp

µCy

Tp

DD

Tp

µCy

µCy

Tp
NR

ij DD
ij j

ji

j

i
i

1 ,1min1 with

 ,min

(6.14)

In (6.14), inequality 1 + Ii ≤ Ψ × µCy/Cp is tested in successive iterations, starting
with Ψ = 1. If the solution (if any) givesΨ > Tpi / µCy , then Vpi is not schedulable.

6.5.3. Numerical Example

Consider a WorldFIP network with a set of periodic streams as shown in Table 6.4,
where the maximum number of buffer exchanges that fit in a microcycle (6.10) is
1 / 0.3 = 3. The periodic stream SpF will be schedulable by the EDF algorithm if the
related feasibility test (6.14) holds.

{ } { } { } { } { }() FALSE, ,3171,1min1,1min1,1min1,1min3,2min1

:1

×≤=+++++
=Ψ

and thus SpF is not schedulable in the first microcycle,

{ } { } { } { } { }() FALSE, ,3281,1min1,1min1,1min1,2min3,3min1

:2

×≤=+++++
=Ψ

and thus SpF is not schedulable in the second microcycle,

{ } { } { } { } { }() TRUE, ,3381,1min1,1min1,1min1,2min3,4min1

:3

×≤=+++++
=Ψ

which means that a buffer exchange for SpF is schedulable in the third microcycle.

6.6. Worst-Case Response Time for the Aperiodic Traffic

Concerning the aperiodic streams, we consider that they are all generated by the use of
the application layer service L_FREE_UPDATE.req(ID_Ap, urgent), thus we
only consider the urgent queues (both at the requesting station and at the BA) (refer to
Fig. 3.15 for clarification).

It is important to stress that the urgent queue in the BA is only processed if, and only
if, the BA's ongoing aperiodic queue is empty, as detailed in Fig 6.3.

As illustrated in Fig. 6.3, traffic concerning the aperiodic buffer transfers (transactions
ID_RQ / RP_RQ or ID_DAT /RP_DAT) can only be processed if there is still enough
time in a specific microcycle to completely process each one of them. That is, they are
atomically processed.

Therefore, we define the worst-case response time (Rai
k) for an aperiodic transfer Sai

k

as the time interval between the arrival of the L_FREE_UPDATE.req(ID_Ap,

106 Real-Time Communications with WorldFIP Networks: Contributions to the State-of-the-Art

urgent) to the urgent queue of station k (instant t0) and the completion of the buffer
transfer concerning the aperiodic stream Sai

k.

Yes

Time left to process
buffer exchange ?

No

RP_DAT(Aperiodic) ←

ID_DAT(Aperiodic) →

Requests in the
urgent queue?

Aperiodic ongoing
queue empty ?

No

Yes

No

Yes

Yes

Time left to process
buffer exchange ?

No

RP_RQ (List) ←

ID_RQ →

Start of aperiodic
window

Time left to process
padding frame?

Yes

PAD →

No

End of aperiodic
window

Fig. 6.3 Sequence for aperiodic transfers

The response time associated to an aperiodic stream includes the following three
components (Fig. 6.4):

1. the time elapsed between t0 and the time instant when the requesting station is
able to indicate the BA (via RP_DAT, with the request bit set) that there is a
pending aperiodic request. We define this time interval as the dead interval of a
producer station;

2. the time interval during which the request indication stays in the BA's urgent
queue until the related ID_RQ / RP_RQ pair of frames is processed in an
aperiodic window;

3. the time interval during which the Sai
k stays in the BA's ongoing aperiodic queue

until the related ID_DAT_Ap / RP_DAT pair of frames is processed in an
aperiodic window.

Request for the aperiodic
buffer exchange

time

Dead interval

≈

ID_DAT + RP_DAT concerning a
periodic variable of station k

≈

ID_RQ + RP_RQ

≈

ID_DAT + RP_DAT concerning a
aperiodic variable

Response Time for an Aperiodic Stream Sai
k

Fig. 6.4 Timings for the transactions associated with the processing of an aperiodic variable

Real-Time Communications with WorldFIP Networks: Contributions to the State-of-the-Art 107

6.6.1. Upper Bound for the Dead Interval

The upper bound for the dead interval in a station k is related to the smallest scanning
rate of a produced periodic variable in that station. It is important to note that a periodic
stream (Spi) is not polled at regular intervals, since there is a communication jitter
inherent to the BAT setting. Therefore, the previous result for the evaluation of the dead
interval (refer to Section 3.5.2) in a station k must be updated to:

{ }i
kSp

jjjSpj
k TpTpSpCpJTp

i
j in produced

min: with , =++=σ (6.15)

where JSpj is the maximum communication jitter of a periodic stream Spj. For example,
considering the periodic stream set of Table 3.3 (Section 3.5.1), if variable F is the only
produced periodic variable at station k, then σk=6+0.1952+0.0976= 6.2928ms (see
Section 6.4.1 for the evaluation of the communication jitter for variable F).

For the evaluation of the dead interval (6.15) it is also considered that a local
aperiodic request is only processed (setting the request bit in the RP_DAT frame) if it
arrives before the start of the related ID_DAT. Hence, the term Cpj is included in
equation (6.15).

In Appendix C.5 we describe a detailed algorithm for the evaluation of the
communication jitter associated to a periodic variable. This algorithm is the basis for the
evaluation of the dead interval in a specific k station.

Considering again the periodic stream set of Table 3.3, the value for the
communication jitter associated to each periodic variable is as shown in Table 6.7.

Table 6.7: Communication Jitter for the Periodic Stream Set of Table 3.3 (Cpi = 0.21ms)

Identifier A B C D E F
Communication Jitter (ms) 0 0 0.21 0.21 0.58 0.79

Thus, the periodic traffic schedule, according to the RM algorithm would be as
follows:

Table 6.8: BAT (using RM) for Example of Table 3.3 (Cpi = 0.21ms)

Microcycle
1 2 3 4 5 6 7 8 9 10 11 12
1 1 1 1 1 1 1 1 1 1 1 1
1 0 1 0 1 0 1 0 1 0 1 0
1 0 0 1 0 0 1 0 0 1 0 0
1 0 0 0 1 0 0 0 1 0 0 0
0 1 0 0 1 0 0 0 1 0 0 0

bat[A,cycle]
bat[B,cycle]
bat[C,cycle]
bat[D,cycle]
bat[E,cycle]
bat[F,cycle] 0 1 0 0 0 0 1 0 0 0 0 0

Note that considering all Cpi = 0.21ms, only 4 periodic variables can be
accommodated in each microcycle (1ms), and thus the jitter associated to the transfer of
the lower priority variables is not negligible.

108 Real-Time Communications with WorldFIP Networks: Contributions to the State-of-the-Art

6.6.2. Aperiodic Busy Interval

The worst-case response time for an aperiodic variable transfer occurs if, when the
request arrives at the BA's urgent queue (σk after t0), this queue is already full of requests
from all the other aperiodic streams in the network.

We consider that:
1. for each aperiodic stream, a request for identification must be made, and thus the

network load is maximised. In practice this case only occurs if each station has
only one aperiodic stream, since the BA is able to manage the urgent queue to
avoid redundancy in ID_RQs addressed to a same station. This is the case which
generates the heavier network load, hence which leads to the worst-case response
time for aperiodic streams;

2. and that those aperiodic stream requests will start to contend for the medium
access when the BA is starting the macrocycle (with the RM scheduling policy
used to construct the BAT, this means maximum periodic load). This is defined
as the critical instant.

We also consider that all aperiodic traffic has a minimum inter-arrival time between
requests, which is greater than its worst-case response time. Therefore, no other
aperiodic request appears before the completion of a previous one. Hence, the maximum
number of aperiodic requests pending in the BA is na, with na being the number of
aperiodic requests (two different station can require an aperiodic buffer transfer of a
same variable) that can be made in the network.

We define the time interval between the critical instant and the time instant when all
the aperiodic requests (which were pending at the critical instant) have been processed as
the aperiodic busy interval (ABI), since all aperiodic windows within the microcycles
are used to process aperiodic traffic.

It is also clear that to process all those na requests, the aperiodic windows will
perform alternately sequences of (ID_RQ / RP_RQ) and (ID_DAT / RP_DAT), as the
BA gives priority to the ongoing aperiodic queue (refer to Fig 6.3).

If all the aperiodic variables have a similar length, Ca* may be defined as:

() () () ()








×+
+

×+
+

=
= rr

nai
t

bps

lenlen
t

bps

lenlen
Ca 2

rp_rqid_rq
,2

rp_datid_dat
max i

,..,1

* (6.16)

which gives the longest transaction in an aperiodic window.
Therefore, the maximum number of transactions to be processed during the ABI is

2×na, corresponding to the set of ID_RQ / RP_RQ transactions and the set of ID_DAT /
RP_DAT transactions.

Considering these assumptions, the analysis for the worst-case response time for the
aperiodic traffic is as follows.

6.6.3. Worst-Case Response Time for Aperiodic Buffer Transfers

The worst-case response time of aperiodic buffer transfers is a function of the network
periodic load during the ABI, since it bounds the length of the available aperiodic
windows.

Real-Time Communications with WorldFIP Networks: Contributions to the State-of-the-Art 109

The length of the aperiodic window in the lth cycle (l = 1, .., N, N + 1, ..) may be
evaluated as follows:

[]()∑
=

×−=
np

i
iCplibatµCylaw

1

,)((6.17)

where bat[i,l*] is a matrix representing the schedule of the periodic traffic and
l* = [(l-1) mod N] + 1. Therefore, the number of aperiodic transactions that fit in the lth

aperiodic window is:

()




=

*

*
)(

Ca

law
lnap (6.18)

where Ca* is as given by (6.16). It follows that the number of microcycles (N') in an ABI
is:

{ } ()∑
=

×≥Ψ∧=ΨΨ=
'

1

2 * with ,min'
N

l

nalnapN (6.19)

that is, the minimum number of microcycles within which the number of available
"slots" (each "slot" with the length of Ca*) is at least 2×na.

In Appendix C.6 we describe a detailed algorithm for the evaluation of the number of
microcycles in the aperiodic busy interval.

Knowing the number of microcycle in a ABI (N'), the length of the aperiodic busy
interval (len_abi) may be evaluated as follows:

() []() ()∑ ∑
=

−

=

×







−×+×+×−=

np

i

N

l
i CalnapnaCpNibatµCyNabilen

1

*
1'

1

2,1'_ (6.20)

where ∑i=1,..,np(bat[i,N*]×Cpi) gives the length of the periodic window in microcycle N',
with N*=[(N'-1) mod N] + 1 and (2×na-∑l=1,..,N'-1nap(l*))×Ca* gives the length of the
aperiodic window, included in the aperiodic busy interval, also in microcycle N'.

In appendix C.7 a detailed algorithm for evaluating the length of the ABI is provided.
Therefore, the worst-case response time for an aperiodic buffer transfer requested at

station k is:

abilenRa kk _+= σ (6.21)

and thus, the minimum inter-arrival time between any two consecutive aperiodic
requests of the same aperiodic variable in a station k is:

abilenRaTa kkk
i _+=≥ σ (6.22)

6.6.4. Numerical Example

Consider a WorldFIP network with a set of periodic streams as shown in Table 3.3.
Assume that this system must also support 9 aperiodic buffer exchanges. Assume also
that the Cpi=Cp=0.0976ms, ∀i, and that for aperiodic traffic Ca* = 0.1ms.

110 Real-Time Communications with WorldFIP Networks: Contributions to the State-of-the-Art

If the BAT is built as shown in Table 6.1, and the urgent aperiodic request queue is
full at the critical instant, a schedule for the aperiodic traffic is as represented in Fig. 6.5.
Obviously, as the BA urgent queue is a FCFS queue, the order of the aperiodic transfers
is arbitrary.

