

Task Partitioning and Priority Assignment
for Hard Real-time Distributed Systems

Technical Report

CISTER-TR-131111

Version:

Date: 11/25/2013

Ricardo Garibay-Martínez

Geoffrey Nelissen

Luis Lino Ferreira

Luis Miguel Pinho

Technical Report CISTER-TR-131111 Task Partitioning and Priority Assignment for

 Hard Real-time Distributed Systems

© CISTER Research Unit
www.cister.isep.ipp.pt 1

Task Partitioning and Priority Assignment for Hard Real-time Distributed Systems
Ricardo Garibay-Martínez, Geoffrey Nelissen, Luis Lino Ferreira, Luis Miguel Pinho

CISTER Research Unit

Polytechnic Institute of Porto (ISEP-IPP)

Rua Dr. António Bernardino de Almeida, 431

4200-072 Porto

Portugal

Tel.: +351.22.8340509, Fax: +351.22.8340509

E-mail: rgmaz@isep.ipp.pt, , llf@isep.ipp.pt, lmp@isep.ipp.pt

http://www.cister.isep.ipp.pt

Abstract
The partitioning of fixed-priority hard real-time tasks and messages in a distributed system is a well known NP-
hard problem. Therefore, there are no methods that provide an optimal solution in polynomial time. In this paper,
we propose the Distributed using Optimal Priority Assignment (DOPA) heuristic, which simultaneously solves the
problem of assigning task to processors and assigning priorities to tasks. DOPA makes use of Audsley’s Optimal
Priority Assignment (OPA) algorithm to assign priorities to tasks and messages. However, in order to use the OPA
algorithm for task sets with dependencies, we first transform the task set into a set of independent tasks by
imposing intermediate deadlines. The experimental results show how the utilisation of the OPA algorithm
increases in average the number of schedulable tasks and messages in a distributed system when compared to
the utilisation of the Deadline Monotonic (DM) priority assignment usually used in other works.

Task Partitioning and Priority Assignment for Hard
Real-time Distributed Systems

Ricardo Garibay-Martínez, Geoffrey Nelissen, Luis Lino Ferreira, Luís Miguel Pinho
CISTER/INESC-TEC, ISEP

Polytechnic Institute of Porto, Portugal
{rgmz, grrpn, llf, lmp}@isep.ipp.pt

Abstract—The partitioning of fixed-priority hard real-time tasks
and messages in a distributed system is a well known NP-hard
problem. Therefore, there are no methods that provide an
optimal solution in polynomial time. In this paper, we propose
the Distributed using Optimal Priority Assignment (DOPA)
heuristic, which simultaneously solves the problem of assigning
task to processors and assigning priorities to tasks. DOPA makes
use of Audsley’s Optimal Priority Assignment (OPA) algorithm
to assign priorities to tasks and messages. However, in order to
use the OPA algorithm for task sets with dependencies, we first
transform the task set into a set of independent tasks by imposing
intermediate deadlines. The experimental results show how the
utilisation of the OPA algorithm increases in average the number
of schedulable tasks and messages in a distributed system when
compared to the utilisation of the Deadline Monotonic (DM)
priority assignment usually used in other works.

Keywords—real-time; distributed systems; task allocation;
priority assignment; intermediate deadlines; holistic analysis.

I. INTRODUCTION
Real-time distributed systems are present in our everyday life.
These systems range from safety critical to entertainment and
domestic applications, presenting a very diverse set of
requirements. Although diverse, in all these areas, modern
distributed applications are becoming larger and more
complex. Therefore, integrating the system’s functional
requirements to comply with their associated real-time
constraints has shown to be a challenging problem within the
real-time domain.

Hard real-time distributed systems are composed of two
main elements: (i) a set of real-time applications and (ii) a
distributed computing platform that executes such
applications. Applications are composed of a set of tasks that
communicate through messages to perform a certain
functionality (e.g. realizing input/output operations,
processing data, etc.). On the other hand, distributed platforms
are composed of a set of processing elements (e.g. processors,
ECUs, etc.) and networks, that provide the needed
computational resources for tasks to be executed and messages
to be transmitted.

