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Abstract 
The partitioning of fixed-priority hard real-time tasks and messages in a distributed system is a well known NP-
hard problem. Therefore, there are no methods that provide an optimal solution in polynomial time. In this paper, 
we propose the Distributed using Optimal Priority Assignment (DOPA) heuristic, which simultaneously solves the 
problem of assigning task to processors and assigning priorities to tasks. DOPA makes use of Audsley’s Optimal 
Priority Assignment (OPA) algorithm to assign priorities to tasks and messages. However, in order to use the OPA 
algorithm for task sets with dependencies, we first transform the task set into a set of independent tasks by 
imposing intermediate deadlines. The experimental results show how the utilisation of the OPA algorithm 
increases in average the number of schedulable tasks and messages in a distributed system when compared to 
the utilisation of the Deadline Monotonic (DM) priority assignment usually used in other works. 
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Abstract—The partitioning of fixed-priority hard real-time tasks 
and messages in a distributed system is a well known NP-hard 
problem. Therefore, there are no methods that provide an 
optimal solution in polynomial time. In this paper, we propose 
the Distributed using Optimal Priority Assignment (DOPA) 
heuristic, which simultaneously solves the problem of assigning 
task to processors and assigning priorities to tasks. DOPA makes 
use of Audsley’s Optimal Priority Assignment (OPA) algorithm 
to assign priorities to tasks and messages. However, in order to 
use the OPA algorithm for task sets with dependencies, we first 
transform the task set into a set of independent tasks by imposing 
intermediate deadlines. The experimental results show how the 
utilisation of the OPA algorithm increases in average the number 
of schedulable tasks and messages in a distributed system when 
compared to the utilisation of the Deadline Monotonic (DM) 
priority assignment usually used in other works. 

Keywords—real-time; distributed systems; task allocation; 
priority assignment; intermediate deadlines; holistic analysis. 

I.  INTRODUCTION 
Real-time distributed systems are present in our everyday life. 
These systems range from safety critical to entertainment and 
domestic applications, presenting a very diverse set of 
requirements. Although diverse, in all these areas, modern 
distributed applications are becoming larger and more 
complex. Therefore, integrating the system’s functional 
requirements to comply with their associated real-time 
constraints has shown to be a challenging problem within the 
real-time domain.  

Hard real-time distributed systems are composed of two 
main elements: (i) a set of real-time applications and (ii) a 
distributed computing platform that executes such 
applications. Applications are composed of a set of tasks that 
communicate through messages to perform a certain 
functionality (e.g. realizing input/output operations, 
processing data, etc.). On the other hand, distributed platforms 
are composed of a set of processing elements (e.g. processors, 
ECUs, etc.) and networks, that provide the needed 
computational resources for tasks to be executed and messages 
to be transmitted.  

When considering real-time applications, the processing of 
tasks and messages must comply with their associated time 
constraints. Commonly, for applications, this time constraint is 
expressed by an end-to-end deadline, which is the longest 

elapsed time a sequence of tasks and messages (an 
application) is permitted to take from the time at which it was 
activated until it completes its execution.  

Furthermore, for a given set of applications and a given 
computing platform, the main objective is to find a feasible 
allocation for tasks and messages in a way that all 
application’s end-to-end deadlines are met. Unfortunately, this 
problem is known to be NP-hard [1]. The problem of task 
allocation can be viewed as a two-sided problem: (i) finding 
the partitioning of tasks and messages onto the processing 
elements of the distributed system, and (ii) finding the priority 
assignment for tasks and messages for that partition, so that 
real-time tasks and messages are executed within their 
deadlines. Therefore, a careful trade-off between the solutions 
of those two subproblems needs to be taken in order to obtain 
a correct global solution. 