A

B

C

D

E

F

...

time (ms)1 2 3 4 5 6 7 8 9 10 11 12 13

microcycle

macrocycle

Periodic Elementary Transaction Length, periodic traffic

ID_RP, RP_RQ Transaction Length, aperiodic traffic

AP

Length of the ABI

ID_DAT, RP_DAT Transaction Length, aperiodic traffic

1 1 9 98 877654 654332 2

Fig. 6.5 Schedule for the aperiodic traffic, considering the example of Table 3.3 (using RM to
schedule the periodic traffic)

In Fig. 6.5, the time available for the aperiodic traffic in the first microcycle is
1-6×0.0976=0.414ms. This time allows for the processing of four Ca* transactions. In
the second microcycle the aperiodic window has the length of 1-0.097=0.902ms, which
allows for nine Ca* transactions. Finally, in the third microcycle the length of the
aperiodic window is 0.804ms, and all the remaining five Ca* transactions are processed.
Note that each aperiodic transfer corresponds to, in the worst-case, two Ca* transactions
(ID_RQ / RP_RQ followed by ID_DAT / RP_DAT). It follows that the length of the
aperiodic busy interval (ABI) is: 2×µCy+2×0.0976+ +5×0.1=2.695ms.

For an aperiodic request made at the station that produces periodic variable F (assume
that F is the only periodic variable produced in that station), the dead interval (given by
equation (6.15)) is 6.2928ms. Therefore, the worst-case response time of an aperiodic
variable requested in station k is: Rak=6.2928+2.695=8.9879ms.

6.7. Summary

In WorldFIP networks, the bus arbitrator table (BAT) regulates the scheduling of all
buffer transfers. In practice, two types of buffer transfers can be considered: periodic and
aperiodic (sporadic). The BAT imposes the schedule of the periodic buffer transfers, and
also regulates the aperiodic buffer transfers.

In this Chapter we provided a comprehensive study on how to configure a WorldFIP
bus arbitrator table (BAT), in order to guarantee that periodic data transfers are

Real-Time Communications with WorldFIP Networks: Contributions to the State-of-the-Art 111

performed before their deadlines. Important contributions were made in the definition of
simple feasibility tests for the periodic traffic scheduled according to both the RM and
EDF approaches. We showed that while allowing for an increased utilisation level of the
network, the EDF scheduling induces an increased communication jitter.

Concerning the aperiodic traffic, we showed how some previous works (Pedro and
Burns, 1997; Vasques and Juanole, 1994) proved to be quite pessimistic. We
significantly improved previous results by approaching the analysis for the aperiodic
traffic in an integrated manner with the methodologies used to build the bus arbitrator
table. Thus, we reduce the pessimism considering the actual length of the periodic
window in each microcycle. We also considered the effect of both the communication
jitter and the padding window.

6.8. References

Pedro, P. and Burns, A. (1997). Worst Case Response Time Analysis of Hard Real-time Sporadic
Traffic in FIP Networks. In Proceedings of the 9th Euromicro Workshop on Real-Time
Systems, pp. 3-10.

Tovar, E. and Vasques, F. (1999a). Distributed Computing for the Factory-Floor: a Real-Time
Approach Using WorldFIP Networks. Polytechnic Institute of Porto, Technical Report
HURRAY-TR-9908, March 1999, submitted to Computers in Industry, Elsevier Science.

Tovar, E. and Vasques, F. (1999b). Factory Communications: on the Configuration of the
WorldFIP Bus Arbitrator Table. Polytechnic Institute of Porto, Technical Report HURRAY-
TR-9909, March 1999, submitted to the 7th IEEE International Conference on Emerging
Technologies and Factory Automation.

Tovar, E. and Vasques, F. (1999c). Contributions for the Worst-Case Response Time Analysis of
Real-Time Sporadic Traffic in WorldFIP Networks. Polytechnic Institute of Porto, Technical
Report HURRAY-TR-9910, March 1999, to be presented at the WIP Session of the 11th
Euromicro Workshop on Real-Time Systems.

Tovar, E. and Vasques, F. (1999d). Engineering Real-Time Applications with WorldFIP: Analysis
and Tools. Polytechnic Institute of Porto, Technical Report HURRAY-TR-9912, April 1999.

Vasques, F. and Juanole, G. (1994). Pre-run-time Schedulability Analysis in Fieldbus Networks. In
Proceedings of the Annual Conference of the IEEE Industrial Electronics Society, pp. 1200-
1204.

Chapter 7

Adding Local Scheduling Mechanisms to P-NET
and PROFIBUS Masters

In this chapter we propose a methodology for the implementation of priority-based
scheduling mechanisms at the application process level of P-NET and PROFIBUS
masters. This chapter is partially drawn from the following published work:
"Adding Local Priority-Based Dispatching Mechanisms to P-NET Networks: a
Fixed Priority Approach" (Tovar et al., 1998) and "From Task Scheduling in
Single Processor Environments to Message Scheduling in a Profibus Fieldbus
Network" (Tovar and Vasques, 1999).

7.1. Introduction

The worst-case response time of messages in P-NET and PROFIBUS networks, and thus
the pre-run-time schedulability condition, is highly dependent on the number of message
streams in each master station (please refer to Section 4.4.5 and Section 5.4.3 for the
P-NET and PROFIBUS cases, respectively). This problem, which is a consequence of
the first-come-first-served (FCFS) nature of the communication queues (Fig. 7.1a), may
preclude the use of P-NET and PROFIBUS networks, in applications involving master
stations dealing with a large number of I/O points (resulting in a large number of
message streams per master station).

The impact of the FCFS behaviour in the message response time, motivated us to
consider priority-based queuing mechanisms implemented at the masters' application
process (AP) level (Fig. 7.1b). The priority-based queuing mechanisms must be
implemented at the AP level, to preserve compliance with the standards.

In the proposed architecture, requests generated at the AP level are stored in an AP
queue. Priority-based mechanisms are provided to guarantee that at each token visit, the
highest-priority message request will be in the MAC communication queue (which has a
length of one message). Priorities can be assigned using one of the following priority
assignment schemes: RM/DM or EDF. Note that in the case of PROFIBUS masters,
these priority-based mechanisms are only intended for message requests of the
high-priority type.

The remainder of this chapter is organised as follows. In Section 7.2 we discuss the
analogy between non pre-emptive task scheduling in single processor environments and
message scheduling in token-based networks. In Section 7.3, we provide (token)
utilisation-based tests for both types of token-passing networks. In Section 7.4 we
propose worst-case response time tests for both RM/DM and EDF dispatched messages

114 Adding Local Scheduling Mechanisms to P-NET and PROFIBUS Masters

in P-NET and PROFIBUS networks. We also show how the (token) utilisation-based
tests can be quite pessimistic. In Section 7.5, we extend the proposed analysis
considering the actual token utilisation (presented in Section 4.4) in P-NET networks.

Requests
(Priority Queue)

AP Queues

Communication
Stack

Communication Queue
(length 1)

Hi

Low

Application
Process (AP)Requests from

tasks

Bus

Response

Communication
StackFCFS queue (length =

number of streams)

Application
Process (AP)Requests from

tasks

Bus

Response

b)a)

Fig. 7.1 This figure illustrates compares the original architecture of both P-NET and PROFIBUS
masters (a) with the proposed architecture (b)

7.2. From Task to Message Scheduling: Analogies and Adaptations

In this section we discuss the analogy between task scheduling in a single processor
environment and message scheduling in token-passing networks (considering, at most,
one processed message per token visit). This analogy will later enable the formulation of
feasibility tests for P-NET and PROFIBUS message stream sets.

7.2.1. Homogenisation of Notations

Firstly, in order to apply the proposed methodology to both token-passing networks, we
need to homogenise the assumptions and the notations used in the previous analysis of
P-NET (Chapter 4) and PROFIBUS (Chapter 5) networks.

The proposed methodology is based on the following assumption: in P-NET and
PROFIBUS networks, at each token visit, at most only one real-time message cycle is
performed. While in the case of P-NET networks this is its standard behaviour, in the
case of PROFIBUS networks this results from considering the unconstrained
low-priority traffic profile (Section 3.4.2).

Concerning the previously defined notations, the upper bound for the token
inter-arrival time at a master station k has been denoted as V (equation (4.4)) or as Tk

cycle

(equation (5.6)), for the cases of P-NET and PROFIBUS networks, respectively. In order
to have a similar notation for both cases, we will use V to denote the upper bound for the
token cycle time. We will also use the notation nsk to refer to the number of real-time
message streams in a master k (P-NET or PROFIBUS master). Therefore, nsk stands for

Adding Local Scheduling Mechanisms to P-NET and PROFIBUS Masters 115

nhk, which was used in Chapter 5 to denote the number of high-priority message streams
belonging to a PROFIBUS master. Similarly, the PROFIBUS high-priority message
stream set is now denoted as Si

k, instead of Shi
k.

7.2.2. Analogies to the Blocking and Task's Computation Times

In the schedulability analysis of tasks in non pre-emptive single processor environments,
the concept of processor's busy period denotes the time interval within which the
processor is not idle (see Section 2.4.4). Assume the following task set:

Table 7.1: A Task Set Example (D = T)

Task Computation Time (C) Period (T)
A 10 60
B 10 80
C 10 100
D 10 100

Assuming a RM priority assignment policy in a non pre-emptive context, Fig. 7.2
illustrates a time-line considering that the first instance of task D (lower-priority task) is
released marginally after time instant 0, and before all other instances of higher-priority
tasks.

Task C

Task B

Task A

release of task

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180

Task D

processor busy period

Time utilisation of the
shared resource
(processor) by a task

When this request
appears, there is no
pending task

Maximum blocking for
a higher priority task
(as all Cs are equal)

Fig. 7.2 Scheduling example (using RM) for the task set shown in Table 7.1

Note that the blocking of a task in a non pre-emptive context is equal to the maximum
execution length of a lower-priority task (see equation (2.4), in Chapter 2).

116 Adding Local Scheduling Mechanisms to P-NET and PROFIBUS Masters

Assume now the following message stream set for a token-passing example:

Table 7.2: Message Stream Set Example (D = T)

Message Message Cycle Length (C) Period (T)
A 2 60
B 2 80
C 2 100
D 2 100

This case will be shown to be loosely equivalent to the previous task scheduling
example, if the token cycle time is equal to the tasks' execution time (V = Ctask).

Consider Fig. 7.3, which illustrates the time-line for a message scheduling with a
messages' release pattern (arrival of requests to the queue) similar to the previous tasks'
release pattern.

Message C

Message B

Message A

Arrival of the request to the queue

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180

Message D

token busy period

Time utilisation of the
shared resource
(token/network) by a
message cycle, as
seen by the local
station

This request appears
just after the token
arrival, hence it is not
able to be processed
in this token visit

Maximum blocking for
any-priority message
cycle

Instant of token arrival

V

Fig. 7.3 Scheduling example (using RM) for the message cycle set shown in Table 7.2

It is clear that the message blocking time is equal to the token cycle time. However,
this blocking term is independent of the priority ordering of message transfers.
Therefore, the blocking problem in the task scheduling theory can only be considered to
be loosely equivalent to the blocking problem in token-passing networks, since the
priority ordering property is not preserved.

It is also clear that the tests available for the schedulability analysis of non pre-
emptable tasks in single processor systems can be adapted to the message scheduling in
token-passing networks, considering that the blocking term is equal to the token cycle
time, independently of the message priority.