When considering real-time applications, the processing of
tasks and messages must comply with their associated time
constraints. Commonly, for applications, this time constraint is
expressed by an end-to-end deadline, which is the longest

elapsed time a sequence of tasks and messages (an
application) is permitted to take from the time at which it was
activated until it completes its execution.

Furthermore, for a given set of applications and a given
computing platform, the main objective is to find a feasible
allocation for tasks and messages in a way that all
application’s end-to-end deadlines are met. Unfortunately, this
problem is known to be NP-hard [1]. The problem of task
allocation can be viewed as a two-sided problem: (i) finding
the partitioning of tasks and messages onto the processing
elements of the distributed system, and (ii) finding the priority
assignment for tasks and messages for that partition, so that
real-time tasks and messages are executed within their
deadlines. Therefore, a careful trade-off between the solutions
of those two subproblems needs to be taken in order to obtain
a correct global solution.

Contribution. This paper presents the Distributed using
Optimal Priority Assignment (DOPA) heuristic to find a
feasible partitioning and priority assignment for tasks in
distributed computing platforms by using the Optimal Priority
Assignment (OPA) algorithm, known as Audsley’s algorithm
[2]. The algorithm is an optimal priority assignment algorithm
for independent fixed priority tasks on uniprocessor systems.
The OPA algorithm requires tasks to be independent,
therefore, in order to use the OPA algorithm for task sets with
dependencies (applications), we first need to transform tasks
with dependencies to a set of independent tasks by imposing
intermediate deadlines. Also, the use of intermediate
deadlines makes our approach easily extensible to more
powerful task models such as multithreaded parallel real-time
models, when compared to previous approaches. Furthermore,
our simulations show how the use of the OPA algorithm
increases, in average, the number of schedulable task and
messages in a distributed system, when compared to the usual
method consisting in using the Deadline Monotonic (DM)
priority assignment [3].

Structure of the paper. The remainder of the paper is
structured as follows. Section II presents the related work,
whilst Section III introduces the system model. Section IV
presents the DOPA heuristic. Section V shows some
experimental results, and finally, in Section VI we draw our
conclusions and propose future work.

II. RELATED WORK
The problem of task allocation is divided in two sub problems:
finding the partitioning of tasks and messages onto the
distributed system, and finding the priority assignment for that
partition. In this section we present some relevant works that
address such problems, nevertheless restraining our attention
to the case of preemptive fixed-priority task scheduling based
approaches.

In [4], Tindell et al., addressed this issue as an optimisation
problem with the general purpose simulated annealing
algorithm. The simulated annealing algorithm is used for
iterating in a random manner, over a given allocation for tasks
and messages to processors and networks, and performs an
evaluation based on an “energy” function, which evaluates the
quality of the encountered solution (allocation). Tindell used
the DM scheduling algorithm [3] to assign priorities to
periodic tasks with constrained deadlines assuming that each
task in an application has its own deadline and period. The
latter assumption may however not always be true in real
systems.

In [5], Gutierrez et al., proposed an optimisation technique
for the priority assignment of tasks and messages in a
distributed system. They assumed a set of tasks and messages
that are statically allocated to processors and networks
(therefore, no partitioning phase is considered); thus, focusing
on the problem of assigning the priorities to the allocated tasks
and messages. Their method is based on imposing
intermediate deadlines to the tasks and messages that compose
a “sequence of actions” and then using DM to assign the task
priorities.

The problem of partitioning tasks and messages in
distributed systems is also addressed in Richard et al. [6].
They propose a solution based on branch-and-bound;
branching (enumerating) the possible paths that can lead to
and allocation, and bounding (cutting the path) whenever a
feasible schedule cannot be reached by following such a path.
Again, DM is used to assign the priorities assuming that each
task is defined by its own deadline and period. The bounding
step is performed by checking the schedulability of each
branch based on the schedulability technique for RMA derived
by Tindell et al. in [7].

In [8] and [9], the authors model the task partitioning
problem as an optimisation problem. However, this work still
assumes that each task has its own period and deadline, and it
uses DM to assign priorities.