Contribution. This paper presents the Distributed using 
Optimal Priority Assignment (DOPA) heuristic to find a 
feasible partitioning and priority assignment for tasks in 
distributed computing platforms by using the Optimal Priority 
Assignment (OPA) algorithm, known as Audsley’s algorithm 
[2]. The algorithm is an optimal priority assignment algorithm 
for independent fixed priority tasks on uniprocessor systems. 
The OPA algorithm requires tasks to be independent, 
therefore, in order to use the OPA algorithm for task sets with 
dependencies (applications), we first need to transform tasks 
with dependencies to a set of independent tasks by imposing 
intermediate deadlines. Also, the use of intermediate 
deadlines makes our approach easily extensible to more 
powerful task models such as multithreaded parallel real-time 
models, when compared to previous approaches. Furthermore, 
our simulations show how the use of the OPA algorithm 
increases, in average, the number of schedulable task and 
messages in a distributed system, when compared to the usual 
method consisting in using the Deadline Monotonic (DM) 
priority assignment [3]. 

Structure of the paper. The remainder of the paper is 
structured as follows. Section II presents the related work, 
whilst Section III introduces the system model. Section IV 
presents the DOPA heuristic. Section V shows some 
experimental results, and finally, in Section VI we draw our 
conclusions and propose future work. 



II. RELATED WORK 
The problem of task allocation is divided in two sub problems: 
finding the partitioning of tasks and messages onto the 
distributed system, and finding the priority assignment for that 
partition. In this section we present some relevant works that 
address such problems, nevertheless restraining our attention 
to the case of preemptive fixed-priority task scheduling based 
approaches. 

In [4], Tindell et al., addressed this issue as an optimisation 
problem with the general purpose simulated annealing 
algorithm. The simulated annealing algorithm is used for 
iterating in a random manner, over a given allocation for tasks 
and messages to processors and networks, and performs an 
evaluation based on an “energy” function, which evaluates the 
quality of the encountered solution (allocation). Tindell used 
the DM scheduling algorithm [3] to assign priorities to 
periodic tasks with constrained deadlines assuming that each 
task in an application has its own deadline and period. The 
latter assumption may however not always be true in real 
systems. 

In [5], Gutierrez et al., proposed an optimisation technique 
for the priority assignment of tasks and messages in a 
distributed system. They assumed a set of tasks and messages 
that are statically allocated to processors and networks 
(therefore, no partitioning phase is considered); thus, focusing 
on the problem of assigning the priorities to the allocated tasks 
and messages. Their method is based on imposing 
intermediate deadlines to the tasks and messages that compose 
a “sequence of actions” and then using DM to assign the task 
priorities. 

The problem of partitioning tasks and messages in 
distributed systems is also addressed in Richard et al. [6]. 
They propose a solution based on branch-and-bound; 
branching (enumerating) the possible paths that can lead to 
and allocation, and bounding (cutting the path) whenever a 
feasible schedule cannot be reached by following such a path. 
Again, DM is used to assign the priorities assuming that each 
task is defined by its own deadline and period. The bounding 
step is performed by checking the schedulability of each 
branch based on the schedulability technique for RMA derived 
by Tindell et al. in [7]. 

In [8] and [9], the authors model the task partitioning 
problem as an optimisation problem. However, this work still 
assumes that each task has its own period and deadline, and it 
uses DM to assign priorities. 

More recently, Azketa et al. [10] addressed the problem of 
task and message allocation in a distributed system by taking 
hand of the general purpose genetic algorithms. They use a 
genetic algorithm with a permutational solution encoding. 
They initiate their genetic algorithm by assigning priorities 
using the HOPA heuristic [5] which is based on DM priority 
assignment [3] and iterate over different solutions by applying 
crossover, mutation and clustering operations. To test 

schedulability they use the Tindell’s holistic analysis [7] and 
Palencia’s schedulability tests [11, 12]. 

Although there are some similarities between our method 
and previous works, none of the previous approaches has used 
Audsley’s OPA to assign priorities to tasks in a distributed 
system. As proved in [2], the OPA algorithm is optimal for the 
case of preemptive fixed priority tasks, thereby implying that 
if the system is schedulable with DM then OPA will also find 
a priority assignment to schedule the task set. Further, DM has 
been proved to not be optimal for systems where all tasks do 
not release jobs simultaneously [3], which is typically the case 
in distributed systems due to the task precedence constraints. 
By adding intermediate deadlines to tasks, we show that the 
Audsley’s algorithm can be used and that it increases the 
number of schedulable task sets (i.e. applications) in 
comparison with DM. 