Therefore, the computation time of a task can be considered equivalent to the token
cycle time, since in a token-passing network, where, at most, only one message is
processed per token visit, the shared resource (network access/token) is only available
once in every V interval. This means that the contribution of each higher-priority
message cycle to the overall queuing delay of a lower-priority message cycle is always
equal to V.

Adding Local Scheduling Mechanisms to P-NET and PROFIBUS Masters 117

Finally, in Table 7.3 we summarise the analogies between task scheduling in non pre-
emptive single processor environments and message scheduling in specific token-
passing networks (considering, at most, one processed message per token visit).

Table 7.3: Analogies between Task Scheduling and Message Scheduling in Token Passing
Networks

Task Scheduling Message Scheduling
Maximum blocking (except for the lowest

priority task/message) ()
{ }j

ilpj
i CB

∈∀
= max V

Maximum blocking (lowest priority
task/message)

0 V

Resource usage time for the higher-
priority tasks/messages

jC V

Resource usage time for the task/message
itself

iC iC

7.2.3. Basic Message Response Time Evaluation

Considering priority-based dispatching mechanisms, the worst-case response time for a
message request occurs when the request is placed in the master's queue just after the
token arrival, hence not being able to be processed in that token visit. If there were any
other message request pending before the token arrival, then the token would have been
used to transmit that message; otherwise, the master would not use the token at all.

Therefore, the generic worst-case response time of a message stream Si
k will be as

follows:

k
i

k
i

k
i

k
i CVVCQR +×Φ+=+= (7.1)

where the first term V denotes the message blocking, and the symbol Φ denotes the
number of higher-priority messages (interference) that can be scheduled ahead of a
message from Si

k.
Equation (7.1) is similar to equation (5.4) for the PROFIBUS case, considering

Φ = nhk - 1, which means that a message from stream Shi
k will suffer the interference

from, at most, all other (nhk - 1) messages.
For the P-NET case (equation (4.5)) there is however a slightly difference, which is a

consequence of the better characterisation of its token holding time. In fact, we
considered that the critical instant (FCFS case) occurs when all nsk requests are placed in
the outgoing queue just after a message cycle has been completed (see Fig. 4.1). In this
chapter, we must re-define the critical instant as being the instant when a message
request is placed in the outgoing queue just after the token arrival, hence, not being able
to be processed in that token visit. This reflects the worst-case situation, since in the case
of priority-based outgoing queues, the message, even if it is the highest-priority one, will
be blocked during V. Therefore, Fig. 7.4 updates Fig. 4.4 to reflect this new definition of
the critical instant.

This new definition of the critical instant enables the formulation of the response time
of a P-NET message similarly to equation (7.1). In fact, adding Ci

k to the previous

118 Adding Local Scheduling Mechanisms to P-NET and PROFIBUS Masters

response time formulation (equation (4.5)), it follows that: Ri
k = nsk × V + Ci

k, as
illustrated by Fig. 7.4.

ρ

2

H

res(S1
1)

3 1 2

req(S1
1)

Bus

Access
Counter 1

V CM

τ

highest priority
request from master 1
released marginally
after the token arrival a lower priority

message induces a
priority inversion with
length V

highest priority
requests processed
here

Fig. 7.4 New definition of the critical instant

7.3. (Token) Utilisation-Based Tests

In this section, we derive (token) utilisation-based feasibility tests for both fixed and
dynamic priority assignment schemes. Such feasibility tests, which can be quite
pessimistic, provide an easy tool to evaluate the schedulability of the overall message set
with a reduced complexity.

7.3.1. Case of Rate Monotonic Priority Assignment

Considering the analogies to the blocking and tasks' computation time drawn in the
previous section, the schedulability test (2.5) for the RM dispatched tasks can be adapted
to encompass the characteristics of the P-NET/PROFIBUS token-passing protocols, as
follows:

k
nsk

k
i

ni

ns

i
k

i

k

k

ns
T

V

T

V
∀










−×≤









+







≤≤=

∑ ,12max
1

1
1

(7.2)

As the worst-case token cycle time (V) is constant, equation (7.2) can be re-written as:

{ } k
nsk

k
i

ns

i
k

i

k

k

ns
TT

V ∀









−×≤












+








× ∑

=

 ,12
min

11
1

1

(7.3)

Note that, as we are considering token-passing networks, where, at most, one message
is transmitted per token arrival, the interference from other masters is only reflected on
the evaluation of the V parameter.

Adding Local Scheduling Mechanisms to P-NET and PROFIBUS Masters 119

Consider the following message stream set:

Table 7.4: Message Stream Set Example

Stream Period
S1

k 5
S2

k 7
S3

k 8
S4

k 12

Considering that the worst-case token rotation time is V = 1, it follows that the
schedulability test (7.3) is:

76.075.0
5

1

12

1

8

1

7

1

5

1
124

5

11
1 4

14

1

≤=++++⇔







−×≤












+








× ∑

=i
k

iT

Therefore the message stream set presented in Table 7.4 is schedulable by the RM
algorithm in a token-passing network. In Fig. 7.5, we present a possible time-line for the
message scheduling, assuming that all messages are requested just before the first token
arrival, but with none of them being dispatched in that first token visit. In this way, we
represent a blocking term right at the beginning of the time-line.

Message cycle processed

Priority queue (RM)

Token arrivals

Requests at
the AP level

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

S1
k

S2
k

S3
k S4

k

hi

low

...

S1
k

S2
k

S3
k

S4
k

Fig. 7.5 Schedule example for the message stream set of Table 7.4

This example highlights some of the pessimism associated to the utilisation-based
tests, since, although the schedulability test is just marginally true, none of the message
cycles is scheduled close to its deadline.

120 Adding Local Scheduling Mechanisms to P-NET and PROFIBUS Masters

7.3.2. Case of Earliest Deadline First Priority Assignment

Considering again the analogies to the blocking and tasks' computation time drawn in
Section 7.2, the schedulability test (inequality (2.14), in Section 2.5.1) for the EDF
dispatched tasks can also be adapted to encompass the characteristics of the
P-NET/PROFIBUS token-passing protocols, as follows:

{ } kk
i

ni

ns

i
k

i TT
V

k

∀≤











+








×

≤≤
=

∑ ,1
min

11

1
1

(7.4)

Consider the following message stream set, where we consider values for periods that
are marginally smaller than multiples of the worst-case token cycle time (V = 1):

Table 7.5: Message Stream Set Example

Stream Period
S1

k 4-

S2
k

5
-

S3
k

6
-

S4
k

8
-

The application of the schedulability test (7.4) to this message stream set is:

TRUE 199.01
4

1

8

1

6

1

5

1

4

1
1

4

11
1

4

1

≤⇔≤





 ++++⇔≤












+








× ∑

=i
k

iT

Hence, this message stream set is schedulable considering the EDF priority
assignment scheme, while with the RM assignment scheme would not pass the
feasibility test (7.3): 0.99 ≤ 0.76 is FALSE.

7.4. Response Time Tests

In this section we derive response time feasibility tests for both fixed and dynamic
priority assignment schemes. Such feasibility tests, compared to the (token) utilisation-
based tests are more complex, but also much less pessimistic, as it will be shown in this
section. This is an expected result, as response time tests for task scheduling are
sufficient and necessary conditions, while the utilisation-based tests are generally only
sufficient conditions (refer to Chapter 2). It is also important to note that for the case of
Di

k < Ti
k there are no simple utilisation-based tests for the case of fixed priorities.

7.4.1. Response Time Tests: Fixed Priority Assignment

Based on the analogies made in Section 7.2.2, which led to equation (7.1), the worst-case
response time analysis for the non pre-emptive context (refer to Section 2.4.4) can be

Adding Local Scheduling Mechanisms to P-NET and PROFIBUS Masters 121

adapted to encompass the characteristics of the P-NET/PROFIBUS token-passing
protocols. The worst-case message response time is:

k
i

k
i

k
i CQR += (7.5)

where Qi
k is defined as:

() ()






















+×=×












+= ∑∑

∈∈ ∀∀ ihpjihpj

k
j

k
i

k
j

k
ik

i T

Q
VV

T

Q
VQ 1 (7.6)

Note that this queuing delay is the equivalent to the task's interference in a non pre-
emptive context (equation 2.11). Considering again the message stream set example
presented in Table 7.5, the worst-case response time for each message stream will be as
shown in Table 7.6 (assuming Ci

k = 0.2, ∀i).

Table 7.6: Worst-Case Response Times (RM Case) for the Stream Set of Table 7.5

Stream Response
S1

k 1.2
S2

k 2.2
S3

k 3.2
S4

k 7.2

For S4
k, the iterations for evaluating the queuing delay are as follows:

() ()

() ()

() ()
7

6

7

5

7

4

7
1 ;7

6

6

5

6

4

6
1

6
6

5

5

5

4

5
1 ;5

6

4

5

4

4

4
1

4
6

1

5

1

4

1
1 ;1

6

0

5

0

4

0
1

5

4

4

4

3

4

2

4

1

4

0

4

=



+



+



+==



+



+



+=

=



+



+



+==



+



+



+=

=



+



+



+==



+



+



+=

−−−−−−

−−−−−−

−−−−−−

kk

kk

kk

QQ

QQ

QQ

and iterations stop at this point, since as Q4
k(5) = Q4

k(4) = 7. Therefore, R4
k = 7 + 0.2 = 7.2,

which is smaller than its relative deadline (its period), and thus, the message stream set is
RM schedulable.

Considering the same message stream set, the (token) utilisation-based test (7.3) gives
0.99 ≤ 0.76, which is equivalent to state that this message stream set may or not be
schedulable. Therefore, it turns out that the response time test is much less pessimistic
than the (token) utilisation-based test.

The time-line presented in Fig. 7.6 illustrates the above results.

122 Adding Local Scheduling Mechanisms to P-NET and PROFIBUS Masters

Message cycle processed

Priority queue (RM)

Token arrivals

Requests at
the AP level

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

S1
k

S2
k

S3
k S4

k

hi

low

...

S1
k

S2
k

S3
k

S4
k

Fig. 7.6 RM Schedule for the message stream set of Table 7.5. This figure also illustrates the
worst-case response time for the message stream set (Table 7.6)

7.4.2. Response Time Tests: Dynamic Priority Assignment

Based on the analogies made in Section 7.2.2, which led to equation (7.1), the worst-case
response time analysis for the non pre-emptive context (refer to Section 2.5.5) can also
be adapted to encompass the characteristics of the P-NET/PROFIBUS token-passing
protocols.

The worst-case message response time is, obviously, given by equation (7.5).
However, a major difference exists for the definition of the queuing delay, which for the
EDF case must be defined as:







































 −
+












++×= ∑

≤
≠

k
i

k
j DD

ij
k
j

k
j

k
i

k
j

k
ik

i T

DD

T

Q
VQ 1 ,1min1 (7.7)

that is, a message request concerning stream Si
k will be delayed by all message requests

of other streams having earlier or equal absolute deadlines than the absolute deadline for
Si

k (absolute deadlines are the difference between the relative deadline, Di
k, and the

beginning of the evaluation interval - assumed at time instant 0). Note that while
∑(1 +  Qi

k / Tj
k ) requests having relative deadlines smaller or equal to Di

k can be
placed in the AP queue, from those requests, only a maximum of 1 +  (Di

k - Dj
k)/ Tj

k 
will have absolute deadlines earlier than Di

k. We illustrate this in the following example.

Adding Local Scheduling Mechanisms to P-NET and PROFIBUS Masters 123

Assume the message stream set example of Table 7.7 (D = T).

Table 7.7: Message Stream Set Example

Stream Period
S1

k
4

-

S2
k

5
-

S3
k

6
-

S4
k

7
-

If we consider the synchronous release pattern for message streams, a time-line for
the EDF schedule will be as illustrated in Fig. 7.7.