More recently, Azketa et al. [10] addressed the problem of
task and message allocation in a distributed system by taking
hand of the general purpose genetic algorithms. They use a
genetic algorithm with a permutational solution encoding.
They initiate their genetic algorithm by assigning priorities
using the HOPA heuristic [5] which is based on DM priority
assignment [3] and iterate over different solutions by applying
crossover, mutation and clustering operations. To test

schedulability they use the Tindell’s holistic analysis [7] and
Palencia’s schedulability tests [11, 12].

Although there are some similarities between our method
and previous works, none of the previous approaches has used
Audsley’s OPA to assign priorities to tasks in a distributed
system. As proved in [2], the OPA algorithm is optimal for the
case of preemptive fixed priority tasks, thereby implying that
if the system is schedulable with DM then OPA will also find
a priority assignment to schedule the task set. Further, DM has
been proved to not be optimal for systems where all tasks do
not release jobs simultaneously [3], which is typically the case
in distributed systems due to the task precedence constraints.
By adding intermediate deadlines to tasks, we show that the
Audsley’s algorithm can be used and that it increases the
number of schedulable task sets (i.e. applications) in
comparison with DM.

III. SYSTEM MODEL

A. Real-Time Applications
A distributed real-time system is composed of software
applications that we model as a set Γ = {Γ$, … , Γ'} of)
concurrent sequential applications Γ*with +	 ∈ 	 {1, … ,)} . An
application Γ* is composed of a set /* = {/*,$, … , /*,'0} of)*
tasks and a set of 1* = {1*,$, … , 1*,'02$} of)* − 1 messages,
which are executed and transmitted on processors and
networks, respectively. We assume the linear model of event-
driven distributed system [13]. In this model, each application
Γ* is activated by an external event 4* with a minimum inter-
arrival time of 5* . The arrival of an external event 4* is
followed by the activation of the first task /*,$ of Γ*. Whenever
a task /*,6 completes its execution, it sends a message 1*,6 to
the next task /*,67$ and hence triggers its execution.

Each task /*,6 is characterized by its Worst-Case Execution
Time (WCET) 8*,6 , and each message 1*,6 by a transmission
time 8*,6

9:; . Communications between tasks can be carried out
within the same or different processors in the distributed
system. If two tasks /*,6 and /*,67$ communicate via a message
1*,6 and execute in the same processor, we consider that the
message transmission time is negligible, thereby assuming that
8*,6
9:; = 0. Also, an application Γ* is characterised by an end-

to-end deadline =* , which is the longest elapsed time that the
sequence of tasks and messages is permitted to take from the
time in which it is activated (4*) until it completes its
execution (time at which the last task /*,'0 in the sequence of
tasks and messages completes its execution). We assume that
=* ≤ 5* . The density ?*	 of an application Γ* is given by

?* =
∑ A0,B7A0,B

CDEF0
BGH

I0
 and the total density of the system is

defined as ? = ∑ ?*J0∈J .

We consider that tasks are scheduled with a preemptive
fixed-priority algorithm. On the other hand, messages are
scheduled with a non-preemptive fixed priority algorithm. We
also consider that some tasks of an application can be

restrained to execute in some specific processors due to some
design constraints. Such constraints can be related to design
reasons, safety reasons, or to specific functionality offered by
the processors in the distributed system (e.g. sensors,
actuators, required libraries, etc.), and required for the
execution of a task /*,6 within an application Γ* . Therefore,
there exists a set Α ⊆ Γ of tasks that are resource constrained
(they need to be executed in a specific processor), thus, those
tasks are statically assigned to those processors. Also, there
exist a set Υ ⊆ Γ of tasks that do not have any resource
constrains and can be allocated onto any processor.	

B. Distributed Computing Platform
A distributed computing platform is composed of a set of
processors that provide the computing power to execute tasks,
which are connected through a fixed-priority real-time
network (e.g. a CAN network [14]). We assume a set O =
{O$, … , O9} of P identical uniprocessor nodes for the
execution of the tasks, and a single shared real-time network
Q for message transmission.