III. SYSTEM MODEL 

A. Real-Time Applications 
A distributed real-time system is composed of software 
applications that we model as a set Γ = {Γ$, … , Γ'}  of ) 
concurrent sequential applications Γ*with +	 ∈ 	 {1, … , )} . An 
application Γ*  is composed of a set /* = {/*,$, … , /*,'0}  of )* 
tasks and a set of 1* = {1*,$, … , 1*,'02$} of )* − 1  messages, 
which are executed and transmitted on processors and 
networks, respectively. We assume the linear model of event-
driven distributed system [13]. In this model, each application 
Γ* is activated by an external event 4* with a minimum inter-
arrival time of 5* . The arrival of an external event 4*  is 
followed by the activation of the first task /*,$ of Γ*. Whenever 
a task /*,6 completes its execution, it sends a message 1*,6  to 
the next task /*,67$ and hence triggers its execution.  

Each task /*,6 is characterized by its Worst-Case Execution 
Time (WCET) 8*,6 , and each message 1*,6  by a transmission 
time 8*,6

9:; . Communications between tasks can be carried out 
within the same or different processors in the distributed 
system. If two tasks /*,6 and /*,67$ communicate via a message 
1*,6 and execute in the same processor, we consider that the 
message transmission time is negligible, thereby assuming that 
8*,6
9:; = 0. Also, an application Γ* is characterised by an end-

to-end deadline =* , which is the longest elapsed time that the 
sequence of tasks and messages is permitted to take from the 
time in which it is activated ( 4* ) until it completes its 
execution (time at which the last task /*,'0 in the sequence of 
tasks and messages completes its execution). We assume that 
=* ≤ 5* . The density ?*	 of an application Γ*  is given by 

?* =
∑ A0,B7A0,B

CDEF0
BGH

I0
 and the total density of the system is 

defined as ? = ∑ ?*J0∈J . 

We consider that tasks are scheduled with a preemptive 
fixed-priority algorithm. On the other hand, messages are 
scheduled with a non-preemptive fixed priority algorithm. We 
also consider that some tasks of an application can be 



restrained to execute in some specific processors due to some 
design constraints. Such constraints can be related to design 
reasons, safety reasons, or to specific functionality offered by 
the processors in the distributed system (e.g. sensors, 
actuators, required libraries, etc.), and required for the 
execution of a task /*,6  within an application Γ* . Therefore, 
there exists a set Α ⊆ Γ of tasks that are resource constrained 
(they need to be executed in a specific processor), thus, those 
tasks are statically assigned to those processors. Also, there 
exist a set Υ ⊆ Γ  of tasks that do not have any resource 
constrains and can be allocated onto any processor.	 

B. Distributed Computing Platform 
A distributed computing platform is composed of a set of 
processors that provide the computing power to execute tasks, 
which are connected through a fixed-priority real-time 
network (e.g. a CAN network [14]). We assume a set O =
{O$, … , O9}  of P  identical uniprocessor nodes for the 
execution of the tasks, and a single shared real-time network 
Q for message transmission. 

Figure 1 shows an example of a computing platform 
composed of three processors and one real-time network. 
There are three applications Γ$, ΓR  and ΓS, each composed of 
only one task (/$,$, /R,$ and /S,$). Tasks /$,$, /R,$, /S,$ and /T,$ 
are resource constrained (thus belonging to the set Α) being 
pre-assigned to the specific processors 1, 2, 3 and 1 
respectively. Also, there exists a list Υ  of unallocated tasks 
/U,$, /U,R , /T,R , /V,$  and /V,R  that can be allocated to any 
processor.	 