Message cycle processed

Priority queue (EDF)

Token arrivals

Requests at
the AP level

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

S1
k

S2
k

S3
k S4

k

hi

low

...

S1
k

S2
k

S3
k

S4
k

Fig. 7.7 Schedule for the message stream set of Table 7.7, with messages dispatched according
the EDF priority assignment, and considering a synchronous release pattern

As it can be seen from Fig. 7.7, there is a request for S1
k arriving to the queue before

the processing of the first request for S4
k. However, as that request for S1

k has an absolute
deadline which is later than the absolute deadline for S4

k, it will be processed only after
the request for S4

k. This behaviour of the EDF scheduler is effectively translated by
equation (7.7), as can be seen by the following successive iterations (V = 1):

()

{ } { } { } 41 ,1min1 ,1min1 ,1min1
6

47
1 ,

6

0
1

5

57
1 ,

5

0
1

5

47
1 ,

4

0
1min1

0

4

=+++=















 −
+



++

+















 −
+



++
















 −
+



++=

−

−−

−

−

−−

−−

−−

−
kQ

124 Adding Local Scheduling Mechanisms to P-NET and PROFIBUS Masters

()

{ } { } { } 41 ,1min1 ,1min1 ,2min1
6

47
1 ,

6

4
1

5

57
1 ,

5

4
1

5

47
1 ,

4

4
1min1

1

4

=+++=















 −
+



++

+















 −
+



++
















 −
+



++=

−

−−

−

−

−−

−−

−−

−
kQ

and iterations stop at this point, as Q4
k(1) = Q4

k(0) = 4. The maximum queuing delay for a
request of stream S4

k, considering that the streams have a synchronous release pattern, is
thus as shown in the time-line illustrated in Fig. 7.7.

Note however that the worst-case response time for EDF dispatched messages is not
necessarily found with this synchronous release pattern (refer to Sections 2.5.4 and
2.5.5). Therefore, equation (7.7) must be updated to:

() () ()
























+




































 −+
+












+×+= ∑

+≤
≠

k
i

k
j DaD

ij
k

i
k
j

k
j

k
i

k
j

k
ik

i
k
i T

a

T

DDa

T

aQ
VaBaQ 1 ,1min (7.8)

where Bi
k is defined as follows:

()






+>∃∧≠

=
= k

i
k
jj

k
i DaDaV

aV
aB

 : 0 ,

0 , (7.9)

Note that while with the RM/DM approach (Section 7.4.1) the blocking term is V and
effective for all the message streams, with the EDF approach, we must only consider
(if a ≠ 0) a blocking if it exists a message stream Sj

k (j ≠ i) with an absolute deadline later
than the relative deadline of the instance of Si

k released at time instant a.
A main difference exists in comparison to the analogous formulation for task

scheduling (equation 2.28), since in the case of our token-passing model, for a = 0 there
is always a blocking with the value V.

Similarly to the case of task scheduling, a belongs to the following set of values:

{ } [[
















∩ℵ∈Ψ−+×Ψ∪∈
=

LDDTa k
i

k
l

k
l

ns

l

k

,0 ,0, 0
1 (7.10)

where the (token) synchronous busy period is given by:

V
T

L
L

kns

i
k

i

×







= ∑

=1

(7.11)

In Appendix D.1, we give the pseudo code details of the algorithm used to evaluate
the value for L.

The queuing delay is thus:

(){ }aaQQ k
i

a

k
i −= ,0max (7.12)

Adding Local Scheduling Mechanisms to P-NET and PROFIBUS Masters 125

since the computation Qi
k(a) may occasionally give a value smaller than a (for instance,

when the value of a corresponds to more than one request of Si
k during the interval under

analysis, the interval [0,Qi
k(a)].

Finally, substituting equation (7.12) back in equation (7.5), we define the worst-case
response time of a message stream dispatched according to the EDF scheme as follows:

(){ } k
i

k
i

a

k
i CaaQR +−= ,0max (7.13)

In Appendix D.1, D.2 and D.3, we give the pseudo code details for the evaluation of L
(equation (7.11)), for the determination of the a values for each stream Si

k (equation
(7.10)), and for the evaluation of the Qi

k (equation (7.8)), respectively.
The analysis outlined will be now illustrated for the stream set example of table 7.7.

The results presented were obtained using the following exact characterisation of the
message stream set of table 7.7:

Table 7.8: Exact Characterisation of the Message Stream Set of Table 7.7

Stream Ci
k Ti

k Di
k

S1
k 0.2 3.99 3.99

S2
k 0.2 4.99 4.99

S3
k 0.2 5.99 5.99

S4
k 0.2 6.99 6.99

For this message stream set, the value for L (upper bound for a) is (using (7.11) -
Algorithm D.1): L = 9. Therefore, the values of a that must be tested for each message
stream (equation (7.10) - Algorithm D.2) is:

Table 7.9: a Values Concerning Stream Set of Table 7.8

Stream a = 0 a1 a2 a3 a4 a5 a6 a7
S1

k 0.00 1.00 2.00 3.00 3.99 5.99 7.98 7.99
S2

k 0.00 1.00 2.00 2.99 4.99 6.98 6.99 8.99
S3

k 0.00 1.00 1.99 3.99 5.98 5.99 7.99 8.98
S4

k 0.00 0.99 2.99 4.98 4.99 6.99 7.98 8.97

In order to evaluate the queuing delay for each release pattern, equation (7.8) must be
evaluated for each a value (Algorithm D.3). The results for (Qi

k(a) - a) are:

Table 7.10: Results for all (Qi
k(a) - a) Concerning the Message Stream Set of Table 7.8

Stream a = 0 a1 a2 a3 a4 a5 a6 a7
S1

k 1.00 1.00 1.00 0.00 -0.99 1.01 -0.98 0.01
S2

k 2.00 2.00 1.00 0.01 -1.99 0.02 2.01 1.01
S3

k 3.00 2.00 1.01 -0.99 -2.98 -2.99 2.01 2.02
S4

k 4.00 2.01 0.01 -1.98 -1.99 -3.99 3.02 2.03

In this table, for each message stream the value of max{0, Qi
k(a) - a} is highlighted.

The worst-case response times for the message streams are presented in Table 7.11.

126 Adding Local Scheduling Mechanisms to P-NET and PROFIBUS Masters

Table 7.11: Worst-Case Response Times for the Message Stream Set of Table 7.8

Stream Response a
S1

k 2.01+0.2=1.21 5.99
S2

k 2.01+0.2=2.21 6.99
S3

k 3.00+0.2=3.20 0.00
S4

k 4.00+0.2=4.20 0.00

Therefore, the message stream set is EDF schedulable, since Ri
k ≤ Ti

k (Di
k), ∀i, while

it would not be schedulable with the RM approach. In fact, stream S4
k, and using

equation (7.6), will have the following worst-case queuing delay:
() ()

() ()

() ()
7

6

7

5

7

4

7
1 ;7

6

6

5

6

4

6
1

6
6

5

5

5

4

5
1 ;5

6

4

5

4

4

4
1

4
6

1

5

1

4

1
1 ;1

6

0

5

0

4

0
1

5

4

4

4

3

4

2

4

1

4

0

4

=



+



+



+==



+



+



+=

=



+



+



+==



+



+



+=

=



+



+



+==



+



+



+=

−−−−−−

−−−−−−

−−−−−−

kk

kk

kk

QQ

QQ

QQ

and thus R4
k = 7 + 0.2 = 7.2, which is larger than T4

k (D4
k)= 6.99. Fig. 7.8 puts this to

evidence.

Message cycle processed

Priority queue (RM)

Token arrivals

Requests at
the AP level

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

S1
k

S2
k

S3
k S4

k

hi

low

...

S1
k

S2
k

S3
k

S4
k

Two message requests
belonging to the same
stream: a deadline was
missed.

Fig. 7.8 RM schedule for the stream set of Table 7.7

As a final remark, it is important to note that the stream set of Table 7.8 does not
emphasise the importance of parameter a in equation (7.10). This is only due to the
specific characteristics of the particular stream set. In fact, the results in Tables 7.10
and 7.11 show that considering a = 0 corresponds virtually to the actual worst-case
response time. The following example will better illustrate the importance of parameter

Adding Local Scheduling Mechanisms to P-NET and PROFIBUS Masters 127

a in the evaluation of the queuing delay. The only difference to the previous example is
the value of D2

k.

Table 7.12: Message Stream Set Example

Stream Ci
k Ti

k Di
k

S1
k 0.2 3.99 3.99

S2
k 0.2 4.99 3.90

S3
k 0.2 5.99 5.99

S4
k 0.2 6.99 6.99

For this stream set example, the set of values for a would be as follows (L = 9):

Table 7.13: a Values Concerning Stream Set of Table 7.12

Stream a = 0 a1 a2 a3 a4 a5 a6 a7
S1

k 0.00 2.00 3.00 3.99 4.90 7.98 7.99 ---
S2

k 0.00 0.09 2.09 3.09 4.08 4.99 8.07 8.08
S3

k 0.00 1.00 1.99 2.90 5.98 5.99 7.89 7.99
S4

k 0.00 0.99 1.90 4.98 4.99 6.89 6.99 8.97

Using the resulting values for each Qi
k(a), the difference (Qi

k(a) - a) results as
follows:

Table 7.14: Results for all (Qi
k(a) - a) Concerning the Message Stream Set of Table 7.12

Stream a = 0 a1 a2 a3 a4 a5 a6 a7
S1

k 2.00 1.00 0.00 -0.99 1.10 -0.98 0.01 ---
S2

k 1.00 1.91 0.91 -0.09 -1.08 -1.99 -1.07 0.92
S3

k 3.00 2.00 1.01 0.10 -2.98 -2.99 1.11 3.01
S4

k 4.00 2.01 1.10 -1.98 -1.99 -3.89 -3.99 2.03

As it can be seen, for stream S2
k, with a = 0.09, the queuing delay (as compared to the

case of a = 0) increases from 1.00 to 1.91. This is an understandable result, as its
"absolute deadline" will then be 0.09 + 3.90 = 3.99, and therefore, Si

k will be scheduled
earlier.

7.5. Considering the effect of Unused Tokens (P-NET Networks)

The worst-case response time tests developed in Section 7.3 and 7.4 embody a non-
negligible level of pessimism, which results from considering that the real token rotation
time is constant and equal to V.

In this section we extend that analysis to consider the approach outlined in
Section 4.4, where we developed worst-case response time analysis of P-NET messages
considering the effect of the unused tokens, hence considering the actual token rotation
time.

128 Adding Local Scheduling Mechanisms to P-NET and PROFIBUS Masters

7.5.1. Extending the Response Time Tests for the Fixed Priority Assignment

The worst-case queuing delay (7.6) can be updated to include the effect of unused tokens
as follows:

()

()σ−×







−






















+×= ∑∑

=∀ ∈

HUt
T

Q
VQ

n

y

y
k
j

k
ik

i

ihpj 1

1 (7.14)

with H as defined in equation (4.3), and with Uty (4.16) re-defined as follows:
















 +
+−= ∑

=

yns

l
y

i

yk
iyk

i
k
i

y

T

JaQ
nsNCNCUt

1

*
 ,min (7.15)

In equation (7.15), NCi
k is the worst-case number of consecutive token visits needed

to process a message cycle of stream Si
k. Note that this number is no longer nsk and it

depends on the priority of the particular message stream. NCi
k is given by:

()

∑
∈∀ 











+=

ihpj

k
j

k
ik

i T

Q
NC 1 (7.16)

In equation (5.15), Ja*y denotes the master's logical ring aggregate jitter (refer to
Definition 4.7, in Chapter 4). Its evaluation must be subject to some modifications,
which will now be explained.