Figure 1 shows an example of a computing platform
composed of three processors and one real-time network.
There are three applications Γ$, ΓR and ΓS, each composed of
only one task (/$,$, /R,$ and /S,$). Tasks /$,$, /R,$, /S,$ and /T,$
are resource constrained (thus belonging to the set Α) being
pre-assigned to the specific processors 1, 2, 3 and 1
respectively. Also, there exists a list Υ of unallocated tasks
/U,$, /U,R , /T,R , /V,$ and /V,R that can be allocated to any
processor.	

Figure 1. List of applications to be allocated in a computing platform.

The objective is to find (i) a feasible partitioning of the
tasks constituting the applications onto the processors and (ii)
a priority assignment to the tasks in a way that all end-to-end
deadlines are met. Figure 2, shows an example of allocation
α∗ of tasks and messages for the unallocated applications
shown in Figure 1. By looking at Figure 2 it is possible to
notice that tasks in application ΓU (τU,$, τU,R) are allocated to
the same processor, and therefore the message μU,$ can be
neglected, thereby reducing its communication cost to
8*,[
9:; = 0. In the following section we present an heuristic

solving this problem.

Figure 2. Example of a task allocation for the system presented in Figure 1.

IV. THE DOPA HEURISTIC
The DOPA heuristic simultaneously addresses the two
interrelated sub-problems of: (i) finding the partitioning of
tasks and messages onto the elements of the distributed
system, and (ii) finding the priority assignment for that
partitioning.

A. Optimal Priority Assignment (OPA) algorithm

Regarding the problem of priority assignment, there exist
several techniques to assign priorities to a set of preemptive
independent tasks. DM [3] is the one usually considered in
every work on distributed systems. DM is optimal for
assigning priorities if there exists an instant in the schedule
where all the tasks release a job simultaneously. However, in
distributed systems tasks and/or messages have dependencies
on other tasks or messages of the same application. Hence,
because a task /*,67$ never starts its execution before the
completion of task /*,6, /*,6 and /*,67$ will never release a job
simultaneously, thereby violating the optimality condition of
DM. One should therefore conclude that DM is not optimal
for distributed systems. On the other hand, Davis and Burns
[15] proved that the Audsley’s OPA algorithm is optimal
regarding the assignment of task priorities if there exists a
schedulability test \ respecting the three following conditions:
(C1) the schedulability of a task /*,6 according to \, may be
dependent on the set of higher priority tasks] *̂,6, but not on
the relative priority order of those tasks, (C2) the
schedulability of a task /*,6 according to a test \ , may be
dependent on the set of lower priority tasks, but not on the
relative priority order of those tasks, and, (C3) for two tasks
with adjacent priority, if their priorities are swapped, the task
that has been assigned the higher priority cannot become
unschedulable according to the test \, if it was schedulable at
the lower priority.

1. for each priority level _, lowest first{
2. for each unassigned task τ`,a{
3. if (τ`,a is schedulable at priority _ according to
 test VERIFY_SCHEDULABILITY(τ`,a → O[) with all
 unassigned tasks assumed to have higher
 priorities){
4. assign τ`,a to priority _
5. break (continue outer loop)
6. }
7. }
8. return unschedulable
9. }
10. return schedulable

Figure 3. OPA algorithm pseudocode.

The OPA algorithm is based on three simple steps (see
Figure 3): (i) check the schedulability according to 	\ of all
non-priority-assigned tasks by assuming they have the lowest
priority, (ii) arbitrarily chose one that respects its deadline,
and (iii) remove the chosen task from the list of non-priority-
assigned tasks and start again. To verify the schedulability
(VERIFY_SCHEDULABILITY(/*,6 ∈ 	 O[)) of the task set, we
use the schedulability analysis presented in [7]. Note however
that other tests could also be used (e. g. [11, 12]). We know
from [16] that the worst-case response time c*,6 of an
independent task /*,6 , scheduled with a preemptive fixed
priority scheduling algorithm is given by the following
equation:

c*,6 = 8*,6 + e f
c*,6
5g
h

ij,k	∈	lm0,B

8g,n																							o1p

where] *̂,6 is the set of tasks with a higher priority than /*,6
that can interfere with /*,6. Due to the presence of the term c*,6
on both side of (1), this equation is usually solved in an

iterative manner, c*,6
[7$ = 8*,6 + ∑ f

q0,B
r

sj
hij,k	∈	lm0,B 8g,n with

c*,6
$ = 8*,6.The iteration stops when c*,6[= c*,6

[7$.