 
Figure 1.  List of applications to be allocated in a computing platform. 

The objective is to find (i) a feasible partitioning of the 
tasks constituting the applications onto the processors and (ii) 
a priority assignment to the tasks in a way that all end-to-end 
deadlines are met. Figure 2, shows an example of allocation 
α∗  of tasks and messages for the unallocated applications 
shown in Figure 1. By looking at Figure 2 it is possible to 
notice that tasks in application ΓU (τU,$, τU,R) are allocated to 
the same processor, and therefore the message μU,$  can be 
neglected, thereby reducing its communication cost to 
8*,[
9:; = 0. In the following section we present an heuristic 

solving this problem. 

 
Figure 2.  Example of a task allocation for the system presented in Figure 1.  

IV. THE DOPA HEURISTIC 
The DOPA heuristic simultaneously addresses the two 
interrelated sub-problems of: (i) finding the partitioning of 
tasks and messages onto the elements of the distributed 
system, and (ii) finding the priority assignment for that 
partitioning. 

A. Optimal Priority Assignment (OPA) algorithm 

Regarding the problem of priority assignment, there exist 
several techniques to assign priorities to a set of preemptive 
independent tasks. DM [3] is the one usually considered in 
every work on distributed systems. DM is optimal for 
assigning priorities if there exists an instant in the schedule 
where all the tasks release a job simultaneously. However, in 
distributed systems tasks and/or messages have dependencies 
on other tasks or messages of the same application. Hence, 
because a task /*,67$  never starts its execution before the 
completion of task /*,6, /*,6 and /*,67$ will never release a job 
simultaneously, thereby violating the optimality condition of 
DM. One should therefore conclude that DM is not optimal 
for distributed systems. On the other hand, Davis and Burns 
[15] proved that the Audsley’s OPA algorithm is optimal 
regarding the assignment of task priorities if there exists a 
schedulability test \ respecting the three following conditions: 
(C1) the schedulability of a task /*,6  according to \, may be 
dependent on the set of higher priority tasks ] *̂,6, but not on 
the relative priority order of those tasks, (C2) the 
schedulability of a task /*,6  according to a test \ , may be 
dependent on the set of lower priority tasks, but not on the 
relative priority order of those tasks, and, (C3) for two tasks 
with adjacent priority, if their priorities are swapped, the task 
that has been assigned the higher priority cannot become 
unschedulable according to the test \, if it was schedulable at 
the lower priority.  

1.   for each priority level _, lowest first{ 
2.      for each unassigned task τ`,a{ 
3.         if (τ`,a is schedulable at priority _ according to 
              test VERIFY_SCHEDULABILITY(τ`,a → O[) with all 
              unassigned tasks assumed to have higher 
              priorities){ 
4.            assign τ`,a to priority _ 
5.            break (continue outer loop) 
6.         } 
7.      } 
8.      return unschedulable 
9.   } 
10.  return schedulable 

Figure 3.  OPA algorithm pseudocode. 



The OPA algorithm is based on three simple steps (see 
Figure 3): (i) check the schedulability according to 	\ of all 
non-priority-assigned tasks by assuming they have the lowest 
priority, (ii) arbitrarily chose one that respects its deadline, 
and (iii) remove the chosen task from the list of non-priority-
assigned tasks and start again. To verify the schedulability 
(VERIFY_SCHEDULABILITY(/*,6 ∈ 	 O[)) of the task set, we 
use the schedulability analysis presented in [7]. Note however 
that other tests could also be used (e. g. [11, 12]). We know 
from [16] that the worst-case response time c*,6  of an 
independent task /*,6 , scheduled with a preemptive fixed 
priority scheduling algorithm is given by the following 
equation:  

c*,6 = 8*,6 + e f
c*,6
5g
h

ij,k	∈	lm0,B

8g,n																							o1p 

where 	] *̂,6 is the set of tasks with a higher priority than /*,6 
that can interfere with /*,6. Due to the presence of the term c*,6 
on both side of (1), this equation is usually solved in an 

iterative manner, c*,6
[7$ = 8*,6 + ∑ f

q0,B
r

sj
hij,k	∈	lm0,B 8g,n  with 

c*,6
$ = 8*,6.The iteration stops when c*,6[ = c*,6

[7$. 