The critical instant in master k is now assumed to be marginally after the token
arrival. Compared to the critical instant (tc) defined in Section 4.4, the new definition for
the critical instant (refer to Section 7.2.3) is: tc + τ + ρ.

Therefore, the master's logical ring request jitter (see Definition 4.4) is now given by:

ρτ ++= yy JrJr * (7.17)

where Jry is the previously defined logical ring request jitter (4.11).
Some adaptations must also be made for the definition of the logical ring visit jitter

(Jvy - see Definition (4.6)), since equation (7.14) is only for the queuing delay (refer to
Section 2.4.4 for an explanation). Therefore, Jv*y must be defined as:

M
yy CJvJv −=* (7.18)

with Jvy as defined by equation (4.15), and CM the length of any message cycle in the
network.

Consequently, Ja*y is defined as follows:

HJaHJvJrCJvJrJvJrJa yyy
M

yyyyy +=+−=+−++=−= ρτ*** (7.19)

Finally, substituting equations (7.15) and (7.16) in (7.14) we have the formulation for
the worst-case queuing delay of a stream Si

k, scheduled according to RM/DM priority
scheme, and considering the actual token rotation times.

Adding Local Scheduling Mechanisms to P-NET and PROFIBUS Masters 129

()

() ()

()σ−×














































 +
+












+−












+−

−





















+×=

∑ ∑∑∑

∑

= =∀∀

∀

∈∈

∈

H
T

JaQ
ns

T

Q

T

Q

T

Q
VQ

n

y

ns

l
y

i

yk
iy

k
j

k
i

k
j

k
i

k
j

k
ik

i

y

ihpjihpj

ihpj

1 1

*
 ,1min1

1

(7.20)

with Ja*y as defined in equation (7.19).

7.5.2. Extending the Response Time Tests for the Dynamic Priority Assignment

As the worst-case response time may occur for a message request of stream Si
k produced

at time instant a we need first to determine the value for a that leads to the worst-case
response time (using the methodology outlined in Section 7.4). We denote this value of a
as ai

k.
Equation (7.8) can be updated to:

()

()σ−×







−

−
























+




































 −+
+












+×+=

∑

∑

=

+≤
≠

HUt

T

a

T

DDa

T

Q
VaBQ

n

y

y

DaD
ij

k
i

k
i

k
j

k
j

k
i

k
i

k
j

k
ik

i
k
i

k
i

k
i

k
i

k
j

1

1 ,1min

(7.21)

with ai
k being the value of a which verifies equation (7.12) with respect to equation

(7.8).
Uty (4.16) must be re-defined as follows:




















 −Ω++
+−= ∑

=

yns

l
y

i

k
i

yk
iyk

i
k

i
y

T

aJaQ
nsNCedfNCedfUt

1

*
 ,min (7.22)

In this equation we are considering the maximum interference from masters y (y ≠ k),
as we are considering that nsy requests are placed in each master y at time instant
J*ry + Ω before ai

k. Ω represents the offset for the logical ring release jitter (difference
between the value of ai

k and the previous token arrival at master k). Finnaly, the number
of consecutive token visits needed to process a message cycle of stream Si

k is now
defined as follows:

























−








+




































 −+
+












++= ∑

+≤
≠

 1 ,1min1 ,0max

k
i

k
j DaD

ij

k
i

k
i

k
i

k
j

k
j

k
i

k
i

k
j

k
ik

i V

a

T

a

T

DDa

T

Q
NCedf (7.23)

130 Adding Local Scheduling Mechanisms to P-NET and PROFIBUS Masters

Note that equation (7.23) gives only the number of token rotations starting from time
instant ai

k, since we are subtracting the value ai
k /V, as ai

k /V corresponds to the
number of token rotations from the beginning of the interval under evaluation (time
instant 0) up to time instant ai

k.

7.6. Summary

The worst-case response time of messages in P-NET and PROFIBUS networks is highly
dependent on the number of message streams in each master. The impact of the FCFS
behaviour in the message response time, motivated us to consider priority-based queuing
mechanisms implemented at the masters' application process (AP) level.

We proposed an architecture where requests generated at the AP level are stored in an
AP queue. Priority-based mechanisms are then provided to guarantee that at each token
visit, the highest-priority message request will be the one to be transmitted.

Our main contribution was the adaptation, by providing the convenient analogies, of
the feasibility tests available for task sets such as they could also be used as feasibility
tests of messages in P-NET and PROFIBUS.

We reasoned on how the blocking effect (resulting from non pre-emption) in the
schedulability analysis of tasks could be mapped to each case of priority scheme used to
schedule messages. We showed how the worst-case execution time of tasks could be
translated to the upper bound of the token rotation time in P-NET and PROFIBUS token
passing networks. More important, we demonstrated how the simple utilisation-based
feasibility tests for non pre-emptive independent tasks could be easily adapted to be used
as (token) utilisation-based tests. However, as these tests can be quite pessimistic, we
developed response-time tests which were also adapted from the well know response
time tests used for RM/DM scheduled non pre-emptable independent tasks and we also
adapted the more recently developed response time tests for EDF scheduled non pre-
emptable independent tasks. Finally, we illustrated, for the P-NET case, how the analysis
may turn even more effective by embodying previous analysis (Section 4.4) considering
the actual token rotation time.

7.7. References

Tovar, E., Vasques, F. and Burns, A. (1998). Adding Local Priority-Based Dispatching
Mechanisms to P-NET Networks: a Fixed Priority Approach. Polytechnic Institute of Porto,
Technical Report HURRAY-TR-9822, December 1998, to appear in the Proceedings of the
11th Euromicro Conference on Real-Time Systems.

Tovar, E. and Vasques, F. (1999). From Task Scheduling in Single Processor Environments to
Message Scheduling in a Profibus Fieldbus Network. In Lecture Notes in Computer Science,
No. 1586, pp. 339-352.

Chapter 8

Conclusions and Future Work

In this chapter we review both the research objectives and results of this thesis,
giving emphasis on how the main contributions targeted the original research
objectives. Finally, we provide some perspectives on future research work

8.1. Review of the Research Objectives

Fieldbus networks are widely used as the communication support for distributed
computer-controlled systems (DCCS), in applications ranging from process control to
discrete manufacturing. Usually, DCCS impose real-time requirements; that is, traffic
must be sent and received within a bounded interval, otherwise a timing fault is said to
occur.

Fieldbus networks are usually broadcast networks, where several network nodes share
a common communication medium. Messages are transmitted from a source node to a
destination node via the shared communication medium. As a consequence, messages to
be transmitted by a specific network node may experience some queuing delays,
resulting not only from contention between message requests from the same network
node, but also with message requests from the other network nodes.

Therefore, a potential leap towards the use of fieldbuses in time-critical applications
lies on the accurate characterisation of the temporal behaviour of its Medium Access
Control (MAC) protocol.

The main research objective of this thesis was to develop analysis and methodologies
to guarantee, prior to run-time, that real-time distributed computer-controlled systems
(DCCS) could be successfully implemented with standard fieldbus communication
networks, such as those defined by the European Standard EN 50170: P-NRT,
PROFIBUS and WorldFIP.

A DCCS is implemented by a set of computational devices. Each computational
device runs a number of tasks. These tasks communicate their results by passing
messages between computational devices across a communication network.

In this thesis we addressed one of the components that contribute to the overall
latencies of the communicating tasks: messages' response time. In order to guarantee that
the timing requirements of DCCS are met, the communication delay between a sending
task queuing a message, and the related receiving task (it can be in the same network
node, or even the same task) being able to access that message, must be upper bounded.

A basic requirement for a network used as the communication support for DCCS, is
that a deterministic access to the shared communication medium must be provided to the

132 Conclusions and Future Work

message requests, or in other words, the queuing delay of a message request must be
upper bounded.

Considering this broad definition for deterministic access, all the three analysed
protocols fulfil this basic requirement. In fact, not many local area networks miss this
requirement, at least in the way we have defined it. A notable example that confirms the
exception is the CSMA/CD MAC protocol.

In WorldFIP, and concerning the periodic traffic, the deterministic access is
guaranteed by the bus arbitrator, which controls data transfers according a static-
scanning table. For the aperiodic traffic, the deterministic access is also guaranteed,
provided that there is at least one microcycle with an aperiodic window length suitable
for processing aperiodic requests. Note that in the analysis presented in Chapter 6,
Section 6.6, only urgent requests for aperiodic buffer transfers are considered. If
message requests and/or normal requests for aperiodic buffer transfers were also
supported, these would have unbounded queuing delays, since the BA gives priority to
process the urgent queue for aperiodic buffer transfers. However, as these two other
services are not intended to support real-time data transfers, the aperiodic transfers can
also be considered to have deterministic access.

PROFIBUS adopts a simplified version of the timed-token protocol where each
master has a bounded interval to access the network. As in the original time-token
protocol, PROFIBUS considers two types of quality of service: synchronous
(high-priority or real-time) and asynchronous (low-priority). The main difference of the
PROFIBUS protocol, as compared to the original timed-token protocol, is the absence of
synchronous bandwidth allocation. In the original timed-token protocol, this parameter
could be configured in each station, providing a guaranteed token holding time for
processing high-priority messages. In the PROFIBUS protocol, each master is
guaranteed to be able to process, at least, one high-priority message request. This
configures also a deterministic access type. Contrarily, the other services (low-priority
requests) that are provided by the PROFIBUS data link layer offer no guarantees of
deterministic access. It depends on the network load of high-priority traffic and on how
the token target rotation timer (TTR) is set. Significantly, if TTR is set very close to 0, low-
priority traffic will have no access to the network at all. As a conclusion, the low-priority
traffic may affect the throughput of the high-priority traffic. However, and considering
the worst-case situation, the high-priority traffic still has a guaranteed deterministic
access. Hence, we considered that only the high-priority PROFIBUS quality of service is
intended to support real-time traffic.

Finally, P-NET also offers a deterministic access, since it is based on a virtual token
passing (VTP) mechanism, where each master is guaranteed a bounded access delay.
This determinism is not achieved by means of controlling the token rotation time, as for
the timed-token protocol. Instead, the bounded access delay is implicitly guaranteed by
the fact that, at each token visit, only one message request may be performed. For the
P-NET case, it is however important to mention that there is only one type of quality of
service for message transfers, which means that, as non real-time traffic cannot be
distinguished from real-time traffic, it interferes even more significantly with the real-
time traffic.

Therefore, the basic real-time requirement for each one of these three fieldbus
protocols is fulfilled: deterministic access.

Conclusions and Future Work 133

The subsequent step to achieve our research objectives was to provide analysis to test
the messages' timing requirements (namely their deadlines) against the worst-case peak
load conditions.

In this thesis we developed, for each one of the three network protocols, a set of
analytical methods to analyse, prior to run-time, if no message deadline will be missed.
These methods constitute a set of powerful tools to guarantee the timing requirements of
distributed time-critical applications where distribution is supported by the
communication services of one of these three networks. These methods were presented
in Chapters 4, 5 and 6, for P-NET, PROFIBUS and WorldFIP networks, respectively.

In distributed computer-controlled systems, the real-time performance depends also
on the ability of the communication networks to schedule messages according to their
priorities. While in WorldFIP networks the periodic messages (concerning identified
variables) can be scheduled by the bus arbitrator on a priority basis, in P-NET and
PROFIBUS networks, the first-come-first-served (FCFS) behaviour of their
communication queues precludes this ability. In this thesis we proposed a methodology
to guarantee the schedulability of messages based on the priority ordered application
process queue, in both P-NET and PROFIBUS masters. The implementation of this
priority based scheduling is even more important in P-NET networks, since, as it was
mentioned, its communication queue treats all the requests in the same manner. It is
however important to stress that RM/DM scheduling is preferable to EDF scheduling in
the case of P-NET networks, since, a fixed priority scheme enables the definition of
higher-priority and lower-priority message streams and thus the lower-priority traffic
does not interfere with the scheduling of the higher-priority message streams.