In a distributed time system, the worst-case response time
t8u5*,6 of a task /*,6 can then be computed as [7]:

t8u5*,6 = c*,6 +evc*,[+ c*,[
9:;w

62$

[x$

																					o2p

where c*,[
9:; is the response time of a message 1*,[obtained

with a network dependent analysis such as [14]. An
application Γ* (and hence its constituting tasks and messages)
is deemed schedulable if t8u5*,'0 ≤ =*.

Unfortunately, this schedulability test makes the
schedulability of a task /*,6 dependent on the response times
and hence the priorities of all the other tasks and messages in
Γ*, thereby making OPA unusable. We therefore transform the
tasks and messages with dependencies to an equivalent set of
tasks and messages without dependencies by imposing an
intermediate deadline z*,6 (z*,6

9:;, resp.) to each task /*,6 (each
message 1*,6 , resp.) as shown in Figure 4. The intermediate
deadline z*,6 of /*,6 then becomes an offset on the release of
the message 1*,6, and the deadline z*,6

9:; of 1*,6 , becomes an
offset on the release of /*,67$. Therefore, we now have that:

{
t8u5*,6 = z*,62$

9:; + c*,6

t8u5*,6
9:; = z*,6 + c*,6

9:; 																								o3p

implying that the worst-case response time of each task and
message becomes independent of the relative priority order of
higher and lower priority tasks. Now, a task /*,6 (a message
1*,6 , resp.) is deemed schedulable if t8u5*,6 ≤ z*,6

(t8u5*,6
9:; ≤ z*,6

9:; , resp.) and the three Audsley’s OPA
algorithm validity conditions (C1, C2 and C3) are respected.

The tasks and messages intermediate deadlines are
computed as a function of the application end-to-end deadline
and the tasks and messages WCETs	 o 8*,6 	and	 8*,6

9:; ,	

respectively). For tasks and messages, the intermediate
deadlines are given by:

z*,6 = z*,62$
9:; +

8*,6
∑ 8*,[+ 8*,[

9:;'0
[x$

	=*																						o4p	

z*,6
9:; = z*,6 +

8*,6
9:;

∑ 8*,[+ 8*,[
9:;'0

[x$

	=*																						o5p	

Note that from those definitions, we have that	z*,'0 = 	=* .
Hence, if all tasks (and messages) respect their intermediate
deadlines d`,a, i.e., t8u5*,6 ≤ z*,6, the end to end deadline D`
of the application is also respected.

Figure 4. Intermediate deadlines.

B. Partitioning Algorithm
The problem of partitioning the task set onto the processors of
the platform and assigning priorities to the tasks and messages
is solved by the algorithm PARTITION(Γ) presented in
Figure 5. The algorithm is entirely based on the following
idea; if two successive tasks /*,6 and /*,67$ of the same
application Γ* are assigned to a same processor O[, then the
message 1*,6 can be ommited, thereby reducing the load on the
network and increasing the acceptable response time for the
other tasks and messages in Γ* . Therefore, PARTITION(Γ)
tries to maximize the number of successive tasks of the same
application being assigned on the same processor.