In a distributed time system, the worst-case response time 
t8u5*,6 of a task /*,6 can then be computed as [7]: 

t8u5*,6 = c*,6 +evc*,[ + c*,[
9:;w

62$

[x$

																					o2p 

where c*,[
9:;  is the response time of a message 1*,[  obtained 

with a network dependent analysis such as [14]. An 
application Γ* (and hence its constituting tasks and messages) 
is deemed schedulable if t8u5*,'0 ≤ =*. 

Unfortunately, this schedulability test makes the 
schedulability of a task /*,6 dependent on the response times 
and hence the priorities of all the other tasks and messages in 
Γ*, thereby making OPA unusable. We therefore transform the 
tasks and messages with dependencies to an equivalent set of 
tasks and messages without dependencies by imposing an 
intermediate deadline z*,6 (z*,6

9:;, resp.) to each task /*,6 (each 
message 1*,6 , resp.) as shown in Figure 4. The intermediate 
deadline z*,6  of /*,6  then becomes an offset on the release of 
the message 1*,6, and the deadline z*,6

9:;  of  1*,6 , becomes an 
offset on the release of /*,67$. Therefore, we now have that: 

{
t8u5*,6 = z*,62$

9:; + c*,6

t8u5*,6
9:; = z*,6 + c*,6

9:; 																								o3p 

implying that the worst-case response time of each task and 
message becomes independent of the relative priority order of 
higher and lower priority tasks. Now, a task /*,6  (a message 
1*,6 , resp.) is deemed schedulable if t8u5*,6 ≤ z*,6 

(t8u5*,6
9:; ≤ z*,6

9:; , resp.) and the three Audsley’s OPA 
algorithm validity conditions (C1, C2 and C3) are respected. 

The tasks and messages intermediate deadlines are 
computed as a function of the application end-to-end deadline 
and the tasks and messages WCETs	 o 8*,6 	and	 8*,6

9:; ,	

respectively). For tasks and messages, the intermediate 
deadlines are given by: 

z*,6 = z*,62$
9:; +

8*,6
∑ 8*,[ + 8*,[

9:;'0
[x$

	=*																						o4p	

z*,6
9:; = z*,6 +

8*,6
9:;

∑ 8*,[ + 8*,[
9:;'0

[x$

	=*																						o5p	

Note that from those definitions, we have that	z*,'0 = 	=* . 
Hence, if all tasks (and messages) respect their intermediate 
deadlines d`,a, i.e., t8u5*,6 ≤ z*,6, the end to end deadline D` 
of the application is also respected.  

 
Figure 4.  Intermediate deadlines. 

B. Partitioning Algorithm 
The problem of partitioning the task set onto the processors of 
the platform and assigning priorities to the tasks and messages 
is solved by the algorithm PARTITION( Γ ) presented in 
Figure 5. The algorithm is entirely based on the following 
idea; if two successive tasks  /*,6  and /*,67$  of the same 
application Γ*  are assigned to a same processor O[ , then the 
message 1*,6 can be ommited, thereby reducing the load on the 
network and increasing the acceptable response time for the 
other tasks and messages in Γ* . Therefore, PARTITION(Γ) 
tries to maximize the number of successive tasks of the same 
application being assigned on the same processor.  