8.2. Main Research Contributions of this Thesis

We have made some important contributions to the schedulability analysis of messages,
for all the three EN 50170 profiles. In fact, and contrarily to the case of CAN networks,
there were not much previous work addressing real-time aspects devoted to these
fieldbus networks. This is not a surprise, since as CAN is based on a priority bus, all the
methodologies used for the task scheduling can almost be directly applied. For the
EN 50170 networks, real-time analysis is more challenging, since they must combine
specific models for the MAC behaviour with the traditional real-time analysis. We hope
that we have made relevant contributions to fill this gap. Below, we summarise our main
contributions.

1. We developed a simple methodology to evaluate the worst-case response-time of
P-NET messages, based on the concept of full token utilisation. This approach to
evaluate the response time of P-NET messages is only effective for P-Net
networks with high bus utilisation. Therefore, we extended the analysis to a more
sophisticated P-NET model, which considers the actual token utilisation by the
different network masters. The major contribution of this model is to provide a
less pessimistic, and thus more accurate, analysis for the evaluation of the worst-
case communication response time of P-NET messages.

134 Conclusions and Future Work

2. Also concerning P-NET networks, we showed how, by using P-NET hopping
devices, a significant reduction in the messages' response time could be achieved.
However, this increase in the network responsiveness can only be obtained for
message transactions within the same network segment. Such multi-hop
messages may also have real-time requirements, and thus, we also developed
feasibility analysis for this type of messages.

3. We developed a simple worst-case response time analysis for PROFIBUS
messages. This analysis improves previous related work, where the FCFS
behaviour of the communication queues was not considered. It also improves
previous works in the sense that our analysis is based on response time tests,
hence less pessimistic.

4. Due to the absence of synchronous bandwidth allocation, guaranteed real-time
approaches for PROFIBUS networks very much depend on the upper bound for
the inter-arrival time of the token to a station. Therefore, the PROFIBUS token
cycle time is an important parameter for the real-time analysis. In this thesis, we
provide an accurate evaluation of the PROFIBUS token cycle time, which allows
for an accurate evaluation of the worst-case response time of PROFIBUS
messages.

5. For the WorldFIP periodic traffic, message deadlines can be easily guaranteed,
since the bus arbitrator implements a static schedule for the periodic variables.
Therefore, real-time guarantees for periodic traffic very much rely on
methodologies for building the WorldFIP BAT. In this thesis, we show how the
typical priority assignment schemes can be used to build a WorldFIP BAT,
guaranteeing the real-time requirements of the periodic traffic.

6. Concerning the aperiodic traffic, we showed how some previous works revealed
to be quite pessimistic. We significantly improved previous results by
approaching the analysis for the aperiodic traffic in an integrated way with the
methodologies used to set the bus arbitrator table. Thus, we reduce the pessimism
by taking into consideration the actual length of the periodic window in each
microcycle. Also important, we introduced both the effect of the communication
jitter and of the padding window.

7. We demonstrated how the methodologies used to guarantee the timing
requirements of tasks in single processor environments, can be successfully
adapted to encompass the characteristics of P-NET and PROFIBUS networks.
The major importance of these methodologies is that they enable the real-time
analysis of P-NET and PROFIBUS messages that are scheduled, at the
application process level, according to priority-based schemes. For the proposed
architecture we developed feasibility tests, adapted from both the utilisation-
based and response time tests used for the schedulability analysis of tasks in
single processor environments.

8.3. Future Work

Although the provided analysis and methodologies constitute a set of powerful tools to
guarantee the messages' timing requirements of the EN 50170 profiles, some

Conclusions and Future Work 135

improvements can still be made. More precisely, some reductions in the pessimism level
of some results may be achieved, thus improving the analysis in the sense that systems
with tighter communication deadlines may be guaranteed.

It is also important to stress that almost all the provided pre-run-time schedulability
analysis restrict, in some way, the average utilisation of the system (either the shared
processor - for the case of tasks scheduling, or the shared communication medium - in
the case of message transfers). This is a consequence of the real-time guaranteed
approaches, which rely on testing the systems' schedulability against worst-case peak
situations. This is why priority-based dispatching has major advantages over the
first-come-first-served dispatching. This is also why among priority-based schemes, and
from the schedulability point of view, dynamic priority-based (EDF) have important
advantages over fixed priority-based (RM/DM) schemes. Finally, this is also why the
determination of the worst-case peak-load conditions must be as close to reality as
possible.

In this context we survey some of the provided results which can be improved or
extended. This section also briefly describes some interesting research topics, which are
worthwhile investigating further.

1. For the case of PROFIBUS networks, in the performed analysis we considered
the worst-case token rotation time. This assumption has an important level of
pessimism, particularly in the case of a low network load. It would be worthwhile
to develop models giving the worst-case time elapsed between any number of
token visits, by considering the rate characteristics of the different message
streams. In this way the analysis would be improved in the same sense as the
analysis provided for P-NET networks in Section 4.4.

2. One important parameter of the original timed-token protocol is the station's
synchronous bandwidth allocation. As the P-NET standard allows the on-line
change of the master's address, it would be worthwhile to investigate the
advantages of allocating a set of addresses to each master instead of a single one.
With this method it would be possible to emulate the timed-token protocol, and
thus the well-known bandwidth allocation schemes could be applied to P-NET
networks.

3. In P-NET, hopping devices relay messages at the data link / network layer. This
precludes the use of AP priority-based mechanisms to the P-NET multi-hop
messages. It would be worthwhile to investigate methodologies to overcome this
aspect. A hypothesis would be to give higher priorities to the multi-hop message
streams.

4. For the PROFIBUS, in Section 5.5 we addressed the so-called Constrained
Low-Priority Traffic Profile. The approach used to guarantee the real-time
behaviour of the high-priority traffic was to set the TTR parameter as large as
possible such that at each token visit all high-priority traffic would be processed.
Typically this results in a large value for TTR, able to comply with the worst-case
peak load token rotation, and therefore, in average, part of the token visits will
not be fully utilised to transmit high-priority-traffic. This "time not used" to
transmit high-priority traffic, could be used to transmit low-priority traffic, thus
enhancing the throughput of the low-priority traffic.

136 Conclusions and Future Work

5. In the evaluation of the worst-case response time for the WorldFIP aperiodic
requests, the critical instant was defined at the beginning of the macrocycle. This
is valid for the methodologies used to set the WorldFIP BAT, as they produce a
static schedule where the microcycles most loaded with periodic scans are at the
beginning of the macrocycle. There are however some other possibilities to set
the WorldFIP BAT. In such case, the critical instant should be re-defined as the
worst-case response time for an aperiodic request would occur at a different point
of the macrocycle. A solution can be to test all possible microcycles.

6. In the performed analysis, the feasibility tests (both response time and
utilisation-based tests) use information on the periodicity of the message streams
(minimum inter-request time). However, message requests are queued by
application tasks, and therefore, in some way, message requests inherit from tasks
their period, and in the case of message requests dispatched in a priority-basis,
also their priority. Therefore, one could approach differently the provided
feasibility tests, not considering directly the periodicities of the message stream
requests but the periodicities of the tasks that generate such requests. In this case,
one should include the effect of message release jitter; that is, the minimum inter-
arrival time between message requests from the same message stream is likely to
be smaller than the minimum interval between two consecutive releases of the
sending task. In the worst-case, the message release jitter can be equal to the
worst-case response time of the sending task. This approach has been addressed
in the literature, and offers a number of advantages, as it is easier to engineer the
overall real-time DCCS from the perspective of timing characteristics of the
applications tasks.

7. As a final remark, it would be interesting to combine the proposed real-time
analysis with some dependability analysis. That is, how mechanisms provided to
support some fault-tolerance level can affect the real-time behaviour of the
DCCS, realising, on the other hand, that system's dependability is a requirement
for a hard real-time system.

Appendix

Pseudo Code Algorithms

A. Pseudo Code Algorithms Referenced in Chapter 4

A.1. Message Worst-Case Response Time Considering Actual Token Utilisation

Function pnet_sched_analysis;
input: n /* number of masters */

pass /* time to pass the token after message cycle */
idle /* time to pass the token if no message cycle */

/* transmitted */
ns[w] /* array containing number of streams in each master; */

/* w ranges from 1 to n */
M[x, y, z] /* message streams information; */

/* x ranges from 1 to n; */
/* y ranges from 1 to max (ns[])*/

 /* z ranges 1 to 3; */
/* z = 1(len. of mes. cycle); z = 2 (period); */
/* z = 3 (relative deadline) */

output: O[x, y] /* similar to M [x, y, z] except for z */
/* if O[x, y] = 1 stream marked as not schedulable; */
/* if O[x, y] = 0 stream schedul. */

R[x, y] /* worst-case response time; x ranges from 1 to n; */
/* y ranges from 1 to max (ns[])*/

begin
1: /* computation of CM */
2: CM = 0;
3: for i = 1 to n do
4: for j = 1 to ns[i] do
5: if M[i, j, 1] > CM then
6: CM = M[i, j, 1]
7: end if
8: end for
9: end for;
10: H = react + CM + pass;
11: for i = 1 to n do
12: R_tdma = ns[i] * n * H;
13: R = 0;
14: repeat
15: R_Before = R; unt = 0;
16: for j = 1 to n do
17: if j <> i then
18: /* computation of visit jitter */
19: jv = calc_visit (i, j)
20: /* computation of aggregate jitter */
21: jitter = ((n + i – j) mod n) * H – jv;

138 Appendix - Pseudo Code Algorithms

22: add_req = 0;
23:
24: for l = 1 to ns[j] do
25: add_req = add_req + int ((R + jitter)/M[j, l, 2])
26: end for;
27: if (add_req + ns[j]) < ns[i] then
28: unt = unt + (ns[i] – add_req – ns[j])
29: end if
30: end if;
31: R = R_tdma - unt * (H – idle)
32: end for
33: until R = R_Before;
34: for j = 1 to ns[i] do
35: R[i, j] = R;
36: if M[i, j, 3] < R then
37: /* mark message stream j of master i not schedulable */
38: O[i, j] = 1
39: end if
40: end for
41: end for

return O, M

Function visit_jitter (i, j);
input: i /* equivalent master k */

j /* master y */
H, ns[w], idle /* global vars */

output: vj /* visit jitter */

Begin
1: jv = ((n + i – j) mod n) * idle + CM;
2: if j > i then
3: for k = j + 1 to n do
4: if ns[k] >= ns[i] then
5: jv = jv + H – idle
6: end if
7: end for
8: for k = 1 to i –1 do
9: if ns[k] >= ns[i] then
10: jv = jv + H – idle
11: end if
12: end for
13: else
14: for k = j + 1 to i –1 do
15: if ns[k] >= ns[i] then
16: jv = jv + H – idle
17: end if
18: end for
19: end if

return jv

Appendix - Pseudo Code Algorithms 139

B. Pseudo Code Algorithms Referenced in Chapter 5

B.1. Evaluation of the Token Lateness

--
- Evaluation of the maximum token lateness
--
function t_del;
input: n /* number of master */

nh[k] /* number of high-priority message streams */
/* in each master k */

nh[k] /* number of low-priority message streams */
/* in each master k */

Ch[i,j] /* array containing the length of each message */
/* high-priority message stream */
/* i ranging from 1 to n (number of masters) */
/* each j ranging from 1 to nhk */