The pseudo code of the partitioning algorithm can be
understood as follows. Applications Γ* ∈ Γ are assigned in a
non-increasing density order. Tasks in Γ* are considered in a
lexical order. Each task /*,6 is first assigned on the same
processor than the previous task /*,62$ (if any) of the
application Γ* , thereby assuming that the message 1*,62$ is
unneeded and hence 8*,62$

9:; = 0 . If the priority assignment
(using OPA) does not succeed (i.e., the task is unschedulable
on that processor) and the next task (if any) that must be
executed in the application Γ* has already been assigned on a
processor O[, then PARTITION(Γ) tries to assign /*,6 on O[
assuming that the message 1*,6 is unneeded and hence
8*,6
9:; = 0 . If the priority assignment fails again, then the

algorithm tries to assign /*,6 on any other processor in a worst-

fit order (i.e., the processor with the smallest total density
first). Finaly, the schedulability on the network is checked.
Note that the intermediate deadlines of the tasks in Γ* are
recomputed at each step since their values depend on the
number of messages the application must send on the network,
i.e., the number of messages with 8*,6

9:; > 0. However, this
modification of the intermediate deadlines does not jeopardize
the schedulability of the tasks that are already assigned to
processors since, by studying Equations (4) and (5), we can
see that the intermediate deadlines increase whenever a
message is ommited (i.e., one of the terms 8*,[

9:; becomes
equal to 0). Therefore, if the previous deadlines were
respected, the new one will also be.

PARTITION(Γ)
1. for all Γ*	 ordered by non-increasing ?* {
2. for all /*,6 ∈ 	Γ* {
3. assign /*,6 to O[| /*,62$ ∈ O[, assuming 8*,6

9:; = 0
4. call OPA_ASSIGNMENT(/*,6,	/g,n ∈ 	 O[)
5. if OPA succeed to assign /*,6 {
6. break
7. }
8. else if OPA fails to assign /*,6 {
9. assign /*,6 to O[| /*,67$ ∈ O[, assuming 8*,6

9:; = 0
10. call OPA_ASSIGNMENT(/*,6,	/g,n ∈ 	O[)
11. if OPA succeed to assign /*,6 {
12. break
13. }
14. else if OPA fails to assign /*,6 {
15. for all O[in Worst-Fit order {
16.
17. assign /*,6 to O[
18. call OPA_ASSIGNMENT(/*,6,	/g,n ∈ 	 O[)
19. if OPA succeeds {
20. assign message 1*,6 to the network
21. VERIFY_SCHEDULABILITY(1*,6 ∈ 	Q)
22. if message 1*,6 schedulable
23. break
24. else
25. return unschedulable
26. }
27. else
28. return unschedulable
29. }
30. }
31. }
32. }
32. }
33. return schedulable

Figure 5. Partitioning algorithm pseudocode.

V. EXPERIMENTAL EVALUATION
In this section we present some experimental results of our
simulations of the DOPA heuristic. Let us recall that the
DOPA heuristic simultaneously (i) finds the partitioning of
tasks and messages onto the elements of the distributed
system, and (ii) finds the priority assignment for that
partitioning. For all experiments we use the PARTITION(Γ)
algorithm for the partition of tasks and messages onto the
elements of the distributed system, and we use two different
priority assignment algorithms, namely DM and OPA.

One of the main objectives of this work is to demonstrate
that by using the OPA algorithm, for the case of tasks with
dependencies, it is possible to increase in average the number
of schedulable tasks and messages in a distributed system

when compared to the utilisation of the DM priority
assignment, frequently used in other works.

For generating the applications Γ* and their respective tasks
/*,6 and messages 1*,6 we follow the guidelines presented in
[17] for generating random task sets for multiprocessor
systems, using the Stafford’s Randfixedsum algorithm [18].
The Randfixedsum algorithm generates a set of) values which
are evenly distributed and whose components sum to a constant
value. Thus, we use the Randfixedsum algorithm for
generating unbiased sets of applications with a fixed total
density ?ÉÑÉ = ∑?* . For a given total density ?ÉÑÉ , the
algorithm returns) applications with density ?* ; with values
from a minimum density bound ?*9*' = 0.1 for each
application, and a maximum density bound ?*9gÖ = 0.9. For
generating the tasks’ and messages’ densities we use again the
Randfixedsum algorithm taking as an input the previous
generated densities ?* = ∑v?*6 + ?*,6

9:;w , obtaining a set of
values ?*,6 = z*,6 5*⁄ for tasks and ?*,6

9:; = z*,6
9:; 5*⁄ for

messages with values from a minimum density bound for tasks
and messages à*,69*' = 0.01 and a maximum density of
à*,6
9gÖ = 0.9 . The WCETs of tasks 8*,6 , messages 8*,6

9:; and
end-to-end deadlines =* are generated as recommended in [17];
we considered that applications have implicit end-to-end
deadlines (=* = 5*) following a uniform distribution. For each
experiment 100 sets are generated.