The pseudo code of the partitioning algorithm can be 
understood as follows. Applications Γ* ∈ Γ are assigned in a 
non-increasing density order. Tasks in Γ* are considered in a 
lexical order. Each task /*,6  is first assigned on the same 
processor than the previous task /*,62$  (if any) of the 
application Γ* , thereby assuming that the message 1*,62$  is 
unneeded and hence 8*,62$

9:; = 0 . If the priority assignment 
(using OPA) does not succeed (i.e., the task is unschedulable 
on that processor) and the next task (if any) that must be 
executed in the application Γ* has already been assigned on a 
processor O[ , then PARTITION(Γ) tries to assign /*,6  on O[ 
assuming that the message 1*,6  is unneeded and hence 
8*,6
9:; = 0 . If the priority assignment fails again, then  the 

algorithm tries to assign /*,6 on any other processor in a worst-



fit order (i.e., the processor with the smallest total density 
first). Finaly, the schedulability on the network is checked. 
Note that the intermediate deadlines of the tasks in Γ*  are 
recomputed at each step since their values depend on the 
number of messages the application must send on the network, 
i.e., the number of messages with 8*,6

9:; > 0. However, this 
modification of the intermediate deadlines does not jeopardize 
the schedulability of the tasks that are already assigned to 
processors since, by studying Equations (4) and (5), we can 
see that the intermediate deadlines increase whenever a 
message is ommited (i.e., one of the terms 8*,[

9:;  becomes 
equal to 0). Therefore, if the previous deadlines were 
respected, the new one will also be. 

PARTITION(Γ) 
1.   for all Γ*	 ordered by non-increasing ?* { 
2.      for all /*,6 ∈ 	Γ* { 
3.         assign /*,6 to O[| /*,62$ ∈ O[, assuming 8*,6

9:; = 0 
4.         call OPA_ASSIGNMENT(/*,6,	/g,n ∈ 	 O[) 
5.         if OPA succeed to assign /*,6 { 
6.            break 
7.         } 
8.        else if OPA fails to assign /*,6 { 
9.            assign /*,6 to O[| /*,67$ ∈ O[, assuming 8*,6

9:; = 0 
10.           call OPA_ASSIGNMENT(/*,6,	/g,n ∈ 	O[) 
11.           if OPA succeed to assign /*,6 { 
12.              break 
13.            } 
14.           else if OPA fails to assign /*,6 { 
15.              for all O[ in Worst-Fit order { 
16.                  
17.                 assign /*,6 to O[ 
18.                 call OPA_ASSIGNMENT(/*,6,	/g,n ∈ 	 O[) 
19.                 if OPA succeeds { 
20.                    assign message 1*,6 to the network 
21.                    VERIFY_SCHEDULABILITY(1*,6 ∈ 	Q) 
22.                    if message 1*,6 schedulable 
23.                       break 
24.                    else 
25.                      return unschedulable 
26.                 } 
27.                 else 
28.                    return unschedulable 
29.              } 
30.           } 
31.        } 
32.     } 
32.  } 
33.  return schedulable 

Figure 5.  Partitioning algorithm pseudocode. 

V. EXPERIMENTAL EVALUATION 
In this section we present some experimental results of our 
simulations of the DOPA heuristic. Let us recall that the 
DOPA heuristic simultaneously (i) finds the partitioning of 
tasks and messages onto the elements of the distributed 
system, and (ii) finds the priority assignment for that 
partitioning. For all experiments we use the PARTITION(Γ) 
algorithm for the partition of tasks and messages onto the 
elements of the distributed system, and we use two different 
priority assignment algorithms, namely DM and OPA.  

One of the main objectives of this work is to demonstrate 
that by using the OPA algorithm, for the case of tasks with 
dependencies, it is possible to increase in average the number 
of schedulable tasks and messages in a distributed system 

when compared to the utilisation of the DM priority 
assignment, frequently used in other works. 