Cl[i,j] /* array containing the length of each message */
/* low-priority message stream */
/* i ranging from 1 to n */
/* each j ranging from 1 to nlk */

output:
t_del[k] /* k ranging from 1 to n */

begin
1: /* evaluate the max Ch for each master */
2: /* evaluate the max Cl for each master */
3: for k = 1 to n do
4: maxh = 0;
5: maxl = 0;
6: for i = 1 to nh[k] do
7: if Ch[i,k] > maxh then
8: maxh = Ch[i,k];
9: end if;
10: if Cl[i,k] > maxl then
11: maxl = Ch[i,k];
12: end if;
13: end for;
14: max_h[k] = maxh;
15: max_l[k] = maxl;
16: end for;
17:

140 Appendix - Pseudo Code Algorithms

18: /* evaluate tdel for each master */
19: for k = 1 to n do
20: maxtdel = 0;
21: for j = k to n do
22: if max_h[j] > max_l[j] then
23: term1 = max_h[j];
24: else
25: term1 = max_l[j];
26: end if;
27: term2 = 0;
28: for i = j + 1 to n do
29: term2 = term2 + max_h[i];
30: end for;
31: for i = 1 to k - 1 do
32: term2 = term2 + max_h[i];
33: end for;
34: if (term1 + term2) > maxtdel then
35: maxtdel = term1 + term2;
36: end if;
37: end for;
38:
39: for j = 1 to k - 1 do
40: if max_h[j] > max_l[j] then
41: term1 = max_h[j];
42: else
43: term1 = max_l[j];
44: end if;
45: term2 = 0;
46: if k <> n then
47: for i = j + 1 to n do
48: term2 = term2 + max_h[i];
49: end for;
50: for i = 1 to k - 1 do
51: term2 = term2 + max_h[i];
52: end for;
53: else
54: for i = j + 1 to n do
55: term2 = term2 + max_h[i];
56: end for;
57: end if;
58: if (term1 + term2) > maxtdel then
59: maxtdel = term1 + term2;
60: end if;
61: end for;
62:
63: t_del[k] = maxtdel;
64: end for;

return t_del;
--

Appendix - Pseudo Code Algorithms 141

C. Pseudo Code Algorithms Referenced in Chapter 6

C.1. Evaluation of the Microcycle

--
- Evaluation of the Microcycle Value
--
function microcycle;
input: np /* number of periodic variables */

tp[i] /* vector containing the periodicity of the variables */
output: µCy /* value of the microcycle */

begin
1: min = MAXINT;
2: for i = 1 to np do
3: if tp[i] < min then
4: min = tp[i]
5: end if
6: end for;
7: µCy = min + 1;
8: repeat
9: µCy = µCy - 1;
10: ctrl = TRUE;
11: for i = 1 to np do
12: if tp[i] mod µCy <> 0 then
13: ctrl = FALSE
14: end if
15: end for
16: until control = TRUE;

return µCy;
--

C.2. Evaluation of the Macrocycle

--
- Evaluation of the Macrocycle Value
--
function macrocycle;
input: np /* number of periodic variables */

tp[i] /* vector containing the periodicity of the variables */
µCy /* value of the microcycle */

output: Mcy /* value of the macrocycle */

begin
1: max = 0;
2: for i = 1 to np do
3: if tp[i] > max then
4: max = tp[i]
5: end if
6: end for;
7: N = max - 1;
8: ctrl = FALSE;

142 Appendix - Pseudo Code Algorithms

9: while ctrl = FALSE do
10: N = N + 1;
11: ctrl = TRUE;
12: for i = 1 to np do
13: if N mod (tp[i]/µCy) <> 0 then
14: ctrl = FALSE
15: end if
16: end for
17: end while;

18: MCy = N × µCy;
return MCy;
--

C.3. Building the BAT (RM Approach)

--
- Rate Monotonic for Building the BAT
--
function rm_bat;
input: np /* number of periodic variables */

Vp[i,j] /* array containing the periodicity of the variables */
/* ORDERED by periodicities; i ranging from 1 to np */
/* and the length of Cpi, j ranging from 1 to 2 */

µCy /* value of the microcycle */
N /* number of microcycles in the macrocycle */

output:
bat[i,cycle] /* i ranging from 1 to np */

/* cycle ranging from 1 to N */
begin

1: for i = 1 to np do
2: cycle = 1;
3: repeat
4: if load[cycle] + Vp[i,2] <= µCy then
5: bat[i,cycle] = 1;
6: load[cycle] = load[cycle] + 1;
7: cycle = cycle + (Vp[i,1] div µCy)
8: else;
9: cycle1 = cycle1 + 1;
10: ctrl = FALSE;
11: repeat
12: if load[cycle1] + Vp[i,2] <= µCy then
13: ctrl = TRUE
14: end if;
15: until (ctrl = TRUE) or (cycle1 >= (cycle + (Vp[i,1]
16: div µCy)));
17: if cycle1 >= (cycle + (Vp[i,1] div µCy)) then
18: bat[i,cycle1] = 1;
19: load[cycle1] = load[cycle1] + 1;
20: cycle = cycle + (Vp[i,1] div µCy)
21: else
22: /* MARK Vpi NOT SCHEDULABLE with RM Algorithm */
23: cycle = cycle + (Vp[i,1] div µCy)
24: end if
25: end if
26: until cycle > N
27: end for

return bat;
--

Appendix - Pseudo Code Algorithms 143

C.4. Building the BAT (EDF Approach)

--
- Earliest Deadline First for Building the BAT
--
function edf_bat;
input: np /* number of periodic variables */

Vp[i,j] /* array containing the periodicity of the variables */
/* i ranging from 1 to np */
/* and the length of Cpi, j ranging from 1 to 2 */

µCy /* value of the microcycle */
N /* number of microcycles in the macrocycle */

output:
bat[i,cycle] /* i ranging from 1 to np */

/* cycle ranging from 1 to N */
begin

1: cycle = 0;
2: repeat
3: /* determine request generated in each microcycle */
4: for i = 1 to np do
5: if cycle mod Vp[i,1] = 0 then
6: disp[i,1] = 1;
7: disp[i,2] = Vp[i,1] + cycle;
8: disp[i,3] = cycle
9: else
10: /* MARK variable Vpi NOT SCHEDULABLE */
11: end if
12: end for;
13:
14: /* Schedule Variables in Current Microcycle */
15: load_full = FALSE;
16: repeat
17: no_rq = TRUE;
18: earliest = MAXINT;
19: var_chosen = 0; /* no variable chosen */
20:
21: /* Chose Earliest Deadline from Pending Requests */
22: for i = 1 to np do
23: if disp[i,1] = 1 then /* if there is request */
24: no_rq = FALSE;
25: if disp[i,2] <= earliest then
26: if var_chosen = 0 then
27: earliest = disp[i,2];
28: var_chosen = i
29: else
30: /* decide earliest request from two */
31: /* with equal deadlines */
32: if disp[i,3] < disp[var_chosen,3] then
33: earliest = disp[i,2];
34: var_chosen = i
35: end if
36: end if
37: end if
38: end if
39: end for;
40:
41: /* Verify the Load in the Current Microcycle */
42: if load[cycle + 1] + Vp[i,2] <= µCy then
43: bat[var_chosen, cycle + 1] = 1

144 Appendix - Pseudo Code Algorithms

44: load[cycle + 1] = load[cycle + 1] + Vp[var_chosen,2];
45: disp[var_chosen,1] = 0;
46: disp[var_chosen,2] = 0;
47: disp[var_chosen,3] = 0;
48: else
49: load_full = TRUE
50: end if;
51: until (load_full = TRUE) or (no_rq = TRUE)
52:
53: cycle = cycle + 1;
54: until cycle = N;

return bat;
--

C.5. Evaluation of the Communication Jitter

--
- evaluation of the maximum comm. jitter of a periodic var
--
function Jitter;
input: np /* number of periodic variables */

Vp[i,j] /* array containing the periodicity of */
/*the variables */
/* i ranging from 1 to np */
/* and the length of Cpi, */
/* j ranging from 1 to 2 */

µCy /* value of the microcycle */
N /* number of microcycles in the */

/* macrocycle */
bat[i,cycle] /* i ranging from 1 to np */

/* cycle ranging from 1 to N */
output: J[i] /* maximum polling jitter of variable Vpi */

begin
1: for i = 1 to np do
2:
3: /* Evaluate number of hits of variable Vpi */
4: hits = 0;
5: for cycle = 1 to N do
6: if bat[i,cycle] = 1 then
7: hits = hits + 1;
8: end if
9: end for;
10:
11: /* Find first hit in a macrocycle */
12: cycle = 0;
13: repeat
14: cycle = cycle + 1
15: until bat[i,cycle] = 1;
16:
17: /* Find last hit in a macrocycle */
18: cycle1 = N + 1;
19: repeat
20: cycle1 = cycle1 - 1
21: until bat[i,cycle1] = 1;
22:
23: /* Evaluate time span between the last hit in a */
24: /* macrocycle and the 1st in a subsequent */

Appendix - Pseudo Code Algorithms 145

25: span = (N - cycle1 + cycle - 1) × µCy;
26: load_par = 0;
27: for j = 1 to i - 1 do
28: if bat[j,cycle] = 1 then
29: load_par = load_par + Vp[j,2]
30: end if
31: end for;
32: span = span + load_par;
33: load_par = 0;
34: for j = 1 to i - 1 do
35: if bat[j,cycle1] = 1 then
36: load_par = load_par + Vp[j,2]
37: end if
38: end for;
39: span = span + (µCy - load_par);
40:
41: /* Evaluate time span between each of the hits */
42: /* within a macrocycle */
43: for k = 1 to hits - 1 do
44: cycle1 = cycle;
45: repeat
46: cycle1 = cycle1 + 1
47: until bat[i,cycle1] = 1;

48: span1 = (cycle1 - cycle - 1) × µCy;
49: load_par = 0;
50: for j = 1 to i - 1 do
51: if bat[j,cycle] = 1 then
52: load_par = load_par + Vp[j,2]
53: end if
54: end for;
55: span1 = span1 + (µCy - load_par);
56: load_par = 0;
57: for j = 1 to i - 1 do
58: if bat[j,cycle1] = 1 then
59: load_par = load_par + Vp[j,2]
60: end if
61: end for;
62: span1 = span1 + load_par;
63:
64: if span1 > span then
65: span = span1
66: end if;
67: cycle = cycle1;
68: end for;
69: J[i] = span - Vp[i,1];
70: end for

return J;
--

146 Appendix - Pseudo Code Algorithms

C.6. Number of Microcycles in an Aperiodic Busy Interval

--
- Number of Cycles of the Aperiodic Busy Interval
--
function ncy_apbi;
input: np /* number of periodic variables */

na /* number of aperiodic variables */
µCy /* value of the microcycle */
bat[i,l] /* i ranging from 1 to np */
ca /* length of any aperiodic transaction */
cp /* length of all periodic transaction */
N /* number of microcycles in the */

/* macrocycle */
output: ncy_abi /* number of cycles of the abi */

begin
1: cycle = 0;
2: na_aux = 0;
3: repeat
4: cycle = cycle + 1;
5: count_p = 0;
6: for i = 1 to np do
7: if bat[i,((cycle - 1) mod N) + 1] = 1 then
8: count_p = count_p + 1;
9: end if;
10: end for;

11: aw = µCy - count_p × cp;
12: na_aux = na_aux + aw div ca;
13: until na_aux >= 2 × na;
14: ncy_abi = cycle;

return ncy_abi;
--

C.7. Length of an Aperiodic Busy Interval

--
- Length of Aperiodic Busy Interval
--
function len_apbi;
input: np /* number of periodic variables */

na /* number of aperiodic variables */
µCy /* value of the microcycle */
bat[i,l] /* i ranging from 1 to np */
ca /* length of any aperiodic transaction */
cp /* length of all periodic transactions */
N /* number of microcycles in the */