Figure 6 (a) shows the number of accepted tasks sets over
100 experiments for different total densities ?ÉÑÉ. We simulate
50 applications that execute tasks and transmit messages in a
computing platform of 10 processors and 1 network. It is
possible to see that OPA in average performs better in terms of
the number of accepted task sets. For example, the OPA
algorithm accepts 52% of task sets with total system density of
9. In contrast, the DM algorithm reaches 16% with the same
system density.

In Figure 6 (b) we show the number of accepted task sets
for 100 experiments simulating 50 applications that execute
tasks and transmit messages in a computing platform
composed of 1 network and a varying number of processors.
The density is fixed to ?ÉÑÉ = 8. It is possible to see that OPA
in average performs better, for example, when the number of
processors is equal to 9, the OPA algorithm accepts 70% of
task sets, whilst the DM algorithm only accepts 30% of task
sets.

Figure 6 (c) shows the number of accepted tasks sets over
100 experiments, where we vary the number of applications
with a fixed total density äÉÑÉ = 8 to be scheduled in a
computing platform of 10 processors and 1 network. It is
possible to see that the OPA algorithm, in average performs
better; in the range between 10 and 50 applications, OPA
always accepts more task sets than DM. For example, for the
case of 40 applications, the OPA algorithm accepts 69% of task
sets, in contrast the number of accepted tasks sets obtained by
the DM algorithm is 34%. Note that the number of accepted
task sets increases with the number of generated applications.
This behaviour can be explained by the fact that the average
density of tasks and messages decreases, thereby meaning that
more tasks can be scheduled on each processor in average.

Figure 6. 100 experiments varying (a) the total density, (b) the number of processors, and (c) the number of applications in the system.

The effects presented in Figures 6 (a), (b), (c), can be
explained because, when DM is used for assigning priorities, it
fails more often than OPA due to its non-optimality. Therefore,
such non-schedulable tasks need to be partition onto other
processor in the distributed system, thus increasing the number
of messages in the network, which leads to an increasing
number of unschedulable systems.

VI. CONCLUSIONS AND FUTURE WORK
This paper presented the DOPA heuristic for the simultaneous
partitioning and priority assignment of tasks and messages
(applications) onto the constituting elements of the distributed
system by using the OPA algorithm known as Audsley’s
algorithm [2].

We proposed a method that imposes intermediate deadlines
to tasks and messages thus permitting the use OPA for tasks
with dependencies. Furthermore, our approach is easily
extensible to more powerful task models such as multithreaded
parallel real-time models, when compared with other works
addressing sequential dependent tasks and messages in a
distributed system. We demonstrated through simulations that
OPA increases, in average, the number of schedulable tasks
and messages in a distributed system, when compared to the
DM algorithm, when using the same partition algorithm.

We are currently working on the extension of the DOPA
heuristic for considering multithreaded parallel real-time
models and the inclusion of more complex topologies of
communication networks.

ACKNOWLEDGMENTS

This work was partially supported by National Funds through FCT
(Portuguese Foundation for Science and Technology) and by ERDF (European
Regional Development Fund) through COMPETE (Operational Programme
'Thematic Factors of Competitiveness'), within projects FCOMP-01-0124-
FEDER-015006 (VIPCORE) and FCOMP-01-0124-FEDER-037281
(CISTER); by FCT and EU ARTEMIS JU, within project
ARTEMIS/0003/2012, JU grant nr. 333053 (CONCERTO); by FCT and ESF
(European Social Fund) through POPH (Portuguese Human Potential
Operational Program), under PhD grant SFRH/BD/71562/2010.