For generating the applications Γ* and their respective tasks 
/*,6  and messages 1*,6  we follow the guidelines presented in 
[17] for generating random task sets for multiprocessor 
systems, using the Stafford’s Randfixedsum algorithm [18]. 
The Randfixedsum algorithm generates a set of ) values which 
are evenly distributed and whose components sum to a constant 
value. Thus, we use the Randfixedsum algorithm for 
generating unbiased sets of applications with a fixed total 
density ?ÉÑÉ = ∑?* . For a given total density ?ÉÑÉ , the 
algorithm returns ) applications with density ?* ; with values 
from a minimum density bound ?*9*' = 0.1  for each 
application, and a maximum density bound ?*9gÖ = 0.9. For 
generating the tasks’ and messages’ densities we use again the 
Randfixedsum algorithm taking as an input the previous 
generated densities ?* = ∑v?*6 + ?*,6

9:;w , obtaining a set of 
values ?*,6 = z*,6 5*⁄  for tasks and ?*,6

9:; = z*,6
9:; 5*⁄  for 

messages with values from a minimum density bound for tasks 
and messages à*,69*' = 0.01  and a maximum density of 
à*,6
9gÖ = 0.9 . The WCETs of tasks 8*,6 , messages 8*,6

9:;  and 
end-to-end deadlines =*  are generated as recommended in [17]; 
we considered that applications have implicit end-to-end 
deadlines (=* = 5*) following a uniform distribution. For each 
experiment 100 sets are generated.  

Figure 6 (a) shows the number of accepted tasks sets over 
100 experiments for different total densities ?ÉÑÉ. We simulate 
50 applications that execute tasks and transmit messages in a 
computing platform of 10 processors and 1 network. It is 
possible to see that OPA in average performs better in terms of 
the number of accepted task sets. For example, the OPA 
algorithm accepts 52% of task sets with total system density of 
9. In contrast, the DM algorithm reaches 16% with the same 
system density. 

In Figure 6 (b) we show the number of accepted task sets 
for 100 experiments simulating 50 applications that execute 
tasks and transmit messages in a computing platform 
composed of 1 network and a varying number of processors. 
The density is fixed to ?ÉÑÉ = 8. It is possible to see that OPA 
in average performs better, for example, when the number of 
processors is equal to 9, the OPA algorithm accepts 70% of 
task sets, whilst the DM algorithm only accepts 30% of task 
sets.  

Figure 6 (c) shows the number of accepted tasks sets over 
100 experiments, where we vary the number of applications 
with a fixed total density äÉÑÉ = 8  to be scheduled in a 
computing platform of 10 processors and 1 network. It is 
possible to see that the OPA algorithm, in average performs 
better; in the range between 10 and 50 applications, OPA 
always accepts more task sets than DM. For example, for the 
case of 40 applications, the OPA algorithm accepts 69% of task 
sets, in contrast the number of accepted tasks sets obtained by 
the DM algorithm is 34%. Note that the number of accepted 
task sets increases with the number of generated applications. 
This behaviour can be explained by the fact that the average 
density of tasks and messages decreases, thereby meaning that 
more tasks can be scheduled on each processor in average.  



 

Figure 6.  100 experiments varying (a) the total density, (b) the number of processors, and (c) the number of applications in the system. 

The effects presented in Figures 6 (a), (b), (c), can be 
explained because, when DM is used for assigning priorities, it 
fails more often than OPA due to its non-optimality. Therefore, 
such non-schedulable tasks need to be partition onto other 
processor in the distributed system, thus increasing the number 
of messages in the network, which leads to an increasing 
number of unschedulable systems. 

VI. CONCLUSIONS AND FUTURE WORK  
This paper presented the DOPA heuristic for the simultaneous 
partitioning and priority assignment of tasks and messages 
(applications) onto the constituting elements of the distributed 
system by using the OPA algorithm known as Audsley’s 
algorithm [2].  

We proposed a method that imposes intermediate deadlines 
to tasks and messages thus permitting the use OPA for tasks 
with dependencies. Furthermore, our approach is easily 
extensible to more powerful task models such as multithreaded 
parallel real-time models, when compared with other works 
addressing sequential dependent tasks and messages in a 
distributed system. We demonstrated through simulations that 
OPA increases, in average, the number of schedulable tasks 
and messages in a distributed system, when compared to the 
DM algorithm, when using the same partition algorithm. 

We are currently working on the extension of the DOPA 
heuristic for considering multithreaded parallel real-time 
models and the inclusion of more complex topologies of 
communication networks. 
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