/* macrocycle */
ncy_abi /* number of microcycles of the abi */

output: len_abi /* length of the aperiodic busy interval */

begin
1: /* determine number of aperiodic transfers in */
2: /* the ncy_abi - 1 microcycles */
3: for cycle = 1 to ncy_abi - 1 do

Appendix - Pseudo Code Algorithms 147

4: count_p = 0;
5: for i = 1 to np do
6: if bat[i, ((cycle - 1) mod N) + 1] = 1 then
7: count_p = count_p + 1
8: end if
9: end for;

10: aw = µCy - count_p × cp;
11: na_aux = na_aux + aw div ca
12: end for;
13:
14: /* determine the number of periodic scans */
15: /* in microcycle */
16: /* number ncy_abi */
17: count_p = 0;
18: for i = 1 to np do
19: if bat[i, ((ncy_abi - 1) mod N) + 1] = 1 then
20: count_p = count_p + 1
21: end if
22: end for;

23: len_p = count_p × cp;
24:
25: /* determine length of aperiodic busy window */
26: len_abi = (ncy_abi - 1) × µCy + len_p + (2 × na -
27: na_aux) × ca

return len_abi;
--

148 Appendix - Pseudo Code Algorithms

D. Pseudo Code Algorithms Referenced in Chapter 7

D.1. Evaluation of the Synchronous (Token) Busy Interval - L (EDF case)

--
- Evaluation of the (Token) Synchronous Busy Period
--
function TSBP;
input: ns /* number of streams of master k */

V /* token cycle time */
s[i,j] /* i ranging from 1 to ns */

/* j = 1 -> length of a message cycle of the stream */
/* j = 2 -> periodicity of the stream */
/* j = 3 -> relative deadline of the stream */

output: L /* (Token) Synchronous Busy Period */

begin

1: L = ns × V;
2: repeat
3: L_before = L;
4: for i = 1 to ns do
5: aux = L / s[i,2];
6: if (frac(aux) <> 0) then
7: L = L + (trunc(aux) + 1) × V

 8: else
9: L = L + trunc(aux) × V
10: end if;
11: until L_before = L;

return L;
--

D.2. Finding the Set of Values for a (EDF case)

--
- Finding the Set of Values for the a parameter
--
function a_values;
input: ns /* number of streams of master k */

L /* value of for the synchronous busy period */
s[i,j] /* i ranging from 1 to ns */

/* j = 1 -> length of a message cycle of stream */
/* j = 2 -> periodicity of the stream */
/* j = 3 -> relative deadline of the stream */

str /* particular stream to evaluate
output: List_a[str,i] /* list of the values for parameter a, */

/* concerning stream str */
/* i ranges from 1 to na[str] */

na[str] /* number of values for parameter a, */
/* concerning stream str */

Appendix - Pseudo Code Algorithms 149

begin
1: kapa = 0;
2: na[str] = 1;
3: repeat
4: store = FALSE;
5: for j = 1 to ns do

6: aux = kapa × s[j,2] + s[j,3] - s[str,3];
7: if (aux < L) and (aux > 0) then
8: exist = FALSE;
9: i = 1;
10: while List_a[str,i] <> aux do
11: i = i + 1;
12: end while;
13: if List_a[str,i] <> 0 then
14: for i1 = 1 to na[str] + 1 downto i do
15: List_a[str, i1] = List_a[str, i1 - 1]
16: end for;
17: List_a[str, i1] = aux;
18: na[str] = na[str] + 1
19: end if;
20: store = TRUE;
21: end if;
22: if (aux < 0) then
23: store = TRUE;
24: end if;
25: end for;
26: kapa = kapa + 1
27: until store = FALSE

return List_a, na;
--

D.3. Evaluation of the Queuing Delay (EDF case)

--
- Evaluation of the Queuing Delay of a Stream
--
function Q_Delay;
input: ns /* number of streams of master k */

V /* token cycle time */
s[i,j] /* i ranging from 1 to ns */

/* j = 1 -> length of a message cycle */
/* of the stream */
/* j = 2 -> periodicity of the stream */
/* j = 3 -> relative deadline of the stream */

L /* (Token) Synchronous Busy Period */
List_a[str,i] /* list of the values for parameter a, */

/* concerning stream str */
/* i ranges from 1 to na[str] */

na[str] /* number of values for parameter a, */
/* concerning stream str */

output:
qd[i] /* maximum queuing delay for a stream i */

/* i ranging from 1 to ns */

150 Appendix - Pseudo Code Algorithms

begin
1: for i = 1 to ns do
2: for iter = 1 to na[i] /* for each value of a */
3: a = List_a[i,iter];
4: q = 0;
5: repeat
6: q_before = q;
7: requests = 0;

 8: for j = 1 to ns do
9: if j <> i then
10: if s[j,3] <= (a + a[i,3]) then
11: term1 = 1 + trunc (q / s[j,2]);
12: term1 = 1 + trunc ((a + s[i,2] - s[j,3]) /
13: s[j,2];
14: if term1 < term2 then
15: minimum = term1
16: else
17: minimum = term2
18: end if;
19: minimum = minimum + trunc(a/s[i,3]);
20: end if;
21: end if;
22: requests = requests + minimum;
23: end for;
24:
25: block = 0;
26: if a = 0 then
27: block = V
28: end if;
29: for z = 1 to ns do
30: if z <> i then
31: if s[z,3] > (a + s[i,3]) then
32: block = 1;
33: end if;
34: end if;
35: end for;
36:
37: q = (block + req) × V
38: until q = q_before;
39: if (q - a) > qd[i] then
40: qd[i] = (q - a)
41: end if;
42: end for; /* cycle concerning values for a */
43: end for;

return qd;
--

List of Publications Related to this Thesis

A. To Appear in Scientific Journals

1. Tovar, E., Vasques, F. and Burns, A. Supporting Real-Time Distributed Computer-Controlled
Systems with Multi-hop P-NET Networks. Polytechnic Institute of Porto, Technical Report
HURRAY-TR-9813, September 1998, to appear in Control Engineering Practice, Pergamon
Publishers.

2. Tovar, E. and Vasques, F. Real-Time Fieldbus Communications Using PROFIBUS Networks.
Polytechnic Institute of Porto, Technical Report HURRAY-TR-9803, April 1998, to appear in
IEEE Transactions on Industrial Electronics.

3. Tovar, E. and Vasques, F. Cycle Time Properties of the PROFIBUS Timed Token Protocol.
Polytechnic Institute of Porto, Technical Report HURRAY-TR-9811, August 1998, to appear
in Computer Communications, Elsevier Science.

B. Submitted for Publications in Scientific Journals

4. Tovar, E., Vasques, F. and Burns, A. Communication Response Time in P-NET Networks:
Worst-Case Analysis Considering the Actual Token Utilisation. Department of Computer
Science, University of York, Technical Report YCS 312, January 1999, submitted for
publication to the Journal of Real-Time Systems, Kluwer.

5. Tovar, E. and Vasques, F. Distributed Computing for the Factory-Floor: a Real-Time
Approach using WorldFIP Networks. Polytechnic Institute of Porto, Technical Report
HURRAY-TR-9908, March 1999, submitted to Computers in Industry, Elsevier Science.

C. Published in Conference Proceedings

6. Cardoso, A. and Tovar, E. Industrial Communication Networks: Issues on Heterogeneity and
Internetworking. In Proceedings of the 6th International Conference on Flexible Automation
and Intelligent Manufacturing (FAIM’96), Atlanta, USA, pp. 139-148, May 1996.

7. Tovar, E. and Vasques, F. A Communication Support for Real-Time Distributed Computer
Controlled Systems. In Proceedings of the IEE International Workshop on Discrete Event
Systems, pp.178-183. Published by IEE, April 1998.

8. Tovar, E. and Vasques, F. Enhancing P-NET Real-Time Properties Using Priority Queuing
Mechanisms. In Proceedings of the WIP Session of the 4th IEEE Real-Time Technologies and
Applications Symposium, Denver, Colorado, USA, 3-5 June 1998, pp.27-30. Also Available
as Technical Report BUCS-TR-98-013 from Boston University, USA.

9. Tovar, E. and Vasques, F. Guaranteeing Real-Time Message Deadlines in PROFIBUS
Networks. In Proceedings of the 10th Euromicro Workshop on Real-Time Systems, pp. 79-86,
Published by IEEE Computer Society Press, June 1998.

10. Tovar, E. and Vasques, F. Pre-Run-Time Schedulability Analysis of P-NET FieldBus
Networks. In Proceedings of the 24th IEEE Annual Conference of the IEEE Industrial
Electronics Society (IECON'98), Aachen, Germany, August 1998, pp.236-241.

11. Tovar, E. and Vasques, F. Setting Target Rotation Time in PROFIBUS Based Real-Time
Distributed Applications. In Proceedings of the 15th IFAC Workshop on Distributed

Computer Control Systems, pp. 1-6, Published by Pergamon, an Imprint of Elsevier Science,
September 1998.

12. Tovar, E. and Vasques, F. A Communication Support for Real-Time Distributed Computer
Controlled Systems. In Proceedings of the IEE International Workshop on Discrete Event
Systems (WODES'98), Cagliari, Italy, 26-28 August 1998, pp.178-183. Published by IEE,
August 1998.

13. Tovar, E., Vasques, F. and Burns, A. Evaluating P-NET Message's Response Time with Fixed
Priority Queuing at the Application Process Level. In Proceedings of the WIP Session of the
19th IEEE Real-Time Systems Symposium (RTSS'98), Madrid, Spain, 2-4 December 1998,
pp.19-22. Also Available as Technical Report UNL-CSE-98-002 from University of
Nebraska-Lincoln, USA

14. Tovar, E. and Vasques, F. From Task Scheduling in Single Processor Environments to
Message Scheduling in a Profibus Fieldbus Network. In Lecture Notes in Computer Science,
No. 1586, pp. 339-352, WPDRTS'99, April 1999.

D. To Appear in Conference Proceedings

15. Tovar, E., Vasques, F. and Burns, A. Adding Local Priority-Based Dispatching Mechanisms
to P-NET Networks: a Fixed Priority Approach. Polytechnic Institute of Porto, Technical
Report HURRAY-TR-9822, December 1998, to appear in the Proceedings of the 11th
Euromicro Conference on Real-Time Systems, June 1999.

16. Tovar, E. and Vasques, F. Contributions for the Worst-Case Response Time Analysis fo Real-
Time Sporadic Traffic in WorldFIP Networks. Polytechnic Institute of Porto, Technical
Report HURRAY-TR-9910, March 1999, to appear in the WIP session proceedings of the
Euromicro RTS'99, June 1999.

17. Tovar, E. and Vasques, F. Engineering Real-Time Applications with P-NET, Technical
Report HURRAY-TR-9916, April 1999, to appear in the Proceedings of the 6th P-NET
Conference, May 1999.

E. Submitted for Publication in Conference Proceedings

18. Tovar, E. and Vasques, F. Factory Communications: on the Configuration of the WorldFIP
Bus Arbitrator Table. Polytechnic Institute of Porto, Technical Report HURRAY-TR-9909,
March 1999. Submitted to ETFA'99.

19. Tovar, E. and Vasques, F. Using WorldFIP Networks to Support Periodic and Aperiodic
Traffic. Polytechnic Institute of Porto, Technical Report HURRAY-TR-9917, April 1999,
submitted to IECON'99.

20. Tovar, E., Vasques, F. and Cardoso, A. Guaranteeing Timing Requirements Using P-NET
Fieldbus Networks. Submitted to ETFA'99.