REFERENCES
[1] A. Burns, "Scheduling hard real-time systems: a review," Software

Engineering Journal, vol. 6, no. 3, pp. 116-128, 1991.
[2] N. C. Audsley, "Optimal priority assignment and feasibility of static

priority tasks with arbitrary start times," University of York, Department
of Computer Science, 1991.

[3] J. Leung and J. Whitehead, "On the complexity of fixed-priority
scheduling of periodic, real-time tasks," Performance evaluation, vol. 2,
no. 4, pp. 237-250, 1982.

[4] K. Tindell, A. Burns and A. J. Wellings, "Allocating hard real-time
tasks: an NP-hard problem made easy," Real-Time Systems, vol. 4, no. 2,
pp. 145-165, 1992.

[5] J. J. Gutiérrez-García and M. González-Harbour, "Optimized priority
assignment for tasks and messages in distributed hard real-time systems,"
in Proceedings of the Third IEEE Workshop on Parallel and Distributed
Real-Time Systems, 1995.

[6] M. Richard, P. Richard and F. Cottet, "Allocating and scheduling tasks in
multiple fieldbus real-time systems," in Proceedings of IEEE Conference
on Emerging Technologies and Factory Automation (ETFA'03), 2003.

[7] K. Tindell and J. Clark, "Holistic schedulability analysis for distributed
hard real-time systems," Microprocessing and Microprogramming, vol.
40, no. 2-3, pp. 117 - 134 , 1994.

[8] W. Zheng, Q. Zhu, M. Di Natale and A. S. Vincentelli, "Definition of
task allocation and priority assignment in hard real-time distributed
systems," in Proc. 28th IEEE International Real-Time Systems
Symposium (RTSS'2007), 2007.

[9] A. Metzner and C. Herde., "Rtsat--an optimal and efficient approach to
the task allocation problem in distributed architectures," in Proc. of the
27th IEEE International Real-Time Systems Symposium (RTSS'06),
2006.

[10] E. Azketa, J. P. Uribe , J. J. Gutiérrez, M. Marcos and L. Almeida,
"Permutational genetic algorithm for the optimized mapping and
scheduling of tasks and messages in distributed real-time systems," in In
Proceedings of the 2011IEEE 10th International Conference on Trust,
Security and Privacy in Computing and Communications, TRUSTCOM,
2011.

[11] J. C. Palencia and M. González-Harbour, "Schedulability analysis for
tasks with static and dynamic offsets," in Proceedings of The 19th IEEE
Real-Time Systems Symposium (RTSS'98), 1998.

[12] J. C. Palencia and M. Gonzalez-Harbour, "Exploiting precedence
relations in the schedulability analysis of distributed real-time systems,"
in Proceedings of the 20th IEEE Real-Time Systems Symposium
(RTSS'99), 1999.

[13] J. C. Palencia, J. J. Gutiérrez and M. González-Harbour, “On the
schedulability analysis for distributed hard real-time systems,” in Proc.
of IEEE Ninth Euromicro Workshop on Real-Time Systems, 1997.

[14] R. I. Davis, S. Kollmann, V. Pollex and F. Slomka, "Schedulability
analysis for Controller Area Network (CAN) with FIFO queues priority
queues and gateways," Real-Time Systems, vol. 49, no. 1, pp. 73-116,
2013.

[15] R. I. Davis and A. Burns , "Priority Assignment for Global Fixed Priority
Pre-Emptive Scheduling in Multiprocessor Real-Time Systems," in Proc.
of the 30th IEEE Real-Time Systems Symposium (RTSS 2009), 2009.

[16] M. Joseph and P. Pandya, "Finding response times in a real-time
system," The Computer Journal, vol. 29, no. 5, pp. 390-395, 1986.

[17] P. Emberson, R. Stafford and R. I. Davis, "Techniques for the synthesis
of multiprocessor tasksets," in In 1st International Workshop on Analysis
Tools and Methodologies for Embedded and Real-time Systems
(WATERS'10), 2010.

[18] R. Stafford , "Random vectors with fixed sum," [Online]. Available:
http://www.mathworks.com/matlabcentral/fileexchange/9700, 2006.

